Propositional Logic - Basics

K. Subramani¹

¹Lane Department of Computer Science and Electrical Engineering West Virginia University

14 January and 16 January, 2013

Why Logic?

(i) The Law!

- (i) The Law!
- (ii) Mathematics.

- (i) The Law!
- (ii) Mathematics.

- (i) The Law!
- (ii) Mathematics.
- (iii) Computer Science.

Why Logic?

- (i) The Law!
- (ii) Mathematics.
- (iii) Computer Science.

Definition

Statement (or Atomic Proposition) -

Why Logic?

- (i) The Law!
- (ii) Mathematics.
- (iii) Computer Science.

Definition

Statement (or Atomic Proposition) - A sentence that is either true or false.

Why Logic?

- (i) The Law!
- (ii) Mathematics.
- (iii) Computer Science.

Definition

Statement (or Atomic Proposition) - A sentence that is either true or false.

Why Logic?

- (i) The Law!
- (ii) Mathematics.
- (iii) Computer Science.

Definition

Statement (or Atomic Proposition) - A sentence that is either true or false.

Example

(i) The board is black.

Why Logic?

- (i) The Law!
- (ii) Mathematics.
- (iii) Computer Science.

Definition

Statement (or Atomic Proposition) - A sentence that is either true or false.

- (i) The board is black.
- (ii) Are you John?

Why Logic?

- (i) The Law!
- (ii) Mathematics.
- (iii) Computer Science.

Definition

Statement (or Atomic Proposition) - A sentence that is either true or false.

- (i) The board is black.
- (ii) Are you John?
- (iii) The moon is made of green cheese.

Why Logic?

- (i) The Law!
- (ii) Mathematics.
- (iii) Computer Science.

Definition

Statement (or Atomic Proposition) - A sentence that is either true or false.

- (i) The board is black.
- (ii) Are you John?
- (iii) The moon is made of green cheese.
- (iv) This statement is false.

Why Logic?

- (i) The Law!
- (ii) Mathematics.
- (iii) Computer Science.

Definition

Statement (or Atomic Proposition) - A sentence that is either true or false.

- (i) The board is black.
- (ii) Are you John?
- (iii) The moon is made of green cheese.
- (iv) This statement is false. (Paradox).

Outline

Motivation

Motivation

To make compound statements from simple ones.

Motivation

To make compound statements from simple ones. Basic Connectives are **conjunction** (AND) (\land), **disjunction** (OR) (\lor), **Negation** (NOT) ('), **implication** (IF) (\rightarrow) and **Equivalence** (IF AND ONLY IF) (\leftrightarrow).

Motivation

To make compound statements from simple ones. Basic Connectives are **conjunction** (AND) (\land), **disjunction** (OR) (\lor), **Negation** (NOT) ('), **implication** (IF) (\rightarrow) and **Equivalence** (IF AND ONLY IF) (\leftrightarrow). Two special symbols in propositional logic:

Motivation

To make compound statements from simple ones. Basic Connectives are **conjunction** (AND) (\land), **disjunction** (OR) (\lor), **Negation** (NOT) ('), **implication** (IF) (\rightarrow) and **Equivalence** (IF AND ONLY IF) (\leftrightarrow). Two special symbols in propositional logic: \top for true and \bot for false.

Definition

Subramani Propositonal Logic

Definition

A propositional formula has a syntax and a semantics.

Definition

A propositional formula has a syntax and a semantics. Semantics refers to the meaning of a formula.

Definition

A propositional formula has a syntax and a semantics. Semantics refers to the meaning of a formula. Meaning is given by the truth values **true** and **false**, where **true** \neq **false**.

Definition

A propositional formula has a syntax and a semantics. Semantics refers to the meaning of a formula. Meaning is given by the truth values **true** and **false**, where **true** \neq **false**. An interpretation *I* assigns to every propositional variable, a single truth value.

Definition

A propositional formula has a syntax and a semantics. Semantics refers to the meaning of a formula. Meaning is given by the truth values **true** and **false**, where **true** \neq **false**. An interpretation *I* assigns to every propositional variable, a single truth value.

$$I : \{ P \rightarrow \mathsf{true}, \ Q \rightarrow \mathsf{false}, \ldots \}.$$

Conjunction

Semantics of Conjunction

A	В	$A \wedge B$
Т	Т	Т
Т	F	F
F	Т	F
F	F	F

Disjunction

Semantics of Disjunction

A	В	$A \lor B$
Т	Т	Т
Т	F	Т
F	Т	Т
F	F	F

Negation

Semantics of Negation

Α	A'
Т	F
F	Т

Implication

Semantics of Implication

Α	В	$A \rightarrow B$
Т	Т	Т
Т	F	F
F	Т	Т
F	F	Т

Implication

Semantics of Implication

Α	В	$A \rightarrow B$
Т	Т	Т
Т	F	F
F	Т	Т
F	F	Т

Note

Note that $A \rightarrow B$ is the same as $A' \lor B$. A is called the antecedent and B is the consequent of the implication.

Equivalence

Semantics of Equivalence

Α	В	$A \leftrightarrow B$
Т	Т	Т
Т	F	F
F	Т	F
F	F	Т

Equivalence

Semantics of Equivalence

Α	В	$A \leftrightarrow B$
Т	Т	Т
Т	F	F
F	Т	F
F	F	Т

Note

Note that $A \leftrightarrow B$ is the same as $(A \rightarrow B) \land (B \rightarrow A)$.