What is	MAX-CUT?

Integer Quadratic Program

Semidefinite Program

Analysis of Algorithm

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Conclusions

Approximation Algorithm for MAX-CUT

paper by Michel X. Goemans and David P. Williamson STOC 1994, JACM 1995

> presented by Chayant Tantipathananandh MCS 541, Fall 2007

What is MAX-CUT?	Integer Quadratic Program	Semidefinite Program	Analysis of Algorithm	Conclusions
Outline				

- 2 Integer Quadratic Program
- Semidefinite Program
- Analysis of Algorithm

What is MAX-CUT? ●oo	Integer Quadratic Program	Semidefinite Program	Analysis of Algorithm	Conclusions
What is M	AX-CUT?			

• Given undirected graph G = (V, E) with edge weights

$$w(u,v) = w(v,u) = egin{cases} w_{uv} \in \mathbb{Z}^+ & ext{if } (u,v) \in E \ 0 & ext{otherwise.} \end{cases}$$

A cut S, S ⊆ V, partitions V into two sets S and S.
An edge (u, v) is in cut (S, S) if
u ∈ S and v ∈ S, or
u ∈ S and v ∈ S.

Definition: MAX-CUT

Given an undirected graph, find a cut (S, \overline{S}) maximizing weight

$$w(S,\overline{S}) = \sum_{u \in S, v \in \overline{S}} w(u,v).$$

What is MAX-CUT? o●o	Integer Quadratic Program	Semidefinite Program	Analysis of Algorithm	Conclusions
More abo	IT MAX-CUT			

MAX-CUT is NP-Complete

[Karp '72]

- $\mathsf{SAT} \quad \leq_{\mathcal{P}} \quad \mathsf{3SAT} \leq_{\mathcal{P}} \mathsf{CHROMATIC}\text{-}\mathsf{NUMBER}$
 - \leq_{P} EXACT-COVER \leq_{P} KNAPSACK
 - \leq_{P} PARTITION \leq_{P} MAX-CUT

$[Papadimitriou&Yannakakis '88] \\ SAT \leq_P 3SAT \leq_P \neq -3SAT \leq_P MAX-CUT$

What is MAX-CUT? ○○●

Dealing with hard problems

We want to find

- optimal solution
- on all inputs
- quickly (in polynomial time)

What is MAX-CUT?

Dealing with hard problems

We want to find

- optimal solution
- on all inputs
- *quickly* (in polynomial time)

 $relax \Rightarrow superpolynomial \ time$

What is MAX-CUT? ○○●

Dealing with hard problems

We want to find

- optimal solution
- on *all* inputs relax \Rightarrow heuristics
- quickly (in polynomial time) relax \Rightarrow superpolynomial time

What is MAX-CUT? ○○●

Dealing with hard problems

We want to find

- optimal solution $relax \Rightarrow approximation$
- on *all* inputs relax \Rightarrow heuristics
- quickly (in polynomial time) relax \Rightarrow superpolynomial time

Dealing with hard problems

We want to find

- optimal solution relax \Rightarrow approximation
- on *all* inputs relax \Rightarrow heuristics
- quickly (in polynomial time) relax \Rightarrow superpolynomial time
- Constant approximations
 - $\frac{1}{2}$ -approximation [Sahni & Gonzales '76].
 - $\bar{\alpha}$ -approximation [Goemans & Williamson '94]

$$\alpha = \frac{2}{\pi} \min_{0 \le \theta \le \pi} \frac{\theta}{1 - \cos \theta} > 0.87856.$$

▲ロ → ▲園 → ▲目 → ▲目 → ▲回 → ▲回 →

What is MAX-CUT?	Integer Quadratic Program ●○	Semidefinite Program	Analysis of Algorithm	Conclusions
One Form	ulation			

• Variables
$$x_i \in \{-1, 1\}$$
 for every vertex $i \in V$.

• Cut is
$$S = \{i : x_i = 1\}$$
 and $\overline{S} = \{i : x_i = -1\}$

Integer Quadratic Program (QP)

$$\begin{array}{ll} \text{maximize} & \displaystyle \frac{1}{2} \sum_{i < j} w_{ij} (1 - x_i x_j) \\ \text{subject to} & \displaystyle x_i^2 = 1 \quad x_i \in \mathbb{R} \quad \ \text{for every } i \in V \end{array}$$

- Solving quadratic program is NP-Hard (see Wikipedia for 0-1 integer program ≥_P QP).
- All monomials have degree 0 or 2 (about this later).

What is MAX-CUT?	Integer Quadratic Program ⊙●	Semidefinite Program	Analysis of Algorithm	Conclusions
Relaxatior	١			

- $x_i \in \{-1, 1\}$ is a vector lying on unit sphere S_1 .
- Allow x_i to be a vector in higher-dimensional space.

•
$$x_i \in S_1 \longrightarrow v_i \in S_n, n = |V|$$

• $x_i x_i \longrightarrow v_i \cdot v_i$

Vector Program (VP)

$$\begin{array}{ll} \text{maximize} & \frac{1}{2}\sum_{i < j} w_{ij}(1 - v_i \cdot v_j) \\ \text{subject to} & v_i \cdot v_i = 1 \quad v_i \in \mathbb{R}^n \quad \text{ for every } i \in V \end{array}$$

 Feasible solutions to QP are feasible solutions to VP with the same value.

うつう 山田 マイビット ビー うめのう

- Objective function and constraints are linear in dot products. Solvable in polynomial time! (next slides).
- Problem: What is a cut? (later slides)

What is MAX-CUT?

What is semidefinite matrix?

Definition

An $n \times n$ matrix **A** is positive semidefinite, written **A** \succeq 0, when:

- $\mathbf{x}^T \mathbf{A} \mathbf{x} \ge 0$ for all \mathbf{x} .
- 2 all eigenvalues of A are nonnegative real numbers.
- A can be decomposed into matrix \mathbf{B} , $\mathbf{B}^T \mathbf{B} = \mathbf{A}$ (by Cholesky decomposition).

note: three statements are equivalent.

What is MAX-CUT?	Integer Quadratic Program	Semidefinite Program ○●○○	Analysis of Algorithm	Conclusions 000
Frobonius	Inner Product			

 $C \bullet Y = c_{11}y_{11} + c_{12}y_{12} + \cdots + c_{ij}y_{ij} + \cdots + c_{kl}y_{kl}$

• a linear function of variables y_{ii} with coefficients c_{ii} .

<日 > < 同 > < 目 > < 目 > < 目 > < 目 > < 0 < 0</p>

Let $C = \{c_{ii}\}$ and $Y = \{y_{ii}\}$.

 $C \bullet Y$ is:

 $= \sum_{i=1}^{k} \sum_{i=1}^{l} c_{ij} y_{ij}$

an inner product of C and Y, or

What is MAX-CUT?

Integer Quadratic Program

Semidefinite Program

Analysis of Algorithm

Conclusions

Semidefinite Programming

Definition

maximize $Z = C \bullet Y$ subject to $A_i \bullet Y = b_i$ for $i = 1 \dots m$ $Y \succeq 0$ $Y \in \mathbb{R}^{n \times n}$

- Solvable to any additive error *ε* in polynomial time in input size and log ¹/_ε by, e.g.,
 - interior point method
 - ellipsoid algorithm

i.e., can compute solution $\geq OPT_{SDP} - \epsilon$ in polynomial time.

What is MAX-CUT?	Integer Quadratic Program	Semidefinite Program ooo●	Analysis of Algorithm	Conclusions
Solving the	e Relaxation			

• By definition, $B^T B \succeq 0$, so let $Y = B^T B$ and

$$B = \begin{bmatrix} | & | & | \\ \mathbf{v}_1 & \mathbf{v}_2 & \dots & \mathbf{v}_n \\ | & | & | \end{bmatrix}, \quad \mathbf{v}_j \in \mathbb{R}^n.$$

• Replace $v_i \cdot v_j$ with y_{ij} to obtain...

Semidefinite Program (SDP)maximize $\frac{1}{2} \sum_{i < j} w_{ij} (1 - y_{ij})$ subject to $y_{ii} = 1$ for every $i \in V$ $\{y_{ij}\} \succeq 0$ $y_{ij} \in \mathbb{R}$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のので

Approximation Algorithm for MAX-CUT

- Create semidefinite program
- Solve SDP for matrix Y in polynomial time.
- Perform incomplete Cholesky decomposition on Y to obtain

$$B = \left[\begin{array}{cccc} | & | & | & | \\ v_1 & v_2 & \dots & v_n \\ | & | & | & | \end{array} \right],$$

in polynomial time.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Approximation Algorithm for MAX-CUT

- Create semidefinite program
- Solve SDP for matrix Y in polynomial time.
- Perform incomplete Cholesky decomposition on Y to obtain

$$B = \left[\begin{array}{cccc} | & | & | & | \\ v_1 & v_2 & \dots & v_n \\ | & | & | & | \end{array} \right],$$

in polynomial time.

• What is the maximum cut?

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のので

Approximation Algorithm for MAX-CUT

- Create semidefinite program
- Solve SDP for matrix Y in polynomial time.
- Perform incomplete Cholesky decomposition on Y to obtain

$$B = \left[\begin{array}{cccc} | & | & | \\ v_1 & v_2 & \dots & v_n \\ | & | & | \end{array} \right],$$

in polynomial time.

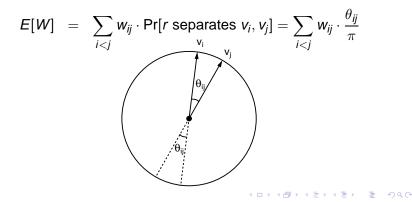
- What is the maximum cut?
- Round $v_i \in S_n$ to a cut $x_i \in \{-1, 1\}$.

What is MAX-CUT?	Integer Quadratic Program	Semidefinite Program	Analysis of Algorithm ○●○○○	Conclusions
Randomiz	ed Rounding			

• How about halving unit sphere S_n embedding v_i 's?

What is MAX-CUT?	Integer Quadratic Program	Semidefinite Program	Analysis of Algorithm o●ooo	Conclusions
Randomiz	ed Rounding			

- How about halving unit sphere S_n embedding v_i's?
- Choose a hyperplane *r* uniformly at random: $S = \{i : v_i \cdot r \ge 0\}$ and $\overline{S} = \{i : v_i \cdot r < 0\}.$
- Expected weight of cut



What is MAX-CUT?	Integer Quadratic Program	Semidefinite Program	Analysis of Algorithm	Conclusions
Approxima	ation Ratio			

 $\frac{E[W]}{OPT} \ge ?$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ □ の < @

What is MAX-CUT?	Integer Quadratic Program	Semidefinite Program	Analysis of Algorithm 00●00	Conclusions 000
Approxima	ation Ratio			

$$\frac{E[W]}{OPT} \ge ?$$

• We know
•
$$E[W] = \sum_{i < j} w_{ij} \cdot \frac{\theta_{ij}}{\pi}$$

• $OPT_{SDP} = \sum_{i < j} w_{ij} \left(\frac{1 - y_{ij}}{2}\right) = \sum_{i < j} w_{ij} \left(\frac{1 - \cos \theta_{ij}}{2}\right)$
• $E[W] \le OPT = OPT_{QP} \le OPT_{SDP}$

What is MAX-CUT?	Integer Quadratic Program	Semidefinite Program	Analysis of Algorithm ○○●○○	Conclusions
Approxima	ation Ratio			

$$\frac{E[W]}{OPT} \ge ?$$

• We know
•
$$E[W] = \sum_{i < j} w_{ij} \cdot \frac{\theta_{ij}}{\pi}$$

• $OPT_{SDP} = \sum_{i < j} w_{ij} \left(\frac{1 - y_{ij}}{2}\right) = \sum_{i < j} w_{ij} \left(\frac{1 - \cos \theta_{ij}}{2}\right)$
• $E[W] \le OPT = OPT_{QP} \le OPT_{SDP}$
• So
• $\frac{E[W]}{OPT} \ge \frac{E[W]}{OPT_{SDP}} = \frac{\sum_{i < j} w_{ij} \left(\frac{\theta_{ij}}{\pi}\right)}{\sum_{i < j} w_{ij} \left(\frac{1 - \cos \theta_{ij}}{2}\right)} \ge ratio!$

What is MAX-CUT?	Integer Quadratic Program	Semidefinite Program	Analysis of Algorithm ○○●○○	Conclusions
Approxima	ation Ratio			

$$\frac{E[W]}{OPT} \ge ?$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ □ の < @

• We know
•
$$E[W] = \sum_{i < j} w_{ij} \cdot \frac{\theta_{ij}}{\pi}$$

• $OPT_{SDP} = \sum_{i < j} w_{ij} \left(\frac{1 - y_{ij}}{2}\right) = \sum_{i < j} w_{ij} \left(\frac{1 - \cos \theta_{ij}}{2}\right)$
• $E[W] \le OPT = OPT_{QP} \le OPT_{SDP}$
• So
 $\frac{E[W]}{OPT} \ge \frac{E[W]}{OPT_{SDP}} = \frac{\sum_{i < j} w_{ij} \left(\frac{\theta_{ij}}{\pi}\right)}{\sum_{i < j} w_{ij} \left(\frac{1 - \cos \theta_{ij}}{2}\right)} \ge ratio$

• Comparing them term-by-term.

What is MAX-CUT?	Integer Quadratic Program	Semidefinite Program	Analysis of Algorithm ০০০●০	Conclusions
Approxima	ation Ratio (co	nt.)		

... term-by-term comparison of

$$\frac{\theta}{\pi}$$
 to $\frac{1-\cos\theta}{2}$

What is MAX-CUT?	Integer Quadratic Program	Semidefinite Program	Analysis of Algorithm ○○○●○	Conclusions		
Approximation Datia (cont.)						

Approximation Ratio (cont.)

... term-by-term comparison of

$$\frac{\theta}{\pi}$$
 to $\frac{1-\cos\theta}{2}$

Algebra...

$$\begin{aligned} \frac{\theta}{\pi} &= \left(\frac{2}{\pi} \cdot \frac{\theta}{1 - \cos \theta}\right) \left(\frac{1 - \cos \theta}{2}\right) \\ &\geq \left(\frac{2}{\pi} \min_{0 \le \theta' \le \pi} \frac{\theta'}{1 - \cos \theta'}\right) \left(\frac{1 - \cos \theta}{2}\right) \\ &= \alpha \left(\frac{1 - \cos \theta}{2}\right). \end{aligned}$$

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへで

What is MAX-CUT?	Integer Quadratic Program	Semidefinite Program	Analysis of Algorithm 0000●	Conclusions 000
Approxima	ation Ratio			

Constant α is intentionally defined such that, for any $\theta \in [0, \pi]$,

$$rac{ heta}{\pi} \ge lpha \left(rac{1 - \cos heta}{2}
ight).$$

Once again ...

$$E[W] = \sum_{i < j} w_{ij} \cdot \Pr[v_i, v_j \text{ separated}] = \sum_{i < j} w_{ij} \left(\frac{\theta_{ij}}{\pi}\right)$$
$$\geq \sum_{i < j} w_{ij} \cdot \alpha \left(\frac{1 - \cos \theta_{ij}}{2}\right) = \alpha \cdot OPT_{SDP}$$
$$\geq \alpha \cdot OPT > 0.87856 \cdot OPT$$

What is MAX-CUT?	Integer Quadratic Program	Semidefinite Program	Analysis of Algorithm	Conclusions ●○○
Conclusio	าร			

Conclusions:

- MAX-CUT problem, integer quadratic program formation
- Semidefinite program relaxation
- Random hyperplane rounding
- Approximation ratio $\alpha > 0.87856$

Related works:

- Integrality gap: Graphs that *E*[*W*] is exactly α · OPT [Karloff '97] [Feige&Schechtman '02]
- MAX 2SAT, MAX DICUT [Goemans&Williamson '94]
- Derandomization [Mahajan&Ramesh '95]
- CHROMATIC NUMBER (Graph Coloring) [Karger,Motwani,Sudan '94] [Arora&Chlamtac '06]

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のので

• Correlation Clustering [Swamy '94]

What is MAX-CUT?	Integer Quadratic Program	Semidefinite Program	Analysis of Algorithm	Conclusions ○●○
The End				

Thank you. Questions?

What is MAX-CUT?	Integer Quadratic Program	Semidefinite Program	Analysis of Algorithm	Conclusions
Reference	S			

- Michel X. Goemans, David P. Williamson, Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming, JACM, v.42 n.6, Nov. 1995
- Vijay V. Vazirani, Approximation Algorithms, 2001.
- Howard Karloff, *How good is the Goemans-Williamson MAX CUT algorithm?*, STOC 1996.
- Uriel Feige, Gideon Schechtman, On the Optimality of the Random Hyperplane Rounding Technique for MAX CUT, Random Struct. Algorithms, 2002.
- Sanjeev Mahajan, H. Ramesh, *Derandomizing Semidefinite Programming Based Approximation Algorithms*, Random Struct. Algorithms, 2002.