Induction - Stepwise Induction

K. Subramani¹

¹Lane Department of Computer Science and Electrical Engineering West Virginia University

March 20 2013

Stepwise Induction

Axiom Schema (for \mathbb{N})

Assume that the domain is the set of positive integers.

Axiom Schema (for \mathbb{N})

Assume that the domain is the set of positive integers.

[P(0)

Axiom Schema (for \mathbb{N})

Assume that the domain is the set of positive integers.

 $[P(0) \land (\forall k) \ (P(k) \rightarrow P(k+1))]$

Axiom Schema (for \mathbb{N})

Assume that the domain is the set of positive integers.

 $[P(0) \land (\forall k) \ (P(k) \rightarrow P(k+1))] \rightarrow (\forall n) \ P(n)$

Axiom Schema (for \mathbb{N})

Assume that the domain is the set of positive integers.

 $[P(0) \land (\forall k) \ (P(k) \rightarrow P(k+1))] \rightarrow (\forall n) \ P(n)$

Note

(i) Showing that P(0) is true is called the basis step.

Axiom Schema (for \mathbb{N})

Assume that the domain is the set of positive integers.

 $[P(0) \land (\forall k) \ (P(k) \rightarrow P(k+1))] \rightarrow (\forall n) \ P(n)$

Note

- (i) Showing that P(0) is true is called the basis step.
- (ii) The assumption that P(k) is true, is called the inductive hypothesis.

Example

Show that the sum of the first *n* integers is $\frac{n \cdot (n+1)}{2}$.

Example

Show that the sum of the first *n* integers is $\frac{n \cdot (n+1)}{2}$. Formally, $\sum_{i=1}^{n} i = \frac{n \cdot (n+1)}{2}$.

Example

Show that the sum of the first *n* integers is $\frac{n \cdot (n+1)}{2}$. Formally, $\sum_{i=1}^{n} i = \frac{n \cdot (n+1)}{2}$.

Example

Show that the sum of the first *n* integers is $\frac{n \cdot (n+1)}{2}$. Formally, $\sum_{i=1}^{n} i = \frac{n \cdot (n+1)}{2}$.

Proof.

$$HS = \sum_{i=1}^{1} i$$

Example

Show that the sum of the first *n* integers is $\frac{n \cdot (n+1)}{2}$. Formally, $\sum_{i=1}^{n} i = \frac{n \cdot (n+1)}{2}$.

Proof.

$$HS = \sum_{i=1}^{1} i$$

Example

Show that the sum of the first *n* integers is $\frac{n \cdot (n+1)}{2}$. Formally, $\sum_{i=1}^{n} i = \frac{n \cdot (n+1)}{2}$.

Proof.

$$LHS = \sum_{i=1}^{1} i$$
$$= 1$$
$$RHS = \frac{1 \cdot (1+1)}{2}$$

Example

Show that the sum of the first *n* integers is $\frac{n \cdot (n+1)}{2}$. Formally, $\sum_{i=1}^{n} i = \frac{n \cdot (n+1)}{2}$.

Proof.

$$LHS = \sum_{i=1}^{1} i$$
$$= 1$$
$$RHS = \frac{1 \cdot (1+1)}{2}$$
$$= \frac{1 \cdot (2)}{2}$$

Example

Show that the sum of the first *n* integers is $\frac{n \cdot (n+1)}{2}$. Formally, $\sum_{i=1}^{n} i = \frac{n \cdot (n+1)}{2}$.

Proof.

LHS =
$$\sum_{i=1}^{1} i$$

=
$$1$$

RHS =
$$\frac{1 \cdot (1+1)}{2}$$

=
$$\frac{1 \cdot (2)}{2}$$

=
$$\frac{2}{2}$$

Example

Show that the sum of the first *n* integers is $\frac{n \cdot (n+1)}{2}$. Formally, $\sum_{i=1}^{n} i = \frac{n \cdot (n+1)}{2}$.

Proof.

$$LHS = \sum_{i=1}^{1} i$$
$$= 1$$
$$RHS = \frac{1 \cdot (1+1)}{2}$$
$$= \frac{1 \cdot (2)}{2}$$
$$= \frac{2}{2}$$
$$= 1$$

Example

Show that the sum of the first *n* integers is $\frac{n \cdot (n+1)}{2}$. Formally, $\sum_{i=1}^{n} i = \frac{n \cdot (n+1)}{2}$.

Proof.

BASIS (P(1)):

LHS =
$$\sum_{i=1}^{1} i$$

= 1
RHS =
$$\frac{1 \cdot (1+1)}{2}$$

=
$$\frac{1 \cdot (2)}{2}$$

=
$$\frac{2}{2}$$

= 1

Thus, LHS = RHS and P(1) is true.

Proof.

Let us assume that P(k) is true, i.e., assume that

$$\sum_{k=1}^{k} i = \frac{k \cdot (k+1)}{2}$$

Proof.

Let us assume that P(k) is true, i.e., assume that

$$\sum_{i=1}^{k} i = \frac{k \cdot (k+1)}{2}.$$

We need to show that P(k + 1) is true,

Proof.

Let us assume that P(k) is true, i.e., assume that

$$\sum_{i=1}^{k} i = \frac{k \cdot (k+1)}{2}.$$

Proof.

Let us assume that P(k) is true, i.e., assume that

$$\sum_{k=1}^{k} i = \frac{k \cdot (k+1)}{2}$$

LHS =
$$\sum_{i=1}^{k+1} i$$

Proof.

Let us assume that P(k) is true, i.e., assume that

$$\sum_{k=1}^{k} i = \frac{k \cdot (k+1)}{2}$$

LHS =
$$\sum_{i=1}^{k+1} i$$

= 1+2+3+...+k+(k+1)

Proof.

Let us assume that P(k) is true, i.e., assume that

$$\sum_{k=1}^{k} i = \frac{k \cdot (k+1)}{2}$$

LHS =
$$\sum_{i=1}^{k+1} i$$

= 1 + 2 + 3 + ... + k + (k + 1)
= (1 + 2 + 3 + ... + k) + (k + 1)

Proof.

Let us assume that P(k) is true, i.e., assume that

$$\sum_{k=1}^{k} i = \frac{k \cdot (k+1)}{2}$$

LHS =
$$\sum_{i=1}^{k+1} i$$

= $1 + 2 + 3 + ... + k + (k + 1)$
= $(1 + 2 + 3 + ... + k) + (k + 1)$
= $\frac{k \cdot (k + 1)}{2} + (k + 1)$, using the inductive hypothesis

Proof.

Let us assume that P(k) is true, i.e., assume that

$$\sum_{i=1}^{k} i = \frac{k \cdot (k+1)}{2}$$

$$HS = \sum_{i=1}^{k+1} i$$

= 1+2+3+...+k+(k+1)
= (1+2+3+...+k)+(k+1)
= $\frac{k \cdot (k+1)}{2}$ +(k+1), using the inductive hypothesis
= $\frac{k+1}{2}(k+2)$

Proof.

Let us assume that P(k) is true, i.e., assume that

$$\sum_{i=1}^{k} i = \frac{k \cdot (k+1)}{2}$$

$$HS = \sum_{i=1}^{k+1} i$$

= 1+2+3+...+k+(k+1)
= (1+2+3+...+k)+(k+1)
= $\frac{k \cdot (k+1)}{2} + (k+1)$, using the inductive hypothesis
= $\frac{k+1}{2} (k+2)$
= $\frac{(k+1) \cdot (k+2)}{2}$

Proof.

Let us assume that P(k) is true, i.e., assume that

$$\sum_{i=1}^{k} i = \frac{k \cdot (k+1)}{2}$$

We need to show that P(k + 1) is true, i.e., we need to show that $\sum_{i=1}^{k+1} i = \frac{(k+1)\cdot(k+2)}{2}$.

LF

$$dS = \sum_{i=1}^{k+1} i$$

= 1+2+3+...+k+(k+1)
= (1+2+3+...+k)+(k+1)
= $\frac{k \cdot (k+1)}{2}$ +(k+1), using the inductive hypothesi
= $\frac{k+1}{2}$ (k+2)
= $\frac{(k+1) \cdot (k+2)}{2}$
= RHS.

Proof.

Let us assume that P(k) is true, i.e., assume that

$$\sum_{k=1}^{k} i = \frac{k \cdot (k+1)}{2}$$

We need to show that P(k + 1) is true, i.e., we need to show that $\sum_{i=1}^{k+1} i = \frac{(k+1)\cdot(k+2)}{2}$.

$$HS = \sum_{i=1}^{k+1} i$$

= 1+2+3+...+k+(k+1)
= (1+2+3+...+k)+(k+1)
= $\frac{k \cdot (k+1)}{2}$ +(k+1), using the inductive hypothesis
= $\frac{k+1}{2}(k+2)$
= $\frac{(k+1) \cdot (k+2)}{2}$
= RHS.

Since, LHS=RHS, we have shown that $P(k) \rightarrow P(k+1)$.

Proof.

Let us assume that P(k) is true, i.e., assume that

$$\sum_{k=1}^{k} i = \frac{k \cdot (k+1)}{2}$$

We need to show that P(k + 1) is true, i.e., we need to show that $\sum_{i=1}^{k+1} i = \frac{(k+1)\cdot(k+2)}{2}$.

LF

$$dS = \sum_{i=1}^{k+1} i$$

= 1+2+3+...+k+(k+1)
= (1+2+3+...+k)+(k+1)
= $\frac{k \cdot (k+1)}{2}$ +(k+1), using the inductive hypothesis
= $\frac{k+1}{2}(k+2)$
= $\frac{(k+1) \cdot (k+2)}{2}$
= RHS.

Since, LHS=RHS, we have shown that $P(k) \rightarrow P(k + 1)$.

Applying the first principle of mathematical induction, we conclude that the conjecture is true.

Main Ideas

Subramani Mathematical Induction

Main Ideas

(i) Mathematicize the conjecture.

Main Ideas

- (i) Mathematicize the conjecture.
- (ii) Prove the basis (usually P(1) and usually easy.)

Main Ideas

- (i) Mathematicize the conjecture.
- (ii) Prove the basis (usually P(1) and usually easy.)
- (iii) Assume P(k).

Main Ideas

- (i) Mathematicize the conjecture.
- (ii) Prove the basis (usually P(1) and usually easy.)
- (iii) Assume P(k).
- (iv) Show P(k + 1).
Principles

Main Ideas

- (i) Mathematicize the conjecture.
- (ii) Prove the basis (usually P(1) and usually easy.)
- (iii) Assume P(k).
- (iv) Show P(k + 1). (The hard part.

Principles

Main Ideas

- (i) Mathematicize the conjecture.
- (ii) Prove the basis (usually P(1) and usually easy.)
- (iii) Assume P(k).
- (iv) Show P(k + 1). (The hard part. Use mathematical manipulation.)

Example

Show that the sum of the squares of the first *n* integers is $\frac{n \cdot (n+1) \cdot (2n+1)}{6}$,

Example

Show that the sum of the squares of the first *n* integers is $\frac{n \cdot (n+1) \cdot (2n+1)}{6}$, i.e., show that $\sum_{i=1}^{n} i^2 = \frac{n \cdot (n+1) \cdot (2n+1)}{6}$.

Example

Show that the sum of the squares of the first *n* integers is $\frac{n \cdot (n+1) \cdot (2n+1)}{6}$, i.e., show that $\sum_{i=1}^{n} i^2 = \frac{n \cdot (n+1) \cdot (2n+1)}{6}$.

;2

Proof.

$$LHS = \sum_{i=1}^{1}$$

Example

Show that the sum of the squares of the first *n* integers is $\frac{n \cdot (n+1) \cdot (2n+1)}{6}$, i.e., show that $\sum_{i=1}^{n} i^2 = \frac{n \cdot (n+1) \cdot (2n+1)}{6}$.

Proof.

$$LHS = \sum_{i=1}^{1} i^2$$

Example

Show that the sum of the squares of the first *n* integers is $\frac{n \cdot (n+1) \cdot (2n+1)}{6}$, i.e., show that $\sum_{i=1}^{n} i^2 = \frac{n \cdot (n+1) \cdot (2n+1)}{6}$.

Proof.

$$LHS = \sum_{i=1}^{1} i^{2}$$

= 1
RHS = $\frac{1 \cdot (1+1) \cdot (2 \cdot 1 + 1)}{6}$

Example

Show that the sum of the squares of the first *n* integers is $\frac{n \cdot (n+1) \cdot (2n+1)}{6}$, i.e., show that $\sum_{i=1}^{n} i^2 = \frac{n \cdot (n+1) \cdot (2n+1)}{6}$.

Proof.

LHS =
$$\sum_{i=1}^{1} i^{2}$$

= 1
RHS = $\frac{1 \cdot (1+1) \cdot (2 \cdot 1+1)}{6}$
= $\frac{1 \cdot (2) \cdot (3)}{6}$

Example

Show that the sum of the squares of the first *n* integers is $\frac{n \cdot (n+1) \cdot (2n+1)}{6}$, i.e., show that $\sum_{i=1}^{n} i^2 = \frac{n \cdot (n+1) \cdot (2n+1)}{6}$.

Proof.

LHS =
$$\sum_{i=1}^{1} i^2$$

= 1
RHS = $\frac{1 \cdot (1+1) \cdot (2 \cdot 1+1)}{6}$
= $\frac{1 \cdot (2) \cdot (3)}{6}$
= $\frac{6}{6}$

Example

Show that the sum of the squares of the first *n* integers is $\frac{n \cdot (n+1) \cdot (2n+1)}{6}$, i.e., show that $\sum_{i=1}^{n} i^2 = \frac{n \cdot (n+1) \cdot (2n+1)}{6}$.

Proof.

LHS =
$$\sum_{i=1}^{1} i^{2}$$

= 1
RHS = $\frac{1 \cdot (1+1) \cdot (2 \cdot 1+1)}{6}$
= $\frac{1 \cdot (2) \cdot (3)}{6}$
= $\frac{6}{6}$
= 1

Example

Show that the sum of the squares of the first *n* integers is $\frac{n \cdot (n+1) \cdot (2n+1)}{6}$, i.e., show that $\sum_{i=1}^{n} i^2 = \frac{n \cdot (n+1) \cdot (2n+1)}{6}$.

Proof.

BASIS (P(1)):

LHS =
$$\sum_{i=1}^{1} i^{2}$$

= 1
RHS = $\frac{1 \cdot (1+1) \cdot (2 \cdot 1+1)}{6}$
= $\frac{1 \cdot (2) \cdot (3)}{6}$
= $\frac{6}{6}$
= 1

Proof.

Let us assume that P(k) is true, i.e., assume that

$$\sum_{i=1}^{k} i^{2} = \frac{k \cdot (k+1) \cdot (2k+1)}{6}.$$

Proof.

Let us assume that P(k) is true, i.e., assume that

$$\sum_{i=1}^{k} i^2 = \frac{k \cdot (k+1) \cdot (2k+1)}{6}.$$

We need to show that P(k + 1) is true,

Proof.

Let us assume that P(k) is true, i.e., assume that

$$\sum_{i=1}^{k} i^{2} = \frac{k \cdot (k+1) \cdot (2k+1)}{6}$$

$$LHS = \sum_{i=1}^{k+1} i^2$$

Proof.

Let us assume that P(k) is true, i.e., assume that

$$\sum_{i=1}^{k} i^{2} = \frac{k \cdot (k+1) \cdot (2k+1)}{6}$$

LHS =
$$\sum_{i=1}^{k+1} i^2$$

= $1^2 + 2^2 + 3^2 + \ldots + k^2 + (k+1)^2$

Proof.

Let us assume that P(k) is true, i.e., assume that

$$\sum_{i=1}^{k} i^{2} = \frac{k \cdot (k+1) \cdot (2k+1)}{6}$$

LHS =
$$\sum_{i=1}^{k+1} i^2$$

= $1^2 + 2^2 + 3^2 + \dots + k^2 + (k+1)^2$
= $(1^2 + 2^2 + 3^2 + \dots + k^2) + (k+1)^2$

Proof.

Let us assume that P(k) is true, i.e., assume that

$$\sum_{i=1}^{k} i^{2} = \frac{k \cdot (k+1) \cdot (2k+1)}{6}$$

LHS =
$$\sum_{i=1}^{k+1} i^2$$

= $1^2 + 2^2 + 3^2 + \dots + k^2 + (k+1)^2$
= $(1^2 + 2^2 + 3^2 + \dots + k^2) + (k+1)^2$
= $\frac{k \cdot (k+1) \cdot (2k+1)}{6} + (k+1)^2$, using the inductive hypothesis

Proof.

Let us assume that P(k) is true, i.e., assume that

$$\sum_{i=1}^{k} i^{2} = \frac{k \cdot (k+1) \cdot (2k+1)}{6}$$

$$HS = \sum_{i=1}^{k+1} i^{2}$$

= $1^{2} + 2^{2} + 3^{2} + \dots + k^{2} + (k+1)^{2}$
= $(1^{2} + 2^{2} + 3^{2} + \dots + k^{2}) + (k+1)^{2}$
= $\frac{k \cdot (k+1) \cdot (2k+1)}{6} + (k+1)^{2}$, using the inductive hypothes
= $\frac{k+1}{6} (k \cdot (2k+1) + 6 \cdot (k+1))$

Proof.

Let us assume that P(k) is true, i.e., assume that

$$\sum_{i=1}^{k} i^{2} = \frac{k \cdot (k+1) \cdot (2k+1)}{6}$$

$$HS = \sum_{i=1}^{k+1} i^{2}$$

$$= 1^{2} + 2^{2} + 3^{2} + \dots + k^{2} + (k+1)^{2}$$

$$= (1^{2} + 2^{2} + 3^{2} + \dots + k^{2}) + (k+1)^{2}$$

$$= \frac{k \cdot (k+1) \cdot (2k+1)}{6} + (k+1)^{2}, \text{ using the inductive hypothes}$$

$$= \frac{k+1}{6} (k \cdot (2k+1) + 6 \cdot (k+1))$$

$$= \frac{k+1}{6} (2k^{2} + k + 6k + 6)$$

Proof.

Let us assume that P(k) is true, i.e., assume that

$$\sum_{i=1}^{k} i^{2} = \frac{k \cdot (k+1) \cdot (2k+1)}{6}$$

$$HS = \sum_{i=1}^{k+1} i^{2}$$

$$= 1^{2} + 2^{2} + 3^{2} + \dots + k^{2} + (k+1)^{2}$$

$$= (1^{2} + 2^{2} + 3^{2} + \dots + k^{2}) + (k+1)^{2}$$

$$= \frac{k \cdot (k+1) \cdot (2k+1)}{6} + (k+1)^{2}, \text{ using the inductive hypothesis}$$

$$= \frac{k+1}{6} (k \cdot (2k+1) + 6 \cdot (k+1))$$

$$= \frac{k+1}{6} (2k^{2} + k + 6k + 6)$$

$$= \frac{k+1}{6} (2k^{2} + 7k + 6)$$

Proof.

Let us assume that P(k) is true, i.e., assume that

$$\sum_{i=1}^{k} i^{2} = \frac{k \cdot (k+1) \cdot (2k+1)}{6}$$

We need to show that P(k+1) is true, i.e., we need to show that $\sum_{i=1}^{k+1} i^2 = \frac{(k+1)\cdot(k+2)\cdot(2\cdot(k+1)+1)}{6}$.

$$HS = \sum_{i=1}^{k+1} i^{2}$$

$$= 1^{2} + 2^{2} + 3^{2} + \dots + k^{2} + (k+1)^{2}$$

$$= (1^{2} + 2^{2} + 3^{2} + \dots + k^{2}) + (k+1)^{2}$$

$$= \frac{k \cdot (k+1) \cdot (2k+1)}{6} + (k+1)^{2}, \text{ using the inductive hypothesis}$$

$$= \frac{k+1}{6} (k \cdot (2k+1) + 6 \cdot (k+1))$$

$$= \frac{k+1}{6} (2k^{2} + k + 6k + 6)$$

$$= \frac{k+1}{6} (2k^{2} + 7k + 6)$$

$$= \frac{k+1}{6}(2k^2+4k+3k+6)$$

$$= \frac{k+1}{6}(2k^2+4k+3k+6)$$

= $\frac{k+1}{6}(2k \cdot (k+2)+3 \cdot (k+2))$

$$= \frac{k+1}{6}(2k^2 + 4k + 3k + 6)$$

= $\frac{k+1}{6}(2k \cdot (k+2) + 3 \cdot (k+2))$
= $\frac{k+1}{6}(2k+3) \cdot (k+2))$

$$= \frac{k+1}{6}(2k^2 + 4k + 3k + 6)$$

$$= \frac{k+1}{6}(2k \cdot (k+2) + 3 \cdot (k+2))$$

$$= \frac{k+1}{6}(2k+3) \cdot (k+2))$$

$$= \frac{(k+1) \cdot (k+2) \cdot (2 \cdot (k+1) + 1)}{6}$$

$$= \frac{k+1}{6}(2k^2 + 4k + 3k + 6)$$

$$= \frac{k+1}{6}(2k \cdot (k+2) + 3 \cdot (k+2))$$

$$= \frac{k+1}{6}(2k+3) \cdot (k+2))$$

$$= \frac{(k+1) \cdot (k+2) \cdot (2 \cdot (k+1) + 1)}{6}$$

$$= RHS.$$

Proof.

$$= \frac{k+1}{6}(2k^2 + 4k + 3k + 6)$$

$$= \frac{k+1}{6}(2k \cdot (k+2) + 3 \cdot (k+2))$$

$$= \frac{k+1}{6}(2k+3) \cdot (k+2))$$

$$= \frac{(k+1) \cdot (k+2) \cdot (2 \cdot (k+1) + 1)}{6}$$

$$= RHS.$$

Since, LHS=RHS, we have shown that $P(k) \rightarrow P(k + 1)$.

Proof.

$$= \frac{k+1}{6}(2k^2 + 4k + 3k + 6)$$

$$= \frac{k+1}{6}(2k \cdot (k+2) + 3 \cdot (k+2))$$

$$= \frac{k+1}{6}(2k+3) \cdot (k+2))$$

$$= \frac{(k+1) \cdot (k+2) \cdot (2 \cdot (k+1) + 1)}{6}$$

$$= BHS$$

Since, LHS=RHS, we have shown that $P(k) \rightarrow P(k+1)$.

Applying the first principle of mathematical induction, we conclude that the conjecture is true.

Stepwise Induction

Stepwise Induction on Lists

Stepwise Induction

Stepwise Induction on Lists

Axiom Schema

Axiom Schema

$[((\forall u) \operatorname{atom}(u) \to F[u]) \land (\forall u)(\forall v) \ F[v] \to F[\operatorname{cons}(u, v)]] \to (\forall x) \ F[x].$

Axiom Schema

$$[((\forall u) \operatorname{atom}(u) \to F[u]) \land (\forall u)(\forall v) \ F[v] \to F[\operatorname{cons}(u, v)]] \to (\forall x) \ F[x].$$

The theory $T_{\rm cons}^+$

Axiom Schema

$$[((\forall u) \operatorname{atom}(u) \to F[u]) \land (\forall u)(\forall v) \ F[v] \to F[\operatorname{cons}(u, v)]] \to (\forall x) \ F[x].$$

The theory $T_{\rm cons}^+$

Consider the theory T_{cons}^+ , which is the theory T_{cons} augmented by the following axioms:

Axiom Schema

$$[((\forall u) \operatorname{atom}(u) \to F[u]) \land (\forall u)(\forall v) \ F[v] \to F[\operatorname{cons}(u, v)]] \to (\forall x) \ F[x].$$

The theory $T_{\rm cons}^+$

Consider the theory T_{cons}^+ , which is the theory T_{cons} augmented by the following axioms:

 $\mathcal{A}1. \ (\forall u) \ \operatorname{atom}(u) \to [(\forall v) \ \operatorname{concat}(u, v) = \operatorname{cons}(u, v)].$

Axiom Schema

$$[((\forall u) \operatorname{atom}(u) \to F[u]) \land (\forall u)(\forall v) \ F[v] \to F[\operatorname{cons}(u, v)]] \to (\forall x) \ F[x].$$

The theory $T_{\rm cons}^+$

Consider the theory T_{cons}^+ , which is the theory T_{cons} augmented by the following axioms:

- A1. $(\forall u) \operatorname{atom}(u) \rightarrow [(\forall v) \operatorname{concat}(u, v) = \operatorname{cons}(u, v)].$
- $\mathcal{A}2. \ (\forall u)(\forall v)(\forall x) \ \mathrm{concat}(\mathrm{cons}(u, v), x) = \mathrm{cons}(u, \mathrm{concat}(v, x)).$

Axiom Schema

$$[((\forall u) \operatorname{atom}(u) \to F[u]) \land (\forall u)(\forall v) \ F[v] \to F[\operatorname{cons}(u, v)]] \to (\forall x) \ F[x].$$

The theory $T_{\rm cons}^+$

Consider the theory T_{cons}^+ , which is the theory T_{cons} augmented by the following axioms:

A1.
$$(\forall u)$$
 atom $(u) \rightarrow [(\forall v) \operatorname{concat}(u, v) = \operatorname{cons}(u, v)].$

- $\mathcal{A}2. \ (\forall u)(\forall v)(\forall x) \ \mathrm{concat}(\mathrm{cons}(u, v), x) = \mathrm{cons}(u, \mathrm{concat}(v, x)).$
- $\mathcal{A}3. \ (\forall u) \ \mathrm{atom}(u) \rightarrow [\mathrm{rvs}(u) = u].$
Stepwise Induction on Lists

Axiom Schema

$$[((\forall u) \operatorname{atom}(u) \to F[u]) \land (\forall u)(\forall v) \ F[v] \to F[\operatorname{cons}(u, v)]] \to (\forall x) \ F[x].$$

The theory $\overline{T_{\text{cons}}^+}$

Consider the theory T_{cons}^+ , which is the theory T_{cons} augmented by the following axioms:

A1.
$$(\forall u)$$
 atom $(u) \rightarrow [(\forall v) \operatorname{concat}(u, v) = \operatorname{cons}(u, v)].$

- $\mathcal{A}2. \ (\forall u)(\forall v)(\forall x) \ \mathrm{concat}(\mathrm{cons}(u, v), x) = \mathrm{cons}(u, \mathrm{concat}(v, x)).$
- $\mathcal{A}3. \ (\forall u) \operatorname{atom}(u) \to [\operatorname{rvs}(u) = u].$
- $\mathcal{A}4. \ (\forall x)(\forall y) \ \operatorname{rvs}(\operatorname{concat}(x, y)) = \operatorname{concat}(\operatorname{rvs}(y), \operatorname{rvs}(x)).$

Stepwise Induction on Lists

Axiom Schema

$$[((\forall u) \operatorname{atom}(u) \to F[u]) \land (\forall u)(\forall v) \ F[v] \to F[\operatorname{cons}(u, v)]] \to (\forall x) \ F[x].$$

The theory $\overline{T_{\text{cons}}^+}$

Consider the theory T_{cons}^+ , which is the theory T_{cons} augmented by the following axioms:

$$\mathcal{A}1. \ (\forall u) \ \operatorname{atom}(u) \to [(\forall v) \ \operatorname{concat}(u, v) = \operatorname{cons}(u, v)].$$

- $\mathcal{A}2. \ (\forall u)(\forall v)(\forall x) \ \mathrm{concat}(\mathrm{cons}(u, v), x) = \mathrm{cons}(u, \mathrm{concat}(v, x)).$
- $\mathcal{A}3. \ (\forall u) \operatorname{atom}(u) \to [\operatorname{rvs}(u) = u].$
- $\mathcal{A}4. \ (\forall x)(\forall y) \operatorname{rvs}(\operatorname{concat}(x, y)) = \operatorname{concat}(\operatorname{rvs}(y), \operatorname{rvs}(x)).$
- $\mathcal{A5.}$ ($\forall u$) atom(u) \rightarrow flat(u).

Stepwise Induction on Lists

Axiom Schema

$$[((\forall u) \operatorname{atom}(u) \to F[u]) \land (\forall u)(\forall v) \ F[v] \to F[\operatorname{cons}(u, v)]] \to (\forall x) \ F[x].$$

The theory $T_{\rm cons}^+$

Consider the theory T_{cons}^+ , which is the theory T_{cons} augmented by the following axioms:

$$\mathcal{A}1. \ (\forall u) \ \operatorname{atom}(u) \to [(\forall v) \ \operatorname{concat}(u, v) = \operatorname{cons}(u, v)].$$

- $\mathcal{A}2. \ (\forall u)(\forall v)(\forall x) \ \mathrm{concat}(\mathrm{cons}(u, v), x) = \mathrm{cons}(u, \mathrm{concat}(v, x)).$
- $\mathcal{A}3. \ (\forall u) \ \mathrm{atom}(u) \rightarrow [\mathrm{rvs}(u) = u].$
- $\mathcal{A}4. \ (\forall x)(\forall y) \ \operatorname{rvs}(\operatorname{concat}(x, y)) = \operatorname{concat}(\operatorname{rvs}(y), \operatorname{rvs}(x)).$
- $\mathcal{A5.} \ (\forall u) \ \mathrm{atom}(u) \to \mathrm{flat}(u).$
- $\mathcal{A}6. \ (\forall u)(\forall v) \ \mathrm{flat}(\mathrm{cons}(u, v)) \leftrightarrow \mathrm{atom}(u) \land \mathrm{flat}(v).$

Example

Example

Prove that

$$(\forall x) \operatorname{flat}(x) \to \operatorname{rvs}(\operatorname{rvs}(x) = x).$$