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Problem Definition
The LP-relaxation and half-integrality

Algorithm

Steiner Network Problem

We are given:

an undirected graph G = (V ,E)

a cost function defined over edges, c : E →Q+

a connectivity requirement function r mapping unordered pairs of vertices to Z +

and a function u : E → Z+ ∪{∞} stating an upper bound on the number of copies of edge
e we are allowed to use

if ue = ∞, there is no upper bound for edge e.

We want to find a minimum cost multigraph on the vertex set V that has r(u,v) edge disjoint
paths for each pair of vertices u,v ∈ V . Each copy of edge e used for constructing this graph will
cost c(e).
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Problem Definition
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IP and LP formulations
Extreme point solution

Inter programming formulation

First we define a cut requirement function, f : 2V → Z+, as we did for the Steiner forest problem.

For every S ⊆ V , f (S) is defined to be the largest connectivity requirement separated by the cut
(S, S̄), i.e., f (S) = max{r(u,v)|u ∈ S and v ∈ S̄}.

Integer Program

Our integer program is:
minimize ∑e∈E cexe

subject to ∑e:e∈δ(S) xe ≥ f (S),S ⊆ V

xe ∈ Z+,e ∈ E and ue = ∞

xe ∈ {0,1, · · · ,ue},e ∈ E and ue 6= ∞

(1)

Yancey Steiner Networks



Problem Definition
The LP-relaxation and half-integrality

Algorithm

IP and LP formulations
Extreme point solution

Inter programming formulation

First we define a cut requirement function, f : 2V → Z+, as we did for the Steiner forest problem.
For every S ⊆ V , f (S) is defined to be the largest connectivity requirement separated by the cut
(S, S̄), i.e., f (S) = max{r(u,v)|u ∈ S and v ∈ S̄}.

Integer Program

Our integer program is:
minimize ∑e∈E cexe

subject to ∑e:e∈δ(S) xe ≥ f (S),S ⊆ V

xe ∈ Z+,e ∈ E and ue = ∞

xe ∈ {0,1, · · · ,ue},e ∈ E and ue 6= ∞

(1)

Yancey Steiner Networks



Problem Definition
The LP-relaxation and half-integrality

Algorithm

IP and LP formulations
Extreme point solution

Inter programming formulation

First we define a cut requirement function, f : 2V → Z+, as we did for the Steiner forest problem.
For every S ⊆ V , f (S) is defined to be the largest connectivity requirement separated by the cut
(S, S̄), i.e., f (S) = max{r(u,v)|u ∈ S and v ∈ S̄}.

Integer Program

Our integer program is:
minimize ∑e∈E cexe

subject to ∑e:e∈δ(S) xe ≥ f (S),S ⊆ V

xe ∈ Z+,e ∈ E and ue = ∞

xe ∈ {0,1, · · · ,ue},e ∈ E and ue 6= ∞

(1)

Yancey Steiner Networks



Problem Definition
The LP-relaxation and half-integrality

Algorithm

IP and LP formulations
Extreme point solution

Inter programming formulation

First we define a cut requirement function, f : 2V → Z+, as we did for the Steiner forest problem.
For every S ⊆ V , f (S) is defined to be the largest connectivity requirement separated by the cut
(S, S̄), i.e., f (S) = max{r(u,v)|u ∈ S and v ∈ S̄}.

Integer Program

Our integer program is:


minimize ∑e∈E cexe

subject to ∑e:e∈δ(S) xe ≥ f (S),S ⊆ V

xe ∈ Z+,e ∈ E and ue = ∞

xe ∈ {0,1, · · · ,ue},e ∈ E and ue 6= ∞

(1)

Yancey Steiner Networks



Problem Definition
The LP-relaxation and half-integrality

Algorithm

IP and LP formulations
Extreme point solution

Inter programming formulation

First we define a cut requirement function, f : 2V → Z+, as we did for the Steiner forest problem.
For every S ⊆ V , f (S) is defined to be the largest connectivity requirement separated by the cut
(S, S̄), i.e., f (S) = max{r(u,v)|u ∈ S and v ∈ S̄}.

Integer Program

Our integer program is:

minimize ∑e∈E cexe

subject to ∑e:e∈δ(S) xe ≥ f (S),S ⊆ V

xe ∈ Z+,e ∈ E and ue = ∞

xe ∈ {0,1, · · · ,ue},e ∈ E and ue 6= ∞

(1)

Yancey Steiner Networks



Problem Definition
The LP-relaxation and half-integrality

Algorithm

IP and LP formulations
Extreme point solution

Inter programming formulation

First we define a cut requirement function, f : 2V → Z+, as we did for the Steiner forest problem.
For every S ⊆ V , f (S) is defined to be the largest connectivity requirement separated by the cut
(S, S̄), i.e., f (S) = max{r(u,v)|u ∈ S and v ∈ S̄}.

Integer Program

Our integer program is:
minimize ∑e∈E cexe

subject to ∑e:e∈δ(S) xe ≥ f (S),S ⊆ V

xe ∈ Z+,e ∈ E and ue = ∞

xe ∈ {0,1, · · · ,ue},e ∈ E and ue 6= ∞

(1)

Yancey Steiner Networks



Problem Definition
The LP-relaxation and half-integrality

Algorithm

IP and LP formulations
Extreme point solution

Inter programming formulation

First we define a cut requirement function, f : 2V → Z+, as we did for the Steiner forest problem.
For every S ⊆ V , f (S) is defined to be the largest connectivity requirement separated by the cut
(S, S̄), i.e., f (S) = max{r(u,v)|u ∈ S and v ∈ S̄}.

Integer Program

Our integer program is:
minimize ∑e∈E cexe

subject to ∑e:e∈δ(S) xe ≥ f (S),S ⊆ V

xe ∈ Z+,e ∈ E and ue = ∞

xe ∈ {0,1, · · · ,ue},e ∈ E and ue 6= ∞

(1)

Yancey Steiner Networks



Problem Definition
The LP-relaxation and half-integrality

Algorithm

IP and LP formulations
Extreme point solution

Inter programming formulation

First we define a cut requirement function, f : 2V → Z+, as we did for the Steiner forest problem.
For every S ⊆ V , f (S) is defined to be the largest connectivity requirement separated by the cut
(S, S̄), i.e., f (S) = max{r(u,v)|u ∈ S and v ∈ S̄}.

Integer Program

Our integer program is:
minimize ∑e∈E cexe

subject to ∑e:e∈δ(S) xe ≥ f (S),S ⊆ V

xe ∈ Z+,e ∈ E and ue = ∞

xe ∈ {0,1, · · · ,ue},e ∈ E and ue 6= ∞

(1)

Yancey Steiner Networks



Problem Definition
The LP-relaxation and half-integrality

Algorithm

IP and LP formulations
Extreme point solution

Inter programming formulation

First we define a cut requirement function, f : 2V → Z+, as we did for the Steiner forest problem.
For every S ⊆ V , f (S) is defined to be the largest connectivity requirement separated by the cut
(S, S̄), i.e., f (S) = max{r(u,v)|u ∈ S and v ∈ S̄}.

Integer Program

Our integer program is:
minimize ∑e∈E cexe

subject to ∑e:e∈δ(S) xe ≥ f (S),S ⊆ V

xe ∈ Z+,e ∈ E and ue = ∞

xe ∈ {0,1, · · · ,ue},e ∈ E and ue 6= ∞

(1)

Yancey Steiner Networks



Problem Definition
The LP-relaxation and half-integrality

Algorithm

IP and LP formulations
Extreme point solution

LP-relaxation

Our LP program is: 
minimize ∑e∈E cexe

subject to ∑e:e∈δ(S) xe ≥ f (S),S ⊆ V

xe ≥ 0,e ∈ E and ue = ∞

ue ≥ xe ≥ 0,e ∈ E and ue 6= ∞

(2)

Notes

As shown in previous lectures, certain NP-hard problems, such as vertex cover, admit
LP-relaxations having the property that they always have a half-integral optimal solution.

Rounding up all halves to 1 in such a solution leads to a factor 2 approximation algorithm.

Does relaxation have this property? The following lemma shows that the answer is ”no”
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Lemma 1

Consider the Petersen graph with a connectivity requirement of 1 between each pair of vertices
and with each edge of unit cost.

Relaxation does not have a half-integral optimal solution for this
instance.

Proof.

Consider the fractional solution xe = 1/3 for each edge e.

Since the Petersen graph is 3-edge connected, this is a feasible solution.

The cost of this solution is 5.

In any feasible solution, the sum of edge variables incident at any vertex must be at least 1,
to allow connectivity to the other vertices.

Therefore, any feasible solution must have cost at least 5.

Hence, the solution given above is in fact optimal.

Any solution with xe = 1 for some edge e must have cost exceeding 5, since additional
edges are required to connect the endpoints of e to the rest of the graph.

Therefore, any half integral solution of cost 5 would have to pick, to the extent of one half
each, the edges of a Hamiltonian cycle.

Since the Petersen graph has no Hamiltonian cycles, there is no half-integral optimal
solution.
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Extreme point solution

Let us say that an extreme point solution for an LP is a feasible solution that cannot be
written as the convex combination of two feasible solutions.

The solution xe = 1/3, for each edge e, is not an extreme point solution.

An extreme point optimal solution is shown in figure 1.

Thick edges are picked to the extent of 1/2, thin edges to the extent of 1/4, and the missing
edges is not picked.

The isomophism group of the Petersen graph is edge-transitive, and there are 15 related
extreme point solutions.

The solution xe = 1/3 for each edge e is the average of these.
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Extreme point solution cont.

Although the extreme point solution is not half-integral, it picks some edges to the extent of
half.

We show that this is a property of any extreme point solution to our LP.

We obtain a 2-algorithm by rounding up these edges and iterating.

Let H be the set of edges picked by the algorithm at some point.

Then, the residual requirement of cut (S, S̄) is f ′(S) = f (S)−|δH (S)|, where δH (S)
represents the set of edges of H crossing the cut (S, S̄).

In general, the residual cut requirement function, f ′, may not correspond to the cut
requirement function for nay set of connectivity requirements.

We will need the following definitions to characterize it:
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Remark

Sometimes submodularity is defined only with the first condition.

We will need to work with the stronger definition given prior.

Two subsets of V ,A and B, are said to cross if each of the sets, A−B,B−A, and A∩B, is
nonempty.

If A and B don’t cross then either they are disjoint or one of these sets is contained in the
other.

Definitions

Function f : 2V → Z+ is said to be submodular if f (V) = 0, and for every two sets A,B ⊆ V , the
following two conditions hold:

f (A) + f (B)≥ f (A∩B) + f (A∪B)

f (A)f (B)≥ f (A−B) + f (B−A)
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Lemma 2

For any graph G on vertex set V , the function |δG(.)| is submodular.

Proof.

If sets A and B do not cross, then the two conditions given in the definition of submodular
functions hold trivially.

Otherwise, edges having one endpoint in A∩B and the other in ¯A∪B (edge e1 in figure 2)
contribute to δ(A) and δ(B) but not to δ(A−B) or δ(B−A).

Similarly, edge e2 below does not contribute to δ(A∩B) or to δ(A∪B).

The remaining edges contribute equally to both sides of both conditions.
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Weakly submodular

Function f : 2V → Z is said to be weakly submodular if f (V) = 0 and for every two sets
A,B ⊆ V , at least one of the following holds:

f (A) + f (B)≤ f (A−B) + f (A−B)

f (A)f (B)≤ f (A∩B) + f (B∪A)

It is easy to check that the original cut requirement function is weakly supermodular; by the
following lemma, so is the residual cut requirement function f ′.
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Lemma 3

Let H be a subgraph of G. If f : 2V(G)→ Z+ is a weakly supermodular function, then so is the
residual cut requirement function f ′.

Proof.

Suppose f (A) + f (B)≤ f (A−B) + f (B−A); the proof of the other case is similar. By lemma 2
|δH (A)|+ |δH (B)| ≥ |δH (A−B)|+ |δH (B−A)|. Subtracting, we get
f ′(A) + f ′(B)≤ f ′(A−B) + f ′(B−A).

Theorem 1

For any weakly supermodular function f , any extreme point solution, x , to our LP must pick some
edge to the extent of at least a half, i.e., xe ≥ 1/2 for at least one edge e.
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Iterated Rounding

1 Initialization: H← /0 : f ′← f .

2 While f ′ 6≡ 0, do:
Find an extreme optimal solution, x , to LP with cut requirements given by f ′.
For each edge e such that xe ≥ 1/2, include dxee copies of e in H, and decrement ue by
this amount.
Update f ′ : for S ⊆ V , f ′(S)← f (S)−|δH (S)|.

3 Output H.
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Note

The above algorithm achieves an approximation guarantee of factor 2 for an arbitrary
weakly supermodular function f .

To establish a polynomial running time involves showing that an extreme optimal solution to
LP can be found efficiently.

If f is the original cut requirement function for some connectivity requirements, then a
polynomial time implementation follows from the existence of a polynomial time separation
oracle for each iteration.
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Discussion

For the first iteration, a separation oracle follows from a max-flow subroutine.

Given a solution x , construct a graph on vetex set V with capactiy xe for each edge e.

Then, for each pair of vertices u,v ∈ V , check if this graph admits a flow of at least r(u,v)
from u to v .

If not, we will get a violated cut, i.e., a cut (S, S̄) such that δx (S) < f (S), where

δx (S) = ∑
e:e∈δ(S)

xe. (3)

Let f ′ be the cut requirement function of a subsequent iteration.

Given a solution to LP for this function, say x ′, define x as follows: for each edge
e,xe = x ′e + eH , where eH is the number of copies of edge e in H.
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The following lemma shows that a separation oracle for the original function f leads to a
separation oracle for f ′.

Furthermore, this lemma also shows that there is no need to update f ′ explicitly after each
iteration.

Lemma 4

A cut (S, S̄) is violated by solution x ′ under cut requirement function f ′ iff it is violated by solution
x under cut requirement function f .

Proof.

Notice that δx (S) = δx ′ (S) + |δH (S)|. Since f (S) = f ′(S) + |δH (S)|,δx (S)≥ iff
δx ′ (S)≥ f ′(S).
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2-Approximation Guarantee

Lemma 4 implies that solution x ′ is feasible for the cut requirement function f ′ iff solution x is
feasible for f. Assuming Theorem 1, which we will provide below, let us show that our algorithm
achieves an approximation guarantee of 2.

Theorem 2

Our Algorithm achieves an approximation guarantee of 2 for the Steiner network problem.
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Proof.

By induction on the number of iterations executed by the algorithm when run with a weakly
supermodular cut requirement function f , we will prove that the cost of the integral solution
obtained is within a factor two of the cost of the optimal fractional solution. For the base case, if f
requires one iteration, the claim follows, since the algorithm rounds up only edges e with
xe ≥ 1/2.
For the induction step, assume that x is the extreme optimal solution obtained in the first iteration.
Obtain x̂ from x by zeroing out components that are strictly smaller than 1/2. By Theorem 1,
x̂ 6= 0. Let H be the set of edges picked in the first iteration. Since H is obtained by rounding up
nonzero components of x̂ and each of these components is ≥ /2, cost(H)≤ 2·cost(x̂).
Let f ′ be the residual requirement function after the first iteration and H ′ be the set of edges
picked in subsequent iterations for satisfying f ′. The key observation is that x− x̂ is a feasible
solution for f ′, and thus by the induction hypothesis, cost(H ′)≤ 2·cost(x− x̂). Let us denote
H + H ′ the edges of H together with those of H ′. Clearly, H + H ′ satisfies f . Now,

cost(H + H ′)≤ cost(H) + cost(H ′) (4)

≤ 2 · cost(x̂) + 2 · cost(x− x̂)≤ 2 · cost(x) (5)
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