
2 Longest Processing Time Rule (LPT)

The example of the previous section shows a drawback of list scheduling – the longest
jobs should be processed earlier. In fact that precisely is the LPT rule: Sort the jobs in
decreasing order of their processing times and run the list scheduling algorithm with this
list.

Theorem 2.1. LPT returns a schedule S such that CS
max ≤ (4/3− 1/3m)OPT .

Proof. Suppose, as in the previous proof, l is the last job to finish. We can assume that l is
actually the last job. The reason is if not, then consider the jobs from {1, . . . , l} (assuming
p1 ≥ p2 ≥ . . .). LPT will return the same schedule and thus will have the same makespan
as with {1, . . . , n} jobs. The optimum only decreases. Thus, if we show that the makespan
on LPT on the first l jobs is within 4/3 of the optimum of the first l jobs, we will be done.
Thus, we will assume that pl = pmin.

Lemma 2.2. If pmin > OPT/3, then CS
max = OPT .

Proof. We actually show that if no optimum schedule processes more than two jobs per
machine, then LPT will return the optimal schedule. This will imply the lemma. (Why?)

To see this, for every machine i, let i1 and i2 be the two jobs that the optimum schedules
on it (i2 being empty if only one job is scheduled) and suppose pi1 ≥ pi2 . Also, order the
machines from 1 to m such that pi1 ≥ pi′1

if i < i′. That is the largest job goes on the
first machine, the second largest on the second machine, and so on. We claim that we may
assume pi2 ≤ pi′2

for all i < i′. If not, a simple interchange argument will not decrease Cmax.
We now claim that LPT returns the same schedule. Note that if LPT also puts at most

two jobs on a machine then it precisely returns the above schedule. Suppose LPT processes
three jobs on a machine. Let j be the first job which is put on a machine with two jobs
already. Note that there at most 2m jobs. Call a job a loner if it is the only job processed
by a machine. Note that if LPT processes three jobs on a machine there must be a loner
job in LPT which is not a loner in the OPT schedule. Furthermore, when the job j is being
processed by LPT, the loner must have already been processed. Therefore, the loner has
processing time at least 2pmin > 2OPT/3 (for otherwise j would be processed with the
loner). Since it is not a loner in OPT, the job which goes with it in the optimum schedule
must have processing time < OPT/3 contradicting the premise.

Now we are almost done. Since the job which finishes last, l has pl = pmin, if pl >
OPT/3, we get CS

max = OPT . Otherwise, from the inequality in the previous proof

CS
max ≤ OPT + pl(1− 1/m) ≤ (4/3− 1/3m)OPT

Let us see that the algorithm is tight for m = 2 machines. Consider the list of five
jobs with processing times {3, 3, 2, 2, 2}. LPT will return a schedule with CS

max = 7, while
OPT = 6 with jobs 1 and 2 processed on machine 1, and rest of the jobs on machine 2.

2



Theorem 1 LPT is a 4/3-approximation.

Proof Order the n jobs such that p1 ≤ p2 ≤ · · · ≤ pn. Without loss of generality, we assume job
n finishes last. If it did not finish last, removing it would not change the schedule of LPT, but only
decrease OPT. Thus, if the bound holds for the case where n finishes last, it must also hold for cases
where it does not, i.e., OPT is worse: LPT ≤ 4/3 ·OPT ∧OPT ′ ≥ OPT ⇒ LPT ≤ 4/3 ·OPT ′. So, the
makespan is

STARTn + pn ≤
1

m

∑
i 6=n

pi + pn ≤ OPT + pn.

Using the same technique as in the case of LS gets us an approximation ratio of 2. Instead of refining
our bounds on OPT, we will try to bound pn. Clearly, if pn ≤ OPT/3, then LPT is 4/3-OPT. We only
have to show that larger pn values don’t violate our bounds. We claim if pn > OPT/3, then LPT gives
an optimal schedule.

Claim 2 If pn > OPT/3, LPT is optimal.

Proof We prove this by contradiction. Assume the l-th job completes after time OPT. We consider
the schedule before the l-th job. It is easy to see that in this schedule each machine must be assigned at
least one job and at most two (since otherwise the length of the schedule would already be bigger than
OPT). Now order the machines and select i such that the machines M1 through Mi have a single job
assigned to them and machines Mi+1 through Mm have two. Let’s call the jobs on the first i machines
long jobs, the ones on the remaining ones short jobs (l is also considered a short job). LPT would
schedule l so that it finishes after OPT. This means l can’t be scheduled on a machine with a long job,
and since l is smaller than any job that is already scheduled (by the rules of LPT) no short or long job
can be scheduled with another long job. Hence, to not violate OPT any schedule needs i machines to
schedule the long jobs and the short jobs must be scheduled on the remaining machines (m− i many).
However, as there are 2(m − i) + 1 short jobs and each machine can execute at most two jobs, this is
clearly impossible and we conclude that there is no schedule better than LPT and our claim holds.

We have shown that LPT returns either an optimal schedule or one with length at most 4/3OPT, thus
LPT is indeed a 4/3-approximation algorithm.

The 4/3 bound is tight, an infinite family of instances showing this is given below.

Instance: we are given m machines, and 2m+1 jobs. There are three jobs with processing time m, and
2 jobs with processing times m+1,m+2, . . . , 2m− 1 each. In case of LPT, all but one of the machines
get two jobs with a total processing time of 3m − 1, and a single machine gets three jobs with a total
of 4m− 1 processing time. Thus, the makespan is 4m− 1. OPT schedules the three m jobs on a single
machine, and the remaining jobs on the remaining m−1 machines, such that each of those machines get
jobs with a total processing time of 3m, thus the makespan of OPT is 3m. As m grows towards infinity
the approximation ratio approaches 4/3.

There is an even better approximation algorithm, a so-called PTAS1, for this problem, but it is not
covered by this lecture.

1.2 Set-Cover Problem

The next problem we consider is the Set-Cover Problem. We are given a universe of n elements
U = {e1, e2, · · · , en}, a collection of subsets of the universe T = {s1, s2, · · · , sk}, and a cost function

1Polynomial Time Approximation Scheme: For any ε > 0 we can find a (1 + ε)-approximate solution in time that is
polynomial for any fixed ε (for example, the running time may be O(n1/ε)).

2


	lpexp1
	lpexp2.pdf

