
26 Semidefinite Programming

In the previous chapters of Part II of this book we have shown how linear
programs provide a systematic way of placing a good upper bound on OPT
(assuming a minimization problem), for numerous NP-hard problems. As
stated earlier, this is a key step in the design of an approximation algorithm
for an NP-hard problem. It is natural, then, to ask if there are other widely
applicable ways of doing this.

In this chapter we provide another class of relaxations, called vector pro-
grams. These serve as relaxations for several NP-hard problems, in partic-
ular, for problems that can be expressed as strict quadratic programs (see
Section 26.1 for a definition). Vector programs are equivalent to a powerful
and well-studied generalization of linear programs, called semidefinite pro-
grams. Semidefinite programs, and consequently vector programs, can be
solved within an additive error of ε, for any ε > 0, in time polynomial in n
and log(1/ε), using the ellipsoid algorithm (see Section 26.3).

We will illustrate the use of vector programs by deriving a 0.87856 factor
algorithm for the following problem (see Exercises 2.1 and 16.6 for a factor
1/2 algorithm).

Problem 26.1 (Maximum cut (MAX-CUT)) Given an undirected
graph G = (V,E), with edge weights w : E → Q+, find a partition (S, S)
of V so as to maximize the total weight of edges in this cut, i.e., edges that
have one endpoint in S and one endpoint in S.

26.1 Strict quadratic programs and vector programs

A quadratic program is the problem of optimizing (minimizing or maximiz-
ing) a quadratic function of integer valued variables, subject to quadratic
constraints on these variables. If each monomial in the objective function, as
well as in each of the constraints, is of degree 0 (i.e., is a constant) or 2, then
we will say that this is a strict quadratic program.

Let us give a strict quadratic program for MAX-CUT. Let yi be an in-
dicator variable for vertex vi which will be constrained to be either +1 or
−1. The partition (S, S) will be defined as follows. S = {vi | yi = 1} and
S = {vi | yi = −1}. If vi and vj are on opposite sides of this partition,

256 26 Semidefinite Programming

then yiyj = −1, and edge (vi, vj) contributes wij to the objective function.
On the other hand, if they are on the same side, then yiyj = 1, and edge
(vi, vj) makes no contribution. Hence, an optimal solution to this program is
a maximum cut in G.

maximize
1
2

∑
1≤i<j≤n

wij(1− yiyj) (26.1)

subject to y2
i = 1, vi ∈ V

yi ∈ Z, vi ∈ V

We will relax this program to a vector program. A vector program is
defined over n vector variables in Rn, say v1, . . . ,vn, and is the problem of
optimizing (minimizing or maximizing) a linear function of the inner products
vi · vj , 1 ≤ i ≤ j ≤ n, subject to linear constraints on these inner products.
Thus, a vector program can be thought of as being obtained from a linear
program by replacing each variable with an inner product of a pair of these
vectors.

A strict quadratic program over n integer variables defines a vector pro-
gram over n vector variables in Rn as follows. Establish a correspondence
between the n integer variables and the n vector variables, and replace each
degree 2 term with the corresponding inner product. For instance, the term
yiyj in (26.1) is replaced with vi ·vj . In this manner, we obtain the following
vector program for MAX-CUT.

maximize
1
2

∑
1≤i<j≤n

wij(1− vi · vj) (26.2)

subject to vi · vi = 1, vi ∈ V

vi ∈ Rn, vi ∈ V

Because of the constraint vi ·vi = 1, the vectors v1, . . . ,vn are constrained
to lie on the n-dimensional sphere, Sn−1. Any feasible solution to (26.1) yields
a solution to (26.2) having the same objective function value, by assigning
the vector (yi, 0, . . . , 0) to vi. (Notice that under this assignment, vi · vj is
simply yiyj .) Therefore, the vector program (26.2) is a relaxation of the strict
quadratic program (26.1). Clearly, this holds in general as well; the vector
program corresponding to a strict quadratic program is a relaxation of the
quadratic program.

Interestingly enough, vector programs are approximable to any desired
degree of accuracy in polynomial time, and thus relaxation (26.2) provides
an upper bound on OPT for MAX-CUT. To show this, we need to recall
some interesting and powerful properties of positive semidefinite matrices.

26.2 Properties of positive semidefinite matrices 257

Remark 26.2 Vector programs do not always come about as relaxations
of strict quadratic programs. Exercise 26.13 gives an NP-hard problem that
has vector program relaxation; however, we do not know of a strict quadratic
program for it.

26.2 Properties of positive semidefinite matrices

Let A be a real, symmetric n×n matrix. Then A has real eigenvalues and has
n linearly independent eigenvectors (even if the eigenvalues are not distinct).
We will say that A is positive semidefinite if

∀x ∈ Rn, xTAx ≥ 0.

We will use the following two equivalent conditions crucially. We provide a
proof sketch for completeness.

Theorem 26.3 Let A be a real symmetric n×n matrix. Then, the following
are equivalent:

1. ∀x ∈ Rn, xTAx ≥ 0.
2. All eigenvalues of A are nonnegative.
3. There is an n× n real matrix W , such that A = W TW .

Proof: (1 ⇒ 2): Let λ be an eigenvalue of A, and let v be a corresponding
eigenvector. Therefore, Av = λv. Pre-multiplying by vT we get vTAv =
λvTv. Now, by (1), vTAv ≥ 0. Therefore, λvTv ≥ 0. Since vTv > 0, λ ≥ 0.

(2 ⇒ 3): Let λ1, . . . , λn be the n eigenvalues of A, and v1, . . . ,vn be the
corresponding complete collection of orthonormal eigenvectors. Let Q be the
matrix whose columns are v1, . . . ,vn, and Λ be the diagonal matrix with
entries λ1, . . . , λn. Since for each i, Avi = λivi, we have AQ = QΛ. Since
Q is orthogonal, i.e., QQT = I, we get that QT = Q−1. Therefore,

A = QΛQT .

Let D be the diagonal matrix whose diagonal entries are the positive square
roots of λ1, . . . , λn (by (2), λ1, . . . , λn are nonnegative, and thus their square
roots are real). Then, Λ = DDT . Substituting, we get

A = QDDTQT = (QD)(QD)T .

Now, (3) follows by letting W = (QD)T .
(3 ⇒ 1): For any

x ∈ Rn, xTAx = xTW TWx = (Wx)T (Wx) ≥ 0. ✷

258 26 Semidefinite Programming

Using Cholesky decomposition (see Section 26.7), a real symmetric matrix
can be decomposed, in polynomial time, as A = UΛUT , where Λ is a diago-
nal matrix whose diagonal entries are the eigenvalues of A. Now A is positive
semidefinite iff all the entries of Λ are nonnegative, thus giving a polynomial
time test for positive semidefiniteness. The decomposition WW T is not poly-
nomial time computable because in general it may contain irrational entries.
However, it can be approximated to any desired degree by approximating the
square roots of the entries of Λ. In the rest of this chapter we will assume
that we have an exact decomposition, since the inaccuracy resulting from an
approximate decomposition can be absorbed into the approximation factor
(see Exercise 26.6).

It is easy to see that the sum of two n×n positive semidefinite matrices is
also positive semidefinite (e.g., using characterization (1) of Theorem 26.3).
This is also true of any convex combination of such matrices.

26.3 The semidefinite programming problem

Let Y be an n× n matrix of real valued variables whose (i, j)th entry is yij .
The problem of maximizing a linear function of the yij ’s, subject to linear
constraints on them, and the additional constraint that Y be symmetric and
positive semidefinite, is called the semidefinite programming problem.

Let us introduce some notation to state this formally. Denote by Rn×n

the space of n×n real matrices. Recall that the trace of a matrix A ∈ Rn×n

is the sum of its diagonal entries and is denoted by tr(A). The Frobenius
inner product of matrices A,B ∈ Rn×n, denoted A •B, is defined to be

A •B = tr(ATB) =
n∑
i=1

n∑
j=1

aijbij ,

where aij and bij are the (i, j)th entries of A and B, respectively. Let Mn

denote the cone of symmetric n×n real matrices. For A ∈ Mn, A / 0 denotes
the fact that matrix A is positive semidefinite.

Let C,D1, . . . ,Dk ∈ Mn and d1, . . . dk ∈ R. Following is a statement of
the general semidefinite programming problem. Let us denote it by S.

maximize C • Y (26.3)

subject to Di • Y = di, 1 ≤ i ≤ k

Y / 0,

Y ∈ Mn.

Observe that if C,D1, . . . ,Dk are all diagonal matrices, this is simply a
linear programming problem. As in the case of linear programs, it is easy to

26.3 The semidefinite programming problem 259

see that allowing linear inequalities, in addition to equalities, does not make
the problem more general.

Let us call a matrix in Rn×n satisfying all the constraints of S a feasible
solution. Since a convex combination of positive semidefinite matrices is pos-
itive semidefinite, it is easy to see that the set of feasible solutions is convex,
i.e., if A ∈ Rn×n and B ∈ Rn×n are feasible solutions then so is any convex
combination of these solutions.

Let A ∈ Rn×n be an infeasible point. Let C ∈ Rn×n. A hyperplane
C •Y ≤ b is called a separating hyperplane for A if all feasible points satisfy
it and point A does not satisfy it. In the next theorem we show how to find a
separating hyperplane in polynomial time. As a consequence, for any ε > 0,
semidefinite programs can be solved within an additive error of ε, in time
polynomial in n and log(1/ε), using the ellipsoid algorithm (see Section 26.7
for more efficient methods).

Theorem 26.4 Let S be a semidefinite programming problem, and A be a
point in Rn×n. We can determine, in polynomial time, whether A is feasible
for S and, if it is not, find a separating hyperplane.

Proof: Testing for feasibility involves ensuring that A is symmetric and
positive semidefinite and that it satisfies all the linear constraints. By remarks
made in Section 26.2, this can be done in polynomial time. If A is infeasible,
a separating hyperplane is obtained as follows.

• If A is not symmetric, aij > aji for some i, j. Then yij ≤ yji is a separating
hyperplane.

• If A is not positive semidefinite, then it has a negative eigenvalue, say λ.
Let v be the corresponding eigenvector. Now (vvT) • Y = vTY v ≥ 0 is a
separating hyperplane.

• If any of the linear constraints is violated, it directly yields a separating
hyperplane.

✷

Next, let us show that vector programs are equivalent to semidefinite
programs, thereby showing that the former can be solved efficiently to any
desired degree of accuracy. Let V be a vector program on n n-dimensional
vector variables v1, . . . ,vn. Define the corresponding semidefinite program, S,
over n2 variables yij , 1 ≤ i, j ≤ n, as follows. Replace each inner product vi·vj
occurring in V by the variable yij . The objective function and constraints are
now linear in the yij ’s. Additionally, require that matrix Y , whose (i, j)th
entry is yij , be symmetric and positive semidefinite.

Lemma 26.5 Vector program V is equivalent to semidefinite program S.

Proof: We will show that corresponding to each feasible solution to V,
there is a feasible solution to S of the same objective function value, and vice

260 26 Semidefinite Programming

versa. Let a1, . . . ,an be a feasible solution to V. Let W be the matrix whose
columns are a1, . . . ,an. Then, it is easy to see that A = W TW is a feasible
solution to S having the same objective function value.

For the other direction, let A be a feasible solution to S. By Theorem
26.3, there is an n × n matrix W such that A = W TW . Let a1, . . . ,an be
the columns of W . Then, it is easy to see that a1, . . . ,an is a feasible solution
to V having the same objective function value. ✷

Finally, we give the semidefinite programming relaxation to MAX-CUT
that is equivalent to vector program 26.2.

maximize
1
2

∑
1≤i<j≤n

wij(1− yiyj) (26.4)

subject to y2
i = 1, vi ∈ V

Y / 0,

Y ∈ Mn.

26.4 Randomized rounding algorithm

We now present the algorithm for MAX-CUT. For convenience, let us assume
that we have an optimal solution to the vector program (26.2). The slight
inaccuracy in solving it can be absorbed into the approximation factor (see
Exercise 26.6). Let a1, . . . ,an be an optimal solution, and let OPTv denote its
objective function value. These vectors lie on the n-dimensional unit sphere
Sn−1. We need to obtain a cut (S, S) whose weight is a large fraction of
OPTv.

Let θij denote the angle between vectors ai and aj . The contribution of
this pair of vectors to OPTv is

wij
2

(1− cos θij).

Clearly, the closer θij is to π, the larger this contribution will be. In turn,
we would like vertices vi and vj to be separated if θij is large. The following
method accomplishes precisely this. Pick r to be a uniformly distributed
vector on the unit sphere Sn−1, and let S = {vi | ai · r ≥ 0}.

Lemma 26.6 Pr[vi and vj are separated] =
θij
π

.

Proof: Project r onto the plane containing vi and vj . Now, vertices vi and
vj will be separated iff the projection lies in one of the two arcs of angle θij
shown below.

26.4 Randomized rounding algorithm 261

θij

θij

v i

v j

Since r has been picked from a spherically symmetric distribution, its pro-
jection will be a random direction on this plane. The lemma follows. ✷

The next lemma shows how to generate vectors that are uniformly dis-
tributed on the unit sphere Sn−1.

Lemma 26.7 Let x1, . . . , xn be picked independently from the normal distri-
bution with mean 0 and unit standard deviation. Let d = (x2

1 + . . . + x2
n)

1/2.
Then, (x1/d, . . . , xn/d) is a random vector on the unit sphere Sn−1.

Proof: Consider the vector r = (x1, . . . , xn). The distribution function for
r has density

f(y1, . . . , yn) =
n∏
i=1

1√
2π

e−y2
i /2 =

1
(2π)n/2

e− 1
2

∑
i
y2

i .

Notice that the density function depends only on the distance of the point
from the origin. Therefore, the distribution of r is spherically symmetric.
Hence, dividing by the length of r, i.e., d, we get a random vector on Sn−1.

✷

The algorithm is summarized below.

Algorithm 26.8 (MAX-CUT)

1. Solve vector program (26.2). Let a1, . . . ,an be an optimal solution.
2. Pick r to be a uniformly distributed vector on the unit sphere Sn−1.
3. Let S = {vi | ai · r ≥ 0}.

Let W be the random variable denoting the weight of edges in the cut
picked by Algorithm 26.8, and let

α =
2
π

min
0≤θ≤π

θ

1− cos θ
.

262 26 Semidefinite Programming

One can show that α > 0.87856 (see Exercise 26.3).

Lemma 26.9 E[W] ≥ α ·OPTv.

Proof: By the definition of α we have that for any θ, 0 ≤ θ ≤ π,

θ

π
≥ α

(
1− cos θ

2

)
. (26.5)

Using this and Lemma 26.6, we get

E[W] =
∑

1≤i<j≤n
wijPr[vi and vj are separated]

=
∑

1≤i<j≤n
wij

θij
π

≥ α ·
∑

1≤i<j≤n

1
2
wij(1− cos θij) = α ·OPTv.

✷

Let us define the integrality gap for relaxation (26.2) to be

inf
I

OPT(I)
OPTv(I)

,

where the infimum is over all instances I of MAX-CUT.

Corollary 26.10 The integrality gap for relaxation (26.2) is at least α >
0.87856.

Theorem 26.11 There is a randomized approximation algorithm for MAX-
CUT achieving an approximation factor of 0.87856.

Proof: Let us first obtain a “high probability” statement using the bound
on expectation established in Lemma 26.9. Let T denote the sum of weights
of all edges in G, and define a so that E[W] = aT . Let

p = Pr[W < (1− ε)aT],

where ε > 0 is a constant. Since the random variable W is always bounded
by T , we get

aT ≤ p(1− ε)aT + (1− p)T.

Therefore,

p ≤ 1− a

1− a + aε
.

26.5 Improving the guarantee for MAX-2SAT 263

Now,

T ≥ E[W] = aT ≥ α ·OPTv ≥ α ·OPT ≥ αT

2
,

where the last inequality follows from the fact that OPT ≥ T/2 (see Exercise
2.1). Therefore, 1 ≥ a ≥ α/2. Using this upper and lower bound on a, we get

p ≤ 1− εα/2
1 + ε− α/2

≤ 1− c,

where

c =
εα/2

1 + ε− α/2
.

Run Algorithm 26.8 1/c times, and output the heaviest cut found in these
runs. Let W ′ be the weight of this cut. Then,

Pr[W ′ ≥ (1− ε)aT] ≥ 1− (1− c)1/c ≥ 1− 1
e
.

Since aT ≥ α · OPT > 0.87856 OPT, we can pick a value of ε > 0 so that
(1− ε)aT ≥ 0.87856 OPT. ✷

Example 26.12 The following example shows that the bound on the inte-
grality gap of relaxation (26.2) given in Corollary 26.10 is almost tight. Con-
sider a graph which is a 5-cycle v1, v2, v3, v4, v5, v1. Then, an optimal solution
to relaxation (26.2) is to place the five vectors in a 2-dimensional subspace
within which they are given by vi = (cos(4iπ

5), sin(4iπ
5)), for 1 ≤ i ≤ 5 (see

Exercise 26.5). The cost of this solution is OPTv = 5
2 (1 + cos π5) = 25+5

√
5

8 .
Since OPT = 4 for this graph, the integrality gap for this example is

32
25+5

√
5

= 0.88445.... ✷

26.5 Improving the guarantee for MAX-2SAT

MAX-2SAT is the restriction of MAX-SAT (Problem 16.1) to formulae in
which each clause contains at most two literals. In Chapter 16 we obtained
a factor 3/4 algorithm for this problem using randomization, followed by the
method of conditional expectation. We will give an improved algorithm using
semidefinite programming.

The key new idea needed is a way of converting the obvious quadratic
program (see Exercise 26.8) for this problem into a strict quadratic program.
We will accomplish this as follows. Corresponding to each Boolean variable

264 26 Semidefinite Programming

xi, introduce variable yi which is constrained to be either +1 or −1, for
1 ≤ i ≤ n. In addition, introduce another variable, say y0, which is also
constrained to be +1 or −1. Let us impose the convention that Boolean
variable xi is true if yi = y0 and false otherwise. Under this convention we
can write the value of a clause in terms of the yi’s, where the value, v(C), of
clause C is defined to be 1 if C is satisfied and 0 otherwise. Thus, for clauses
containing only one literal,

v(xi) =
1 + y0yi

2
and v(xi) =

1− y0yi
2

.

Consider a clause containing 2 literals, e.g., (xi ∨ xj). Its value is

v(xi ∨ xj) = 1− v(xi)v(xj) = 1− 1− y0yi
2

1− y0yj
2

=
1
4
(
3 + y0yi + y0yj − y2

0yiyj
)

=
1 + y0yi

4
+

1 + y0yj
4

+
1− yiyj

4
.

Observe that in this derivation we have used the fact that y2
0 = 1. In all

the remaining cases as well, it is easy to check that the value of a 2 literal
clause consists of a linear combination of terms of the form (1 + yiyj) or
(1− yiyj). Therefore, a MAX-2SAT instance can be written as the following
strict quadratic program, where the aij ’s and bij ’s are computed by collecting
terms appropriately.

maximize
∑

0≤i<j≤n
aij(1 + yiyj) + bij(1− yiyj) (26.6)

subject to y2
i = 1, 0 ≤ i ≤ n

yi ∈ Z, 0 ≤ i ≤ n

Following is the vector program relaxation for (26.6), where vector vari-
able vi corresponds to yi.

maximize
∑

0≤i<j≤n
aij(1 + vi · vj) + bij(1− vi · vj) (26.7)

subject to vi · vi = 1, 0 ≤ i ≤ n

vi ∈ Rn+1, 0 ≤ i ≤ n

The algorithm is similar to that for MAX-CUT. We solve vector program
(26.7). Let a0, . . . ,an be an optimal solution. Pick a vector r uniformly dis-
tributed on the unit sphere in (n + 1) dimensions, Sn, and let yi = 1 iff

26.6 Exercises 265

r · ai ≥ 0, for 0 ≤ i ≤ n. This gives a truth assignment for the Boolean
variables. Let W be the random variable denoting the weight of this truth
assignment.

Lemma 26.13 E[W] ≥ α ·OPTv.

Proof:

E[W] = 2
∑

0≤i<j≤n
aijPr[yi = yj] + bijPr[yi �= yj].

Let θij denote the angle between ai and aj . By inequality (26.5),

Pr[yi �= yj] =
θij
π

≥ α

2
(1− cos θij).

By Exercise 26.4,

Pr[yi = yj] = 1− θij
π

≥ α

2
(1 + cos θij).

Therefore,

E[W] ≥ α ·
∑

0≤i<j≤n
aij(1 + cos θij) + bij(1− cos θij) = α ·OPTv.

✷

26.6 Exercises

26.1 Is matrix W in Theorem 26.3 unique (up to multiplication by −1)?
Hint: Consider the matrix QDQT .

26.2 Let B be obtained from matrix A by throwing away a set of columns
and the corresponding set of rows. We will say that B is a principal submatrix
of A. Show that the following is another equivalent condition for a real sym-
metric matrix to be positive semidefinite: that all of its principal submatrices
have nonnegative determinants. (See Theorem 26.3 for other conditions.)

26.3 Show, using elementary calculus, that α > 0.87856.

26.4 Show that for any φ, 0 ≤ φ ≤ π,

1− φ

π
≥ α

2
(1 + cosφ).

