Induction - Complete Induction

K. Subramani¹

¹Lane Department of Computer Science and Electrical Engineering West Virginia University

April 1 2013

Complete Induction or Strong Induction

Subramani Mathematical Induction

Complete Induction or Strong Induction

Axiom Schema

$[(\forall n) \ (\forall n') \ ((n' < n) \rightarrow P(n')) \rightarrow P(n)] \rightarrow (\forall x) \ P(x).$

Complete Induction or Strong Induction

Axiom Schema

$$[(\forall n) \ (\forall n') \ ((n' < n) \rightarrow P(n')) \rightarrow P(n)] \rightarrow (\forall x) \ P(x).$$

Note

Complete Induction or Strong Induction

Axiom Schema

$$[(\forall n) \ (\forall n') \ ((n' < n) \rightarrow P(n')) \rightarrow P(n)] \rightarrow (\forall x) \ P(x).$$

Note

Do we need a base case?

Complete Induction or Strong Induction

Axiom Schema

$$(\forall n) \ (\forall n') \ ((n' < n) \rightarrow P(n')) \rightarrow P(n)] \rightarrow (\forall x) \ P(x).$$

Note

Do we need a base case? Has it been addressed?

Show that every number greater than or equal to 8 can be expressed in the form $5 \cdot a + 3 \cdot b$, for suitably chosen *a* and *b*.

Show that every number greater than or equal to 8 can be expressed in the form $5 \cdot a + 3 \cdot b$, for suitably chosen *a* and *b*.

Proof.

The conjecture is clearly true for 8, 9 and 10.

Show that every number greater than or equal to 8 can be expressed in the form $5 \cdot a + 3 \cdot b$, for suitably chosen *a* and *b*.

Proof.

The conjecture is clearly true for 8, 9 and 10. Assume that the conjecture holds for all $r, 8 \le r \le k$.

Show that every number greater than or equal to 8 can be expressed in the form $5 \cdot a + 3 \cdot b$, for suitably chosen *a* and *b*.

Proof.

The conjecture is clearly true for 8, 9 and 10. Assume that the conjecture holds for all $r, 8 \le r \le k$. Consider the integer k + 1.

Show that every number greater than or equal to 8 can be expressed in the form $5 \cdot a + 3 \cdot b$, for suitably chosen *a* and *b*.

Proof.

The conjecture is clearly true for 8, 9 and 10. Assume that the conjecture holds for all $r, 8 \le r \le k$. Consider the integer k + 1. Without loss of generality, we assume that $(k + 1) \ge 11$.

Show that every number greater than or equal to 8 can be expressed in the form $5 \cdot a + 3 \cdot b$, for suitably chosen *a* and *b*.

Proof.

The conjecture is clearly true for 8, 9 and 10. Assume that the conjecture holds for all $r, 8 \le r \le k$. Consider the integer k + 1. Without loss of generality, we assume that $(k + 1) \ge 11$. Observe that (k + 1) - 3 = k - 2 is at least 8 and less than k.

Show that every number greater than or equal to 8 can be expressed in the form $5 \cdot a + 3 \cdot b$, for suitably chosen *a* and *b*.

Proof.

The conjecture is clearly true for 8, 9 and 10. Assume that the conjecture holds for all $r, 8 \le r \le k$. Consider the integer k + 1. Without loss of generality, we assume that $(k + 1) \ge 11$. Observe that (k + 1) - 3 = k - 2 is at least 8 and less than k. As per the inductive hypothesis, k - 2 can be expressed in the form 3a + 5b, for suitably chosen a and b.

Show that every number greater than or equal to 8 can be expressed in the form $5 \cdot a + 3 \cdot b$, for suitably chosen *a* and *b*.

Proof.

The conjecture is clearly true for 8, 9 and 10. Assume that the conjecture holds for all $r, 8 \le r \le k$. Consider the integer k + 1. Without loss of generality, we assume that $(k + 1) \ge 11$. Observe that (k + 1) - 3 = k - 2 is at least 8 and less than k. As per the inductive hypothesis, k - 2 can be expressed in the form 3a + 5b, for suitably chosen a and b. It follows that $(k + 1) = 3 \cdot (a + 1) + 5 \cdot b$, can also be so expressed.

Show that every number greater than or equal to 8 can be expressed in the form $5 \cdot a + 3 \cdot b$, for suitably chosen *a* and *b*.

Proof.

The conjecture is clearly true for 8, 9 and 10. Assume that the conjecture holds for all $r, 8 \le r \le k$. Consider the integer k + 1. Without loss of generality, we assume that $(k + 1) \ge 11$. Observe that (k + 1) - 3 = k - 2 is at least 8 and less than k. As per the inductive hypothesis, k - 2 can be expressed in the form 3a + 5b, for suitably chosen a and b. It follows that $(k + 1) = 3 \cdot (a + 1) + 5 \cdot b$, can also be so expressed. Applying the second principle of mathematical induction, we conclude that the conjecture is true.

The theory T_{PA}^*

Subramani Mathematical Induction

The theory T_{PA}^*

Peano Arithmetic with division

Consider the theory of T_{PA}^* , which is the theory of Peano arithmetic T_{PA} , augmented by the following axioms:

 $\mathcal{A}1. \ (\forall x)(\forall y) \ (x < y) \rightarrow [quot(x, y) =$

Consider the theory of T_{PA}^* , which is the theory of Peano arithmetic T_{PA} , augmented by the following axioms:

 $\mathcal{A}1. \ (\forall x)(\forall y) \ (x < y) \rightarrow [quot(x, y) = 0].$

- $\mathcal{A}1. \ (\forall x)(\forall y) \ (x < y) \rightarrow [quot(x, y) = 0].$
- $\mathcal{A}2. \ (\forall x)(\forall y) \ (y > 0) \rightarrow [quot(x + y, y) =$

- $\mathcal{A}1. \ (\forall x)(\forall y) \ (x < y) \rightarrow [quot(x, y) = 0].$
- $\mathcal{A}2. \ (\forall x)(\forall y) \ (y > 0) \rightarrow [quot(x + y, y) = quot(x, y) + 1].$

- $\mathcal{A}1. \ (\forall x)(\forall y) \ (x < y) \rightarrow [quot(x, y) = 0].$
- $\mathcal{A}2. \ (\forall x)(\forall y) \ (y > 0) \rightarrow [quot(x + y, y) = quot(x, y) + 1].$
- $\mathcal{A3.} \ (\forall x)(\forall y) \ (x < y) \rightarrow [\operatorname{rem}(x, y) =$

- $\mathcal{A}1. \ (\forall x)(\forall y) \ (x < y) \rightarrow [quot(x, y) = 0].$
- $\mathcal{A}2. \ (\forall x)(\forall y) \ (y > 0) \rightarrow [quot(x + y, y) = quot(x, y) + 1].$
- $\mathcal{A3.} \ (\forall x)(\forall y) \ (x < y) \rightarrow [\operatorname{rem}(x, y) = x].$

- $\mathcal{A}1. \ (\forall x)(\forall y) \ (x < y) \rightarrow [quot(x, y) = 0].$
- $\mathcal{A}2. \ (\forall x)(\forall y) \ (y > 0) \rightarrow [quot(x + y, y) = quot(x, y) + 1].$
- $\mathcal{A3.} \ (\forall x)(\forall y) \ (x < y) \rightarrow [\operatorname{rem}(x, y) = x].$
- $\mathcal{A}4. \ (\forall x)(\forall y) \ (y > 0) \rightarrow [\operatorname{rem}(x + y, y) =$

- $\mathcal{A}1. \ (\forall x)(\forall y) \ (x < y) \rightarrow [quot(x, y) = 0].$
- $\mathcal{A}2. \ (\forall x)(\forall y) \ (y > 0) \rightarrow [quot(x + y, y) = quot(x, y) + 1].$
- $\mathcal{A3.} \ (\forall x)(\forall y) \ (x < y) \rightarrow [\operatorname{rem}(x, y) = x].$
- $\mathcal{A}4. \ (\forall x)(\forall y) \ (y > 0) \rightarrow [\operatorname{rem}(x + y, y) = \operatorname{rem}(x, y)].$

Consider the theory of T_{PA}^* , which is the theory of Peano arithmetic T_{PA} , augmented by the following axioms:

- $\mathcal{A}1. \ (\forall x)(\forall y) \ (x < y) \rightarrow [quot(x, y) = 0].$
- $\mathcal{A}2. \ (\forall x)(\forall y) \ (y > 0) \rightarrow [quot(x + y, y) = quot(x, y) + 1].$
- $\mathcal{A3.} \ (\forall x)(\forall y) \ (x < y) \rightarrow [\operatorname{rem}(x, y) = x].$
- $\mathcal{A}4. \ (\forall x)(\forall y) \ (y > 0) \rightarrow [\operatorname{rem}(x + y, y) = \operatorname{rem}(x, y)].$

Example

Argue that

$$(\forall x)(\forall y) (y > 0) \rightarrow [\operatorname{rem}(x, y) < y].$$