
Sanders/van Stee: Approximations- und Online-Algorithmen 1

The k-center problem February 14, 2007

¤ Input is set of cities with intercity distances
(G = (V,V ×V))

¤ Select k cities to place warehouses

¤ Goal: minimize maximum distance of a city to a warehouse

Other application: placement of ATMs in a city

Sanders/van Stee: Approximations- und Online-Algorithmen 2

Results

¤ NP-hardness

¤ Greedy algorithm, approximation ratio 2

¤ Technique: parametric pruning

¤ Second algorithm with approximation ratio 2

¤ Generalization of Algorithm 2 to weighted problem

Sanders/van Stee: Approximations- und Online-Algorithmen 3

Theorem 1. It is NP-hard to approximate the general
k-center problem within any factor α.

Proof. Reduction from Dominating Set . . .

Dominating set = subset S of vertices such that every vertex
which is not in S is adjacent to a vertex in S.

Finding a dominant set of minimal size is NP-hard

For a graph G, dom(G) is the size of the smallest possible
dominating set

Dominating set is similar to but not the same as vertex cover!

Sanders/van Stee: Approximations- und Online-Algorithmen 4

Dominating set and vertex cover

Vertex cover = subset S of vertices such that every edge has at
least one endpoint in S

The black vertices form a dominating set but not a vertex cover.

Also, not every vertex cover is a dominating set.Isolated vertex.

Sanders/van Stee: Approximations- und Online-Algorithmen 5

Proof We want to find a Dominating Set in G = (V,E).
Consider G′ = (V,V ×V) and the weight function

d(u,v) =





1 if (u,v) ∈ E

2α else

Sanders/van Stee: Approximations- und Online-Algorithmen 6

Proof We want to find a Dominating Set in G = (V,E).
Consider G′ = (V,V ×V) and the weight function

d(u,v) =





1 if (u,v) ∈ E

2α else

Suppose G has a dominating set of size at most k.
Then there is a k-center of cost 1 in G′

→ an α-approx. algorithm delivers one with weight ≤ α

Sanders/van Stee: Approximations- und Online-Algorithmen 7

Proof We want to find a Dominating Set in G = (V,E).
Consider G′ = (V,V ×V) and the weight function

d(u,v) =





1 if (u,v) ∈ E

2α else

Suppose G has a dominating set of size at most k.
Then there is a k-center of cost 1 in G′

→ an α-approx. algorithm delivers one with weight ≤ α

If there is no such dominating set in G, every k-center has
weight ≥ 2α > α.

Sanders/van Stee: Approximations- und Online-Algorithmen 8

Proof (continued)

Assume that there exists an α-approximation algorithm for the
k-center problem.

Decision algorithm: Run α-approx algorithm on G′

Solution has weight ≤ α→ dominating set of size at most k
exists

Else there is no such dominating set. ¤

Sanders/van Stee: Approximations- und Online-Algorithmen 9

Metric k-center

G is undirected and obeys the triangle inequality
∀u,v,w ∈V : d(u,w)≤ d(u,v)+d(v,w)

We show two 2-approximation algorithms for this problem.

Sanders/van Stee: Approximations- und Online-Algorithmen 10

The Greedy algorithm

¤ Choose the first center arbitrarily

¤ At every step, choose the vertex that is furthest from the
current centers to become a center

¤ Continue until k centers are chosen

1

2

3

Sanders/van Stee: Approximations- und Online-Algorithmen 11

Analysis

¤ Note that the sequence of distances from a new chosen
center, to the closest center to it (among previously chosen
centers) is non-increasing

¤ Consider the point that is furthest from the k chosen centers

¤ We need to show that the distance from this point to the
closest center is at most 2 ·OPT

¤ Assume by negation that it is > 2 ·OPT

Sanders/van Stee: Approximations- und Online-Algorithmen 12

Analysis

¤ We assumed that the distance from the furthest point to all
centers is > 2 ·OPT

¤ This means that distances between all centers are also
> 2 ·OPT

¤ We have k +1 points with distances > 2 ·OPT between
every pair

Sanders/van Stee: Approximations- und Online-Algorithmen 13

Analysis

¤ Each point has a center of the optimal solution with
distance ≤ OPT to it

¤ There exists a pair of points with the same center X in the
optimal solution (pigeonhole principle: k optimal centers,
k +1 points)

¤ The distance between them is at most 2 ·OPT (triangle
inequality)

¤ Contradiction!

Sanders/van Stee: Approximations- und Online-Algorithmen 14

Technique: parametric pruning ausschneiden, abschneiden

Idea: remove irrelevant parts of the input

¤ Suppose OPT = t

¤ We want to show a 2-approximation

¤ Any edges of cost more than 2t are useless: if two vertices
are connected by such an edge, and one of them gets a
warehouse, the other one is still too far away

¤ We can remove edges that are too expensive

Of course, we don’t know OPT. But we can guess.

Sanders/van Stee: Approximations- und Online-Algorithmen 15

Technique: parametric pruning

¤ We can order the edges by cost: cost(e1)≤ ...≤ cost(em)

¤ Let Gi = (V,Ei) where Ei = {e1, . . . ,ei)

¤ The k-center problem is equivalent to finding the minimal i
such that

Gi has a dominating set of size k

¤ Let i∗ be this minimal i

¤ Then, OPT = cost(ei∗)

Sanders/van Stee: Approximations- und Online-Algorithmen 16

Graph squaring

For a graph G, the square G2 = (V,E ′) where (u,v) ∈ E ′ if there
is a path of length at most 2 between u and v in G (and u 6= v)

G G
2

Sanders/van Stee: Approximations- und Online-Algorithmen 17

Lemma 2. For any independent set I in G2, we have
|I| ≤ dom(G).

Proof. Let D be a minimum dominating set in G.

(The size of D is dom(G).)

Sanders/van Stee: Approximations- und Online-Algorithmen 18

Lemma 2. For any independent set I in G2, we have
|I| ≤ dom(G).

Proof. Let D be a minimum dominating set in G.
Then G contains |D| stars spanning all vertices (the nodes of D
are the centers of the stars).

Sanders/van Stee: Approximations- und Online-Algorithmen 19

Lemma 2. For any independent set I in G2, we have
|I| ≤ dom(G).

Proof. Let D be a minimum dominating set in G.
Then G contains |D| stars spanning all vertices (the nodes of D
are the centers of the stars).
A star in G becomes a clique in G2.

Sanders/van Stee: Approximations- und Online-Algorithmen 20

Lemma 2. For any independent set I in G2, we have
|I| ≤ dom(G).

Proof. Let D be a minimum dominating set in G.
Then G contains |D| stars spanning all vertices (the nodes of D
are the centers of the stars).
A star in G becomes a clique in G2.
So G2 contains |D|= dom(G) cliques spanning all vertices.

Sanders/van Stee: Approximations- und Online-Algorithmen 21

Lemma 2. For any independent set I in G2, we have
|I| ≤ dom(G).

Proof. Let D be a minimum dominating set in G.
Then G contains |D| stars spanning all vertices (the nodes of D
are the centers of the stars).
A star in G becomes a clique in G2.
So G2 contains |D|= dom(G) cliques spanning all vertices.
There can only be one vertex of each clique in I.

Sanders/van Stee: Approximations- und Online-Algorithmen 22

Algorithm

We use that maximal independent sets can be found in
polynomial time.

¤ Construct G2
1,G

2
2, . . . ,G

2
m

¤ Find a maximal independent set Mi in each graph G2
i

¤ Determine the smallest i such that |Mi| ≤ k, call it j

¤ Return M j.

Lemma 3. For this j, cost(e j)≤ OPT.

Lemma 4. This algorithm gives a 2-approximation.

Sanders/van Stee: Approximations- und Online-Algorithmen 23

Lemma 3. For this j, cost(e j)≤ OPT.

Proof. For every i < j...

¤ |Mi|> k by the definition of our algorithm

¤ dom(Gi) > k by Lemma 2

¤ Then i∗ > i

Therefore, i∗ ≥ j.

Sanders/van Stee: Approximations- und Online-Algorithmen 24

Lemma 4. This algorithm gives a 2-approximation.

Proof. My my my...

¤ Any maximal independent set I in G2
j is also a dominating

set (if some vertex v were not dominated, I∪ v were also
independent)

Sanders/van Stee: Approximations- und Online-Algorithmen 25

Lemma 4. This algorithm gives a 2-approximation.

Proof. My my my...

¤ Any maximal independent set I in G2
j is also a dominating

set (if some vertex v were not dominated, I∪ v were also
independent)

¤ In G2
j , we have |M j| stars centered on the vertices in M j

Sanders/van Stee: Approximations- und Online-Algorithmen 26

Lemma 4. This algorithm gives a 2-approximation.

Proof. My my my...

¤ Any maximal independent set I in G2
j is also a dominating

set (if some vertex v were not dominated, I∪ v were also
independent)

¤ In G2
j , we have |M j| stars centered on the vertices in M j

¤ These stars cover all the vertices

Sanders/van Stee: Approximations- und Online-Algorithmen 27

Lemma 4. This algorithm gives a 2-approximation.

Proof. My my my...

¤ Any maximal independent set I in G2
j is also a dominating

set (if some vertex v were not dominated, I∪ v were also
independent)

¤ In G2
j , we have |M j| stars centered on the vertices in M j

¤ These stars cover all the vertices

¤ Each edge used in constructing these stars has cost at most
2 · cost(e j)≤ 2 ·OPT

The last inequality follows from Lemma 3.

Sanders/van Stee: Approximations- und Online-Algorithmen 28

Lemma 5. If P 6= NP, no approximation algorithm gives a
(2− ε)-approximation for any ε > 0.

¤ We again use a reduction from Dominating Set

¤ This time, the graph must satisfy the triangle inequality

¤ We define G′ as follows:

d(u,v) =





1 if (u,v) ∈ E

2 else

This graph satisfies the triangle inequality (proof?)

Sanders/van Stee: Approximations- und Online-Algorithmen 29

Suppose G has a dominating set of size at most k.
Then there is a k-center of cost 1 in G′

→ a (2− ε)-approx. algorithm delivers one with weight < 2

If there is no such dominating set in G, every k-center has
weight ≥ 2 > 2− ε.

Thus, a (2− ε)-approximation algorithm for the k-center
problem can be used to determine whether or not there is a
dominating set of size k.

Sanders/van Stee: Approximations- und Online-Algorithmen 30

Weighted k-center problem

¤ Input is set of cities with intercity distances
(G = (V,V ×V))

¤ Each city has a cost

¤ Select cities of cost at most W to place warehouses

¤ Goal: minimize maximum distance of a city to a warehouse

Sanders/van Stee: Approximations- und Online-Algorithmen 31

Ideas

¤ We use the same graphs G1, . . . ,Gm as before

¤ Let wdom(G) be the weight of a minimum weight
dominating set in G

¤ We look for the smallest index i such that wdom(Gi)≥W

¤ We also use graph squaring again

Sanders/van Stee: Approximations- und Online-Algorithmen 32

The set of light neighbors

¤ Let I be an independent set in G2

¤ For any node u, let s(u) be the lightest neighbor of u

¤ Here, we also consider u to be a neighbor of itself

¤ Let S = {s(u)|u ∈ I}
¤ We claim w(S)≤ wdom(G)

(Compare the unweighted problem, where we had
|I| ≤ dom(G))

Sanders/van Stee: Approximations- und Online-Algorithmen 33

Lemma 6. w(S)≤ wdom(G)

Proof. Let D be a minimum weight dominating set in G.
Then G contains |D| stars spanning all vertices (the nodes of D
are the centers of the stars).
A star in G becomes a clique in G2.
So G2 contains |D| cliques spanning all vertices.
There can only be one vertex of each clique in I.
For each vertex in I, the center of the corresponding star is

available as a neighbor in G (this might not be the lightest
neighbor). Therefore w(S)≤ wdom(G).

Sanders/van Stee: Approximations- und Online-Algorithmen 34

Algorithm

Let si(u) denote a lightest neighbor of u in Gi.

¤ Construct G2
1, . . . ,G

2
m

¤ Compute a maximal independent set Mi in each graph G2
i

¤ Compute Si = {si(u)|u ∈Mi}
¤ Find the minimum index i such that w(Si)≤W , say j

¤ Return S j

Sanders/van Stee: Approximations- und Online-Algorithmen 35

Lemma 7. This algorithm achieves a 3-approximation.

¤ As before we have OPT≥ cost(e j)

For every i < j...

¤ w(Si) > W by the definition of our algorithm

¤ wdom(Gi) > W by Lemma 6

¤ Then i∗ > i

Therefore, i∗ ≥ j.

Sanders/van Stee: Approximations- und Online-Algorithmen 36

Lemma 7. This algorithm achieves a 3-approximation.

¤ As before we have OPT≥ cost(e j)

¤ M j is a dominating set in G2
j

It is a maximal independent set

Sanders/van Stee: Approximations- und Online-Algorithmen 37

Lemma 7. This algorithm achieves a 3-approximation.

¤ As before we have OPT≥ cost(e j)

¤ M j is a dominating set in G2
j

¤ We can cover V with stars of G2
j centered in vertices of M j

Sanders/van Stee: Approximations- und Online-Algorithmen 38

Lemma 7. This algorithm achieves a 3-approximation.

¤ As before we have OPT≥ cost(e j)

¤ M j is a dominating set in G2
j

¤ We can cover V with stars of G2
j centered in vertices of M j

¤ These stars as before use edges of cost at most 2 · cost(e j)
(triangle inequality)

Sanders/van Stee: Approximations- und Online-Algorithmen 39

Lemma 7. This algorithm achieves a 3-approximation.

¤ As before we have OPT≥ cost(e j)

¤ M j is a dominating set in G2
j

¤ We can cover V with stars of G2
j centered in vertices of M j

¤ These stars as before use edges of cost at most 2 · cost(e j)
(triangle inequality)

¤ Each star center is adjacent to a vertex in S j, using an edge
of cost at most cost(e j)

Sanders/van Stee: Approximations- und Online-Algorithmen 40

cost(e)j

s (u)
j

u

hi
j2cost(e)

A star in G2
jand some additional nonsense to keep Latex happy

Sanders/van Stee: Approximations- und Online-Algorithmen 41

u

s (u)
j

3cost(e)j

A star in G2
j with redefined centers and some additional

nonsense to keep Latex happy

Thus every node in G j can be reached at cost at most 3 · cost(e j)
from some vertex in S. This completes the proof.

Sanders/van Stee: Approximations- und Online-Algorithmen 42

Lower bound for this algorithm

a b c d

M

M

M

1 11

21 2 2

1.001

1.001

There are n nodes of weight M. The bound W = 3.

All edges not shown have weight equal to the length of the
shortest path in the graph that is shown

For i < n+3, Gi is missing at least one edge of weight 1.001.

One vertex will be isolated (also in G2
i) so it will be in Si

Sanders/van Stee: Approximations- und Online-Algorithmen 43

Lower bound for this algorithm

a b c d

M

M

M

1 11

21 2 2

1.001

1.001

There are n nodes of weight M. The bound W = 3.

All edges not shown have weight equal to the length of the
shortest path in the graph that is shown

For i = n+3, {b} is a maximal independent subset

If our algorithm chooses {b}, it outputs Sn+3 = {a}. Cost is 3.

