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Axiom Schema (for N)

Assume that the domain is the set of positive integers.

[P(0) ∧ (∀k) (P(k) → P(k + 1))] → (∀n) P(n)

Note

(i) Showing that P(0) is true is called the basis step.

(ii) The assumption that P(k) is true, is called the inductive hypothesis.
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Example

Show that the sum of the first n integers is n·(n+1)
2 . Formally,

Pn
i=1 i = n·(n+1)

2 .

Proof.

BASIS (P(1)):

LHS =

1
X
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= 1
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2

=
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2

=
2
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Thus, LHS = RHS and P(1) is true.
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Induction example (contd.)

Proof.

Let us assume that P(k) is true, i.e., assume that

k
X

i=1

i =
k · (k + 1)

2
.
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Proof.

Let us assume that P(k) is true, i.e., assume that

k
X
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i =
k · (k + 1)

2
.

We need to show that P(k + 1) is true, i.e., we need to show that
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2 .
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=
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2
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=
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2

= RHS.

Since, LHS=RHS, we have shown that P(k) → P(k + 1).

Applying the first principle of mathematical induction, we conclude that the conjecture is true.
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Principles

Main Ideas

(i) Mathematicize the conjecture.

(ii) Prove the basis (usually P(1) and usually easy.)

(iii) Assume P(k).

(iv) Show P(k + 1). (The hard part. Use mathematical manipulation.)
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6
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(2k + 3) · (k + 2))
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(k + 1) · (k + 2) · (2 · (k + 1) + 1)

6

= RHS.

Since, LHS=RHS, we have shown that P(k) → P(k + 1).
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Completing the proof

Proof.

=
k + 1

6
(2k2

+ 4k + 3k + 6)

=
k + 1

6
(2k · (k + 2) + 3 · (k + 2))

=
k + 1

6
(2k + 3) · (k + 2))

=
(k + 1) · (k + 2) · (2 · (k + 1) + 1)

6

= RHS.

Since, LHS=RHS, we have shown that P(k) → P(k + 1).

Applying the first principle of mathematical induction, we conclude that the conjecture is true.
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Axiom Schema

[((∀u) atom(u) → F [u])∧ (∀u)(∀v) F [v ] → F [cons(u, v)]] → (∀x) F [x].
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The theory T +
cons

Consider the theory T +
cons, which is the theory Tconsaugmented by the following axioms:
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Stepwise Induction on Lists

Axiom Schema

[((∀u) atom(u) → F [u])∧ (∀u)(∀v) F [v ] → F [cons(u, v)]] → (∀x) F [x].

The theory T +
cons

Consider the theory T +
cons, which is the theory Tconsaugmented by the following axioms:

A1. (∀u) atom(u) → [(∀v) concat(u, v) = cons(u, v)].
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Stepwise Induction on Lists

Axiom Schema

[((∀u) atom(u) → F [u])∧ (∀u)(∀v) F [v ] → F [cons(u, v)]] → (∀x) F [x].

The theory T +
cons

Consider the theory T +
cons, which is the theory Tconsaugmented by the following axioms:

A1. (∀u) atom(u) → [(∀v) concat(u, v) = cons(u, v)].

A2. (∀u)(∀v)(∀x) concat(cons(u, v), x) = cons(u, concat(v , x)).
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Stepwise Induction on Lists

Axiom Schema

[((∀u) atom(u) → F [u])∧ (∀u)(∀v) F [v ] → F [cons(u, v)]] → (∀x) F [x].

The theory T +
cons

Consider the theory T +
cons, which is the theory Tconsaugmented by the following axioms:

A1. (∀u) atom(u) → [(∀v) concat(u, v) = cons(u, v)].

A2. (∀u)(∀v)(∀x) concat(cons(u, v), x) = cons(u, concat(v , x)).

A3. (∀u) atom(u) → [rvs(u) = u].

Subramani Mathematical Induction



Stepwise Induction

Stepwise Induction on Lists

Axiom Schema

[((∀u) atom(u) → F [u])∧ (∀u)(∀v) F [v ] → F [cons(u, v)]] → (∀x) F [x].

The theory T +
cons

Consider the theory T +
cons, which is the theory Tconsaugmented by the following axioms:

A1. (∀u) atom(u) → [(∀v) concat(u, v) = cons(u, v)].

A2. (∀u)(∀v)(∀x) concat(cons(u, v), x) = cons(u, concat(v , x)).

A3. (∀u) atom(u) → [rvs(u) = u].

A4. (∀x)(∀y) rvs(concat(x, y)) = concat(rvs(y), rvs(x)).
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Stepwise Induction on Lists

Axiom Schema

[((∀u) atom(u) → F [u])∧ (∀u)(∀v) F [v ] → F [cons(u, v)]] → (∀x) F [x].

The theory T +
cons

Consider the theory T +
cons, which is the theory Tconsaugmented by the following axioms:

A1. (∀u) atom(u) → [(∀v) concat(u, v) = cons(u, v)].

A2. (∀u)(∀v)(∀x) concat(cons(u, v), x) = cons(u, concat(v , x)).

A3. (∀u) atom(u) → [rvs(u) = u].

A4. (∀x)(∀y) rvs(concat(x, y)) = concat(rvs(y), rvs(x)).

A5. (∀u) atom(u) → flat(u).
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Stepwise Induction on Lists

Axiom Schema

[((∀u) atom(u) → F [u])∧ (∀u)(∀v) F [v ] → F [cons(u, v)]] → (∀x) F [x].

The theory T +
cons

Consider the theory T +
cons, which is the theory Tconsaugmented by the following axioms:

A1. (∀u) atom(u) → [(∀v) concat(u, v) = cons(u, v)].

A2. (∀u)(∀v)(∀x) concat(cons(u, v), x) = cons(u, concat(v , x)).

A3. (∀u) atom(u) → [rvs(u) = u].

A4. (∀x)(∀y) rvs(concat(x, y)) = concat(rvs(y), rvs(x)).

A5. (∀u) atom(u) → flat(u).

A6. (∀u)(∀v) flat(cons(u, v)) ↔ atom(u) ∧ flat(v).
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Example

Example

Prove that
(∀x) flat(x) → rvs(rvs(x) = x).
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