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3.1 Set Cover

The Set Cover problem is: Given a set of elements E = {e1, e2, . . . , en} and a set of m subsets
of E,S = {S1, S2, . . . , Sn}, find a “least cost” collection C of sets from S such that C covers all
elements in E. That is, ∪Si∈CSi = E.

Set Cover comes in two flavors, unweighted and weighted. In unweighted Set Cover, the cost of a
collection C is number of sets contained in it. In weighted Set Cover, there is a nonnegative weight
function w : S → R, and the cost of C is defined to be its total weight, i.e.,

∑

Si∈C w (Si).

First, we will deal with the unweighted Set Cover problem. The following algorithm is an extension
of the greedy vertex cover algorithm that we discussed in Lecture 1.

Algorithm 3.1.1 Set Cover(E, S):

1. C ← ∅.

2. While E contains elements not covered by C:

(a) Pick an element e ∈ E not covered by C.

(b) Add all sets Si containing e to C.

To analyze Algorithm 3.1.1, we will need the following definition:

Definition 3.1.2 A set E′ of elements in E is independent if, for all e1, e2 ∈ E′, there is no
Si ∈ C such that e1, e2 ∈ Si.

Now, we shall determine how strong an approximation Algorithm 3.1.1 is. Say that the frequency of
an element is the number of sets that contain that element. Let F denote the maximum frequency
across all elements. Thus, F is the largest number of sets from S that we might add to our cover
C at any step in the algorithm. It is clear that the elements selected by the algorithm form an
independent set, so the algorithm selects no more than F |E′| elements, where E′ is the set of
elements picked in Step 2a. That is, ALG ≤ F |E′|. Because every element is covered by some
subset in an optimal set cover, we know that |E′| ≤ OPT for any independent set E′. Thus,
ALG ≤ F OPT, and Algorithm 3.1.1 is therefore an F–approximation.

Theorem 3.1.3 Algorithm 3.1.1 is an F–approximation to Set Cover.

Algorithm 3.1.1 is a good approximation if F is guaranteed to be small. In general, however, there
could be some element contained in every set of S, and Algorithm 3.1.1 would be a very poor
approximation. So, we consider a different unweighted Set Cover approximation algorithm which
uses the greedy strategy to yield a ln n–approximation.
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Algorithm 3.1.4 Set Cover(E, S):

1. C ← ∅.

2. While E contains elements not covered by C:

(a) Find the set Si containing the greatest number of uncovered elements.

(b) Add Si to C.

Theorem 3.1.5 Algorithm 3.1.4 is a ln n
OPT

–approximation.

Proof: Let k = OPT, and let Et be the set of elements not yet covered after step i, with E0 =
E. OPT covers every Et with no more than k sets. ALG always picks the largest set over Et in
step t + 1. The size of this largest set must cover at least |Et|/k in Et; if it covered fewer elements,
no way of picking sets would be able to cover Et in k sets, which contradicts the existence of OPT.
So, |Et+1| ≤ |Et| − |Et|/k, and, inductively, |Et| ≤ n (1− 1/k)t.

When |Et| < 1, we know we are done, so we solve for this t:

(

1−
1

k

)t

<
1

n

⇒ n <

(

k

k − 1

)t

⇒ ln n ≤ t ln

(

1 +
1

k − 1

)

≈
t

k

⇒ t ≤ k ln n = OPT ln n.

Algorithm 3.1.4 finishes within OPT lnn steps, so it uses no more than that many sets. We can
get a better analysis for this approximation by considering when |Et| < k, as follows:

n

(

1−
1

k

)t

= k

⇒ n
1

et/k
= k (because (1− x)1/x ≤

1

e
for all x).

⇒ et/k =
n

k

⇒ t = k ln
n

k
.

Thus, after k ln n
k steps there remain only k elements. Each subsequent step removes at least one

element, so ALG ≤ OPT
(

ln n
OPT + 1

)

.

Theorem 3.1.6 If all sets are of size ≤ B, then there exists a (ln B + 1)–approximation to un-
weighted Set Cover.

Proof: If all sets have size no greater than B, then k ≥ n/B. So, B ≥ n/k, and Algorithm 3.1.4
gives a (ln B + 1)–approximation.
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