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What is MAX-CUT?

Given undirected graph G = (V , E) with edge weights

w(u, v) = w(v , u) =

{

wuv ∈ Z
+ if (u, v) ∈ E

0 otherwise.

A cut S, S ⊆ V , partitions V into two sets S and S.

An edge (u, v) is in cut (S, S) if
u ∈ S and v ∈ S, or
u ∈ S and v ∈ S.

Definition: MAX-CUT

Given an undirected graph, find a cut (S, S) maximizing weight

w(S, S) =
∑

u∈S,v∈S

w(u, v).
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More about MAX-CUT

MAX-CUT is NP-Complete

[Karp ’72]

SAT ≤P 3SAT ≤P CHROMATIC-NUMBER

≤P EXACT-COVER ≤P KNAPSACK

≤P PARTITION ≤P MAX-CUT

[Papadimitriou&Yannakakis ’88]

SAT ≤P 3SAT ≤P 6=-3SAT ≤P MAX-CUT



What is MAX-CUT? Integer Quadratic Program Semidefinite Program Analysis of Algorithm Conclusions

Dealing with hard problems

We want to find
optimal solution
on all inputs
quickly (in polynomial time)
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Dealing with hard problems

We want to find
optimal solution relax ⇒ approximation
on all inputs relax ⇒ heuristics
quickly (in polynomial time) relax ⇒ superpolynomial time

Constant approximations
1
2 -approximation [Sahni & Gonzales ’76].
α-approximation [Goemans & Williamson ’94]

α =
2
π

min
0≤θ≤π

θ

1 − cos θ
> 0.87856.
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One Formulation

Variables xi ∈ {−1, 1} for every vertex i ∈ V .

Cut is S = {i : xi = 1} and S = {i : xi = −1}

Integer Quadratic Program (QP)

maximize
1
2

∑

i<j

wij(1 − xixj)

subject to x2
i = 1 xi ∈ R for every i ∈ V

Solving quadratic program is NP-Hard
(see Wikipedia for 0-1 integer program ≥P QP).

All monomials have degree 0 or 2 (about this later).
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Relaxation

xi ∈ {−1, 1} is a vector lying on unit sphere S1.

Allow xi to be a vector in higher-dimensional space.
xi ∈ S1 −→ vi ∈ Sn, n = |V |
xixj −→ vi · vj

Vector Program (VP)

maximize
1
2

∑

i<j

wij(1 − vi · vj)

subject to vi · vi = 1 vi ∈ R
n for every i ∈ V

Feasible solutions to QP are feasible solutions to VP with
the same value.

Objective function and constraints are linear in dot
products. Solvable in polynomial time! (next slides).

Problem: What is a cut? (later slides)
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What is semidefinite matrix?

Definition

An n × n matrix A is positive semidefinite, written A � 0, when:

1 xT Ax ≥ 0 for all x.

2 all eigenvalues of A are nonnegative real numbers.
3 A can be decomposed into matrix B, BT B = A

(by Cholesky decomposition).

note: three statements are equivalent.
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Frobenius Inner Product

Let C = {cij} and Y = {yij}.

C • Y = c11y11 + c12y12 + · · · + cijyij + · · · + cklykl

=

k
∑

i=1

l
∑

j=1

cijyij

C • Y is:

an inner product of C and Y , or

a linear function of variables yij with coefficients cij .
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Semidefinite Programming

Definition

maximize Z = C • Y
subject to Ai • Y = bi for i = 1 . . . m

Y � 0
Y ∈ R

n×n

Solvable to any additive error ǫ in polynomial time in
input size and log 1

ǫ
by, e.g.,

interior point method
ellipsoid algorithm

i.e., can compute solution ≥ OPTSDP − ǫ in polynomial
time.
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Solving the Relaxation

By definition, BT B � 0, so let Y = BT B and

B =





| | |
v1 v2 . . . vn

| | |



 , vi ∈ R
n.

Replace vi · vj with yij to obtain...

Semidefinite Program (SDP)

maximize 1
2

∑

i<j wij(1 − yij)

subject to yii = 1 for every i ∈ V
{yij} � 0
yij ∈ R
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Approximation Algorithm for MAX-CUT

Create semidefinite program

Solve SDP for matrix Y in polynomial time.

Perform incomplete Cholesky decomposition on Y to
obtain

B =





| | |
v1 v2 . . . vn

| | |



 ,

in polynomial time.
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Approximation Algorithm for MAX-CUT

Create semidefinite program

Solve SDP for matrix Y in polynomial time.

Perform incomplete Cholesky decomposition on Y to
obtain

B =





| | |
v1 v2 . . . vn

| | |



 ,

in polynomial time.

What is the maximum cut?

Round vi ∈ Sn to a cut xi ∈ {−1, 1}.
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Randomized Rounding

How about halving unit sphere Sn embedding vi ’s?
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Randomized Rounding

How about halving unit sphere Sn embedding vi ’s?

Choose a hyperplane r uniformly at random:
S = {i : vi · r ≥ 0} and S = {i : vi · r < 0}.

Expected weight of cut

E [W ] =
∑

i<j

wij · Pr[r separates vi , vj ] =
∑

i<j

wij ·
θij

π
vi

vj

θij

θij
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Approximation Ratio

How close to the maximum weight do we get?

E [W ]

OPT
≥?
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Approximation Ratio

How close to the maximum weight do we get?

E [W ]

OPT
≥?

We know
E [W ] =

∑

i<j

wij ·
θij

π

OPTSDP =
∑

i<j

wij

(

1 − yij

2

)

=
∑

i<j

wij

(

1 − cos θij

2

)

E [W ] ≤ OPT = OPTQP ≤ OPTSDP



What is MAX-CUT? Integer Quadratic Program Semidefinite Program Analysis of Algorithm Conclusions

Approximation Ratio

How close to the maximum weight do we get?

E [W ]

OPT
≥?

We know
E [W ] =

∑

i<j

wij ·
θij

π

OPTSDP =
∑

i<j

wij

(

1 − yij

2

)

=
∑

i<j

wij

(

1 − cos θij

2

)

E [W ] ≤ OPT = OPTQP ≤ OPTSDP

So

E [W ]

OPT
≥

E [W ]

OPTSDP
=

∑

i<j wij

(

θij
π

)

∑

i<j wij

(

1−cos θij
2

) ≥ ratio!
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Approximation Ratio

How close to the maximum weight do we get?

E [W ]

OPT
≥?

We know
E [W ] =

∑

i<j

wij ·
θij

π

OPTSDP =
∑

i<j

wij

(

1 − yij

2

)

=
∑

i<j

wij

(

1 − cos θij

2

)

E [W ] ≤ OPT = OPTQP ≤ OPTSDP

So

E [W ]

OPT
≥

E [W ]

OPTSDP
=

∑

i<j wij

(

θij
π

)

∑

i<j wij

(

1−cos θij
2

) ≥ ratio!

Comparing them term-by-term.
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Approximation Ratio (cont.)

... term-by-term comparison of

θ

π
to

1 − cos θ

2
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Approximation Ratio (cont.)

... term-by-term comparison of

θ

π
to

1 − cos θ

2

Algebra...

θ

π
=

(

2
π
·

θ

1 − cos θ

)(

1 − cos θ

2

)

≥

(

2
π

min
0≤θ′≤π

θ′

1 − cos θ′

)(

1 − cos θ

2

)

= α

(

1 − cos θ

2

)

.
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Approximation Ratio

Constant α is intentionally defined such that, for any θ ∈ [0, π],

θ

π
≥ α

(

1 − cos θ

2

)

.

Once again ...

E [W ] =
∑

i<j

wij · Pr[vi , vj separated] =
∑

i<j

wij

(

θij

π

)

≥
∑

i<j

wij · α

(

1 − cos θij

2

)

= α · OPTSDP

≥ α · OPT > 0.87856 · OPT
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Conclusions

Conclusions:

MAX-CUT problem, integer quadratic program formation

Semidefinite program relaxation

Random hyperplane rounding

Approximation ratio α > 0.87856

Related works:

Integrality gap: Graphs that E [W ] is exactly α · OPT
[Karloff ’97] [Feige&Schechtman ’02]

MAX 2SAT, MAX DICUT [Goemans&Williamson ’94]

Derandomization [Mahajan&Ramesh ’95]

CHROMATIC NUMBER (Graph Coloring)
[Karger,Motwani,Sudan ’94] [Arora&Chlamtac ’06]

Correlation Clustering [Swamy ’94]
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The End

Thank you.

Questions?
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