Propositional Logic - Advanced

K. Subramani¹

¹Lane Department of Computer Science and Electrical Engineering West Virginia University

16 January and 18 January, 2013

Propositional Logic
Valid Arguments

• Semantic Argument Method

Equivalence and Implication

Review

Main Issues

Subramani

Interpretations Propositional Logic Checking validity Equivalence and Implication

Review

Main Issues

Reasons for logic.

Interpretations Propositional Logic Checking validity Equivalence and Implication

Review

- Reasons for logic.
- Propositions.

Interpretations Propositional Logic Checking validity Equivalence and Implication

Review

- Reasons for logic.
- Propositions.
- Onnectives

Interpretations Propositional Logic Checking validity Equivalence and Implication

Review

- Reasons for logic.
- Propositions.
- **③** Connectives (\perp and \top).

Interpretations Propositional Logic Checking validity Equivalence and Implication

Review

- Reasons for logic.
- Propositions.
- **③** Connectives (\perp and \top).
- Semantics and interpretation.

Interpretations Propositional Logic Checking validity Equivalence and Implication

Tautologies

Formula evaluation

Interpretations Propositional Logic Checking validity Equivalence and Implication

Tautologies

Formula evaluation

Formula Evaluation

Under a given assignment *I*, a formula *F* evaluates to either **true** or **false**.

Interpretations Propositional Logic Checking validity Equivalence and Implication

Tautologies

Formula evaluation

Formula Evaluation

Under a given assignment *I*, a formula *F* evaluates to either **true** or **false**. If it is the former, we say $I \models F$; if it is the latter, we say $I \nvDash F$.

Interpretations Propositional Logic Checking validity Equivalence and Implication

Tautologies

Checking whether an interpretation I models F

Inductive Definition

 $\bigcirc I \models \top.$

Tautologies

Checking whether an interpretation I models F

- $1 \models \top.$
- **②** *I* ⊭⊥.

Tautologies

Checking whether an interpretation I models F

- $\bigcirc I \models \top.$
- **2** *I* ⊭⊥.
- **3** $I \models P$ iff I[P] = true.

Tautologies

Checking whether an interpretation I models F

- $\bigcirc I \models \top.$
- **2** *I* ⊭⊥.
- **3** $I \models P$ iff I[P] = true.
- $I \not\models P$ iff I[P] = false.

Tautologies

Checking whether an interpretation I models F

- $\bigcirc I \models \top.$
- **②** *I* ⊭⊥.
- **3** $I \models P$ iff I[P] = true.
- $I \not\models P$ iff I[P] = false.
- $I \models \neg P \text{ iff } I \not\models P.$

Tautologies

Checking whether an interpretation I models F

- $\bigcirc I \models \top.$
- **②** *I* ⊭⊥.
- $I \models P \text{ iff } I[P] = \text{true.}$
- $I \not\models P$ iff I[P] = false.
- $I \models \neg P \text{ iff } I \not\models P.$
- $I \models F_1 \land F_2 \text{ iff } I \models F_1 \text{ and } I \models F_2.$

Tautologies

Checking whether an interpretation I models F

- $\bigcirc I \models \top.$
- **②** *I* ⊭⊥.
- $I \models P \text{ iff } I[P] = \text{true.}$
- $I \not\models P$ iff I[P] = false.
- $I \models \neg P \text{ iff } I \not\models P.$
- $I \models F_1 \land F_2 \text{ iff } I \models F_1 \text{ and } I \models F_2.$
- $I \models F_1 \lor F_2 \text{ iff } I \models F_1 \text{ or } I \models F_2.$

Tautologies

Checking whether an interpretation I models F

- $\bigcirc I \models \top.$
- **②** *I* ⊭⊥.
- $I \models P \text{ iff } I[P] = \text{true.}$
- $I \not\models P$ iff I[P] = false.
- $I \models \neg P \text{ iff } I \not\models P.$
- $I \models F_1 \land F_2 \text{ iff } I \models F_1 \text{ and } I \models F_2.$
- $I \models F_1 \lor F_2 \text{ iff } I \models F_1 \text{ or } I \models F_2.$
- **3** $I \models F_1 \rightarrow F_2$ iff if $I \models F_1$, then $I \models F_2$.

Tautologies

Checking whether an interpretation I models F

Inductive Definition

- $\bigcirc I \models \top.$
- **②** *I* ⊭⊥.
- $I \models P \text{ iff } I[P] = \text{true.}$
- $I \not\models P$ iff I[P] = false.
- $I \models \neg P \text{ iff } I \not\models P.$
- $I \models F_1 \land F_2 \text{ iff } I \models F_1 \text{ and } I \models F_2.$
- $I \models F_1 \lor F_2 \text{ iff } I \models F_1 \text{ or } I \models F_2.$
- **3** $I \models F_1 \rightarrow F_2$ iff if $I \models F_1$, then $I \models F_2$.

Note

For implication, it is more convenient to use the definition: $I \not\models F_1 \rightarrow F_2$ iff $I \models F_1$ and $I \not\models F_2$.

Interpretations Propositional Logic Checking validity Equivalence and Implication

Tautologies

Example

Propositional Logic Checking validity Equivalence and Implication

Example

Example

What does F : $(P \land Q) \rightarrow (P \lor \neg Q)$ evaluate to, under the interpretation $I \{ P \rightarrow \text{true}, Q \rightarrow \text{false} \}?$

Interpretations Propositional Logic Checking validity Equivalence and Implication

Tautologies

Well-formed Formulas

Well-formed Formulas

Definition

(i) A simple proposition is a well-formed formula (wff).

Tautologies

Well-formed Formulas

Definition

- (i) A simple proposition is a well-formed formula (wff).
- (ii) If A is a wff, then so is A'.

Tautologies

Well-formed Formulas

Definition

- (i) A simple proposition is a well-formed formula (wff).
- (ii) If A is a wff, then so is A'.
- (iii) If A and B are wffs, then so are (A), $A \lor B$, $A \land B$, $A \to B$ and $A \leftrightarrow B$.

Tautologies

Well-formed Formulas

Definition

- (i) A simple proposition is a well-formed formula (wff).
- (ii) If A is a wff, then so is A'.
- (iii) If A and B are wffs, then so are (A), $A \lor B$, $A \land B$, $A \to B$ and $A \leftrightarrow B$.
- (iv) These are the only wffs.

Tautologies

Well-formed Formulas

Definition

- (i) A simple proposition is a well-formed formula (wff).
- (ii) If A is a wff, then so is A'.
- (iii) If A and B are wffs, then so are (A), $A \lor B$, $A \land B$, $A \to B$ and $A \leftrightarrow B$.
- (iv) These are the only wffs.

Example

 $A \lor B$ is not a wff.

Tautologies

Well-formed Formulas

Definition

- (i) A simple proposition is a well-formed formula (wff).
- (ii) If A is a wff, then so is A'.
- (iii) If A and B are wffs, then so are (A), $A \lor B$, $A \land B$, $A \to B$ and $A \leftrightarrow B$.
- (iv) These are the only wffs.

Example

 $A \lor B$ is not a wff.

Precedence

Ambiguity is resolved using the following order of precedence.
Tautologies

Well-formed Formulas

Definition

- (i) A simple proposition is a well-formed formula (wff).
- (ii) If A is a wff, then so is A'.
- (iii) If A and B are wffs, then so are (A), $A \lor B$, $A \land B$, $A \to B$ and $A \leftrightarrow B$.
- (iv) These are the only wffs.

Example

 $A \lor B$ is not a wff.

Precedence

Ambiguity is resolved using the following order of precedence.

(i) parentheses.

Tautologies

Well-formed Formulas

Definition

- (i) A simple proposition is a well-formed formula (wff).
- (ii) If A is a wff, then so is A'.
- (iii) If A and B are wffs, then so are (A), $A \lor B$, $A \land B$, $A \to B$ and $A \leftrightarrow B$.
- (iv) These are the only wffs.

Example

 $A \lor B$ is not a wff.

Precedence

Ambiguity is resolved using the following order of precedence.

- (i) parentheses.
- (ii) negation.

Tautologies

Well-formed Formulas

Definition

- (i) A simple proposition is a well-formed formula (wff).
- (ii) If A is a wff, then so is A'.
- (iii) If A and B are wffs, then so are (A), $A \lor B$, $A \land B$, $A \to B$ and $A \leftrightarrow B$.
- (iv) These are the only wffs.

Example

 $A \lor B$ is not a wff.

Precedence

Ambiguity is resolved using the following order of precedence.

- (i) parentheses.
- (ii) negation.
- (iii) conjunction, disjunction.

Tautologies

Well-formed Formulas

Definition

- (i) A simple proposition is a well-formed formula (wff).
- (ii) If A is a wff, then so is A'.
- (iii) If A and B are wffs, then so are (A), $A \lor B$, $A \land B$, $A \to B$ and $A \leftrightarrow B$.
- (iv) These are the only wffs.

Example

 $A \lor B$ is not a wff.

Precedence

Ambiguity is resolved using the following order of precedence.

- (i) parentheses.
- (ii) negation.
- (iii) conjunction, disjunction.

i) implication.

Tautologies

Well-formed Formulas

Definition

- (i) A simple proposition is a well-formed formula (wff).
- (ii) If A is a wff, then so is A'.
- (iii) If A and B are wffs, then so are (A), $A \lor B$, $A \land B$, $A \to B$ and $A \leftrightarrow B$.
- (iv) These are the only wffs.

Example

 $A \lor B$ is not a wff.

Precedence

Ambiguity is resolved using the following order of precedence.

- (i) parentheses.
- (ii) negation.
- (iii) conjunction, disjunction.

- (i) implication.
- (ii) equivalence.

Tautologies

Well-formed Formulas

Definition

- (i) A simple proposition is a well-formed formula (wff).
- (ii) If A is a wff, then so is A'.
- (iii) If A and B are wffs, then so are (A), $A \lor B$, $A \land B$, $A \to B$ and $A \leftrightarrow B$.
- (iv) These are the only wffs.

Example

 $A \lor B$ is not a wff.

Precedence

Ambiguity is resolved using the following order of precedence.

- (i) parentheses.
- (ii) negation.
- (iii) conjunction, disjunction.

- (i) implication.
- (ii) equivalence.

Use brackets and forget about precedence!

Review

Equivalence and Implication

Propositional Logic Ta Checking validity

Outline

Tautologies

Definition

A wff which is always **true** is called a *tautology*, while a wff which is always **false** is called a *contradiction*.

Tautologies

Definition

A wff which is always **true** is called a *tautology*, while a wff which is always **false** is called a *contradiction*. A wff which is a tautology is also called valid.

Tautologies

lautologies

Definition

A wff which is always **true** is called a *tautology*, while a wff which is always **false** is called a *contradiction*. A wff which is a tautology is also called valid. A formula which is neither a tautology nor a contradiction is called *satisfiable*.

Tautologies

Tautologies

Definition

A wff which is always **true** is called a *tautology*, while a wff which is always **false** is called a *contradiction*. A wff which is a tautology is also called valid. A formula which is neither a tautology nor a contradiction is called *satisfiable*.

Example

Tautologies

Tautologies

Definition

A wff which is always **true** is called a *tautology*, while a wff which is always **false** is called a *contradiction*. A wff which is a tautology is also called valid. A formula which is neither a tautology nor a contradiction is called *satisfiable*.

Example

 $A \rightarrow A.$

Tautologies

Definition

A wff which is always **true** is called a *tautology*, while a wff which is always **false** is called a *contradiction*. A wff which is a tautology is also called valid. A formula which is neither a tautology nor a contradiction is called *satisfiable*.

Example

 $A \rightarrow A.$

Definition

If *A* and *B* are two wffs, and $A \leftrightarrow B$ is a tautology, then *A* and *B* are said to be **equivalent wffs** (denoted by $A \Leftrightarrow B$) and can be substituted for one another.

Tautologies

Definition

A wff which is always **true** is called a *tautology*, while a wff which is always **false** is called a *contradiction*. A wff which is a tautology is also called valid. A formula which is neither a tautology nor a contradiction is called *satisfiable*.

Example

 $A \rightarrow A$.

Definition

If *A* and *B* are two wffs, and $A \leftrightarrow B$ is a tautology, then *A* and *B* are said to be **equivalent wffs** (denoted by $A \Leftrightarrow B$) and can be substituted for one another.

Example

$$(A \rightarrow B) \Leftrightarrow (B' \rightarrow A')$$

Tautologies

Common Tautological Equivalences

De Morgan's Laws

 $(A \lor B)' \Leftrightarrow (A' \land B')$

Tautologies

Common Tautological Equivalences

De Morgan's Laws

 $(A \lor B)' \Leftrightarrow (A' \land B')$

 $(A \land B)' \Leftrightarrow (A' \lor B')$

Tautologies

Common Tautological Equivalences

De Morgan's Laws

 $(A \lor B)' \Leftrightarrow (A' \land B')$

 $(A \land B)' \Leftrightarrow (A' \lor B')$

Commutativity

 $(A \lor B) \Leftrightarrow (B \lor A)$

Tautologies

Common Tautological Equivalences

De Morgan's Laws

 $(A \lor B)' \Leftrightarrow (A' \land B')$

 $(A \land B)' \Leftrightarrow (A' \lor B')$

Commutativity

 $(A \lor B) \Leftrightarrow (B \lor A)$

 $(A \land B) \Leftrightarrow (B \land A)$

Tautologies

Common Tautological Equivalences

De Morgan's Laws

 $(A \vee B)' \Leftrightarrow (A' \wedge B')$

 $(A \land B)' \Leftrightarrow (A' \lor B')$

Commutativity

 $(A \lor B) \Leftrightarrow (B \lor A)$

 $(A \land B) \Leftrightarrow (B \land A)$

Associativity

 $(A \lor B) \lor C \Leftrightarrow A \lor (B \lor C)$

Tautologies

Common Tautological Equivalences

De Morgan's Laws

 $(A \vee B)' \Leftrightarrow (A' \wedge B')$

 $(A \land B)' \Leftrightarrow (A' \lor B')$

Commutativity

 $(A \lor B) \Leftrightarrow (B \lor A)$

 $(A \land B) \Leftrightarrow (B \land A)$

Associativity

 $(A \lor B) \lor C \Leftrightarrow A \lor (B \lor C)$

 $(A \land B) \land C \Leftrightarrow A \land (B \land C)$

Tautologies

Common Tautological Equivalences

De Morgan's Laws

 $(A \lor B)' \Leftrightarrow (A' \land B')$

 $(A \land B)' \Leftrightarrow (A' \lor B')$

Commutativity

 $(A \lor B) \Leftrightarrow (B \lor A)$

 $(A \land B) \Leftrightarrow (B \land A)$

Associativity

 $(A \lor B) \lor C \Leftrightarrow A \lor (B \lor C)$

 $(A \land B) \land C \Leftrightarrow A \land (B \land C)$

Distributivity

 $A \lor (B \land C) \Leftrightarrow (A \lor B) \land (A \lor C)$

Tautologies

Common Tautological Equivalences

De Morgan's Laws

 $(A \lor B)' \Leftrightarrow (A' \land B')$

 $(A \land B)' \Leftrightarrow (A' \lor B')$

Commutativity

 $(A \lor B) \Leftrightarrow (B \lor A)$

 $(A \land B) \Leftrightarrow (B \land A)$

Associativity

 $(A \lor B) \lor C \Leftrightarrow A \lor (B \lor C)$

 $(A \land B) \land C \Leftrightarrow A \land (B \land C)$

Distributivity

 $A \lor (B \land C) \Leftrightarrow (A \lor B) \land (A \lor C)$

 $A \land (B \lor C) \Leftrightarrow (A \land B) \lor (A \land C)$

Exercise

Prove all the above tautologies, using reasoning.

Valid Arguments

Outline

Valid Arguments

Arguments

Definition

Subramani Propositonal Logic

Valid Arguments

Arguments

Definition

An argument is a statement of the form:

$$(P_1 \wedge P_2 \wedge \ldots P_n) \to Q$$

where each of the $P_i s$ and Q are propositions.

Valid Arguments

Arguments

Definition

An argument is a statement of the form:

$(P_1 \land P_2 \land \ldots P_n) \to Q$

where each of the P_is and Q are propositions. The P_is are called the hypotheses and Q is called the conclusion.

Valid Arguments

Arguments

Definition

An argument is a statement of the form:

$(P_1 \land P_2 \land \ldots P_n) \to Q$

where each of the P_is and Q are propositions. The P_is are called the hypotheses and Q is called the conclusion.

Semantics

When can Q be logically deduced from P_1, P_2, \ldots, P_n ?

Valid Arguments

Arguments

Definition

An argument is a statement of the form:

$$(P_1 \wedge P_2 \wedge \ldots P_n) \to Q$$

where each of the P_is and Q are propositions. The P_is are called the hypotheses and Q is called the conclusion.

Semantics

When can Q be logically deduced from P_1, P_2, \ldots, P_n ?

Example

2 + 2 = 4 and 7 + 3 = 10. Therefore, a minute has 60 seconds. Is this valid?

Review Interpretations

Checking validity Equivalence and Implication Valid Arguments

Valid Arguments

Valid Arguments

Valid Arguments

Definition

The argument

$$(P_1 \land P_2 \land \ldots P_n) \rightarrow Q$$

is said to be valid, if it is a tautology.

Valid Arguments

Valid Arguments

Definition

The argument

$$(P_1 \land P_2 \land \ldots P_n) \rightarrow Q$$

is said to be valid, if it is a tautology.

Note

The validity of an argument is based purely on its intrinsic structure and not on the specific meanings attached to its constituent propositions.

Valid Arguments

Valid Arguments

Definition

The argument

$$(P_1 \land P_2 \land \ldots P_n) \rightarrow Q$$

is said to be valid, if it is a tautology.

Note

The validity of an argument is based purely on its intrinsic structure and not on the specific meanings attached to its constituent propositions.

Example

If John is hungry, he will eat. John is hungry. Therefore, he will eat.

Valid Arguments

Valid Arguments

Definition

The argument

$$(P_1 \land P_2 \land \ldots P_n) \rightarrow Q$$

is said to be valid, if it is a tautology.

Note

The validity of an argument is based purely on its intrinsic structure and not on the specific meanings attached to its constituent propositions.

Example

If John is hungry, he will eat. John is hungry. Therefore, he will eat. Symbolically, $(H \to E) \land H \to E$.

Truth Table Method Intuitive Argument Derivation Rule Method Semantic Argument Method

Outline

Truth Table Method Intuitive Argument Derivation Rule Method Semantic Argument Method

Truth Table Method

Truth Table Method Intuitive Argument Derivation Rule Method Semantic Argument Method

Truth Table Method

Truth-table Method

Simply check if all rows of the truth-table are true.
Truth Table Method Intuitive Argument Derivation Rule Method Semantic Argument Method

Truth Table Method

Truth-table Method

Simply check if all rows of the truth-table are true. Horribly expensive!

Truth Table Method Intuitive Argument Derivation Rule Method Semantic Argument Method

Outline

Equivalence and Implication

Truth Table Method Intuitive Argument Derivation Rule Method Semantic Argument Method

Intuitive Argument Method

Truth Table Method Intuitive Argument Derivation Rule Method Semantic Argument Method

Intuitive Argument Method

Example

Is the argument

$$[(A \rightarrow B) \land (B \rightarrow C)] \rightarrow (A \rightarrow C)$$

valid?

Truth Table Method Intuitive Argument Derivation Rule Method Semantic Argument Method

Intuitive Argument Method

Example

Is the argument

$$[(A \rightarrow B) \land (B \rightarrow C)] \rightarrow (A \rightarrow C)$$

valid? *A* is either **true** or **false**.

Truth Table Method Intuitive Argument Derivation Rule Method Semantic Argument Method

Intuitive Argument Method

Example

Is the argument

$$[(A \to B) \land (B \to C)] \to (A \to C)$$

valid? *A* is either **true** or **false**. If *A* is **false**,

Truth Table Method Intuitive Argument Derivation Rule Method Semantic Argument Method

Intuitive Argument Method

Example

Is the argument

$$[(A \rightarrow B) \land (B \rightarrow C)] \rightarrow (A \rightarrow C)$$

valid?

A is either **true** or **false**. If A is **false**, the consequent is **true** and hence the entire argument is **true**.

If \overline{A} is **true**, the argument reduces to $[B \land (B \rightarrow C)] \rightarrow C$.

Truth Table Method Intuitive Argument Derivation Rule Method Semantic Argument Method

Intuitive Argument Method

Example

Is the argument

$$[(A \rightarrow B) \land (B \rightarrow C)] \rightarrow (A \rightarrow C)$$

valid?

A is either **true** or **false**. If A is **false**, the consequent is **true** and hence the entire argument is **true**.

If \overline{A} is **true**, the argument reduces to $[B \land (B \to C)] \to C$. Now *B* is either **true** or **false**...

Truth Table Method Intuitive Argument Derivation Rule Method Semantic Argument Method

Outline

- Derivation Rule Method
- Semantic Argument Method

Equivalence and Implication

Truth Table Method Intuitive Argument Derivation Rule Method Semantic Argument Method

Derivation Rule Method

Truth Table Method Intuitive Argument Derivation Rule Method Semantic Argument Method

Derivation Rule Method

Derivation Rules

We will use a set of derivation rules and manipulate the hypotheses to arrive at the desired conclusion.

Truth Table Method Intuitive Argument Derivation Rule Method Semantic Argument Method

Derivation Rule Method

Derivation Rules

We will use a set of derivation rules and manipulate the hypotheses to arrive at the desired conclusion.

Proof Sequence

A proof sequence is a sequence of wffs in which each wff is either a hypothesis or the result of applying one of the formal system's derivation rules to earlier wffs in the sequence.

Truth Table Method Intuitive Argument Derivation Rule Method Semantic Argument Method

Derivation Rules

Rule Types

Subramani Propositonal Logic

Truth Table Method Intuitive Argument Derivation Rule Method Semantic Argument Method

Derivation Rules

Rule Types

(i) Equivalence Rules.

Truth Table Method Intuitive Argument Derivation Rule Method Semantic Argument Method

Derivation Rules

Rule Types

- (i) Equivalence Rules.
- (ii) Inference Rules.

Truth Table Method Intuitive Argument Derivation Rule Method Semantic Argument Method

Derivation Rules

Rule Types

- (i) Equivalence Rules.
- (ii) Inference Rules.

|--|

Truth Table Method Intuitive Argument Derivation Rule Method Semantic Argument Method

Derivation Rules

Rule Types

- (i) Equivalence Rules.
- (ii) Inference Rules.

Expression	Equivalent to	Name of Rule
$P \lor Q$	$Q \lor P$	Commutative - comm

Truth Table Method Intuitive Argument Derivation Rule Method Semantic Argument Method

Derivation Rules

Rule Types

- (i) Equivalence Rules.
- (ii) Inference Rules.

Expression	Equivalent to	Name of Rule
$P \lor Q$	$Q \lor P$	Commutative - comm
$P \wedge Q$	$Q \wedge P$	
	•	•

Truth Table Method Intuitive Argument Derivation Rule Method Semantic Argument Method

Derivation Rules

Rule Types

- (i) Equivalence Rules.
- (ii) Inference Rules.

Expression	Equivalent to	Name of Rule
$P \lor Q$	$Q \lor P$	Commutative - comm
$P \wedge Q$	$oldsymbol{Q}\wedge oldsymbol{P}$	
$P \lor (Q \lor R)$	$(P \lor Q) \lor R$	Associative -ass
$P \wedge (Q \wedge R)$	$(P \land Q) \land R$	

Truth Table Method Intuitive Argument Derivation Rule Method Semantic Argument Method

Derivation Rules

Rule Types

- (i) Equivalence Rules.
- (ii) Inference Rules.

Expression	Equivalent to	Name of Rule
$P \lor Q$	$Q \lor P$	Commutative - comm
$P \wedge Q$	$oldsymbol{Q}\wedge oldsymbol{P}$	
$P \lor (Q \lor R)$	$(P \lor Q) \lor R$	Associative -ass
$P \wedge (Q \wedge R)$	$(P \land Q) \land R$	
$(P \lor Q)'$	$P' \wedge Q'$	De Morgan
$(P \land Q)'$	$P' \lor Q'$	

Truth Table Method Intuitive Argument Derivation Rule Method Semantic Argument Method

Derivation Rules

Rule Types

- (i) Equivalence Rules.
- (ii) Inference Rules.

Expression	Equivalent to	Name of Rule
$P \lor Q$	$Q \lor P$	Commutative - comm
$P \wedge Q$	$Q \wedge P$	
$P \lor (Q \lor R)$	$(P \lor Q) \lor R$	Associative -ass
$P \wedge (Q \wedge R)$	$(P \land Q) \land R$	
$(P \lor Q)'$	$P' \wedge Q'$	De Morgan
$(P \land Q)'$	$P' \lor Q'$	
P ightarrow Q	$P' \lor Q$	Implication - imp

Truth Table Method Intuitive Argument Derivation Rule Method Semantic Argument Method

Derivation Rules

Rule Types

- (i) Equivalence Rules.
- (ii) Inference Rules.

Expression	Equivalent to	Name of Rule
$P \lor Q$	$Q \lor P$	Commutative - comm
$P \wedge Q$	$oldsymbol{Q}\wedge oldsymbol{P}$	
$P \lor (Q \lor R)$	$(P \lor Q) \lor R$	Associative -ass
$P \wedge (Q \wedge R)$	$(P \land Q) \land R$	
$(P \lor Q)'$	$P' \wedge Q'$	De Morgan
$(P \land Q)'$	$P' \lor Q'$	
P ightarrow Q	$P' \lor Q$	Implication - imp
Р	(<i>P'</i>) <i>'</i>	Double negation - dn

Truth Table Method Intuitive Argument Derivation Rule Method Semantic Argument Method

Derivation Rules

Rule Types

- (i) Equivalence Rules.
- (ii) Inference Rules.

Expression	Equivalent to	Name of Rule
$P \lor Q$	$Q \lor P$	Commutative - comm
$P \wedge Q$	$oldsymbol{Q}\wedge oldsymbol{P}$	
$P \lor (Q \lor R)$	$(P \lor Q) \lor R$	Associative -ass
$P \wedge (Q \wedge R)$	$(P \land Q) \land R$	
$(P \lor Q)'$	$P' \wedge Q'$	De Morgan
$(P \land Q)'$	$P' \lor Q'$	
P ightarrow Q	$P' \lor Q$	Implication - imp
Р	(<i>P'</i>) <i>'</i>	Double negation - dn
$P \leftrightarrow Q$	$(P ightarrow Q) \wedge (Q ightarrow P)$	Definition of equivalence

Truth Table Method Intuitive Argument Derivation Rule Method Semantic Argument Method

Derivation Rules (contd.)

Inference Rules				
	From	Can Derive	Name of Rule	

Truth Table Method Intuitive Argument Derivation Rule Method Semantic Argument Method

Derivation Rules (contd.)

From	Can Derive	Name of Rule
$P, P \rightarrow Q$	Q	Modus Ponens (mp)

Truth Table Method Intuitive Argument Derivation Rule Method Semantic Argument Method

Derivation Rules (contd.)

From	Can Derive	Name of Rule
$P, P \rightarrow Q$	Q	Modus Ponens (mp)
P ightarrow Q, Q'	P'	Modus Tollens (mt)

Truth Table Method Intuitive Argument Derivation Rule Method Semantic Argument Method

Derivation Rules (contd.)

From	Can Derive	Name of Rule
$P, P \rightarrow Q$	Q	Modus Ponens (mp)
$P \rightarrow Q, Q'$	Ρ'	Modus Tollens (mt)
P, Q	$P \wedge Q$	Conjunction

Truth Table Method Intuitive Argument Derivation Rule Method Semantic Argument Method

Derivation Rules (contd.)

From	Can Derive	Name of Rule
$P, P \rightarrow Q$	Q	Modus Ponens (mp)
P ightarrow Q, Q'	Ρ'	Modus Tollens (mt)
P, Q	$P \wedge Q$	Conjunction
$P \land Q$	P, Q	Simplification

Truth Table Method Intuitive Argument Derivation Rule Method Semantic Argument Method

Derivation Rules (contd.)

From	Can Derive	Name of Rule
$P, P \rightarrow Q$	Q	Modus Ponens (mp)
$P \rightarrow Q, Q'$	Ρ'	Modus Tollens (mt)
<i>P</i> , <i>Q</i>	$P \wedge Q$	Conjunction
$P \wedge Q$	P, Q	Simplification
P	$P \lor Q$	Addition

Truth Table Method Intuitive Argument Derivation Rule Method Semantic Argument Method

A proof derivation

Example

Argue that

$$[A \land (B \to C) \land [(A \land B) \to (D \lor C')] \land B] \to D$$

is a valid argument.

Proof

Truth Table Method Intuitive Argument Derivation Rule Method Semantic Argument Method

A proof derivation

Example

Argue that

$$[A \land (B \to C) \land [(A \land B) \to (D \lor C')] \land B] \to D$$

is a valid argument.

Proof

(i) A hypothesis.

Truth Table Method Intuitive Argument Derivation Rule Method Semantic Argument Method

A proof derivation

Example

Argue that

$$[A \land (B \to C) \land [(A \land B) \to (D \lor C')] \land B] \to D$$

Proof		
(i) A	hypothesis.	
(ii) <i>B</i>	hypothesis.	

Truth Table Method Intuitive Argument Derivation Rule Method Semantic Argument Method

A proof derivation

Example

Argue that

$$[A \land (B \to C) \land [(A \land B) \to (D \lor C')] \land B] \to D$$

Proof	
(i) <i>A</i>	hypothesis.
(ii) <i>B</i>	hypothesis.
(iii) $B \rightarrow C$	hypothesis.

Truth Table Method Intuitive Argument Derivation Rule Method Semantic Argument Method

A proof derivation

Example

Argue that

$$[A \land (B \to C) \land [(A \land B) \to (D \lor C')] \land B] \to D$$

Proof	
(i) <i>A</i>	hypothesis.
(ii) <i>B</i>	hypothesis.
(iii) $B \rightarrow C$	hypothesis.
(iv) <i>C</i>	(ii), (iii), Modus Ponens.

Truth Table Method Intuitive Argument Derivation Rule Method Semantic Argument Method

A proof derivation

Example

Argue that

$$[A \land (B \to C) \land [(A \land B) \to (D \lor C')] \land B] \to D$$

Proof		
(i) <i>A</i>	hypothesis.	
(ii) B	hypothesis.	
(iii) $B \rightarrow C$	hypothesis.	
(iv) <i>C</i>	(ii), (iii), Modus Ponens.	
(v) A ∧ B	(i), (ii), Conjunction.	

Truth Table Method Intuitive Argument Derivation Rule Method Semantic Argument Method

A proof derivation

Example

Argue that

$$[A \land (B \to C) \land [(A \land B) \to (D \lor C')] \land B] \to D$$

Proof	
(i) A	hypothesis.
(ii) B	hypothesis.
(iii) $B \rightarrow C$	hypothesis.
(iv) C	(ii), (iii), Modus Ponens.
(v) $A \wedge B$	(i), (ii), Conjunction.
(vi) $(A \land B) \rightarrow (D \lor C')$	hypothesis.
Truth Table Method Intuitive Argument Derivation Rule Method Semantic Argument Method

A proof derivation

Example

Argue that

$$[A \land (B \to C) \land [(A \land B) \to (D \lor C')] \land B] \to D$$

is a valid argument.

Proof	
(i) A	hypothesis.
(ii) B	hypothesis.
(iii) $B \rightarrow C$	hypothesis.
(iv) <i>C</i>	(ii), (iii), Modus Ponens.
(v) $A \wedge B$	(i), (ii), Conjunction.
(vi) $(A \land B) \rightarrow (D \lor C')$	hypothesis.
(vii) (<i>D</i> ∨ <i>C</i> ′)	(v), (vi), Modus Ponens.

Truth Table Method Intuitive Argument Derivation Rule Method Semantic Argument Method

A proof derivation

Example

Argue that

$$[A \land (B \to C) \land [(A \land B) \to (D \lor C')] \land B] \to D$$

is a valid argument.

Proof	
(i) <i>A</i>	hypothesis.
(ii) <i>B</i>	hypothesis.
(iii) $B \rightarrow C$	hypothesis.
(iv) <i>C</i>	(ii), (iii), Modus Ponens.
(v) $A \wedge B$	(i), (ii), Conjunction.
(vi) $(A \land B) \rightarrow (D \lor C')$	hypothesis.
(vii) (<i>D</i> ∨ <i>C</i> ′)	(v), (vi), Modus Ponens.
(viii) $(C \rightarrow D)$	(vii), Implication.

Truth Table Method Intuitive Argument Derivation Rule Method Semantic Argument Method

A proof derivation

Example

Argue that

$$[A \land (B \to C) \land [(A \land B) \to (D \lor C')] \land B] \to D$$

is a valid argument.

Proof	
(i) <i>A</i>	hypothesis.
(ii) <i>B</i>	hypothesis.
(iii) $B \rightarrow C$	hypothesis.
(iv) <i>C</i>	(ii), (iii), Modus Ponens.
(v) $A \wedge B$	(i), (ii), Conjunction.
(vi) $(A \land B) \rightarrow (D \lor C')$	hypothesis.
(vii) $(D \lor C')$	(v), (vi), Modus Ponens.
(viii) $(C \rightarrow D)$	(vii), Implication.
(ix) D	(iv), (viii), Modus Ponens.

Truth Table Method Intuitive Argument Derivation Rule Method Semantic Argument Method

Two more rules

Deduction Method

Truth Table Method Intuitive Argument Derivation Rule Method Semantic Argument Method

Two more rules

Deduction Method

The argument $P_1 \land P_2 \ldots P_n \to (R \to S)$ is tautologically equivalent to the argument $P_1 \land P_2 \ldots P_n \land R \to S$.

Truth Table Method Intuitive Argument Derivation Rule Method Semantic Argument Method

Two more rules

Deduction Method

The argument $P_1 \land P_2 \dots P_n \to (R \to S)$ is tautologically equivalent to the argument $P_1 \land P_2 \dots P_n \land R \to S$.

Example

Prove that $[(A \rightarrow B) \land (B \rightarrow C)] \rightarrow (A \rightarrow C)$

Truth Table Method Intuitive Argument Derivation Rule Method Semantic Argument Method

Two more rules

Deduction Method

The argument $P_1 \land P_2 \dots P_n \to (R \to S)$ is tautologically equivalent to the argument $P_1 \land P_2 \dots P_n \land R \to S$.

Example

Prove that $[(A \rightarrow B) \land (B \rightarrow C)] \rightarrow (A \rightarrow C)$

Proof

Using the Deduction Method, the above argument can be rewritten as: $[(A \to B) \land (B \to C) \land A] \to C$. Now apply Modus Ponens twice!

Truth Table Method Intuitive Argument Derivation Rule Method Semantic Argument Method

Two more rules

Deduction Method

The argument $P_1 \land P_2 \dots P_n \to (R \to S)$ is tautologically equivalent to the argument $P_1 \land P_2 \dots P_n \land R \to S$.

Example

Prove that $[(A \rightarrow B) \land (B \rightarrow C)] \rightarrow (A \rightarrow C)$

Proof

Using the Deduction Method, the above argument can be rewritten as: $[(A \rightarrow B) \land (B \rightarrow C) \land A] \rightarrow C$. Now apply Modus Ponens twice!

Note

The rule $[(A \to B) \land (B \to C)] \to (A \to C)$ is called hypothesis syllogism and can be used directly.

Truth Table Method Intuitive Argument Derivation Rule Method Semantic Argument Method

Proving validity of Verbal Arguments

Methodology

Truth Table Method Intuitive Argument Derivation Rule Method Semantic Argument Method

Proving validity of Verbal Arguments

Methodology

(i) Symbolize the argument.

Truth Table Method Intuitive Argument Derivation Rule Method Semantic Argument Method

Proving validity of Verbal Arguments

Methodology

- (i) Symbolize the argument.
- (ii) Construct a proof sequence for the symbolic argument.

Truth Table Method Intuitive Argument Derivation Rule Method Semantic Argument Method

Proving validity of Verbal Arguments

Methodology

- (i) Symbolize the argument.
- (ii) Construct a proof sequence for the symbolic argument.

Example

If interest rates drop, the housing market will improve. Either the federal discount rate will drop or the housing market will not improve. Interest rates will drop. Therefore, the federal discount rate will drop.

Truth Table Method Intuitive Argument Derivation Rule Method Semantic Argument Method

Proving validity of Verbal Arguments

Methodology

- (i) Symbolize the argument.
- (ii) Construct a proof sequence for the symbolic argument.

Example

If interest rates drop, the housing market will improve. Either the federal discount rate will drop or the housing market will not improve. Interest rates will drop. Therefore, the federal discount rate will drop. Is this argument valid?

Truth Table Method Intuitive Argument Derivation Rule Method Semantic Argument Method

Proving validity of Verbal Arguments

Methodology

- (i) Symbolize the argument.
- (ii) Construct a proof sequence for the symbolic argument.

Example

If interest rates drop, the housing market will improve. Either the federal discount rate will drop or the housing market will not improve. Interest rates will drop. Therefore, the federal discount rate will drop. Is this argument valid?

Proof.

Truth Table Method Intuitive Argument Derivation Rule Method Semantic Argument Method

Proving validity of Verbal Arguments

Methodology

- (i) Symbolize the argument.
- (ii) Construct a proof sequence for the symbolic argument.

Example

If interest rates drop, the housing market will improve. Either the federal discount rate will drop or the housing market will not improve. Interest rates will drop. Therefore, the federal discount rate will drop. Is this argument valid?

Proof.

$$[(I \rightarrow H)$$

Truth Table Method Intuitive Argument Derivation Rule Method Semantic Argument Method

Proving validity of Verbal Arguments

Methodology

- (i) Symbolize the argument.
- (ii) Construct a proof sequence for the symbolic argument.

Example

If interest rates drop, the housing market will improve. Either the federal discount rate will drop or the housing market will not improve. Interest rates will drop. Therefore, the federal discount rate will drop. Is this argument valid?

Proof.

$$[(I \to H) \land (F \lor H')$$

Truth Table Method Intuitive Argument Derivation Rule Method Semantic Argument Method

Proving validity of Verbal Arguments

Methodology

- (i) Symbolize the argument.
- (ii) Construct a proof sequence for the symbolic argument.

Example

If interest rates drop, the housing market will improve. Either the federal discount rate will drop or the housing market will not improve. Interest rates will drop. Therefore, the federal discount rate will drop. Is this argument valid?

Proof.

$$[(I \to H) \land (F \lor H') \land I]$$

Truth Table Method Intuitive Argument Derivation Rule Method Semantic Argument Method

Proving validity of Verbal Arguments

Methodology

- (i) Symbolize the argument.
- (ii) Construct a proof sequence for the symbolic argument.

Example

If interest rates drop, the housing market will improve. Either the federal discount rate will drop or the housing market will not improve. Interest rates will drop. Therefore, the federal discount rate will drop. Is this argument valid?

Proof.

$$[(I \to H) \land (F \lor H') \land I] \to F$$

Truth Table Method Intuitive Argument Derivation Rule Method Semantic Argument Method

Proving validity of Verbal Arguments

Methodology

- (i) Symbolize the argument.
- (ii) Construct a proof sequence for the symbolic argument.

Example

If interest rates drop, the housing market will improve. Either the federal discount rate will drop or the housing market will not improve. Interest rates will drop. Therefore, the federal discount rate will drop. Is this argument valid?

Proof.

Let *I* denote the event that interest rates will drop. Let *H* denote the event that the housing market will improve. Let *F* denote the event that the federal discount rate will drop. The symbolic argument is

$$[(I \to H) \land (F \lor H') \land I] \to F$$

From I and $(I \rightarrow H)$, we can derive H using Modus Ponens.

Truth Table Method Intuitive Argument Derivation Rule Method Semantic Argument Method

Proving validity of Verbal Arguments

Methodology

- (i) Symbolize the argument.
- (ii) Construct a proof sequence for the symbolic argument.

Example

If interest rates drop, the housing market will improve. Either the federal discount rate will drop or the housing market will not improve. Interest rates will drop. Therefore, the federal discount rate will drop. Is this argument valid?

Proof.

Let *I* denote the event that interest rates will drop. Let *H* denote the event that the housing market will improve. Let *F* denote the event that the federal discount rate will drop. The symbolic argument is

$$[(I \to H) \land (F \lor H') \land I] \to F$$

From *I* and $(I \rightarrow H)$, we can derive *H* using Modus Ponens. From *H* and $(F \lor H')$ $(H \rightarrow F)$, we can derive *F* using Modus Ponens!

Truth Table Method Intuitive Argument Derivation Rule Method Semantic Argument Method

One More Example

Example

Show that the argument $A' \land (B \rightarrow A) \rightarrow B'$ is valid.

Proof

Truth Table Method Intuitive Argument Derivation Rule Method Semantic Argument Method

One More Example

Example

Show that the argument $A' \land (B \rightarrow A) \rightarrow B'$ is valid.

Proof

Consider the following proof sequence:

(i) $(B \rightarrow A)$ hypothesis.

Truth Table Method Intuitive Argument Derivation Rule Method Semantic Argument Method

One More Example

Example

Show that the argument $A' \land (B \rightarrow A) \rightarrow B'$ is valid.

Proof

- (i) $(B \rightarrow A)$ hypothesis.
- (ii) $(B' \lor A)$ (i), implication.

Truth Table Method Intuitive Argument Derivation Rule Method Semantic Argument Method

One More Example

Example

Show that the argument $A' \land (B \rightarrow A) \rightarrow B'$ is valid.

Proof

- (i) $(B \rightarrow A)$ hypothesis.
- (ii) $(B' \lor A)$ (i), implication.
- (iii) $(A \lor B')$ (ii), Commutativity.

Truth Table Method Intuitive Argument Derivation Rule Method Semantic Argument Method

One More Example

Example

Show that the argument $A' \land (B \rightarrow A) \rightarrow B'$ is valid.

Proof

- (i) $(B \rightarrow A)$ hypothesis.
- (ii) $(B' \lor A)$ (i), implication.
- (iii) $(A \lor B')$ (ii), Commutativity.
- (iv) $(A' \rightarrow B')$ (iii), implication.

Truth Table Method Intuitive Argument Derivation Rule Method Semantic Argument Method

One More Example

Example

Show that the argument $A' \land (B \rightarrow A) \rightarrow B'$ is valid.

Proof

- (i) $(B \rightarrow A)$ hypothesis.
- (ii) $(B' \lor A)$ (i), implication.
- (iii) $(A \lor B')$ (ii), Commutativity.
- (iv) $(A' \rightarrow B')$ (iii), implication.
- (v) A' hypothesis.

Truth Table Method Intuitive Argument Derivation Rule Method Semantic Argument Method

One More Example

Example

Show that the argument $A' \land (B \rightarrow A) \rightarrow B'$ is valid.

Proof

- (i) $(B \rightarrow A)$ hypothesis.
- (ii) $(B' \lor A)$ (i), implication.
- (iii) $(A \lor B')$ (ii), Commutativity.
- (iv) $(A' \rightarrow B')$ (iii), implication.
- (v) A' hypothesis.
- (vi) B' (iv), (v) Modus Ponens.

Truth Table Method Intuitive Argument Derivation Rule Method Semantic Argument Method

Outline

- Intuitive Argument
- Derivation Rule Method
- Semantic Argument Method

Equivalence and Implication

Truth Table Method Intuitive Argument Derivation Rule Method Semantic Argument Method

Semantic Argument Method

Subramani Propositonal Logic

Truth Table Method Intuitive Argument Derivation Rule Method Semantic Argument Method

Semantic Argument Method

Semantic Arguments

Similar to intuitive argument method;

Truth Table Method Intuitive Argument Derivation Rule Method Semantic Argument Method

Semantic Argument Method

Semantic Arguments

Similar to intuitive argument method; a bit more formal and uses explicit contradiction.

Truth Table Method Intuitive Argument Derivation Rule Method Semantic Argument Method

Semantic Argument Method

Semantic Arguments

Similar to intuitive argument method; a bit more formal and uses explicit contradiction. We assume that the given argument (say F) is not valid.

Truth Table Method Intuitive Argument Derivation Rule Method Semantic Argument Method

Semantic Argument Method

Semantic Arguments

Similar to intuitive argument method; a bit more formal and uses explicit contradiction. We assume that the given argument (say *F*) is not valid. This means that there is an interpretation *I*, such that $I \not\models F$.

Truth Table Method Intuitive Argument Derivation Rule Method Semantic Argument Method

Semantic Argument Method

Semantic Arguments

Similar to intuitive argument method; a bit more formal and uses explicit contradiction. We assume that the given argument (say F) is not valid. This means that there is an interpretation I, such that $I \not\models F$. Now derive inferences using the semantics of negation, conjunction, disjunction and implication.

Truth Table Method Intuitive Argument Derivation Rule Method Semantic Argument Method

Semantic Argument Method

Semantic Arguments

Similar to intuitive argument method; a bit more formal and uses explicit contradiction. We assume that the given argument (say *F*) is not valid. This means that there is an interpretation *I*, such that $I \not\models F$. Now derive inferences using the semantics of negation, conjunction, disjunction and implication. A contradiction results if it can be shown that $I \models F$ and $I \not\models F$, since this means that $I \models \bot$.

Truth Table Method Intuitive Argument Derivation Rule Method Semantic Argument Method

Semantic Argument Method

Semantic Arguments

Similar to intuitive argument method; a bit more formal and uses explicit contradiction. We assume that the given argument (say *F*) is not valid. This means that there is an interpretation *I*, such that $I \not\models F$. Now derive inferences using the semantics of negation, conjunction, disjunction and implication. A contradiction results if it can be shown that $I \models F$ and $I \not\models F$, since this means that $I \models \bot$.

Example

Prove that $F : (P \land Q) \rightarrow (P \lor \neg Q)$ is valid.
Truth Table Method Intuitive Argument Derivation Rule Method Semantic Argument Method

Semantic Argument (Example)

Proof

Subramani Propositonal Logic

Truth Table Method Intuitive Argument Derivation Rule Method Semantic Argument Method

Semantic Argument (Example)

Proof

Assume that F is not valid.

Truth Table Method Intuitive Argument Derivation Rule Method Semantic Argument Method

Semantic Argument (Example)

Proof

Assume that F is not valid. Therefore, there exists an interpretation I, such that $I \not\models F$.

Truth Table Method Intuitive Argument Derivation Rule Method Semantic Argument Method

Semantic Argument (Example)

Proof

Assume that *F* is not valid. Therefore, there exists an interpretation *I*, such that $I \not\models F$. Accordingly,

Truth Table Method Intuitive Argument Derivation Rule Method Semantic Argument Method

Semantic Argument (Example)

Proof

Assume that F is not valid. Therefore, there exists an interpretation I, such that $I \not\models F$. Accordingly,

(i)
$$I \not\models [(P \land Q) \rightarrow (P \lor \neg Q)]$$
 assumption

Truth Table Method Intuitive Argument Derivation Rule Method Semantic Argument Method

Semantic Argument (Example)

Proof

Assume that F is not valid. Therefore, there exists an interpretation I, such that $I \not\models F$. Accordingly,

- (i) $I \not\models [(P \land Q) \rightarrow (P \lor \neg Q)]$
- (ii) $I \models (P \land Q)$

assumption.

by (i) and the semantics of \rightarrow .

Truth Table Method Intuitive Argument Derivation Rule Method Semantic Argument Method

Semantic Argument (Example)

Proof

Assume that F is not valid. Therefore, there exists an interpretation I, such that $I \not\models F$. Accordingly,

- (i) $I \not\models [(P \land Q) \rightarrow (P \lor \neg Q)]$
- (ii) $I \models (P \land Q)$
- (iii) $I \not\models (P \lor \neg Q)$

assumption.

by (i) and the semantics of \rightarrow .

by (i) and the semantics of \rightarrow .

Truth Table Method Intuitive Argument Derivation Rule Method Semantic Argument Method

Semantic Argument (Example)

Proof

Assume that *F* is not valid. Therefore, there exists an interpretation *I*, such that $I \not\models F$. Accordingly,

- (i) $I \not\models [(P \land Q) \rightarrow (P \lor \neg Q)]$
- (ii) $I \models (P \land Q)$
- (iii) $I \not\models (P \lor \neg Q)$
- (iv) $I \models P$

assumption.

- by (i) and the semantics of \rightarrow .
- by (i) and the semantics of \rightarrow .
- by (ii) and the semantics of $\wedge.$

Truth Table Method Intuitive Argument Derivation Rule Method Semantic Argument Method

Semantic Argument (Example)

Proof

Assume that *F* is not valid. Therefore, there exists an interpretation *I*, such that $I \not\models F$. Accordingly,

- (i) $I \not\models [(P \land Q) \rightarrow (P \lor \neg Q)]$
- (ii) $I \models (P \land Q)$
- (iii) $I \not\models (P \lor \neg Q)$
- (iv) $I \models P$
- (v) $I \models Q$

assumption.

- by (i) and the semantics of \rightarrow .
- by (i) and the semantics of \rightarrow .
- by (ii) and the semantics of $\wedge.$
- by (ii) and the semantics of \wedge .

Truth Table Method Intuitive Argument Derivation Rule Method Semantic Argument Method

Semantic Argument (Example)

Proof

Assume that F is not valid. Therefore, there exists an interpretation I, such that $I \not\models F$. Accordingly,

- (i) $I \not\models [(P \land Q) \rightarrow (P \lor \neg Q)]$
- (ii) $I \models (P \land Q)$
- (iii) $I \not\models (P \lor \neg Q)$
- (iv) $I \models P$
- (v) $I \models Q$
- (vi) $I \not\models P$

assumption.

- by (i) and the semantics of \rightarrow .
- by (i) and the semantics of \rightarrow .
- by (ii) and the semantics of $\wedge.$
- by (ii) and the semantics of \wedge .
- by (iii) and the semantics of \wedge .

Truth Table Method Intuitive Argument Derivation Rule Method Semantic Argument Method

Semantic Argument (Example)

Proof

Assume that *F* is not valid. Therefore, there exists an interpretation *I*, such that $I \not\models F$. Accordingly,

(i) $1 \not\models [(P \land Q) \rightarrow (P \lor \neg Q)]$ assumption.(ii) $1 \models (P \land Q)$ by (i) and the semantics of \rightarrow .(iii) $1 \not\models (P \lor \neg Q)$ by (i) and the semantics of \rightarrow .(iv) $1 \models P$ by (ii) and the semantics of \land .(v) $1 \models Q$ by (ii) and the semantics of \land .(vi) $1 \not\models P$ by (iii) and the semantics of \land .(vii) $1 \not\models L$ (iv) and (v) are contradictory.

Truth Table Method Intuitive Argument Derivation Rule Method Semantic Argument Method

One more example

Truth Table Method Intuitive Argument Derivation Rule Method Semantic Argument Method

One more example

Example

Show that the argument

$$F : [(P \rightarrow Q) \land (Q \rightarrow R)] \rightarrow (P \rightarrow R)$$

is valid.

Equivalence

Main issues

Subramani Propositonal Logic

Equivalence

Main issues

Just as satisfiability and validity are important properties of a single formula,

Equivalence

Main issues

Just as satisfiability and validity are important properties of a single formula, equivalence and implication are important properties of formula pairs.

Equivalence

Main issues

Just as satisfiability and validity are important properties of a single formula, equivalence and implication are important properties of formula pairs.

Definition

Two formulas F_1 and F_2 are said to be equivalent (written as $F_1 \Leftrightarrow F_2$), if

$$I \models F_1$$
 iff $I \models F_2$

for all interpretations *I*.

Equivalence

Main issues

Just as satisfiability and validity are important properties of a single formula, equivalence and implication are important properties of formula pairs.

Definition

Two formulas F_1 and F_2 are said to be equivalent (written as $F_1 \Leftrightarrow F_2$), if

$$I \models F_1 \text{ iff } I \models F_2$$

for all interpretations *I*.

Note

 $F_1 \Leftrightarrow F_2$ is different from $F_1 \leftrightarrow F_2$.

Equivalence

Main issues

Just as satisfiability and validity are important properties of a single formula, equivalence and implication are important properties of formula pairs.

Definition

Two formulas F_1 and F_2 are said to be equivalent (written as $F_1 \Leftrightarrow F_2$), if

$$I \models F_1 \text{ iff } I \models F_2$$

for all interpretations *I*.

Note

 $F_1 \Leftrightarrow F_2$ is different from $F_1 \leftrightarrow F_2$. The former is an assertion that can be proved.

Equivalence

Main issues

Just as satisfiability and validity are important properties of a single formula, equivalence and implication are important properties of formula pairs.

Definition

Two formulas F_1 and F_2 are said to be equivalent (written as $F_1 \Leftrightarrow F_2$), if

$$I \models F_1 \text{ iff } I \models F_2$$

for all interpretations *I*.

Note

 $F_1 \Leftrightarrow F_2$ is different from $F_1 \leftrightarrow F_2$. The former is an assertion that can be proved. The latter is a boolean formula that may or may not be satisfiable.

Implication

Implication

Definition

Formula F_1 is said to imply formula F_2 (written as $F_1 \Rightarrow F_2$), if for all interpretations *I*,

 $I \models F_2$ if $I \models F_1$.

Implication

Definition

Formula F_1 is said to imply formula F_2 (written as $F_1 \Rightarrow F_2$), if for all interpretations I,

 $I \models F_2$ if $I \models F_1$.

Note

 $F_1 \Rightarrow F_2$ is different from $F_1 \rightarrow F_2$.

Implication

Definition

Formula F_1 is said to imply formula F_2 (written as $F_1 \Rightarrow F_2$), if for all interpretations I,

 $I \models F_2$ if $I \models F_1$.

Note

 $F_1 \Rightarrow F_2$ is different from $F_1 \rightarrow F_2$. The former is an assertion that can be proved.

Implication

Definition

Formula F_1 is said to imply formula F_2 (written as $F_1 \Rightarrow F_2$), if for all interpretations I,

 $I \models F_2$ if $I \models F_1$.

Note

 $F_1 \Rightarrow F_2$ is different from $F_1 \rightarrow F_2$. The former is an assertion that can be proved. The latter is a boolean formula that may or may not be satisfiable.