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Problem Definition
LP Relaxation

Terminology
Algorithm

Problem Definition

Problem Statement

1 We are given an undirected graph G = (V ,E), a cost function c : E →Q+, and a
collection of disjoint subsets of V , {S1, · · · ,Sk}

2 Our goal is to find a minimum cost subgraph in which each pair of vertices belonging to the
same set Si are connected.

3 We define a connectivity requirement function r : V ×V →{0,1} as follows:

r(u,v) =

{
1 if u and v belong to the same set Si

0 otherwise
(1)

4 An equivalent formulation of the Steiner forest problem is to find a minimum cost subgraph
H ⊆ G such that if r(u,v) = 1, then there exists a path from u to v in H, or in other words, if
r(u,v) = 1, then u and v are in the same connected component of H.
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Integer Programming Formulation

1 We define a function on all cuts in G, f : 2V →{0,1} as follows:

f (S) =

{
1 if ∃ u ∈ S and v ∈ S̄ such that r(u,v) = 1

0 otherwise
(2)

2 For S ⊆ V , let δ(S) denote the set of edges crossing the cut (S, S̄). f can be viewed as a
function on all cuts (S, S̄) in G, which specifies the minimum value of δ(S) in any feasible
solution.

3 For each edge e ∈ E we introduce the variable xe defined below:

xe =

{
1 if e is picked in the subgraph

0 otherwise
(3)
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Integer Program

Our integer program is: 
minimize ∑e∈E cexe

subject to ∑e:e∈δ(S) xe ≥ f (S),S ⊆ V

xe ∈ {0,1},e ∈ E

(4)
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LP Relaxation

Following our LP relaxation we drop the redundant conditions xe ≤ 1.
minimize ∑e∈E cexe

subject to ∑e:e∈δ(S) xe ≥ f (S),S ⊆ V

xe ≥ 0,e ∈ E

(5)
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Dual Program

Our dual program is: 
maximize ∑S⊆V f (S) · yS

subject to ∑S:e∈δ(S) yS ≤ ce,e ∈ E

yS ≥ 0,S ⊆ V

(6)

Yancey Steiner Forests



Problem Definition
LP Relaxation

Terminology
Algorithm

Integer Programming Formulation
LP Relaxation and Dual

Dual Program

Our dual program is: 

maximize ∑S⊆V f (S) · yS

subject to ∑S:e∈δ(S) yS ≤ ce,e ∈ E

yS ≥ 0,S ⊆ V

(6)

Yancey Steiner Forests



Problem Definition
LP Relaxation

Terminology
Algorithm

Integer Programming Formulation
LP Relaxation and Dual

Dual Program

Our dual program is: 
maximize ∑S⊆V f (S) · yS

subject to ∑S:e∈δ(S) yS ≤ ce,e ∈ E

yS ≥ 0,S ⊆ V

(6)

Yancey Steiner Forests



Problem Definition
LP Relaxation

Terminology
Algorithm

Integer Programming Formulation
LP Relaxation and Dual

Dual Program

Our dual program is: 
maximize ∑S⊆V f (S) · yS

subject to ∑S:e∈δ(S) yS ≤ ce,e ∈ E

yS ≥ 0,S ⊆ V

(6)

Yancey Steiner Forests



Problem Definition
LP Relaxation

Terminology
Algorithm

Integer Programming Formulation
LP Relaxation and Dual

Dual Program

Our dual program is: 
maximize ∑S⊆V f (S) · yS

subject to ∑S:e∈δ(S) yS ≤ ce,e ∈ E

yS ≥ 0,S ⊆ V

(6)

Yancey Steiner Forests



Problem Definition
LP Relaxation

Terminology
Algorithm

Terminology
Primal and Relaxed-dual Complementary Slackness Conditions

Outline

1 Problem Definition
2 LP Relaxation

Integer Programming Formulation
LP Relaxation and Dual

3 Terminology
Terminology

Primal and Relaxed-dual
Complementary Slackness Conditions

4 Algorithm
Description of Algorithm
Algorithm
Example
Analysis

Yancey Steiner Forests



Problem Definition
LP Relaxation

Terminology
Algorithm

Terminology
Primal and Relaxed-dual Complementary Slackness Conditions

Terminology

set S has been raised in a dual solution if yS > 0

edge e is tight if ∑S:e∈δ(S) yS = ce

at any iteration, set S is unsatisfied if f (S) = 1 but no picked edge crosses the cut (S, S̄)

set S is active if it is a minimal unsatisfied set in the current iteration.

Note

Notice that raising a set S for which f (S) = 0 does not affect the dual objective function. So
we can assume that such sets are never raised.
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Note

Notice that raising a set S for which f (S) = 0 does not affect the dual objective function. So
we can assume that such sets are never raised.
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Primal-dual Schema

Primal Conditions

1 For each e ∈ Ei ,xe = 1 implies ∑i:e∈δ(S) yS = ce

2 In other words, every picked edge must be tight.
3 The algorithm starts with null primal and dual solutions. At any given iteration, the current

primal solution indicates which sets need to be raised and the current dual solution
indicates which edge needs to be picked.
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Lemma 1

1 Set S is active iff it is a connected component in the currently picked forest and f (S) = 1.

Proof

Let S be an active set.

If S contains part of a connected component, then there would already be an edge crossing
the cut (S, S̄) which would contradict the fact that S is active.

So S must be a union of connected components.

Since f (S) = 1, there must be a vertices u ∈ S,v ∈ S̄ such that r(u,v) = 1.

Let S′ be the connected component that contains u, then S′ is also unsatisfied.

Since S is minimal, we must have S′ = S.

The reverse follows by the definition of an active set.
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Description of Algorithm

Description

1 By lemma 1, all active sets can be easily found in the current iteration.

2 The algorithm will then raise the dual variables of these sets in a synchronized manner until
some edge goes tight.

3 A tight edge is then picked arbitrarily and the iteration terminates.

4 This process ends when a primal feasible solution F is found.
5 However, F might contain redundant edges, that is, edges without which F would still be a

feasible solution.
6 So the algorithm drops all redundant edges and returns newly pruned F .
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Algorithm

2-Approximation Steiner Forest

1 (Initialization)
F ← /0
for each S ⊆ V , yS ← 0.

2 (Edge augmentation)
while there exists an unsatisfied set do:
simultaneously raise yS for each active set S, until some edge e goes tight: F ← F ∪{e}.

3 (Pruning)
return F ′ = {e ∈ F |F ′−{e} is primal unfeasible }
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Example

Consider the graph in figure 1. Costs of edges are marked, and the only nonzero
connectivity requirements are r(u,v) = 1 and r(s, t) = 1. Thick edges indicate an optimal
solution of cost 45.

In the first iteration, the following four singleton sets are active: {s},{t},{u}, and {v}.
When their dual variables are raised to 6 each, edge (u,a) and (v ,b) go tight.

One of them, say (u,a) is picked, and the iteration ends.

In the second iteration, {u,a} replaces {u} as an active set.

However, in this iteration, there is no need to raise duals, since there is already a tight
edge, (v ,b).

This edge is picked, and the iteration terminates.

The primal and dual solutions at this point are show in Figure 2, with picked edges marked
thick.

Yancey Steiner Forests



Problem Definition
LP Relaxation

Terminology
Algorithm

Description of Algorithm
Algorithm
Example
Analysis

Example

Consider the graph in figure 1.

Costs of edges are marked, and the only nonzero
connectivity requirements are r(u,v) = 1 and r(s, t) = 1. Thick edges indicate an optimal
solution of cost 45.

In the first iteration, the following four singleton sets are active: {s},{t},{u}, and {v}.
When their dual variables are raised to 6 each, edge (u,a) and (v ,b) go tight.

One of them, say (u,a) is picked, and the iteration ends.

In the second iteration, {u,a} replaces {u} as an active set.

However, in this iteration, there is no need to raise duals, since there is already a tight
edge, (v ,b).

This edge is picked, and the iteration terminates.

The primal and dual solutions at this point are show in Figure 2, with picked edges marked
thick.

Yancey Steiner Forests



Problem Definition
LP Relaxation

Terminology
Algorithm

Description of Algorithm
Algorithm
Example
Analysis

Example

Consider the graph in figure 1. Costs of edges are marked, and the only nonzero
connectivity requirements are r(u,v) = 1 and r(s, t) = 1.

Thick edges indicate an optimal
solution of cost 45.

In the first iteration, the following four singleton sets are active: {s},{t},{u}, and {v}.
When their dual variables are raised to 6 each, edge (u,a) and (v ,b) go tight.

One of them, say (u,a) is picked, and the iteration ends.

In the second iteration, {u,a} replaces {u} as an active set.

However, in this iteration, there is no need to raise duals, since there is already a tight
edge, (v ,b).

This edge is picked, and the iteration terminates.

The primal and dual solutions at this point are show in Figure 2, with picked edges marked
thick.

Yancey Steiner Forests



Problem Definition
LP Relaxation

Terminology
Algorithm

Description of Algorithm
Algorithm
Example
Analysis

Example

Consider the graph in figure 1. Costs of edges are marked, and the only nonzero
connectivity requirements are r(u,v) = 1 and r(s, t) = 1. Thick edges indicate an optimal
solution of cost 45.

In the first iteration, the following four singleton sets are active: {s},{t},{u}, and {v}.
When their dual variables are raised to 6 each, edge (u,a) and (v ,b) go tight.

One of them, say (u,a) is picked, and the iteration ends.

In the second iteration, {u,a} replaces {u} as an active set.

However, in this iteration, there is no need to raise duals, since there is already a tight
edge, (v ,b).

This edge is picked, and the iteration terminates.

The primal and dual solutions at this point are show in Figure 2, with picked edges marked
thick.

Yancey Steiner Forests



Problem Definition
LP Relaxation

Terminology
Algorithm

Description of Algorithm
Algorithm
Example
Analysis

Example

Consider the graph in figure 1. Costs of edges are marked, and the only nonzero
connectivity requirements are r(u,v) = 1 and r(s, t) = 1. Thick edges indicate an optimal
solution of cost 45.

In the first iteration, the following four singleton sets are active: {s},{t},{u}, and {v}.

When their dual variables are raised to 6 each, edge (u,a) and (v ,b) go tight.

One of them, say (u,a) is picked, and the iteration ends.

In the second iteration, {u,a} replaces {u} as an active set.

However, in this iteration, there is no need to raise duals, since there is already a tight
edge, (v ,b).

This edge is picked, and the iteration terminates.

The primal and dual solutions at this point are show in Figure 2, with picked edges marked
thick.

Yancey Steiner Forests



Problem Definition
LP Relaxation

Terminology
Algorithm

Description of Algorithm
Algorithm
Example
Analysis

Example

Consider the graph in figure 1. Costs of edges are marked, and the only nonzero
connectivity requirements are r(u,v) = 1 and r(s, t) = 1. Thick edges indicate an optimal
solution of cost 45.

In the first iteration, the following four singleton sets are active: {s},{t},{u}, and {v}.
When their dual variables are raised to 6 each, edge (u,a) and (v ,b) go tight.

One of them, say (u,a) is picked, and the iteration ends.

In the second iteration, {u,a} replaces {u} as an active set.

However, in this iteration, there is no need to raise duals, since there is already a tight
edge, (v ,b).

This edge is picked, and the iteration terminates.

The primal and dual solutions at this point are show in Figure 2, with picked edges marked
thick.

Yancey Steiner Forests



Problem Definition
LP Relaxation

Terminology
Algorithm

Description of Algorithm
Algorithm
Example
Analysis

Example

Consider the graph in figure 1. Costs of edges are marked, and the only nonzero
connectivity requirements are r(u,v) = 1 and r(s, t) = 1. Thick edges indicate an optimal
solution of cost 45.

In the first iteration, the following four singleton sets are active: {s},{t},{u}, and {v}.
When their dual variables are raised to 6 each, edge (u,a) and (v ,b) go tight.

One of them, say (u,a) is picked, and the iteration ends.

In the second iteration, {u,a} replaces {u} as an active set.

However, in this iteration, there is no need to raise duals, since there is already a tight
edge, (v ,b).

This edge is picked, and the iteration terminates.

The primal and dual solutions at this point are show in Figure 2, with picked edges marked
thick.

Yancey Steiner Forests



Problem Definition
LP Relaxation

Terminology
Algorithm

Description of Algorithm
Algorithm
Example
Analysis

Example

Consider the graph in figure 1. Costs of edges are marked, and the only nonzero
connectivity requirements are r(u,v) = 1 and r(s, t) = 1. Thick edges indicate an optimal
solution of cost 45.

In the first iteration, the following four singleton sets are active: {s},{t},{u}, and {v}.
When their dual variables are raised to 6 each, edge (u,a) and (v ,b) go tight.

One of them, say (u,a) is picked, and the iteration ends.

In the second iteration, {u,a} replaces {u} as an active set.

However, in this iteration, there is no need to raise duals, since there is already a tight
edge, (v ,b).

This edge is picked, and the iteration terminates.

The primal and dual solutions at this point are show in Figure 2, with picked edges marked
thick.

Yancey Steiner Forests



Problem Definition
LP Relaxation

Terminology
Algorithm

Description of Algorithm
Algorithm
Example
Analysis

Example

Consider the graph in figure 1. Costs of edges are marked, and the only nonzero
connectivity requirements are r(u,v) = 1 and r(s, t) = 1. Thick edges indicate an optimal
solution of cost 45.

In the first iteration, the following four singleton sets are active: {s},{t},{u}, and {v}.
When their dual variables are raised to 6 each, edge (u,a) and (v ,b) go tight.

One of them, say (u,a) is picked, and the iteration ends.

In the second iteration, {u,a} replaces {u} as an active set.

However, in this iteration, there is no need to raise duals, since there is already a tight
edge, (v ,b).

This edge is picked, and the iteration terminates.

The primal and dual solutions at this point are show in Figure 2, with picked edges marked
thick.

Yancey Steiner Forests



Problem Definition
LP Relaxation

Terminology
Algorithm

Description of Algorithm
Algorithm
Example
Analysis

Example

Consider the graph in figure 1. Costs of edges are marked, and the only nonzero
connectivity requirements are r(u,v) = 1 and r(s, t) = 1. Thick edges indicate an optimal
solution of cost 45.

In the first iteration, the following four singleton sets are active: {s},{t},{u}, and {v}.
When their dual variables are raised to 6 each, edge (u,a) and (v ,b) go tight.

One of them, say (u,a) is picked, and the iteration ends.

In the second iteration, {u,a} replaces {u} as an active set.

However, in this iteration, there is no need to raise duals, since there is already a tight
edge, (v ,b).

This edge is picked, and the iteration terminates.

The primal and dual solutions at this point are show in Figure 2, with picked edges marked
thick.

Yancey Steiner Forests



Problem Definition
LP Relaxation

Terminology
Algorithm

Description of Algorithm
Algorithm
Example
Analysis

Example

Consider the graph in figure 1. Costs of edges are marked, and the only nonzero
connectivity requirements are r(u,v) = 1 and r(s, t) = 1. Thick edges indicate an optimal
solution of cost 45.

In the first iteration, the following four singleton sets are active: {s},{t},{u}, and {v}.
When their dual variables are raised to 6 each, edge (u,a) and (v ,b) go tight.

One of them, say (u,a) is picked, and the iteration ends.

In the second iteration, {u,a} replaces {u} as an active set.

However, in this iteration, there is no need to raise duals, since there is already a tight
edge, (v ,b).

This edge is picked, and the iteration terminates.

The primal and dual solutions at this point are show in Figure 2, with picked edges marked
thick.

Yancey Steiner Forests



Problem Definition
LP Relaxation

Terminology
Algorithm

Description of Algorithm
Algorithm
Example
Analysis

Example cont.

In the third iteration, {v ,b} replaces {v} as an active set.

When the active sets are raised by 2 each, edge (u,s) goes tight and is picked.

In the fourth iteration, the active sets are {u,s,a},{v}, and {t}.
When they are raised by 1 each, edge (b, t) goes tight and is picked.

Figure 3 shows the current situation.

In the fifth iteration, the active sets are {a,s,u} and {b,v , t}.
When they are raised by 1 each, (u,v) goes tight, and we now have a primal feasible
solution shown in figure 4.

In the pruning step, edge (u,a) is deleted, and we obtain the following solution of cost 54.
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Lemma 2

At the end of the algorithm, F ′ and y are primal and dual feasible solutions, respectively.

Proof

1 At the end of Step 2, F satisfies all connectivity requirements (else another iteration would
follow).

2 In each iteration, only connected sets are raised, so no edge between two vertices in the
same component can go tight, and so F is acyclic, .e., it is a forest.

3 Hence, if r(u,v) = 1, there is a unique path from u to v in F , and each edge on this path is
nonredundant and will not be removed in Step 3.

4 Thus, F ′ is a feasible solution.
5 Now, when an edge goes tight, the current iteration terminates and active sets are

redefined, so no edge is overtightened.
6 This means that y is a feasible solution for the dual program.
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Lemma 3

Consider any iteration of the algorithm, and let C be a component w.r.t. the currently picked
edges. If f (C) = 0 then degF ′ (C) 6= 1.

Proof

1 Suppose, for the sake of contradiction, thatf (C) = 0, and degF ′ (C) = 1.

2 Let e be the unique edge of F ′ crossing the cut (C, C̄).
3 Since e ∈ F ′, we know that e is not redundant (every edge in F ′ is nonredundent), so there

exists vertices, u,v , such that r(u,v) = 1 and e is part of the unique path between them.

4 Since e is the only edge crossing the cut (C, C̄), it must be the case that one of these
vertices is in C and the other in C̄.

5 But we know r(u,v) = 1, so f (C) = 1, which is a contradiction.
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∑
e∈F ′

ce ≤ 2 ∑
S⊆V

yS (7)

Proof

1 Since every picked edge is tight, so

∑
e∈F ′

ce = ∑
e∈F ′

∑
S:e∈δ(S)

yS (8)

2 If we change the order of the summations, we get

∑
e∈F ′

ce = ∑
S⊆V

∑
e∈δ(S)∩F ′

yS = ∑
S⊆V

degF ′ (S) · yS (9)

3 It is therefore sufficient to show that

∑
S⊆V

degF ′ (S) · yS ≤ 2 ∑
S⊆V

yS (10)
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Proof cont.

We will prove that in each iteration, the change in the left hand side is at most the change in
the right hand side.

Consider an iteration and let4 be the amount by which the dual variables were raised in
this iteration. We want to prove that:

4× ∑
Sactive

degF ′ (S)≤ 24× (] active sets) (11)

or equivalently,
∑Sactive degF ′ (S)

] active sets
≤ 2 (12)

Let H = (V ,F ′) and consider the set of connected components w.r.t F at the current
iteration. Shrink each one of these components to a node and call the new graph H ′. Let V ′

and E ′ denote the set of vertices and edges of H ′, respectively. Notice that all vertices
picked before the current iteration have been shrunk. Further notice that if the node s ∈ V ′

corresponds to the connected component S in H, then

degF ′ (S) = degH ′ (s) (13)
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Call a node s ∈ H ′ active if it corresponds to an active set in H and inactive otherwise. We
want to prove that:

∑S active degH ′ (s)

] active nodes in H ′
≤ 2 (14)

or equivalently, that

∑
s∈V ′

degH ′ (s)− ∑
s inactive

degH ′ (s)≤ 2× (] active nodes in H ′) (15)

Notice that if s ∈ V ′ is an active node, then degH ′ (s)≥ 0 because there must be an edge
incident to it to satisfy connectivity requirements.

If s is inactive then by lemma 3 we know that degH ′ (s) 6= 1, so either degH ′ (s) = 0 or
degH ′ (s)≥ 2.
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Proof cont.

By the handshaking lemma we know that

∑
s∈V ′

degH ′ (s) = 2|E ′|= 2|V ′|−2× (] connected components of H ′)≤ 2|V ′| (16)

This inequality still holds if we remove isolated vertices from V ′ because each time we
remove an isolated vertex, both |V ′| and the number of connected components decrease
by 1.

So remove any isolated vertices from H ′; notice that any vertex we remove is inactive and
that the inactive nodes that remain have degree greater than or equal to 2. Thus

∑
s inactive

degH ′ (s)≥ 2× (] inactive nodes in H ′) (17)

This means that

∑
s∈V ′

degH ′ (s)− ∑
s inactive

degH ′ (s)≤ 2|V ′|−2× (] of inactive nodes in H ′) (18)

= 2× (] active nodes in H ′) (19)

Yancey Steiner Forests



Problem Definition
LP Relaxation

Terminology
Algorithm

Description of Algorithm
Algorithm
Example
Analysis

Proof cont.

By the handshaking lemma we know that

∑
s∈V ′

degH ′ (s) = 2|E ′|= 2|V ′|−2× (] connected components of H ′)≤ 2|V ′| (16)

This inequality still holds if we remove isolated vertices from V ′ because each time we
remove an isolated vertex, both |V ′| and the number of connected components decrease
by 1.

So remove any isolated vertices from H ′; notice that any vertex we remove is inactive and
that the inactive nodes that remain have degree greater than or equal to 2. Thus

∑
s inactive

degH ′ (s)≥ 2× (] inactive nodes in H ′) (17)

This means that

∑
s∈V ′

degH ′ (s)− ∑
s inactive

degH ′ (s)≤ 2|V ′|−2× (] of inactive nodes in H ′) (18)

= 2× (] active nodes in H ′) (19)

Yancey Steiner Forests



Problem Definition
LP Relaxation

Terminology
Algorithm

Description of Algorithm
Algorithm
Example
Analysis

Proof cont.

By the handshaking lemma we know that

∑
s∈V ′

degH ′ (s) = 2|E ′|= 2|V ′|−2× (] connected components of H ′)≤ 2|V ′| (16)

This inequality still holds if we remove isolated vertices from V ′ because each time we
remove an isolated vertex, both |V ′| and the number of connected components decrease
by 1.

So remove any isolated vertices from H ′; notice that any vertex we remove is inactive and
that the inactive nodes that remain have degree greater than or equal to 2. Thus

∑
s inactive

degH ′ (s)≥ 2× (] inactive nodes in H ′) (17)

This means that

∑
s∈V ′

degH ′ (s)− ∑
s inactive

degH ′ (s)≤ 2|V ′|−2× (] of inactive nodes in H ′) (18)

= 2× (] active nodes in H ′) (19)

Yancey Steiner Forests



Problem Definition
LP Relaxation

Terminology
Algorithm

Description of Algorithm
Algorithm
Example
Analysis

Proof cont.

By the handshaking lemma we know that

∑
s∈V ′

degH ′ (s) = 2|E ′|= 2|V ′|−2× (] connected components of H ′)≤ 2|V ′| (16)

This inequality still holds if we remove isolated vertices from V ′ because each time we
remove an isolated vertex, both |V ′| and the number of connected components decrease
by 1.

So remove any isolated vertices from H ′; notice that any vertex we remove is inactive and
that the inactive nodes that remain have degree greater than or equal to 2. Thus

∑
s inactive

degH ′ (s)≥ 2× (] inactive nodes in H ′) (17)

This means that

∑
s∈V ′

degH ′ (s)− ∑
s inactive

degH ′ (s)≤ 2|V ′|−2× (] of inactive nodes in H ′) (18)

= 2× (] active nodes in H ′) (19)

Yancey Steiner Forests



Problem Definition
LP Relaxation

Terminology
Algorithm

Description of Algorithm
Algorithm
Example
Analysis

Proof cont.

By the handshaking lemma we know that

∑
s∈V ′

degH ′ (s) = 2|E ′|= 2|V ′|−2× (] connected components of H ′)≤ 2|V ′| (16)

This inequality still holds if we remove isolated vertices from V ′ because each time we
remove an isolated vertex, both |V ′| and the number of connected components decrease
by 1.

So remove any isolated vertices from H ′;

notice that any vertex we remove is inactive and
that the inactive nodes that remain have degree greater than or equal to 2. Thus

∑
s inactive

degH ′ (s)≥ 2× (] inactive nodes in H ′) (17)

This means that

∑
s∈V ′

degH ′ (s)− ∑
s inactive

degH ′ (s)≤ 2|V ′|−2× (] of inactive nodes in H ′) (18)

= 2× (] active nodes in H ′) (19)

Yancey Steiner Forests



Problem Definition
LP Relaxation

Terminology
Algorithm

Description of Algorithm
Algorithm
Example
Analysis

Proof cont.

By the handshaking lemma we know that

∑
s∈V ′

degH ′ (s) = 2|E ′|= 2|V ′|−2× (] connected components of H ′)≤ 2|V ′| (16)

This inequality still holds if we remove isolated vertices from V ′ because each time we
remove an isolated vertex, both |V ′| and the number of connected components decrease
by 1.

So remove any isolated vertices from H ′; notice that any vertex we remove is inactive and
that the inactive nodes that remain have degree greater than or equal to 2.

Thus

∑
s inactive

degH ′ (s)≥ 2× (] inactive nodes in H ′) (17)

This means that

∑
s∈V ′

degH ′ (s)− ∑
s inactive

degH ′ (s)≤ 2|V ′|−2× (] of inactive nodes in H ′) (18)

= 2× (] active nodes in H ′) (19)

Yancey Steiner Forests



Problem Definition
LP Relaxation

Terminology
Algorithm

Description of Algorithm
Algorithm
Example
Analysis

Proof cont.

By the handshaking lemma we know that

∑
s∈V ′

degH ′ (s) = 2|E ′|= 2|V ′|−2× (] connected components of H ′)≤ 2|V ′| (16)

This inequality still holds if we remove isolated vertices from V ′ because each time we
remove an isolated vertex, both |V ′| and the number of connected components decrease
by 1.

So remove any isolated vertices from H ′; notice that any vertex we remove is inactive and
that the inactive nodes that remain have degree greater than or equal to 2. Thus

∑
s inactive

degH ′ (s)≥ 2× (] inactive nodes in H ′) (17)

This means that

∑
s∈V ′

degH ′ (s)− ∑
s inactive

degH ′ (s)≤ 2|V ′|−2× (] of inactive nodes in H ′) (18)

= 2× (] active nodes in H ′) (19)

Yancey Steiner Forests



Problem Definition
LP Relaxation

Terminology
Algorithm

Description of Algorithm
Algorithm
Example
Analysis

Proof cont.

By the handshaking lemma we know that

∑
s∈V ′

degH ′ (s) = 2|E ′|= 2|V ′|−2× (] connected components of H ′)≤ 2|V ′| (16)

This inequality still holds if we remove isolated vertices from V ′ because each time we
remove an isolated vertex, both |V ′| and the number of connected components decrease
by 1.

So remove any isolated vertices from H ′; notice that any vertex we remove is inactive and
that the inactive nodes that remain have degree greater than or equal to 2. Thus

∑
s inactive

degH ′ (s)≥ 2× (] inactive nodes in H ′) (17)

This means that

∑
s∈V ′

degH ′ (s)− ∑
s inactive

degH ′ (s)≤ 2|V ′|−2× (] of inactive nodes in H ′) (18)

= 2× (] active nodes in H ′) (19)

Yancey Steiner Forests



Problem Definition
LP Relaxation

Terminology
Algorithm

Description of Algorithm
Algorithm
Example
Analysis

Proof cont.

By the handshaking lemma we know that

∑
s∈V ′

degH ′ (s) = 2|E ′|= 2|V ′|−2× (] connected components of H ′)≤ 2|V ′| (16)

This inequality still holds if we remove isolated vertices from V ′ because each time we
remove an isolated vertex, both |V ′| and the number of connected components decrease
by 1.

So remove any isolated vertices from H ′; notice that any vertex we remove is inactive and
that the inactive nodes that remain have degree greater than or equal to 2. Thus

∑
s inactive

degH ′ (s)≥ 2× (] inactive nodes in H ′) (17)

This means that

∑
s∈V ′

degH ′ (s)− ∑
s inactive

degH ′ (s)≤ 2|V ′|−2× (] of inactive nodes in H ′) (18)

= 2× (] active nodes in H ′) (19)

Yancey Steiner Forests



Problem Definition
LP Relaxation

Terminology
Algorithm

Description of Algorithm
Algorithm
Example
Analysis

Proof cont.

By the handshaking lemma we know that

∑
s∈V ′

degH ′ (s) = 2|E ′|= 2|V ′|−2× (] connected components of H ′)≤ 2|V ′| (16)

This inequality still holds if we remove isolated vertices from V ′ because each time we
remove an isolated vertex, both |V ′| and the number of connected components decrease
by 1.

So remove any isolated vertices from H ′; notice that any vertex we remove is inactive and
that the inactive nodes that remain have degree greater than or equal to 2. Thus

∑
s inactive

degH ′ (s)≥ 2× (] inactive nodes in H ′) (17)

This means that

∑
s∈V ′

degH ′ (s)− ∑
s inactive

degH ′ (s)≤ 2|V ′|−2× (] of inactive nodes in H ′) (18)

= 2× (] active nodes in H ′) (19)

Yancey Steiner Forests



Problem Definition
LP Relaxation

Terminology
Algorithm

Description of Algorithm
Algorithm
Example
Analysis

Theorem

The algorithm given above is a 2-factor approximation algorithm to the Steiner forest problem.

Proof.

By lemma 2 we know that F ′ and y are primal and dual feasible solutions, respectively.

By
lemma 3, we know that ∑e∈F ′ ce ≤ 2∑s⊆V yS . Since no set S for which f (S) = 0 was ever
raised, we know that 2∑S⊆V yS = ∑S⊆V f (S) · yS . This is the dual objective function, which
means that if OPTf is the optimal solution to the dual program, then

∑
S⊆V

f (S) · yS ≤ OPTf (20)

But we know that the optimal solution to the fractional program is at most the optimal solution to
the integer program, so

2 ∑
e∈F ′

ce ≤ 2 ·OPTf ≤ 2 ·OPT (21)
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