The *k*-center problem

- □ Input is set of cities with intercity distances $(G = (V, V \times V))$
- \Box Select *k* cities to place warehouses
- □ Goal: minimize maximum distance of a city to a warehouse

Other application: placement of ATMs in a city

Results

- □ NP-hardness
- Greedy algorithm, approximation ratio 2
- □ Technique: parametric pruning
- Second algorithm with approximation ratio 2
- Generalization of Algorithm 2 to weighted problem

Theorem 1. It is NP-hard to approximate the general k-center problem within any factor α .

Proof. Reduction from Dominating Set ...

Dominating set = subset *S* of vertices such that every vertex which is not in *S* is adjacent to a vertex in *S*.

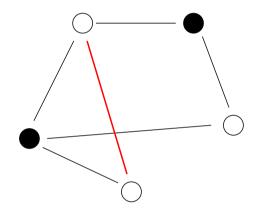
Finding a dominant set of minimal size is NP-hard

For a graph G, dom(G) is the size of the smallest possible dominating set

Dominating set is similar to but not the same as vertex cover!

Dominating set and vertex cover

Vertex cover = subset *S* of vertices such that every edge has at least one endpoint in *S*



The black vertices form a dominating set but not a vertex cover.

Also, not every vertex cover is a dominating set.

Proof We want to find a Dominating Set in G = (V, E). Consider $G' = (V, V \times V)$ and the weight function

$$d(u,v) = \begin{cases} 1 & \text{if } (u,v) \in E\\ 2\alpha & else \end{cases}$$

Proof We want to find a Dominating Set in G = (V, E). Consider $G' = (V, V \times V)$ and the weight function

$$d(u,v) = \begin{cases} 1 & \text{if } (u,v) \in E\\ 2\alpha & else \end{cases}$$

Suppose G has a dominating set of size at most k. Then there is a k-center of cost 1 in G'

 \rightarrow an α -approx. algorithm delivers one with weight $\leq \alpha$

Proof We want to find a Dominating Set in G = (V, E). Consider $G' = (V, V \times V)$ and the weight function

$$d(u,v) = \begin{cases} 1 & \text{if } (u,v) \in E\\ 2\alpha & else \end{cases}$$

Suppose G has a dominating set of size at most k. Then there is a k-center of cost 1 in G'

 \rightarrow an $\alpha\text{-approx.}$ algorithm delivers one with weight $\leq \alpha$

If there is no such dominating set in G, every *k*-center has weight $\geq 2\alpha > \alpha$.

Proof (continued)

Assume that there exists an α -approximation algorithm for the *k*-center problem.

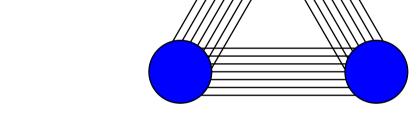
Decision algorithm: Run α -approx algorithm on G'

Solution has weight $\leq \alpha \rightarrow \text{dominating set}$ of size at most *k* exists

Else there is no such dominating set.

Metric *k*-center

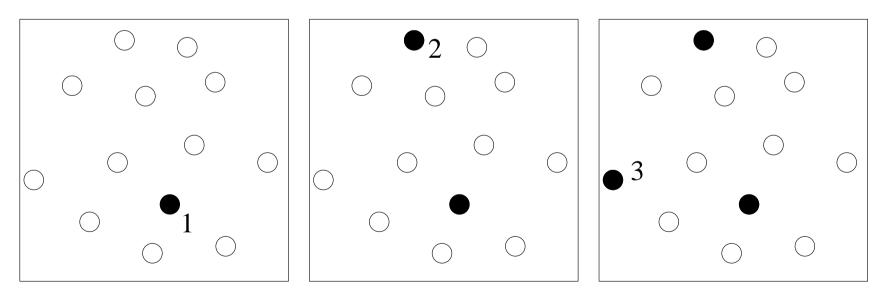
G is undirected and obeys the triangle inequality $\forall u, v, w \in V : d(u, w) \le d(u, v) + d(v, w)$



We show two 2-approximation algorithms for this problem.

The Greedy algorithm

- □ Choose the first center arbitrarily
- At every step, choose the vertex that is furthest from the current centers to become a center
- \Box Continue until *k* centers are chosen



- Note that the sequence of distances from a new chosen center, to the closest center to it (among previously chosen centers) is non-increasing
- Consider the point that is furthest from the k chosen centers
- □ We need to show that the distance from this point to the closest center is at most $2 \cdot OPT$
- \Box Assume by negation that it is $> 2 \cdot OPT$

- □ We assumed that the distance from the furthest point to all centers is $> 2 \cdot OPT$
- This means that distances between all centers are also $> 2 \cdot \text{OPT}$
- □ We have k + 1 points with distances > 2 · OPT between every pair

\Box Each point has a center of the optimal solution with distance \leq OPT to it

- □ There exists a pair of points with the same center X in the optimal solution (pigeonhole principle: *k* optimal centers, k+1 points)
- □ The distance between them is at most $2 \cdot OPT$ (triangle inequality)
- Contradiction!

Analysis

Technique: parametric pruning

14

Idea: remove irrelevant parts of the input

- $\Box \quad \text{Suppose OPT} = t$
- □ We want to show a 2-approximation
- □ Any edges of cost more than 2*t* are useless: if two vertices are connected by such an edge, and one of them gets a warehouse, the other one is still too far away
- □ We can remove edges that are too expensive

Of course, we don't know OPT. But we can guess.

Technique: parametric pruning

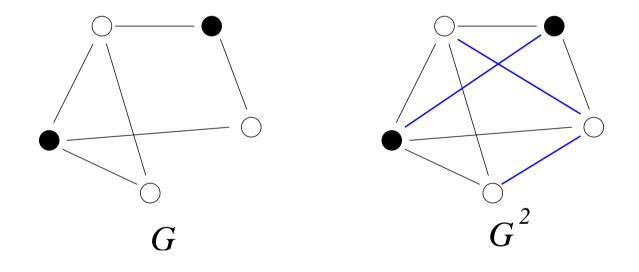
- □ We can order the edges by cost: $cost(e_1) \le ... \le cost(e_m)$
- □ Let $G_i = (V, E_i)$ where $E_i = \{e_1, ..., e_i\}$
- □ The *k*-center problem is equivalent to finding the minimal i such that

 G_i has a dominating set of size k

- \Box Let i^* be this minimal i
- $\Box \text{ Then, OPT} = \operatorname{cost}(e_{i^*})$

Graph squaring

For a graph *G*, the square $G^2 = (V, E')$ where $(u, v) \in E'$ if there is a path of length at most 2 between *u* and *v* in *G* (and $u \neq v$)



Lemma 2. For any independent set I in G^2 , we have $|I| \leq dom(G)$.

Proof. Let *D* be a minimum dominating set in *G*. (The size of *D* is dom(G).)

Lemma 2. For any independent set I in G^2 , we have $|I| \leq dom(G)$.

Proof. Let *D* be a minimum dominating set in *G*. Then *G* contains |D| stars spanning all vertices (the nodes of *D* are the centers of the stars).

Lemma 2. For any independent set I in G^2 , we have $|I| \leq dom(G)$.

Proof. Let *D* be a minimum dominating set in *G*. Then *G* contains |D| stars spanning all vertices (the nodes of *D* are the centers of the stars).

A star in G becomes a clique in G^2 .

Lemma 2. For any independent set I in G^2 , we have $|I| \le dom(G)$.

Proof. Let *D* be a minimum dominating set in *G*. Then *G* contains |D| stars spanning all vertices (the nodes of *D* are the centers of the stars).

A star in G becomes a clique in G^2 .

So G^2 contains |D| = dom(G) cliques spanning all vertices.

Lemma 2. For any independent set I in G^2 , we have $|I| \le dom(G)$.

Proof. Let *D* be a minimum dominating set in *G*. Then *G* contains |D| stars spanning all vertices (the nodes of *D* are the centers of the stars).

A star in G becomes a clique in G^2 .

So G^2 contains |D| = dom(G) cliques spanning all vertices.

There can only be one vertex of each clique in *I*.

Algorithm

We use that maximal independent sets can be found in polynomial time.

$$\Box$$
 Construct $G_1^2, G_2^2, \ldots, G_m^2$

- \Box Find a maximal independent set M_i in each graph G_i^2
- □ Determine the smallest *i* such that $|M_i| \le k$, call it *j*
- \Box Return M_j .

Lemma 3. For this j, $cost(e_j) \leq OPT$.

Lemma 4. This algorithm gives a 2-approximation.

Lemma 3. For this j, $cost(e_j) \leq OPT$.

Proof. For every i < j...

 \square $|M_i| > k$ by the definition of our algorithm

 \Box dom(G_i) > k by Lemma 2

 \Box Then $i^* > i$

Therefore, $i^* \ge j$.

Lemma 4. This algorithm gives a 2-approximation.

Proof.

Any maximal independent set *I* in G_j^2 is also a dominating set (if some vertex *v* were not dominated, $I \cup v$ were also independent)

Lemma 4. This algorithm gives a 2-approximation.

Proof.

- Any maximal independent set *I* in G_j^2 is also a dominating set (if some vertex *v* were not dominated, $I \cup v$ were also independent)
- \Box In G_i^2 , we have $|M_j|$ stars centered on the vertices in M_j

Lemma 4. This algorithm gives a 2-approximation.

Proof.

- Any maximal independent set *I* in G_j^2 is also a dominating set (if some vertex *v* were not dominated, $I \cup v$ were also independent)
- \Box In G_i^2 , we have $|M_j|$ stars centered on the vertices in M_j
- \Box These stars cover all the vertices

Lemma 4. This algorithm gives a 2-approximation.

Proof.

- Any maximal independent set *I* in G_j^2 is also a dominating set (if some vertex *v* were not dominated, $I \cup v$ were also independent)
- \Box In G_i^2 , we have $|M_j|$ stars centered on the vertices in M_j
- \Box These stars cover all the vertices
- □ Each edge used in constructing these stars has cost at most $2 \cdot \operatorname{cost}(e_j) \leq 2 \cdot \operatorname{OPT}$

The last inequality follows from Lemma 3.

Lemma 5. If $P \neq NP$, no approximation algorithm gives a $(2 - \varepsilon)$ -approximation for any $\varepsilon > 0$.

- □ We again use a reduction from Dominating Set
- □ This time, the graph must satisfy the triangle inequality
- \Box We define G' as follows:

$$d(u,v) = \begin{cases} 1 & \text{if } (u,v) \in E \\ 2 & else \end{cases}$$

This graph satisfies the triangle inequality (proof?)

Suppose *G* has a dominating set of size at most *k*. Then there is a *k*-center of cost 1 in *G'* \rightarrow a $(2 - \varepsilon)$ -approx. algorithm delivers one with weight < 2

If there is no such dominating set in G, every *k*-center has weight $\geq 2 > 2 - \epsilon$.

Thus, a $(2 - \varepsilon)$ -approximation algorithm for the *k*-center problem can be used to determine whether or not there is a dominating set of size *k*.

Weighted k-center problem

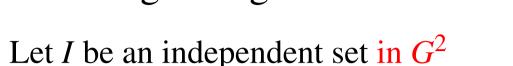
□ Input is set of cities with intercity distances $(G = (V, V \times V))$

- Each city has a cost
- Select cities of cost at most *W* to place warehouses
- □ Goal: minimize maximum distance of a city to a warehouse

- \Box We use the same graphs G_1, \ldots, G_m as before
- □ Let wdom(G) be the weight of a minimum weight dominating set in G
- □ We look for the smallest index *i* such that wdom(G_i) ≥ *W*
- □ We also use graph squaring again

Ideas

The set of light neighbors



- \Box For any node *u*, let *s*(*u*) be the lightest neighbor of *u*
- \Box Here, we also consider *u* to be a neighbor of itself
- $\Box \text{ Let } S = \{s(u) | u \in I\}$
- \Box We claim $w(S) \leq wdom(G)$

(Compare the unweighted problem, where we had $|I| \le \operatorname{dom}(G)$)

Lemma 6. $w(S) \leq wdom(G)$

Proof. Let *D* be a minimum weight dominating set in *G*. Then *G* contains |D| stars spanning all vertices (the nodes of *D* are the centers of the stars).

A star in G becomes a clique in G^2 .

So G^2 contains |D| cliques spanning all vertices.

There can only be one vertex of each clique in *I*.

For each vertex in *I*, the center of the corresponding star is available as a neighbor in *G* (this might not be the lightest neighbor). Therefore $w(S) \leq wdom(G)$.

Algorithm

Let $s_i(u)$ denote a lightest neighbor of u in G_i .

- \Box Construct G_1^2, \ldots, G_m^2
- Compute a maximal independent set M_i in each graph G_i^2
- $\Box \text{ Compute } S_i = \{s_i(u) | u \in M_i\}$
- □ Find the minimum index *i* such that $w(S_i) \leq W$, say *j*

 \Box Return S_j

Lemma 7. This algorithm achieves a 3-approximation.

 \Box As before we have OPT $\geq cost(e_j)$

For every i < j...

- \square $w(S_i) > W$ by the definition of our algorithm
- \Box wdom(G_i) > W by Lemma 6

 \Box Then $i^* > i$

Therefore, $i^* \ge j$.

Lemma 7. This algorithm achieves a 3-approximation.

- \Box As before we have OPT $\geq cost(e_j)$
- \square M_j is a dominating set in G_j^2

It is a maximal independent set

Lemma 7. This algorithm achieves a 3-approximation.

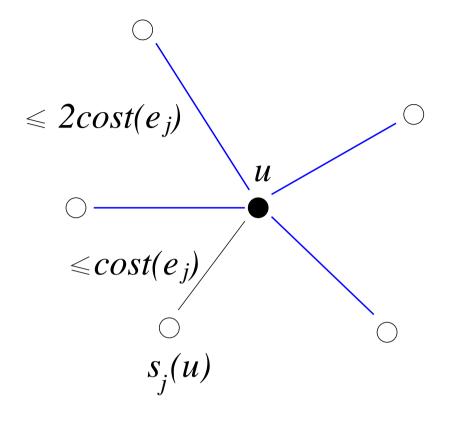
- \Box As before we have OPT $\geq cost(e_j)$
- $\square M_j$ is a dominating set in G_j^2
- \Box We can cover V with stars of G_i^2 centered in vertices of M_j

Lemma 7. This algorithm achieves a 3-approximation.

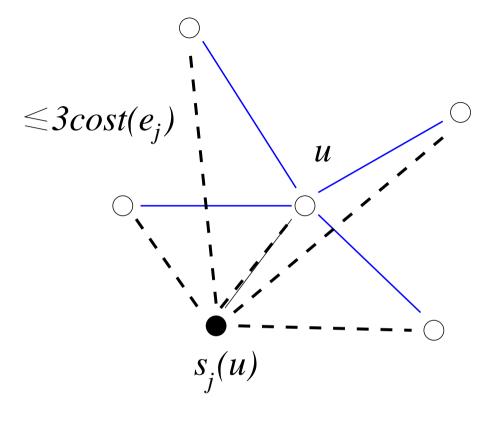
- \Box As before we have $OPT \ge cost(e_j)$
- $\square M_j$ is a dominating set in G_j^2
- \Box We can cover V with stars of G_i^2 centered in vertices of M_j
- ☐ These stars as before use edges of cost at most $2 \cdot cost(e_j)$ (triangle inequality)

Lemma 7. This algorithm achieves a 3-approximation.

- \Box As before we have OPT $\geq cost(e_j)$
- $\square M_j$ is a dominating set in G_j^2
- \Box We can cover V with stars of G_i^2 centered in vertices of M_j
- ☐ These stars as before use edges of cost at most $2 \cdot cost(e_j)$ (triangle inequality)
- □ Each star center is adjacent to a vertex in S_j , using an edge of cost at most $cost(e_j)$



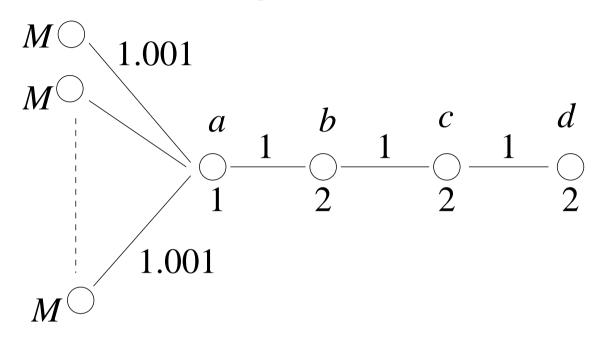
A star in G_j^2



A star in G_i^2 with redefined centers

Thus every node in G_j can be reached at cost at most $3 \cdot \text{cost}(e_j)$ from some vertex in *S*. This completes the proof.

Lower bound for this algorithm

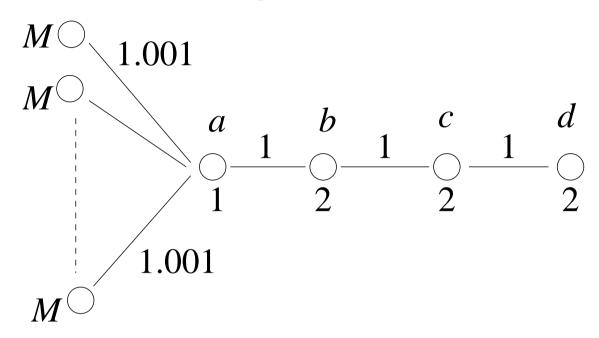


There are *n* nodes of weight *M*. The bound W = 3.

All edges not shown have weight equal to the length of the shortest path in the graph that is shown

For i < n+3, G_i is missing at least one edge of weight 1.001. One vertex will be isolated (also in G_i^2) so it will be in S_i

Lower bound for this algorithm



There are *n* nodes of weight *M*. The bound W = 3.

All edges not shown have weight equal to the length of the shortest path in the graph that is shown

For i = n + 3, $\{b\}$ is a maximal independent subset

If our algorithm chooses $\{b\}$, it outputs $S_{n+3} = \{a\}$. Cost is 3.