Propositional Logic - Substitutions and Normal Forms

K. Subramani¹

¹Lane Department of Computer Science and Electrical Engineering West Virginia University

23 January

Outline

Outline

Review

Substitution

Outline

Review

Substitution

Normal Forms

Main Issues		

Main Issues

Propositions and Connectives.

Main Issues

- Propositions and Connectives.
- ② Semantics and interpretation.

Main Issues

- Propositions and Connectives.
- 2 Semantics and interpretation.
- Satisfiability and Validity.

Main Issues

- Propositions and Connectives.
- 2 Semantics and interpretation.
- Satisfiability and Validity.
- Proof techniques.

Definition

A substitution is a mapping

$$\sigma\,:\,\{F_1\mapsto G_1,\ldots,F_n\mapsto G_n\}.$$

Definition

A substitution is a mapping

$$\sigma: \{F_1 \mapsto G_1, \ldots, F_n \mapsto G_n\}.$$

where,

Definition

A substitution is a mapping

$$\sigma: \{F_1 \mapsto G_1, \ldots, F_n \mapsto G_n\}.$$

where, domain(σ) = { F_1, \ldots, F_n } and range(σ) = { G_1, \ldots, G_n }.

Definition

A substitution is a mapping

$$\sigma: \{F_1 \mapsto G_1, \ldots, F_n \mapsto G_n\}.$$

where, domain(σ) = { F_1, \ldots, F_n } and range(σ) = { G_1, \ldots, G_n }.

Application

Definition

A substitution is a mapping

$$\sigma: \{F_1 \mapsto G_1, \ldots, F_n \mapsto G_n\}.$$

where, domain(σ) = { F_1, \ldots, F_n } and range(σ) = { G_1, \ldots, G_n }.

Application

Substitution is a syntactic operation on formulae, which allows us to prove the validity of entire sets of formulae via **formula templates**.

Definition

A substitution is a mapping

$$\sigma: \{F_1 \mapsto G_1, \ldots, F_n \mapsto G_n\}.$$

where, domain(σ) = { F_1, \ldots, F_n } and range(σ) = { G_1, \ldots, G_n }.

Application

Substitution is a syntactic operation on formulae, which allows us to prove the validity of entire sets of formulae via **formula templates**.

Note

All substitutions must be performed simultaneously.

Example

Let $F: P \land Q \rightarrow P \lor \neg Q$ and $\sigma: \{P \mapsto R, P \land Q \mapsto (P \rightarrow Q)\}.$

Example

Let $F:P\wedge Q\to P\vee \neg Q$ and $\sigma:\{P\mapsto R,\ P\wedge Q\mapsto (P\to Q)\}.$ $F\sigma:$

Example

Let $F: P \land Q \rightarrow P \lor \neg Q$ and $\sigma: \{P \mapsto R, P \land Q \mapsto (P \rightarrow Q)\}$. $F\sigma: = \{(P \rightarrow Q) \rightarrow (R \lor \neg Q).$

Example

Let
$$F: P \land Q \rightarrow P \lor \neg Q$$
 and $\sigma: \{P \mapsto R, P \land Q \mapsto (P \rightarrow Q)\}$.
 $F\sigma: = \{(P \rightarrow Q) \rightarrow (R \lor \neg Q).$

Definition

A variable substitution is a substitution in which the domain consists only of propositional variables.

Example

Let
$$F: P \land Q \rightarrow P \lor \neg Q$$
 and $\sigma: \{P \mapsto R, P \land Q \mapsto (P \rightarrow Q)\}$.
 $F\sigma: = \{(P \rightarrow Q) \rightarrow (R \lor \neg Q).$

Definition

A variable substitution is a substitution in which the domain consists only of propositional variables.

Proposition

Consider the substitution:

$$\sigma: \{F_1 \mapsto G_1, \ldots, F_n \mapsto G_n\}.$$

where each $F_i \Leftrightarrow G_i$.

Example

Let
$$F: P \land Q \rightarrow P \lor \neg Q$$
 and $\sigma: \{P \mapsto R, P \land Q \mapsto (P \rightarrow Q)\}$.
 $F\sigma: = \{(P \rightarrow Q) \rightarrow (R \lor \neg Q).$

Definition

A variable substitution is a substitution in which the domain consists only of propositional variables.

Proposition

Consider the substitution:

$$\sigma: \{F_1 \mapsto G_1, \ldots, F_n \mapsto G_n\}.$$

where each $F_i \Leftrightarrow G_i$. Then $F \Leftrightarrow F\sigma$.

Proposition

If F is valid and $G = F\sigma$, for some variable substitution σ , then G is valid.

Proposition

If F is valid and $G = F\sigma$, for some variable substitution σ , then G is valid.

Composition of substitutions

Given substitutions σ_1 and σ_2 , we compute the substitution $\sigma_1\sigma_2$ as follows:

Proposition

If F is valid and $G = F\sigma$, for some variable substitution σ , then G is valid.

Composition of substitutions

Given substitutions σ_1 and σ_2 , we compute the substitution $\sigma_1\sigma_2$ as follows:

1 Apply σ_2 to each formula of the range of σ_1 , and add the results to σ .

Proposition

If F is valid and $G = F\sigma$, for some variable substitution σ , then G is valid.

Composition of substitutions

Given substitutions σ_1 and σ_2 , we compute the substitution $\sigma_1\sigma_2$ as follows:

- **1** Apply σ_2 to each formula of the range of σ_1 , and add the results to σ .
- ② if F_i of $F_i \mapsto G_i$ appears in the domain of σ_2 , but not in the domain of σ_1 , then add $F_i \mapsto G_i$ to σ .

Proposition

If F is valid and $G = F\sigma$, for some variable substitution σ , then G is valid.

Composition of substitutions

Given substitutions σ_1 and σ_2 , we compute the substitution $\sigma_1\sigma_2$ as follows:

- Apply σ_2 to each formula of the range of σ_1 , and add the results to σ .
- ② if F_i of $F_i \mapsto G_i$ appears in the domain of σ_2 , but not in the domain of σ_1 , then add $F_i \mapsto G_i$ to σ .

Example

Let $\sigma_1: \{P \mapsto R, P \land Q \mapsto (P \to Q)\}$ and $\sigma_2: \{P \mapsto S, S \mapsto Q\}$.

Proposition

If F is valid and $G = F\sigma$, for some variable substitution σ , then G is valid.

Composition of substitutions

Given substitutions σ_1 and σ_2 , we compute the substitution $\sigma_1\sigma_2$ as follows:

- **1** Apply σ_2 to each formula of the range of σ_1 , and add the results to σ .
- ② if F_i of $F_i \mapsto G_i$ appears in the domain of σ_2 , but not in the domain of σ_1 , then add $F_i \mapsto G_i$ to σ .

Example

Let $\sigma_1: \{P \mapsto R, P \land Q \mapsto (P \to Q)\}$ and $\sigma_2: \{P \mapsto S, S \mapsto Q\}$. Compute $\sigma_1 \sigma_2$.

Concept

A **normal form** of formulae is a syntactic restriction such that for every formula of logic, there is an equivalent formula in the restricted form.

Concept

A **normal form** of formulae is a syntactic restriction such that for every formula of logic, there is an equivalent formula in the restricted form.

Types

In propositional logic, there are three important normal forms, viz.,

Concept

A **normal form** of formulae is a syntactic restriction such that for every formula of logic, there is an equivalent formula in the restricted form.

Types

In propositional logic, there are three important normal forms, viz.,

(i) Negation Normal Form (NNF).

Concept

A **normal form** of formulae is a syntactic restriction such that for every formula of logic, there is an equivalent formula in the restricted form.

Types

In propositional logic, there are three important normal forms, viz.,

- (i) Negation Normal Form (NNF).
- (ii) Disjunctive Normal Form (DNF).

Concept

A **normal form** of formulae is a syntactic restriction such that for every formula of logic, there is an equivalent formula in the restricted form.

Types

In propositional logic, there are three important normal forms, viz.,

- (i) Negation Normal Form (NNF).
- (ii) Disjunctive Normal Form (DNF).
- (iii) Conjunctive Normal Form (CNF).

Main concept

Each formula must use only \neg , \lor , and \land .

Main concept

Each formula must use only \neg , \lor , and \land . Furthermore, the negations appear only in literals.

Main concept

Each formula must use only \neg , \lor , and \land . Furthermore, the negations appear only in literals.

Methodology

Use Equivalence rules and De Morgan's laws to push the negation till it abuts a literal.

Main concept

Each formula must use only \neg , \lor , and \land . Furthermore, the negations appear only in literals.

Methodology

Use Equivalence rules and De Morgan's laws to push the negation till it abuts a literal.

Example

Convert $F: \neg(P \rightarrow \neg(P \land Q))$ into NNF.

Concept

A formula is in disjunctive normal form (DNF), if it is a disjunction of a conjunctions of literals,

Concept

A formula is in disjunctive normal form (DNF), if it is a disjunction of a conjunctions of literals, i.e., $\vee_i \wedge_j I_{ij}$, for literals $I_{i,j}$.

Concept

A formula is in disjunctive normal form (DNF), if it is a disjunction of a conjunctions of literals, i.e., $\vee_i \wedge_i I_{ii}$, for literals $I_{i,i}$. For instance, the formula

$$(\neg x_1 \wedge x_3 \wedge x_5) \vee (x_1 \wedge x_5)$$

is in DNF.

Concept

A formula is in disjunctive normal form (DNF), if it is a disjunction of a conjunctions of literals, i.e., $\vee_i \wedge_j I_{ij}$, for literals $I_{i,j}$. For instance, the formula

$$(\neg x_1 \wedge x_3 \wedge x_5) \vee (x_1 \wedge x_5)$$

is in DNF. Each block of conjuncts is called an implicant.

Concept

A formula is in disjunctive normal form (DNF), if it is a disjunction of a conjunctions of literals, i.e., $\vee_i \wedge_j I_{ij}$, for literals $I_{i,j}$. For instance, the formula

$$(\neg x_1 \wedge x_3 \wedge x_5) \vee (x_1 \wedge x_5)$$

is in DNF. Each block of conjuncts is called an implicant.

Methodology

Concept

A formula is in disjunctive normal form (DNF), if it is a disjunction of a conjunctions of literals, i.e., $\vee_i \wedge_j I_{ij}$, for literals $I_{i,j}$. For instance, the formula

$$(\neg x_1 \wedge x_3 \wedge x_5) \vee (x_1 \wedge x_5)$$

is in DNF. Each block of conjuncts is called an implicant.

Methodology

First convert the formula into NNF.

Concept

A formula is in disjunctive normal form (DNF), if it is a disjunction of a conjunctions of literals, i.e., $\vee_i \wedge_i I_{ii}$, for literals $I_{i,i}$. For instance, the formula

$$(\neg x_1 \wedge x_3 \wedge x_5) \vee (x_1 \wedge x_5)$$

is in DNF. Each block of conjuncts is called an implicant.

Methodology

Concept

A formula is in disjunctive normal form (DNF), if it is a disjunction of a conjunctions of literals, i.e., $\vee_i \wedge_j I_{ij}$, for literals $I_{i,j}$. For instance, the formula

$$(\neg x_1 \wedge x_3 \wedge x_5) \vee (x_1 \wedge x_5)$$

is in DNF. Each block of conjuncts is called an implicant.

Methodology

(i)
$$(F_1 \vee F_2) \wedge F_3 \Leftrightarrow (F_1 \wedge F_3) \vee (F_2 \wedge F_3)$$
.

Concept

A formula is in disjunctive normal form (DNF), if it is a disjunction of a conjunctions of literals, i.e., $\vee_i \wedge_j I_{ij}$, for literals $I_{i,j}$. For instance, the formula

$$(\neg x_1 \wedge x_3 \wedge x_5) \vee (x_1 \wedge x_5)$$

is in DNF. Each block of conjuncts is called an implicant.

Methodology

(i)
$$(F_1 \vee F_2) \wedge F_3 \Leftrightarrow (F_1 \wedge F_3) \vee (F_2 \wedge F_3)$$
.

(ii)
$$F_1 \wedge (F_2 \vee F_3) \Leftrightarrow (F_1 \wedge F_2) \vee (F_1 \wedge F_3)$$
.

Example

Example

Example

Convert $F: (Q_1 \vee \neg \neg Q_2) \wedge (\neg R_1 \to R_2)$ into DNF.

Concept

A formula is in conjunctive normal form (CNF), if it is a conjunction of disjunctions of literals,

Concept

A formula is in conjunctive normal form (CNF), if it is a conjunction of disjunctions of literals, i.e., $\wedge_i \vee_j I_{i,j}$. For instance, the formula

$$(x_1 \vee \neg x_2 \vee x_3) \wedge (x_1, x_3)$$

is in CNF.

Concept

A formula is in conjunctive normal form (CNF), if it is a conjunction of disjunctions of literals, i.e., $\wedge_i \vee_j I_{i,j}$. For instance, the formula

$$(x_1 \vee \neg x_2 \vee x_3) \wedge (x_1, x_3)$$

is in CNF. Each disjunctive block is called a clause.

Concept

A formula is in conjunctive normal form (CNF), if it is a conjunction of disjunctions of literals, i.e., $\wedge_i \vee_j I_{i,j}$. For instance, the formula

$$(x_1 \vee \neg x_2 \vee x_3) \wedge (x_1, x_3)$$

is in CNF. Each disjunctive block is called a clause.

Methodology I

Concept

A formula is in conjunctive normal form (CNF), if it is a conjunction of disjunctions of literals, i.e., $\wedge_i \vee_j I_{i,j}$. For instance, the formula

$$(x_1 \vee \neg x_2 \vee x_3) \wedge (x_1, x_3)$$

is in CNF. Each disjunctive block is called a clause.

Methodology I

First convert the formula into NNF.

Concept

A formula is in conjunctive normal form (CNF), if it is a conjunction of disjunctions of literals, i.e., $\wedge_i \vee_j I_{i,j}$. For instance, the formula

$$(x_1 \vee \neg x_2 \vee x_3) \wedge (x_1, x_3)$$

is in CNF. Each disjunctive block is called a clause.

Methodology I

Concept

A formula is in conjunctive normal form (CNF), if it is a conjunction of disjunctions of literals, i.e., $\wedge_i \vee_j I_{i,j}$. For instance, the formula

$$(x_1 \lor \neg x_2 \lor x_3) \land (x_1, x_3)$$

is in CNF. Each disjunctive block is called a clause.

Methodology I

(i)
$$(F_1 \wedge F_2) \vee F_3 \Leftrightarrow (F_1 \vee F_2) \wedge (F_1 \vee F_3)$$
.

Concept

A formula is in conjunctive normal form (CNF), if it is a conjunction of disjunctions of literals, i.e., $\wedge_i \vee_j I_{i,j}$. For instance, the formula

$$(x_1 \vee \neg x_2 \vee x_3) \wedge (x_1, x_3)$$

is in CNF. Each disjunctive block is called a clause.

Methodology I

- (i) $(F_1 \wedge F_2) \vee F_3 \Leftrightarrow (F_1 \vee F_2) \wedge (F_1 \vee F_3)$.
- (ii) $F_1 \vee (F_2 \wedge F_3) \Leftrightarrow (F_1 \vee F_2) \wedge (F_1 \vee F_3)$.

Concept

A formula is in conjunctive normal form (CNF), if it is a conjunction of disjunctions of literals, i.e., $\wedge_i \vee_j I_{i,j}$. For instance, the formula

$$(x_1 \lor \neg x_2 \lor x_3) \land (x_1, x_3)$$

is in CNF. Each disjunctive block is called a clause.

Methodology I

First convert the formula into NNF. Then, use the following two template equivalences:

- (i) $(F_1 \wedge F_2) \vee F_3 \Leftrightarrow (F_1 \vee F_2) \wedge (F_1 \vee F_3)$.
- (ii) $F_1 \vee (F_2 \wedge F_3) \Leftrightarrow (F_1 \vee F_2) \wedge (F_1 \vee F_3)$.

Example

Convert the formula $F: (Q_1 \land \neg \neg Q_2) \lor (\neg R_1 \to R_2)$ into CNF.

Main issue

The method discussed above is horribly expensive, and will result in an exponential blowup.

Main issue

The method discussed above is horribly expensive, and will result in an exponential blowup. For instance, convert the following formula into CNF:

$$(B_1 \wedge B_2 \wedge B_3) \vee (C_1 \wedge C_2 \wedge C_3).$$

Main issue

The method discussed above is horribly expensive, and will result in an exponential blowup. For instance, convert the following formula into CNF:

$$(B_1 \wedge B_2 \wedge B_3) \vee (C_1 \wedge C_2 \wedge C_3).$$

More efficient approach

A more efficient methodology known as the equisatisfiable formula approach was proposed by Tsetsin.

Main issue

The method discussed above is horribly expensive, and will result in an exponential blowup. For instance, convert the following formula into CNF:

$$(B_1 \wedge B_2 \wedge B_3) \vee (C_1 \wedge C_2 \wedge C_3).$$

More efficient approach

A more efficient methodology known as the equisatisfiable formula approach was proposed by Tsetsin. The main idea is to use new variables. For instance, the formula above can be rewritten as:

$$(Z \rightarrow (B_1 \wedge B_2 \wedge B_3)) \wedge (\neg Z \rightarrow (C_1 \wedge C_2 \wedge C_3))$$

Main issue

The method discussed above is horribly expensive, and will result in an exponential blowup. For instance, convert the following formula into CNF:

$$(B_1 \wedge B_2 \wedge B_3) \vee (C_1 \wedge C_2 \wedge C_3).$$

More efficient approach

A more efficient methodology known as the equisatisfiable formula approach was proposed by Tsetsin. The main idea is to use new variables. For instance, the formula above can be rewritten as:

$$(Z \to (B_1 \land B_2 \land B_3)) \land (\neg Z \to (C_1 \land C_2 \land C_3))$$
$$(\neg Z \lor (B_1 \land B_2 \land B_3)) \land (Z \lor (C_1 \land C_2 \land C_3))$$

Main issue

The method discussed above is horribly expensive, and will result in an exponential blowup. For instance, convert the following formula into CNF:

$$(B_1 \wedge B_2 \wedge B_3) \vee (C_1 \wedge C_2 \wedge C_3).$$

More efficient approach

A more efficient methodology known as the equisatisfiable formula approach was proposed by Tsetsin. The main idea is to use new variables. For instance, the formula above can be rewritten as:

$$(Z \to (B_1 \land B_2 \land B_3)) \land (\neg Z \to (C_1 \land C_2 \land C_3))$$
$$(\neg Z \lor (B_1 \land B_2 \land B_3)) \land (Z \lor (C_1 \land C_2 \land C_3))$$

Clearly, only six more clauses are created, as opposed to the 9 created by using the first method

More equisatisfiability

More equisatisfiability

Example

Convert the following formula to CNF:

$$(A_1 \wedge A_2) \vee ((B_1 \wedge B_2) \vee (C_1 \wedge C_2))$$