Discrete Mathematics 2 - Homework II

K. Subramani LCSEE, West Virginia University, Morgantown, WV {ksmani@csee.wvu.edu}

1 Instructions

- 1. The homework is due on March 7, in class.
- 2. Each question is worth 4 points, except question 4., which is worth 6 points.
- 3. Attempt as many problems as you can. You will be given partial credit, as per the policy discussed in class.
- 4. The work must be entirely your own. You are expressly **prohibited** from consulting with colleagues or the internet (with the exception of the material on the course website).

2 Problems

1. Prove that the following argument is valid, using the inference rule method:

$$(\exists x)(\forall y) \ Q(x,y) \to (\forall y)(\exists x) \ Q(x,y).$$

2. Show the following argument is valid, using the semantic argument method:

$$(\exists x)[P(x) \to Q(x)] \to [(\forall x) \ P(x) \to (\exists x) \ Q(x)].$$

3. Consider the following formula in T_E (the theory of equality):

$$[f(g(x)) = g(f(x)) \land f(g(f(y))) = x \land f(y) = x] \rightarrow [g(f(x)) = x].$$

Prove that the formula is valid in T_E or provide an interpretation in which it is falsified.

- 4. Consider a theory T_N with signature: $\Sigma_N = \{0, \sigma, +, \times, \uparrow, =, <\}$, where,
 - (a) 0 is a constant,
 - (b) σ is a unary function,
 - (c) +, \times and \uparrow are binary functions, and
 - (d) = and < are binary predicates.

The axiom set of T_N is the following:

- (a) $(\forall x) \ x = x$.
- (b) $(\forall x)(\forall y) (x = y) \rightarrow (y = x)$.
- (c) $(\forall x)(\forall y)(\forall z)$ $(x = y) \land (y = z) \rightarrow (x = z)$.

- (d) $(\forall \overline{x})(\forall \overline{y}) (\wedge_{i=1}^n (x_i = y_i)) \to [f(\overline{x}) = f(\overline{y})].$
- (e) $(\forall \overline{x})(\forall \overline{y}) (\wedge_{i=1}^n (x_i = y_i)) \to [p(\overline{x}) = p(\overline{y})].$
- (f) $(\forall x) (x < (x + \sigma(0))).$
- (g) $(\forall x)(\exists y) (x = y + y)$.

Note that $\overline{x} = (x_1, x_2, \dots x_n)$, and $\overline{y} = (y_1, y_2, \dots y_n)$.

Consider the following two interpretations for T_N :

- (a) I_N In this interpretation, the domain is the set of all natural numbers, $0_N=0$, σ_N is the successor function, $+_N$, \times_N and \uparrow_N stand for traditional addition, multiplication and exponentiation respectively, and $<_N$ stands for the usual "strictly less than".
- (b) I_L In this interpretation, the domain is the set $2^{\{0,1\}^*}$, i.e., the set of all possible *languages* over $\{0,1\}$, $0_L=\emptyset$, $\sigma_L(l)=l^*$, $+_L$, \times_L and \uparrow_L stand for union, concatenation and intersection respectively, and $<_L$ stands for the set relation "is a subset of".

Do the interpretations I_N and I_L satisfy the axioms of T_N ? Justify your answer.

- 5. A **group** is a set \mathcal{G} , together with an operation \circ , that satisfies the following properties:
 - (a) For each pair of elements $x, y \in \mathcal{G}$, the result of the operation $x \circ y$ is also in \mathcal{G} .
 - (b) ∘ is associative.
 - (c) There must exist an element $e \in \mathcal{G}$, such that for every element $x \in \mathcal{G}$, $x \circ e = e \circ x = x$.
 - (d) For every element $x \in \mathcal{G}$, there exists an element $y \in \mathcal{G}$, such that $x \circ y = y \circ x = e$.

Express the above axioms as a first-order theory.