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Definition (Minimum Multicut)

We are given an undirected graph G = (V ,E) where each edge e ∈ E has a non-negative
capacity ce and a set of set of vertex pairs S = {(s1, t1), . . . ,(sk , tk )}.

The minimum multicut is
the set of edges with minimum total capacity that separates each si from its corresponding ti .

Definition (Maximum Integer Multicommodity Flow)

We are given a graph G and set of vertex pairs S as in the multicut problem. If each (si , ti) pair is
assigned its own commodity then the goal is to maximize the total flow of the system when an
integral amount each commodity is routed.
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Restriction

We are only looking at finding the minimum multicut and maximum integer multicommodity flow
for trees.

Since G is a tree there is a unique path, pi , from si to ti and removing any edge in pi
constitutes a si , ti cut.

Minimum Multicut

The minimum multicut problem for trees can be formulated as the following IP:

min ∑
e∈E

ce · xe

∑
e∈pi

xe ≥ 1 i ∈ {1, . . . ,k}

xe ∈ {0,1} e ∈ E
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LP relaxation

This can be relaxed to the following LP:

min ∑
e∈E

ce · xe

∑
e∈pi

xe ≥ 1 i ∈ {1, . . . ,k}

xe ≥ 0 e ∈ E

Dual

We can construct the dual LP which is:

max
k

∑
i=1

fi

∑
i:e∈pi

fi ≤ ce e ∈ E

fi ≥ 0 i ∈ {1, . . . ,k}

This is precisely the fractional version of the multicommodity flow problem.
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Primal-Dual Schema

We will construct a primal-dual schema based algorithm that will find a multicut and integer
multicommodity flow that are within a factor 2 of each other.

Thus this algorithm will serve as
both a factor 2 approximation for the minimum multicut and a factor 1

2 approximation for the
maximum integer multicommodity flow.
We will treat multicut as the primal problem and ensure primal complementary slackness, α = 1,
while relaxing dual complementary slackness, β = 2.

Primal Conditions

For each edge e ∈ E , we must have that xe 6= 0→ ∑i:e∈pi
fi = ce .

Relaxed Dual Conditions

For each i ∈ {1, . . . ,k}, we must have that fi 6= 0→ ∑e∈pi
xe ≤ 2.
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Root

Choose an arbitrary vertex, r , in G to be the root.

Definition (Depth (vertex))

The depth of a vertex v ∈ V is the length of the unique path from v to r .

Definition (Lowest Common Ancestor)

The lowest common ancestor of a pair of verticies u,v ∈ V , lca(u,v), is the vertex along the
unique path from u to v of minimum depth.

Definition (Depth (edge))

Given two edges e1 and e2 along the path from a vertex v to the root, r , the edge e1 is deeper
than e2 if e1 occurs before e2 along the path.
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Note

In the algorithm f represents the multicommodity flow and D represents the edges in the multicut.

Algorithm

1 f = 0 and D = /0.
2 For each vertex v in non-increasing order of depth.

1 For each pair (si , ti ) such that lca(si , ti ) = v , greedily route integral flow from si to ti .
2 Add all saturated edges to D.

3 Let e1, . . .el be the order in which the edges were added to D.

4 For each j = l, . . . ,1 if removing ej from D preserves the cut remove it.
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Theorem

Let (si , ti) be a pair of verticies such that fi 6= 0 and let v = lca(si , ti). We have that at most one
edge on the path from si to v is in D and at most one edge from ti to v is in D.

Proof.

Suppose otherwise, thus without loss of generality we can assume that the path from si to
v contains at least 2 edges, e1 and e2.

Let e1 be the deeper of the two edges.

Consider the moment in the algorithm when e1 is being considered for removal

It was not removed there must exist a pair of verticies (sj , tj) such that e1 is the only edge
in D along the path from si to ti .

e2 is not along this path.

We must have that u = lca(sj , tj) is deeper in the tree than v .

When the algorithm processed the vertex u an edge e3 along the path from sj to tj must
have been added to D.

Later non-zero flow was routed through e1 so e3 6= e1.

e1 was added to D after e3 so would have been considered for removal earlier.

This contradicts the fact that it was the only edge along the path from sj to tj .
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Theorem

The algorithm obtains an approximation factor of 2 for multicut and 1
2 for integer multicommodity

flows.

Proof.

The flow generated after all vericies have been processed is maximal.

D contains all saturated edges and so is a valid multicut.

We remove edges from D only if it still remains a valid multicut.

Each edge in D is saturated so the primal slackness condition is satisfied.

Each path with non-zero flow has at most two edges in D so the relaxed dual slackness
condition is satisfied.

The capacity of the multicut is at most twice the flow.
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