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What is MAX-CUT?

@ Given undirected graph G = (V, E) with edge weights

Wy € Z1 if (u,v) €E
0 otherwise.

w(u,v) =w(v,u) = {

@ AcutS,S CV, partitions V into two sets S and S.
® Anedge (u,v)isincut (S,S) if
euecSandveS,or
@ueSandv eS.

Definition: MAX-CUT

Given an undirected graph, find a cut (S, S) maximizing weight

w(s,S)= > w(u,v).

ues,ves
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More about MAX-CUT

@ MAX-CUT is NP-Complete

SAT

SAT

[Karp '72]

3SAT <p CHROMATIC-NUMBER
EXACT-COVER <p KNAPSACK
PARTITION <p MAX-CUT

[Papadimitriou&Yannakakis '88]
3SAT <p #-3SAT <p MAX-CUT
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Dealing with hard problems

@ We want to find
@ optimal solution
@ on all inputs
@ quickly (in polynomial time)
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Dealing with hard problems

@ We want to find
@ optimal solution  relax = approximation
@ onallinputs relax = heuristics
@ quickly (in polynomial time)  relax = superpolynomial time

@ Constant approximations

° %-approximation [Sahni & Gonzales '76].
@ «-approximation [Goemans & Williamson '94]

> 0.87856.

a=— mn ————
m 0<<x 1 — cosf



Integer Quadratic Program
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One Formulation

@ Variables x; € {—1,1} for every vertexi € V.
@ CutisS={i:xy=1}andS = {i: x, = -1}

Integer Quadratic Program (QP)

I 1
maximize > ;Wij(l — XiX})
subjectto x?=1 x €R  foreveryieV

@ Solving quadratic program is NP-Hard
(see Wikipedia for 0-1 integer program >p QP).
@ All monomials have degree 0 or 2 (about this later).



Integer Quadratic Program
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Relaxation

@ x; € {—1,1} is a vector lying on unit sphere S;.

@ Allow x; to be a vector in higher-dimensional space.
X ES — ViESn,n:|V|
@ XX — ViV,

Vector Program (VP)

. 1
maximize > ;Wij(l —Vi - Vv))
subjectto  v;-v; =1 vi € R" for everyi e V

@ Feasible solutions to QP are feasible solutions to VP with
the same value.

@ Objective function and constraints are linear in dot
products. Solvable in polynomial time! (next slides).

@ Problem: What is a cut? (later slides)
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What is semidefinite matrix?

An n x n matrix A is positive semidefinite, written A = 0, when:
© xTAx > 0forall x.
Q all eigenvalues of A are nonnegative real numbers.

© A can be decomposed into matrix B, BTB = A
(by Cholesky decomposition).

note: three statements are equivalent.
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[e] le]e}

Frobenius Inner Product

LetC = {Cij} andY = {y”}

CeY = cCiiyi1 +Ci2y12+- +Cjyj+ -+ CaYu
koI
= 2D iV
i=1 j=1
CeYis:

@ an inner productof C and Y, or
@ a linear function of variables y; with coefficients c;;.
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Semidefinite Programming

Definition
maximize Z =CeY
subjectto AjeY =Db; fori=1...m
Y =0
Y € R™N

@ Solvable to any additive error ¢ in polynomial time in
input size and Iog% by, e.g.,
@ interior point method
o ellipsoid algorithm
i.e., can compute solution > OPTgpp — € in polynomial
time.



Semidefinite Program
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Solving the Relaxation

@ By definition, BTB = 0, so letY = BTB and

| |
B[vl Vo ... Vp |, VvieR"
| |

@ Replace v; - v; with y; to obtain...

Semidefinite Program (SDP)

maximize % Zi<j Wij(l = yij)
subjectto  y; =1 for everyi e V

{yi} =0
yj €R
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Approximation Algorithm for MAX-CUT

@ Create semidefinite program
@ Solve SDP for matrix Y in polynomial time.
@ Perform incomplete Cholesky decomposition on Y to

obtain | | |
B = [ Vi V2 ... Vp |,
| |

in polynomial time.
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Approximation Algorithm for MAX-CUT

@ Create semidefinite program
@ Solve SDP for matrix Y in polynomial time.
@ Perform incomplete Cholesky decomposition on Y to

obtain | | |
B = [ Vi V2 ... Vp |,
| |

in polynomial time.
@ What is the maximum cut?
® Roundv; € Sptoacutx; € {—1,1}.
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Randomized Rounding

@ How about halving unit sphere S, embedding v;'s?
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Randomized Rounding

@ How about halving unit sphere S, embedding v;'s?
@ Choose a hyperplane r uniformly at random:
S={i:vy-r>0}andS ={i:v;-r <0}.
@ Expected weight of cut
9..
EW] = ) w-Prr sepgrates Vi, vil =D w - %

— v —
1<] i v 1<]
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Approximation Ratio

@ How close to the maximum weight do we get?

EW] _,
OPT —
@ We know 0
] E[W] = ZWU . ﬁ
i<j
1-—vy; 1 — cos 6;
® OPTgpp = ZWij < 2yll) = ZWij (72 “)
i<j i<j

o E[W] < OPT = OPTQP < OPTSDP
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Approximation Ratio

@ How close to the maximum weight do we get?

EW] _,
OPT —
@ We know 0
] E[W] = ZWU . ﬁ
1<)
1-vyj 1 — cos o
o E[W] < OPT = OPTQP < OPTSDP
@ So
6;
ew) _ Ew]  Sgvwa(¥)
> = > ratio!

OPT ~ OPTgpp Sy W (1—c§seu)



Analysis of Algorithm
[e]e] le]e]

Approximation Ratio

@ How close to the maximum weight do we get?

EW] _,
OPT —
@ We know 0
] E[W] = ZWU . ﬁ
1<)
1-vyj 1 — cos o
o E[W] < OPT = OPTQP < OPTSDP
@ So
0;
ew) _ Ew]  Sgvwa(Y)
> = > ratio!

OPT ~ OPTgpp Sy W (Hgsei,-)

@ Comparing them term-by-term.
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Approximation Ratio (cont.)

... term-by-term comparison of

0 ¢ 1—cosé

T ° 2
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Approximation Ratio (cont.)

... term-by-term comparison of

0 1—cosé
to ——

T 2

B 2 0 1-—cosd

- (?'1—c059>< 2 >
(g min 0 ><1—cos€>
7 0<¢'<x 1 — cos @’ 2

_ . 1-—cosfd
= — )

Algebra...

2




Analysis of Algorithm
[e]e]ele] ]

Approximation Ratio

Constant « is intentionally defined such that, for any 6 € [0, 7],

0 (1—0039)
—>a|l——|.
T 2

Once again ...
9..
EW] = ZWij - Prlvi, v; separated| = ZWij (J)
i<j i<j g
— COS 6
Z ZWIJ < IJ> = - OPTSDP
i<j

> «o-OPT > 0.87856 - OPT
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Conclusions

Conclusions:
@ MAX-CUT problem, integer quadratic program formation
@ Semidefinite program relaxation
@ Random hyperplane rounding
@ Approximation ratio « > 0.87856
Related works:

@ Integrality gap: Graphs that E[W] is exactly o - OPT
[Karloff '97] [Feige&Schechtman '02]

@ MAX 2SAT, MAX DICUT [Goemans&Williamson '94]
@ Derandomization [Mahajan&Ramesh '95]

@ CHROMATIC NUMBER (Graph Coloring)
[Karger,Motwani,Sudan '94] [Arora&Chlamtac '06]

@ Correlation Clustering [Swamy '94]



Conclusions
o] o)

Thank you.

Questions?
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