Propositional Logic - Decision Procedures

K. Subramani¹

¹ Lane Department of Computer Science and Electrical Engineering West Virginia University

28 January

Outline

- Decision Procedures
 - Simple Decision Procedures
 - Reconsidering the Truth-Table Method
 - The Resolution Procedure
 - The Davis Putnam Logemann Loveland procedure

Simple Decision Procedures
Reconsidering the Truth-Table Method
The Resolution Procedure
The Davis Putnam Logemann Loveland procedur

Decision Procedures

Simple Decision Procedures Reconsidering the Truth-Table Method The Resolution Procedure The Davis Putnam Logemann Loveland procedur

Decision Procedures

Main Issues

Our goal in the Satisfiability problem, is to check if a given formula in propositional logic has *any* interpretation which makes it **true**.

Decision Procedures

Main Issues

Our goal in the Satisfiability problem, is to check if a given formula in propositional logic has *any* interpretation which makes it **true**. This is different from the Validity problem, where the goal is to check that all assignments are satisfying.

Simple Decision Procedures Reconsidering the Truth-Table Method The Resolution Procedure The Davis Putnam Logemann Loveland procedur

Decision Procedures

Main Issues

Our goal in the Satisfiability problem, is to check if a given formula in propositional logic has *any* interpretation which makes it **true**. This is different from the Validity problem, where the goal is to check that all assignments are satisfying. However, decision procedures for Validity can be used for Satisfiability!

Decision Procedures

Main Issues

Our goal in the Satisfiability problem, is to check if a given formula in propositional logic has *any* interpretation which makes it **true**. This is different from the Validity problem, where the goal is to check that all assignments are satisfying. However, decision procedures for Validity can be used for Satisfiability! How?

Outline

- Decision Procedures
 - Simple Decision Procedures
 - Reconsidering the Truth-Table Method
 - The Resolution Procedure
 - The Davis Putnam Logemann Loveland procedure

Simple Decision Procedures
Reconsidering the Truth-Table Method
The Resolution Procedure
The Davis Putnam Logemann Loveland proced

Simple Decision Procedures

Simple Decision Procedures
Reconsidering the Truth-Table Method
The Resolution Procedure
The Davis Putnam Logemann Loveland procedure

Simple Decision Procedures

Naive methods

Simple Decision Procedures
Reconsidering the Truth-Table Method
The Resolution Procedure
The Davis Putnam Logemann Loveland procedure

Simple Decision Procedures

Naive methods

Simple Decision Procedures
Reconsidering the Truth-Table Method
The Resolution Procedure
The Davis Putnam Logemann Loveland proce

Simple Decision Procedures

Naive methods

(i) Truth tables.

Simple Decision Procedures

Naive methods

- (i) Truth tables.
- Semantic arguments (proof tactics).

Outline

- Decision Procedures
 - Simple Decision Procedures
 - Reconsidering the Truth-Table Method
 - The Resolution Procedure
 - The Davis Putnam Logemann Loveland procedure

Procedures

Reconsidering the Truth-Table Method

The Resolution Procedure The Davis Putnam Logemann Loveland

A more sophisticated approach

Reconsidering the Truth-Table Method
The Resolution Procedure

A more sophisticated approach

Refining exhaustive search

Refining exhaustive search

(i) Need to generate only one row at a time.

Refining exhaustive search

- (i) Need to generate only one row at a time.
- (ii) Exploit disjunctive self-reducibility.

Refining exhaustive search

- (i) Need to generate only one row at a time.
- (ii) Exploit disjunctive self-reducibility.

Example

Refining exhaustive search

- Need to generate only one row at a time.
- Exploit disjunctive self-reducibility.

Example

$$F\,:\,(P o Q)\wedge P\wedge \neg Q$$

Refining exhaustive search

- Need to generate only one row at a time.
- Exploit disjunctive self-reducibility.

Example

Is the following formula satisfiable?

$$F: (P \rightarrow Q) \land P \land \neg Q$$

Example

Refining exhaustive search

- Need to generate only one row at a time.
- Exploit disjunctive self-reducibility.

Example

Is the following formula satisfiable?

$$F: (P \rightarrow Q) \land P \land \neg Q$$

Example

$$G: (P \rightarrow Q) \land \neg P$$

Outline

- Decision Procedures
 - Simple Decision Procedures
 - Reconsidering the Truth-Table Method
 - The Resolution Procedure
 - The Davis Putnam Logemann Loveland procedure

Simple Decision Procedures
Reconsidering the Truth-Table Method
The Resolution Procedure

The Resolution Procedure

Main Ideas

Resolution is a technique that works on formulas in CNF.

Main Ideas

Resolution is a technique that works on formulas in CNF. It is based on the following observation:

Main Ideas

Resolution is a technique that works on formulas in CNF. It is based on the following observation: If clause C_1 contains the literal x_i and clause C_2 contains the literal $\neg x_i$, then in any satisfying assignment, either the rest of C_1 must be satisfied or the rest of C_2 must be satisfied.

Main Ideas

Resolution is a technique that works on formulas in CNF. It is based on the following observation: If clause C_1 contains the literal x_i and clause C_2 contains the literal $\neg x_i$, then in any satisfying assignment, either the rest of C_1 must be satisfied or the rest of C_2 must be satisfied. Therefore, the clause $C_1[\bot] \lor C_2[\bot]$ can be added as a conjunction to the original CNF formula to produce an equivalent formula still in CNF.

Main Ideas

Resolution is a technique that works on formulas in CNF. It is based on the following observation: If clause C_1 contains the literal x_i and clause C_2 contains the literal $\neg x_i$, then in any satisfying assignment, either the rest of C_1 must be satisfied or the rest of C_2 must be satisfied. Therefore, the clause $C_1[\bot] \lor C_2[\bot]$ can be added as a conjunction to the original CNF formula to produce an equivalent formula still in CNF. In other words, we are using the following proof rule:

Main Ideas

Resolution is a technique that works on formulas in CNF. It is based on the following observation: If clause C_1 contains the literal x_i and clause C_2 contains the literal $\neg x_i$, then in any satisfying assignment, either the rest of C_1 must be satisfied or the rest of C_2 must be satisfied. Therefore, the clause $C_1[\bot] \lor C_2[\bot]$ can be added as a conjunction to the original CNF formula to produce an equivalent formula still in CNF. In other words, we are using the following proof rule:

$$\frac{C_1[P] \qquad C_2[\neg P]}{C_1[\bot] \vee C_2[\bot]}$$

Main Ideas

Resolution is a technique that works on formulas in CNF. It is based on the following observation: If clause C_1 contains the literal x_i and clause C_2 contains the literal $\neg x_i$, then in any satisfying assignment, either the rest of C_1 must be satisfied or the rest of C_2 must be satisfied. Therefore, the clause $C_1[\bot] \lor C_2[\bot]$ can be added as a conjunction to the original CNF formula to produce an equivalent formula still in CNF. In other words, we are using the following proof rule:

$$\frac{C_1[P] \qquad C_2[\neg P]}{C_1[\bot] \lor C_2[\bot]}$$

The resultant clause is called the **resolvent** and it is deduced from the original formula.

Main Ideas

Resolution is a technique that works on formulas in CNF. It is based on the following observation: If clause C_1 contains the literal x_i and clause C_2 contains the literal $\neg x_i$, then in any satisfying assignment, either the rest of C_1 must be satisfied or the rest of C_2 must be satisfied. Therefore, the clause $C_1[\bot] \lor C_2[\bot]$ can be added as a conjunction to the original CNF formula to produce an equivalent formula still in CNF. In other words, we are using the following proof rule:

$$\frac{C_1[P] \qquad C_2[\neg P]}{C_1[\bot] \lor C_2[\bot]}$$

The resultant clause is called the **resolvent** and it is deduced from the original formula. Note that if \bot is ever deduced, then the original formula **must** be unsatisfiable.

Main Ideas

Resolution is a technique that works on formulas in CNF. It is based on the following observation: If clause C_1 contains the literal x_i and clause C_2 contains the literal $\neg x_i$, then in any satisfying assignment, either the rest of C_1 must be satisfied or the rest of C_2 must be satisfied. Therefore, the clause $C_1[\bot] \lor C_2[\bot]$ can be added as a conjunction to the original CNF formula to produce an equivalent formula still in CNF. In other words, we are using the following proof rule:

$$\frac{C_1[P] \qquad C_2[\neg P]}{C_1[\bot] \vee C_2[\bot]}$$

The resultant clause is called the **resolvent** and it is deduced from the original formula. Note that if \bot is ever deduced, then the original formula **must** be unsatisfiable. If every possible resolution produces a clause that is either an original clause or a previously deduced clause, then the original formula must be satisfiable.

Reconsidering the Truth-Table Method

The Davis Putnam Logemann Loveland procedure

Examples

Reconsidering the Truth-Table Method
The Resolution Procedure

The Davis Putnam Logemann Loveland procedure

Examples

Example

Example

(i)
$$F : (\neg P \lor Q) \land P \land \neg Q$$
.

Example

- (i) $F: (\neg P \lor Q) \land P \land \neg Q$.
- (ii) $G: (\neg P \lor Q) \land \neg Q$.

Outline

- Decision Procedures
 - Simple Decision Procedures
 - Reconsidering the Truth-Table Method
 - The Resolution Procedure
 - The Davis Putnam Logemann Loveland procedure

Simple Decision Procedures
Reconsidering the Truth-Table Method
The Resolution Procedure
The Davis Putnam Logemann Loveland proceding

The DPLL procedure

Main Ideas			

Main Ideas

(i) Uses Unit resolution and Boolean Constraint Propagation (BCP).

Main Ideas

- (i) Uses Unit resolution and Boolean Constraint Propagation (BCP).
- (ii) The resolvent always replaces one of the two clauses,

Main Ideas

- (i) Uses Unit resolution and Boolean Constraint Propagation (BCP).
- (ii) The resolvent always replaces one of the two clauses, i.e., the formula becomes smaller.

Main Ideas

- (i) Uses Unit resolution and Boolean Constraint Propagation (BCP).
- (ii) The resolvent always replaces one of the two clauses, i.e., the formula becomes smaller.

$$\frac{\{I\} \qquad \qquad C_1[\neg I]}{C_1[\bot]}$$

Simple Decision Procedures
Reconsidering the Truth-Table Method
The Resolution Procedure

Examples

Example

Example

$$P \wedge (\neg P \vee Q) \wedge (R \vee \neg Q \vee S).$$

Example

Is the following formula satisfiable?

$$P \wedge (\neg P \vee Q) \wedge (R \vee \neg Q \vee S).$$

Note

Assume that a variable P appears only positively or only negatively. An easy optimization is to remove clauses in which this variable appears.

Example

Is the following formula satisfiable?

$$P \wedge (\neg P \vee Q) \wedge (R \vee \neg Q \vee S).$$

Note

Assume that a variable P appears only positively or only negatively. An easy optimization is to remove clauses in which this variable appears.

Example

Example

Is the following formula satisfiable?

$$P \wedge (\neg P \vee Q) \wedge (R \vee \neg Q \vee S).$$

Note

Assume that a variable P appears only positively or only negatively. An easy optimization is to remove clauses in which this variable appears.

Example

Example

Is the following formula satisfiable?

$$P \wedge (\neg P \vee Q) \wedge (R \vee \neg Q \vee S).$$

Note

Assume that a variable P appears only positively or only negatively. An easy optimization is to remove clauses in which this variable appears.

Example

$$P \wedge (\neg P \vee Q) \wedge (R \vee \neg Q \vee S).$$

Example

Is the following formula satisfiable?

$$P \wedge (\neg P \vee Q) \wedge (R \vee \neg Q \vee S).$$

Note

Assume that a variable P appears only positively or only negatively. An easy optimization is to remove clauses in which this variable appears.

Example

$$P \wedge (\neg P \vee Q) \wedge (R \vee \neg Q \vee S).$$

$$(\neg P \lor Q \lor R) \land (\neg Q \lor R) \land (\neg Q \lor \neg R) \land (P \lor \neg Q \lor \neg R).$$