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2 Propositions.
3 Connectives (⊥ and >).
4 Semantics and interpretation.
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Formula Evaluation

Under a given assignment I, a formula F evaluates to either true or false. If it is the
former, we say I |= F ; if it is the latter, we say I 6|= F .
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Checking whether an interpretation I models F

Inductive Definition

1 I |= >.
2 I 6|=⊥.
3 I |= P iff I[P] = true.
4 I 6|= P iff I[P] = false.
5 I |= ¬P iff I 6|= P.
6 I |= F1 ∧ F2 iff I |= F1 and I |= F2.
7 I |= F1 ∨ F2 iff I |= F1 or I |= F2.
8 I |= F1 → F2 iff if I |= F1, then I |= F2.

Note

For implication, it is more convenient to use the definition:
I 6|= F1 → F2 iff I |= F1 and I 6|= F2.
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What does F : (P ∧ Q) → (P ∨ ¬Q) evaluate to, under the interpretation
I {P → true, Q → false}?
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Definition

(i) A simple proposition is a well-formed formula (wff).

(ii) If A is a wff, then so is A′.

(iii) If A and B are wffs, then so are (A), A ∨ B, A ∧ B, A → B and A ↔ B.

(iv) These are the only wffs.

Example

A∨)B is not a wff.

Precedence

Ambiguity is resolved using the
following order of precedence.

(i) parentheses.

(ii) negation.

(iii) conjunction, disjunction.

(i) implication.

(ii) equivalence.

Use brackets and forget about
precedence!
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Definition

A wff which is always true is called a tautology, while a wff which is always false is
called a contradiction.

A wff which is a tautology is also called valid. A formula which is
neither a tautology nor a contradiction is called satisfiable.

Example

A → A.

Definition

If A and B are two wffs, and A ↔ B is a tautology, then A and B are said to be
equivalent wffs (denoted by A ⇔ B) and can be substituted for one another.

Example

(A → B) ⇔ (B′ → A′)
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neither a tautology nor a contradiction is called satisfiable.

Example

A → A.

Definition

If A and B are two wffs, and A ↔ B is a tautology, then A and B are said to be
equivalent wffs (denoted by A ⇔ B) and can be substituted for one another.

Example
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Common Tautological Equivalences

De Morgan’s Laws

(A ∨ B)′ ⇔ (A′ ∧ B′)

(A ∧ B)′ ⇔ (A′ ∨ B′)

Commutativity

(A ∨ B) ⇔ (B ∨ A) (A ∧ B) ⇔ (B ∧ A)

Associativity

(A ∨ B) ∨ C ⇔ A ∨ (B ∨ C) (A ∧ B) ∧ C ⇔ A ∧ (B ∧ C)

Distributivity

A∨ (B ∧C) ⇔ (A∨B)∧ (A∨C) A∧ (B ∨C) ⇔ (A∧B)∨ (A∧C)

Exercise

Prove all the above tautologies, using reasoning.
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Arguments

Definition

An argument is a statement of the form:

(P1 ∧ P2 ∧ . . .Pn) → Q

where each of the Pi s and Q are propositions. The Pi s are called the hypotheses and
Q is called the conclusion.

Semantics

When can Q be logically deduced from P1,P2, . . . ,Pn?

Example

2 + 2 = 4 and 7 + 3 = 10. Therefore, a minute has 60 seconds. Is this valid?
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Valid Arguments

Definition

The argument
(P1 ∧ P2 ∧ . . .Pn) → Q

is said to be valid, if it is a tautology.

Note

The validity of an argument is based purely on its intrinsic structure and not on the
specific meanings attached to its constituent propositions.

Example

If John is hungry, he will eat. John is hungry. Therefore, he will eat.
Symbolically, (H → E) ∧ H → E .
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Truth Table Method

Truth-table Method

Simply check if all rows of the truth-table are true. Horribly expensive!
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Intuitive Argument Method

Example

Is the argument

[(A → B) ∧ (B → C)] → (A → C)

valid?
A is either true or false. If A is false, the consequent is true and hence the entire
argument is true.
If A is true, the argument reduces to [B ∧ (B → C)] → C. Now B is either true or
false...
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Example

Is the argument

[(A → B) ∧ (B → C)] → (A → C)

valid?
A is either true or false.

If A is false, the consequent is true and hence the entire
argument is true.
If A is true, the argument reduces to [B ∧ (B → C)] → C. Now B is either true or
false...
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Derivation Rule Method

Derivation Rules

We will use a set of derivation rules and manipulate the hypotheses to arrive at the
desired conclusion.

Proof Sequence

A proof sequence is a sequence of wffs in which each wff is either a hypothesis or the
result of applying one of the formal system’s derivation rules to earlier wffs in the
sequence.
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Rule Types

(i) Equivalence Rules.

(ii) Inference Rules.

Equivalence Rules

Expression Equivalent to Name of Rule
P ∨ Q Q ∨ P Commutative - comm
P ∧ Q Q ∧ P

P ∨ (Q ∨ R) (P ∨ Q) ∨ R Associative -ass
P ∧ (Q ∧ R) (P ∧ Q) ∧ R
(P ∨ Q)′ P′ ∧ Q′ De Morgan
(P ∧ Q)′ P′ ∨ Q′

P → Q P′ ∨ Q Implication - imp
P (P′)′ Double negation - dn

P ↔ Q (P → Q) ∧ (Q → P) Definition of equivalence
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Derivation Rules (contd.)

Inference Rules

From Can Derive Name of Rule

P, P → Q Q Modus Ponens (mp)
P → Q, Q′ P′ Modus Tollens (mt)

P, Q P ∧ Q Conjunction
P ∧ Q P, Q Simplification

P P ∨ Q Addition
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A proof derivation

Example

Argue that
[A ∧ (B → C) ∧ [(A ∧ B) → (D ∨ C′)] ∧ B] → D

is a valid argument.

Proof

(i) A hypothesis.

(ii) B hypothesis.

(iii) B → C hypothesis.

(iv) C (ii), (iii), Modus Ponens.

(v) A ∧ B (i), (ii), Conjunction.

(vi) (A ∧ B) → (D ∨ C′) hypothesis.

(vii) (D ∨ C′) (v), (vi), Modus Ponens.

(viii) (C → D) (vii), Implication.

(ix) D (iv), (viii), Modus Ponens.
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Two more rules

Deduction Method

The argument P1 ∧ P2 . . .Pn → (R → S) is tautologically equivalent to the argument
P1 ∧ P2 . . .Pn ∧ R → S.

Example

Prove that [(A → B) ∧ (B → C)] → (A → C)

Proof

Using the Deduction Method, the above argument can be rewritten as:
[(A → B) ∧ (B → C) ∧ A] → C.
Now apply Modus Ponens twice!

Note

The rule [(A → B) ∧ (B → C)] → (A → C) is called hypothesis syllogism and can be
used directly.
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Proving validity of Verbal Arguments

Methodology

(i) Symbolize the argument.

(ii) Construct a proof sequence for the symbolic argument.

Example

If interest rates drop, the housing market will improve. Either the federal discount rate
will drop or the housing market will not improve. Interest rates will drop. Therefore, the
federal discount rate will drop. Is this argument valid?

Proof.

Let I denote the event that interest rates will drop. Let H denote the event that the
housing market will improve. Let F denote the event that the federal discount rate will
drop. The symbolic argument is

[(I → H) ∧ (F ∨ H′) ∧ I] → F

From I and (I → H), we can derive H using Modus Ponens. From H and (F ∨ H′)
(H → F ), we can derive F using Modus Ponens!
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One More Example

Example

Show that the argument A′ ∧ (B → A) → B′ is valid.

Proof

Consider the following proof sequence:

(i) (B → A) hypothesis.

(ii) (B′ ∨ A) (i), implication.

(iii) (A ∨ B′) (ii), Commutativity.

(iv) (A′ → B′) (iii), implication.

(v) A′ hypothesis.

(vi) B′ (iv), (v) Modus Ponens.
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Semantic Arguments

Similar to intuitive argument method; a bit more formal and uses explicit contradiction.
We assume that the given argument (say F ) is not valid. This means that there is an
interpretation I, such that I 6|= F . Now derive inferences using the semantics of
negation, conjunction, disjunction and implication. A contradiction results if it can be
shown that I |= F and I 6|= F , since this means that I |=⊥.

Example

Prove that F : (P ∧ Q) → (P ∨ ¬Q) is valid.
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Semantic Argument (Example)

Proof

Assume that F is not valid. Therefore, there exists an interpretation I, such that I 6|= F .
Accordingly,

(i) I 6|= [(P ∧ Q) → (P ∨ ¬Q)] assumption.

(ii) I |= (P ∧ Q) by (i) and the semantics of →.

(iii) I 6|= (P ∨ ¬Q) by (i) and the semantics of →.

(iv) I |= P by (ii) and the semantics of ∧.

(v) I |= Q by (ii) and the semantics of ∧.

(vi) I 6|= P by (iii) and the semantics of ∧.

(vii) I |=⊥ (iv) and (v) are contradictory.
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Example

Show that the argument

F : [(P → Q) ∧ (Q → R)] → (P → R)

is valid.
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Equivalence

Main issues

Just as satisfiability and validity are important properties of a single formula,
equivalence and implication are important properties of formula pairs.

Definition

Two formulas F1 and F2 are said to be equivalent (written as F1 ⇔ F2), if

I |= F1 iff I |= F2

for all interpretations I.

Note

F1 ⇔ F2 is different from F1 ↔ F2. The former is an assertion that can be proved. The
latter is a boolean formula that may or may not be satisfiable.
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Definition

Formula F1 is said to imply formula F2 (written as F1 ⇒ F2), if for all interpretations I,

I |= F2 if I |= F1.

Note

F1 ⇒ F2 is different from F1 → F2. The former is an assertion that can be proved. The
latter is a boolean formula that may or may not be satisfiable.
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