
Outline

Scheduling on Unrelated Parallel Machines

Piotr Wojciechowski1

1Lane Department of Computer Science and Electrical Engineering
West Virginia University

April 17, 2014

Wojciechowski UPM

Outline

Outline

1 Scheduling on Unrelated Parallel Machines
Definition
IP formuation
Algorithm

Wojciechowski UPM

UPM
Definition
IP
Algorithm

Outline

1 Scheduling on Unrelated Parallel Machines
Definition
IP formuation
Algorithm

Wojciechowski UPM

UPM
Definition
IP
Algorithm

Definition

We are given a set of n jobs J = {j1, . . . , jn},

a set of m machines M{m1, . . . ,mn}, and a time
matrix P where pij is the time it takes the i th machine to run the j th job. Our goal is to schedule
the jobs to that the makespan is minimized.

Note

This is a generalization of minimum makespan scheduling in which the running time for each job
depends on the machine to which it is assigned. A opposed to the PTAS obtained for the original
problem we will demonstrate a 2-approximation.

Wojciechowski UPM

UPM
Definition
IP
Algorithm

Definition

We are given a set of n jobs J = {j1, . . . , jn}, a set of m machines M{m1, . . . ,mn},

and a time
matrix P where pij is the time it takes the i th machine to run the j th job. Our goal is to schedule
the jobs to that the makespan is minimized.

Note

This is a generalization of minimum makespan scheduling in which the running time for each job
depends on the machine to which it is assigned. A opposed to the PTAS obtained for the original
problem we will demonstrate a 2-approximation.

Wojciechowski UPM

UPM
Definition
IP
Algorithm

Definition

We are given a set of n jobs J = {j1, . . . , jn}, a set of m machines M{m1, . . . ,mn}, and a time
matrix P where pij is the time it takes the i th machine to run the j th job.

Our goal is to schedule
the jobs to that the makespan is minimized.

Note

This is a generalization of minimum makespan scheduling in which the running time for each job
depends on the machine to which it is assigned. A opposed to the PTAS obtained for the original
problem we will demonstrate a 2-approximation.

Wojciechowski UPM

UPM
Definition
IP
Algorithm

Definition

We are given a set of n jobs J = {j1, . . . , jn}, a set of m machines M{m1, . . . ,mn}, and a time
matrix P where pij is the time it takes the i th machine to run the j th job. Our goal is to schedule
the jobs to that the makespan is minimized.

Note

This is a generalization of minimum makespan scheduling in which the running time for each job
depends on the machine to which it is assigned. A opposed to the PTAS obtained for the original
problem we will demonstrate a 2-approximation.

Wojciechowski UPM

UPM
Definition
IP
Algorithm

Definition

We are given a set of n jobs J = {j1, . . . , jn}, a set of m machines M{m1, . . . ,mn}, and a time
matrix P where pij is the time it takes the i th machine to run the j th job. Our goal is to schedule
the jobs to that the makespan is minimized.

Note

This is a generalization of minimum makespan scheduling in which the running time for each job
depends on the machine to which it is assigned.

A opposed to the PTAS obtained for the original
problem we will demonstrate a 2-approximation.

Wojciechowski UPM

UPM
Definition
IP
Algorithm

Definition

We are given a set of n jobs J = {j1, . . . , jn}, a set of m machines M{m1, . . . ,mn}, and a time
matrix P where pij is the time it takes the i th machine to run the j th job. Our goal is to schedule
the jobs to that the makespan is minimized.

Note

This is a generalization of minimum makespan scheduling in which the running time for each job
depends on the machine to which it is assigned. A opposed to the PTAS obtained for the original
problem we will demonstrate a 2-approximation.

Wojciechowski UPM

UPM
Definition
IP
Algorithm

Outline

1 Scheduling on Unrelated Parallel Machines
Definition
IP formuation
Algorithm

Wojciechowski UPM

UPM
Definition
IP
Algorithm

Properties

The integer program for scheduling on unrelated parallel machines need to encode the following
properties:

1 Each job can be scheduled on at most one machine.

2 If job jj is scheduled on the mi machine the running time is pij .
3 We want to minimize the longest total running time over all machines.

Wojciechowski UPM

UPM
Definition
IP
Algorithm

Properties

The integer program for scheduling on unrelated parallel machines need to encode the following
properties:

1 Each job can be scheduled on at most one machine.

2 If job jj is scheduled on the mi machine the running time is pij .
3 We want to minimize the longest total running time over all machines.

Wojciechowski UPM

UPM
Definition
IP
Algorithm

Properties

The integer program for scheduling on unrelated parallel machines need to encode the following
properties:

1 Each job can be scheduled on at most one machine.

2 If job jj is scheduled on the mi machine the running time is pij .

3 We want to minimize the longest total running time over all machines.

Wojciechowski UPM

UPM
Definition
IP
Algorithm

Properties

The integer program for scheduling on unrelated parallel machines need to encode the following
properties:

1 Each job can be scheduled on at most one machine.

2 If job jj is scheduled on the mi machine the running time is pij .
3 We want to minimize the longest total running time over all machines.

Wojciechowski UPM

UPM
Definition
IP
Algorithm

IP formulation

This problem can be represented by the following integer program where the variable xij is 1 if
job jj is assigned to machine mi :

min t

∑
i∈M

xij = 1 j ∈ J

∑
j∈J

xij ·pij ≤ t i ∈M

xij ∈ {0,1} i ∈M, j ∈ J

Integrality Gap

The main issue with this formulation is that it has an unbounded integrality gap. For example
consider trying to schedule one job on m machines where pi1 = m for all i ∈M.

Wojciechowski UPM

UPM
Definition
IP
Algorithm

IP formulation

This problem can be represented by the following integer program where the variable xij is 1 if
job jj is assigned to machine mi :

min t

∑
i∈M

xij = 1 j ∈ J

∑
j∈J

xij ·pij ≤ t i ∈M

xij ∈ {0,1} i ∈M, j ∈ J

Integrality Gap

The main issue with this formulation is that it has an unbounded integrality gap. For example
consider trying to schedule one job on m machines where pi1 = m for all i ∈M.

Wojciechowski UPM

UPM
Definition
IP
Algorithm

IP formulation

This problem can be represented by the following integer program where the variable xij is 1 if
job jj is assigned to machine mi :

min t

∑
i∈M

xij = 1 j ∈ J

∑
j∈J

xij ·pij ≤ t i ∈M

xij ∈ {0,1} i ∈M, j ∈ J

Integrality Gap

The main issue with this formulation is that it has an unbounded integrality gap. For example
consider trying to schedule one job on m machines where pi1 = m for all i ∈M.

Wojciechowski UPM

UPM
Definition
IP
Algorithm

IP formulation

This problem can be represented by the following integer program where the variable xij is 1 if
job jj is assigned to machine mi :

min t

∑
i∈M

xij = 1 j ∈ J

∑
j∈J

xij ·pij ≤ t i ∈M

xij ∈ {0,1} i ∈M, j ∈ J

Integrality Gap

The main issue with this formulation is that it has an unbounded integrality gap. For example
consider trying to schedule one job on m machines where pi1 = m for all i ∈M.

Wojciechowski UPM

UPM
Definition
IP
Algorithm

IP formulation

This problem can be represented by the following integer program where the variable xij is 1 if
job jj is assigned to machine mi :

min t

∑
i∈M

xij = 1 j ∈ J

∑
j∈J

xij ·pij ≤ t i ∈M

xij ∈ {0,1} i ∈M, j ∈ J

Integrality Gap

The main issue with this formulation is that it has an unbounded integrality gap. For example
consider trying to schedule one job on m machines where pi1 = m for all i ∈M.

Wojciechowski UPM

UPM
Definition
IP
Algorithm

IP formulation

This problem can be represented by the following integer program where the variable xij is 1 if
job jj is assigned to machine mi :

min t

∑
i∈M

xij = 1 j ∈ J

∑
j∈J

xij ·pij ≤ t i ∈M

xij ∈ {0,1} i ∈M, j ∈ J

Integrality Gap

The main issue with this formulation is that it has an unbounded integrality gap.

For example
consider trying to schedule one job on m machines where pi1 = m for all i ∈M.

Wojciechowski UPM

UPM
Definition
IP
Algorithm

IP formulation

This problem can be represented by the following integer program where the variable xij is 1 if
job jj is assigned to machine mi :

min t

∑
i∈M

xij = 1 j ∈ J

∑
j∈J

xij ·pij ≤ t i ∈M

xij ∈ {0,1} i ∈M, j ∈ J

Integrality Gap

The main issue with this formulation is that it has an unbounded integrality gap. For example
consider trying to schedule one job on m machines where pi1 = m for all i ∈M.

Wojciechowski UPM

UPM
Definition
IP
Algorithm

Parametric Pruning

We can avoid this situation by making the LP unable to schedule jobs longer than the total
makespan.

This cannot be done in a single LP but can be expressed as a family of Linear
Programs.

Pruned LPs

The new linear programs take the following form:

1 For T ∈ Z+ create the set of machine-job pairs ST = {(i, j) : xij ≤ T}.
2 Create the linear program LP(T) defined as

∑
i:(i,j)∈ST

xij = 1 j ∈ J

∑
j:(i,j)∈ST

xij ·pij ≤ t i ∈M

xij ≥ 0 (i, j) ∈ ST

Our goal is to find the smallest T such that LP(T) is feasible, call this value T ∗ (note that T ∗ is
still a lower bound for OPT). We will then take an extreme point solution to LP(T ∗) and round it
to obtain an integer solution with makespan no more than 2 ·T ∗.

Wojciechowski UPM

UPM
Definition
IP
Algorithm

Parametric Pruning

We can avoid this situation by making the LP unable to schedule jobs longer than the total
makespan. This cannot be done in a single LP but can be expressed as a family of Linear
Programs.

Pruned LPs

The new linear programs take the following form:

1 For T ∈ Z+ create the set of machine-job pairs ST = {(i, j) : xij ≤ T}.
2 Create the linear program LP(T) defined as

∑
i:(i,j)∈ST

xij = 1 j ∈ J

∑
j:(i,j)∈ST

xij ·pij ≤ t i ∈M

xij ≥ 0 (i, j) ∈ ST

Our goal is to find the smallest T such that LP(T) is feasible, call this value T ∗ (note that T ∗ is
still a lower bound for OPT). We will then take an extreme point solution to LP(T ∗) and round it
to obtain an integer solution with makespan no more than 2 ·T ∗.

Wojciechowski UPM

UPM
Definition
IP
Algorithm

Parametric Pruning

We can avoid this situation by making the LP unable to schedule jobs longer than the total
makespan. This cannot be done in a single LP but can be expressed as a family of Linear
Programs.

Pruned LPs

The new linear programs take the following form:

1 For T ∈ Z+ create the set of machine-job pairs ST = {(i, j) : xij ≤ T}.
2 Create the linear program LP(T) defined as

∑
i:(i,j)∈ST

xij = 1 j ∈ J

∑
j:(i,j)∈ST

xij ·pij ≤ t i ∈M

xij ≥ 0 (i, j) ∈ ST

Our goal is to find the smallest T such that LP(T) is feasible, call this value T ∗ (note that T ∗ is
still a lower bound for OPT). We will then take an extreme point solution to LP(T ∗) and round it
to obtain an integer solution with makespan no more than 2 ·T ∗.

Wojciechowski UPM

UPM
Definition
IP
Algorithm

Parametric Pruning

We can avoid this situation by making the LP unable to schedule jobs longer than the total
makespan. This cannot be done in a single LP but can be expressed as a family of Linear
Programs.

Pruned LPs

The new linear programs take the following form:

1 For T ∈ Z+ create the set of machine-job pairs ST = {(i, j) : xij ≤ T}.

2 Create the linear program LP(T) defined as

∑
i:(i,j)∈ST

xij = 1 j ∈ J

∑
j:(i,j)∈ST

xij ·pij ≤ t i ∈M

xij ≥ 0 (i, j) ∈ ST

Our goal is to find the smallest T such that LP(T) is feasible, call this value T ∗ (note that T ∗ is
still a lower bound for OPT). We will then take an extreme point solution to LP(T ∗) and round it
to obtain an integer solution with makespan no more than 2 ·T ∗.

Wojciechowski UPM

UPM
Definition
IP
Algorithm

Parametric Pruning

We can avoid this situation by making the LP unable to schedule jobs longer than the total
makespan. This cannot be done in a single LP but can be expressed as a family of Linear
Programs.

Pruned LPs

The new linear programs take the following form:

1 For T ∈ Z+ create the set of machine-job pairs ST = {(i, j) : xij ≤ T}.
2 Create the linear program LP(T) defined as

∑
i:(i,j)∈ST

xij = 1 j ∈ J

∑
j:(i,j)∈ST

xij ·pij ≤ t i ∈M

xij ≥ 0 (i, j) ∈ ST

Our goal is to find the smallest T such that LP(T) is feasible, call this value T ∗ (note that T ∗ is
still a lower bound for OPT). We will then take an extreme point solution to LP(T ∗) and round it
to obtain an integer solution with makespan no more than 2 ·T ∗.

Wojciechowski UPM

UPM
Definition
IP
Algorithm

Parametric Pruning

We can avoid this situation by making the LP unable to schedule jobs longer than the total
makespan. This cannot be done in a single LP but can be expressed as a family of Linear
Programs.

Pruned LPs

The new linear programs take the following form:

1 For T ∈ Z+ create the set of machine-job pairs ST = {(i, j) : xij ≤ T}.
2 Create the linear program LP(T) defined as

∑
i:(i,j)∈ST

xij = 1 j ∈ J

∑
j:(i,j)∈ST

xij ·pij ≤ t i ∈M

xij ≥ 0 (i, j) ∈ ST

Our goal is to find the smallest T such that LP(T) is feasible, call this value T ∗ (note that T ∗ is
still a lower bound for OPT). We will then take an extreme point solution to LP(T ∗) and round it
to obtain an integer solution with makespan no more than 2 ·T ∗.

Wojciechowski UPM

UPM
Definition
IP
Algorithm

Parametric Pruning

We can avoid this situation by making the LP unable to schedule jobs longer than the total
makespan. This cannot be done in a single LP but can be expressed as a family of Linear
Programs.

Pruned LPs

The new linear programs take the following form:

1 For T ∈ Z+ create the set of machine-job pairs ST = {(i, j) : xij ≤ T}.
2 Create the linear program LP(T) defined as

∑
i:(i,j)∈ST

xij = 1 j ∈ J

∑
j:(i,j)∈ST

xij ·pij ≤ t i ∈M

xij ≥ 0 (i, j) ∈ ST

Our goal is to find the smallest T such that LP(T) is feasible, call this value T ∗ (note that T ∗ is
still a lower bound for OPT). We will then take an extreme point solution to LP(T ∗) and round it
to obtain an integer solution with makespan no more than 2 ·T ∗.

Wojciechowski UPM

UPM
Definition
IP
Algorithm

Parametric Pruning

We can avoid this situation by making the LP unable to schedule jobs longer than the total
makespan. This cannot be done in a single LP but can be expressed as a family of Linear
Programs.

Pruned LPs

The new linear programs take the following form:

1 For T ∈ Z+ create the set of machine-job pairs ST = {(i, j) : xij ≤ T}.
2 Create the linear program LP(T) defined as

∑
i:(i,j)∈ST

xij = 1 j ∈ J

∑
j:(i,j)∈ST

xij ·pij ≤ t i ∈M

xij ≥ 0 (i, j) ∈ ST

Our goal is to find the smallest T such that LP(T) is feasible, call this value T ∗ (note that T ∗ is
still a lower bound for OPT).

We will then take an extreme point solution to LP(T ∗) and round it
to obtain an integer solution with makespan no more than 2 ·T ∗.

Wojciechowski UPM

UPM
Definition
IP
Algorithm

Parametric Pruning

We can avoid this situation by making the LP unable to schedule jobs longer than the total
makespan. This cannot be done in a single LP but can be expressed as a family of Linear
Programs.

Pruned LPs

The new linear programs take the following form:

1 For T ∈ Z+ create the set of machine-job pairs ST = {(i, j) : xij ≤ T}.
2 Create the linear program LP(T) defined as

∑
i:(i,j)∈ST

xij = 1 j ∈ J

∑
j:(i,j)∈ST

xij ·pij ≤ t i ∈M

xij ≥ 0 (i, j) ∈ ST

Our goal is to find the smallest T such that LP(T) is feasible, call this value T ∗ (note that T ∗ is
still a lower bound for OPT). We will then take an extreme point solution to LP(T ∗) and round it
to obtain an integer solution with makespan no more than 2 ·T ∗.

Wojciechowski UPM

UPM
Definition
IP
Algorithm

Properties of Extreme Point Solutions

We first need to show that an extreme point solution of LP(T) satisfies certain properties.

Theorem

Any extreme point solution to LP(T) has at most n+m nonzero variables.

Proof.

Let r = |St | be the number of variables on which LP(T) is defined.

An extreme point solution must satisfy at least r constraints with equality.

At least r − (n+m) of these must be non-negativity constraints.

At least r − (n+m) variables are set to 0.

At most n+m variables are nonzero.

Wojciechowski UPM

UPM
Definition
IP
Algorithm

Properties of Extreme Point Solutions

We first need to show that an extreme point solution of LP(T) satisfies certain properties.

Theorem

Any extreme point solution to LP(T) has at most n+m nonzero variables.

Proof.

Let r = |St | be the number of variables on which LP(T) is defined.

An extreme point solution must satisfy at least r constraints with equality.

At least r − (n+m) of these must be non-negativity constraints.

At least r − (n+m) variables are set to 0.

At most n+m variables are nonzero.

Wojciechowski UPM

UPM
Definition
IP
Algorithm

Properties of Extreme Point Solutions

We first need to show that an extreme point solution of LP(T) satisfies certain properties.

Theorem

Any extreme point solution to LP(T) has at most n+m nonzero variables.

Proof.

Let r = |St | be the number of variables on which LP(T) is defined.

An extreme point solution must satisfy at least r constraints with equality.

At least r − (n+m) of these must be non-negativity constraints.

At least r − (n+m) variables are set to 0.

At most n+m variables are nonzero.

Wojciechowski UPM

UPM
Definition
IP
Algorithm

Properties of Extreme Point Solutions

We first need to show that an extreme point solution of LP(T) satisfies certain properties.

Theorem

Any extreme point solution to LP(T) has at most n+m nonzero variables.

Proof.

Let r = |St | be the number of variables on which LP(T) is defined.

An extreme point solution must satisfy at least r constraints with equality.

At least r − (n+m) of these must be non-negativity constraints.

At least r − (n+m) variables are set to 0.

At most n+m variables are nonzero.

Wojciechowski UPM

UPM
Definition
IP
Algorithm

Properties of Extreme Point Solutions

We first need to show that an extreme point solution of LP(T) satisfies certain properties.

Theorem

Any extreme point solution to LP(T) has at most n+m nonzero variables.

Proof.

Let r = |St | be the number of variables on which LP(T) is defined.

An extreme point solution must satisfy at least r constraints with equality.

At least r − (n+m) of these must be non-negativity constraints.

At least r − (n+m) variables are set to 0.

At most n+m variables are nonzero.

Wojciechowski UPM

UPM
Definition
IP
Algorithm

Properties of Extreme Point Solutions

We first need to show that an extreme point solution of LP(T) satisfies certain properties.

Theorem

Any extreme point solution to LP(T) has at most n+m nonzero variables.

Proof.

Let r = |St | be the number of variables on which LP(T) is defined.

An extreme point solution must satisfy at least r constraints with equality.

At least r − (n+m) of these must be non-negativity constraints.

At least r − (n+m) variables are set to 0.

At most n+m variables are nonzero.

Wojciechowski UPM

UPM
Definition
IP
Algorithm

Properties of Extreme Point Solutions

We first need to show that an extreme point solution of LP(T) satisfies certain properties.

Theorem

Any extreme point solution to LP(T) has at most n+m nonzero variables.

Proof.

Let r = |St | be the number of variables on which LP(T) is defined.

An extreme point solution must satisfy at least r constraints with equality.

At least r − (n+m) of these must be non-negativity constraints.

At least r − (n+m) variables are set to 0.

At most n+m variables are nonzero.

Wojciechowski UPM

UPM
Definition
IP
Algorithm

Theorem

Any extreme point solution to LP(T) must set at least n−m jobs integrally.

Proof.

Let x be an extreme point solution to LP(T).

Let α and β be the number of jobs set integrally and fractionally respectively.

We have that α +β = n.

Assigning a job fractionally results in at least two nonzero variables so α +2 ·β ≤ n+m.

Thus, β ≤m and α ≥ n−m.

Wojciechowski UPM

UPM
Definition
IP
Algorithm

Theorem

Any extreme point solution to LP(T) must set at least n−m jobs integrally.

Proof.

Let x be an extreme point solution to LP(T).

Let α and β be the number of jobs set integrally and fractionally respectively.

We have that α +β = n.

Assigning a job fractionally results in at least two nonzero variables so α +2 ·β ≤ n+m.

Thus, β ≤m and α ≥ n−m.

Wojciechowski UPM

UPM
Definition
IP
Algorithm

Theorem

Any extreme point solution to LP(T) must set at least n−m jobs integrally.

Proof.

Let x be an extreme point solution to LP(T).

Let α and β be the number of jobs set integrally and fractionally respectively.

We have that α +β = n.

Assigning a job fractionally results in at least two nonzero variables so α +2 ·β ≤ n+m.

Thus, β ≤m and α ≥ n−m.

Wojciechowski UPM

UPM
Definition
IP
Algorithm

Theorem

Any extreme point solution to LP(T) must set at least n−m jobs integrally.

Proof.

Let x be an extreme point solution to LP(T).

Let α and β be the number of jobs set integrally and fractionally respectively.

We have that α +β = n.

Assigning a job fractionally results in at least two nonzero variables so α +2 ·β ≤ n+m.

Thus, β ≤m and α ≥ n−m.

Wojciechowski UPM

UPM
Definition
IP
Algorithm

Theorem

Any extreme point solution to LP(T) must set at least n−m jobs integrally.

Proof.

Let x be an extreme point solution to LP(T).

Let α and β be the number of jobs set integrally and fractionally respectively.

We have that α +β = n.

Assigning a job fractionally results in at least two nonzero variables so α +2 ·β ≤ n+m.

Thus, β ≤m and α ≥ n−m.

Wojciechowski UPM

UPM
Definition
IP
Algorithm

Theorem

Any extreme point solution to LP(T) must set at least n−m jobs integrally.

Proof.

Let x be an extreme point solution to LP(T).

Let α and β be the number of jobs set integrally and fractionally respectively.

We have that α +β = n.

Assigning a job fractionally results in at least two nonzero variables so α +2 ·β ≤ n+m.

Thus, β ≤m and α ≥ n−m.

Wojciechowski UPM

UPM
Definition
IP
Algorithm

Handling Fractionally Assigned Jobs

We now need to specify how fractionally assigned jobs are handled.

Construct the bipartite graph G = (M,J,E) where (mi , jj) ∈ E if xij > 0.

Let F ⊆ J be the set of fractionally assigned jobs.

Define H to be the subgraph of G induced by the vertex set M ∪F .

Our goal is to find a matching in H so that every job in F is assigned to a unique machine in
M.

Example

j1

j2

j3

m1 m2 m3

Wojciechowski UPM

UPM
Definition
IP
Algorithm

Handling Fractionally Assigned Jobs

We now need to specify how fractionally assigned jobs are handled.

Construct the bipartite graph G = (M,J,E) where (mi , jj) ∈ E if xij > 0.

Let F ⊆ J be the set of fractionally assigned jobs.

Define H to be the subgraph of G induced by the vertex set M ∪F .

Our goal is to find a matching in H so that every job in F is assigned to a unique machine in
M.

Example

j1

j2

j3

m1 m2 m3

Wojciechowski UPM

UPM
Definition
IP
Algorithm

Handling Fractionally Assigned Jobs

We now need to specify how fractionally assigned jobs are handled.

Construct the bipartite graph G = (M,J,E) where (mi , jj) ∈ E if xij > 0.

Let F ⊆ J be the set of fractionally assigned jobs.

Define H to be the subgraph of G induced by the vertex set M ∪F .

Our goal is to find a matching in H so that every job in F is assigned to a unique machine in
M.

Example

j1

j2

j3

m1 m2 m3

Wojciechowski UPM

UPM
Definition
IP
Algorithm

Handling Fractionally Assigned Jobs

We now need to specify how fractionally assigned jobs are handled.

Construct the bipartite graph G = (M,J,E) where (mi , jj) ∈ E if xij > 0.

Let F ⊆ J be the set of fractionally assigned jobs.

Define H to be the subgraph of G induced by the vertex set M ∪F .

Our goal is to find a matching in H so that every job in F is assigned to a unique machine in
M.

Example

j1

j2

j3

m1 m2 m3

Wojciechowski UPM

UPM
Definition
IP
Algorithm

Handling Fractionally Assigned Jobs

We now need to specify how fractionally assigned jobs are handled.

Construct the bipartite graph G = (M,J,E) where (mi , jj) ∈ E if xij > 0.

Let F ⊆ J be the set of fractionally assigned jobs.

Define H to be the subgraph of G induced by the vertex set M ∪F .

Our goal is to find a matching in H so that every job in F is assigned to a unique machine in
M.

Example

j1

j2

j3

m1 m2 m3

Wojciechowski UPM

UPM
Definition
IP
Algorithm

Handling Fractionally Assigned Jobs

We now need to specify how fractionally assigned jobs are handled.

Construct the bipartite graph G = (M,J,E) where (mi , jj) ∈ E if xij > 0.

Let F ⊆ J be the set of fractionally assigned jobs.

Define H to be the subgraph of G induced by the vertex set M ∪F .

Our goal is to find a matching in H so that every job in F is assigned to a unique machine in
M.

Example

j1

j2

j3

m1 m2 m3

Wojciechowski UPM

UPM
Definition
IP
Algorithm

Theorem

G is a pseudo-forest.

Proof.

We need to show that each connected component of G is a pseudo-tree.

Let Gc be a component of G.

We can restrict x and LP(T) to the the machines and jobs in Gc .

Call the results xc and LPc(T).

Since x is an extreme point solution of LP(T) then we must have that xc is an extreme
point solution to LPc(T).

We have that the number of non-zero variables in xc cannot exceed the number of
machines plus the number of jobs in LPc(T).

Thus the number of edges in Gc cannot exceed the number of verticies.

Wojciechowski UPM

UPM
Definition
IP
Algorithm

Theorem

G is a pseudo-forest.

Proof.

We need to show that each connected component of G is a pseudo-tree.

Let Gc be a component of G.

We can restrict x and LP(T) to the the machines and jobs in Gc .

Call the results xc and LPc(T).

Since x is an extreme point solution of LP(T) then we must have that xc is an extreme
point solution to LPc(T).

We have that the number of non-zero variables in xc cannot exceed the number of
machines plus the number of jobs in LPc(T).

Thus the number of edges in Gc cannot exceed the number of verticies.

Wojciechowski UPM

UPM
Definition
IP
Algorithm

Theorem

G is a pseudo-forest.

Proof.

We need to show that each connected component of G is a pseudo-tree.

Let Gc be a component of G.

We can restrict x and LP(T) to the the machines and jobs in Gc .

Call the results xc and LPc(T).

Since x is an extreme point solution of LP(T) then we must have that xc is an extreme
point solution to LPc(T).

We have that the number of non-zero variables in xc cannot exceed the number of
machines plus the number of jobs in LPc(T).

Thus the number of edges in Gc cannot exceed the number of verticies.

Wojciechowski UPM

UPM
Definition
IP
Algorithm

Theorem

G is a pseudo-forest.

Proof.

We need to show that each connected component of G is a pseudo-tree.

Let Gc be a component of G.

We can restrict x and LP(T) to the the machines and jobs in Gc .

Call the results xc and LPc(T).

Since x is an extreme point solution of LP(T) then we must have that xc is an extreme
point solution to LPc(T).

We have that the number of non-zero variables in xc cannot exceed the number of
machines plus the number of jobs in LPc(T).

Thus the number of edges in Gc cannot exceed the number of verticies.

Wojciechowski UPM

UPM
Definition
IP
Algorithm

Theorem

G is a pseudo-forest.

Proof.

We need to show that each connected component of G is a pseudo-tree.

Let Gc be a component of G.

We can restrict x and LP(T) to the the machines and jobs in Gc .

Call the results xc and LPc(T).

Since x is an extreme point solution of LP(T) then we must have that xc is an extreme
point solution to LPc(T).

We have that the number of non-zero variables in xc cannot exceed the number of
machines plus the number of jobs in LPc(T).

Thus the number of edges in Gc cannot exceed the number of verticies.

Wojciechowski UPM

UPM
Definition
IP
Algorithm

Theorem

G is a pseudo-forest.

Proof.

We need to show that each connected component of G is a pseudo-tree.

Let Gc be a component of G.

We can restrict x and LP(T) to the the machines and jobs in Gc .

Call the results xc and LPc(T).

Since x is an extreme point solution of LP(T) then we must have that xc is an extreme
point solution to LPc(T).

We have that the number of non-zero variables in xc cannot exceed the number of
machines plus the number of jobs in LPc(T).

Thus the number of edges in Gc cannot exceed the number of verticies.

Wojciechowski UPM

UPM
Definition
IP
Algorithm

Theorem

G is a pseudo-forest.

Proof.

We need to show that each connected component of G is a pseudo-tree.

Let Gc be a component of G.

We can restrict x and LP(T) to the the machines and jobs in Gc .

Call the results xc and LPc(T).

Since x is an extreme point solution of LP(T) then we must have that xc is an extreme
point solution to LPc(T).

We have that the number of non-zero variables in xc cannot exceed the number of
machines plus the number of jobs in LPc(T).

Thus the number of edges in Gc cannot exceed the number of verticies.

Wojciechowski UPM

UPM
Definition
IP
Algorithm

Theorem

G is a pseudo-forest.

Proof.

We need to show that each connected component of G is a pseudo-tree.

Let Gc be a component of G.

We can restrict x and LP(T) to the the machines and jobs in Gc .

Call the results xc and LPc(T).

Since x is an extreme point solution of LP(T) then we must have that xc is an extreme
point solution to LPc(T).

We have that the number of non-zero variables in xc cannot exceed the number of
machines plus the number of jobs in LPc(T).

Thus the number of edges in Gc cannot exceed the number of verticies.

Wojciechowski UPM

UPM
Definition
IP
Algorithm

Theorem

H has a matching in which each job in F is assigned to a machine in M.

Proof.

In G, every integrally set job has exactly one edge incident to it.

When we remove these jobs and edges the remaining graph is precisely H.

Thus, H is also a pseudo-forest.

In H each job vertex has degree at least 2 and so the leaves are all machine verticies.

If a machine node i is a leaf we can assign to it its parent job node and remove both from
the graph.

This process continues until the only edges in the graph form even length cycles.

Alternating edges in these cycles form a matching in which each remaining job vertex is
assigned to a unique remaining machine vertex.

Thus at the end of this procedure each job in F has been uniquely assigned to one of the
machines in M.

Wojciechowski UPM

UPM
Definition
IP
Algorithm

Theorem

H has a matching in which each job in F is assigned to a machine in M.

Proof.

In G, every integrally set job has exactly one edge incident to it.

When we remove these jobs and edges the remaining graph is precisely H.

Thus, H is also a pseudo-forest.

In H each job vertex has degree at least 2 and so the leaves are all machine verticies.

If a machine node i is a leaf we can assign to it its parent job node and remove both from
the graph.

This process continues until the only edges in the graph form even length cycles.

Alternating edges in these cycles form a matching in which each remaining job vertex is
assigned to a unique remaining machine vertex.

Thus at the end of this procedure each job in F has been uniquely assigned to one of the
machines in M.

Wojciechowski UPM

UPM
Definition
IP
Algorithm

Theorem

H has a matching in which each job in F is assigned to a machine in M.

Proof.

In G, every integrally set job has exactly one edge incident to it.

When we remove these jobs and edges the remaining graph is precisely H.

Thus, H is also a pseudo-forest.

In H each job vertex has degree at least 2 and so the leaves are all machine verticies.

If a machine node i is a leaf we can assign to it its parent job node and remove both from
the graph.

This process continues until the only edges in the graph form even length cycles.

Alternating edges in these cycles form a matching in which each remaining job vertex is
assigned to a unique remaining machine vertex.

Thus at the end of this procedure each job in F has been uniquely assigned to one of the
machines in M.

Wojciechowski UPM

UPM
Definition
IP
Algorithm

Theorem

H has a matching in which each job in F is assigned to a machine in M.

Proof.

In G, every integrally set job has exactly one edge incident to it.

When we remove these jobs and edges the remaining graph is precisely H.

Thus, H is also a pseudo-forest.

In H each job vertex has degree at least 2 and so the leaves are all machine verticies.

If a machine node i is a leaf we can assign to it its parent job node and remove both from
the graph.

This process continues until the only edges in the graph form even length cycles.

Alternating edges in these cycles form a matching in which each remaining job vertex is
assigned to a unique remaining machine vertex.

Thus at the end of this procedure each job in F has been uniquely assigned to one of the
machines in M.

Wojciechowski UPM

UPM
Definition
IP
Algorithm

Theorem

H has a matching in which each job in F is assigned to a machine in M.

Proof.

In G, every integrally set job has exactly one edge incident to it.

When we remove these jobs and edges the remaining graph is precisely H.

Thus, H is also a pseudo-forest.

In H each job vertex has degree at least 2 and so the leaves are all machine verticies.

If a machine node i is a leaf we can assign to it its parent job node and remove both from
the graph.

This process continues until the only edges in the graph form even length cycles.

Alternating edges in these cycles form a matching in which each remaining job vertex is
assigned to a unique remaining machine vertex.

Thus at the end of this procedure each job in F has been uniquely assigned to one of the
machines in M.

Wojciechowski UPM

UPM
Definition
IP
Algorithm

Theorem

H has a matching in which each job in F is assigned to a machine in M.

Proof.

In G, every integrally set job has exactly one edge incident to it.

When we remove these jobs and edges the remaining graph is precisely H.

Thus, H is also a pseudo-forest.

In H each job vertex has degree at least 2 and so the leaves are all machine verticies.

If a machine node i is a leaf we can assign to it its parent job node and remove both from
the graph.

This process continues until the only edges in the graph form even length cycles.

Alternating edges in these cycles form a matching in which each remaining job vertex is
assigned to a unique remaining machine vertex.

Thus at the end of this procedure each job in F has been uniquely assigned to one of the
machines in M.

Wojciechowski UPM

UPM
Definition
IP
Algorithm

Theorem

H has a matching in which each job in F is assigned to a machine in M.

Proof.

In G, every integrally set job has exactly one edge incident to it.

When we remove these jobs and edges the remaining graph is precisely H.

Thus, H is also a pseudo-forest.

In H each job vertex has degree at least 2 and so the leaves are all machine verticies.

If a machine node i is a leaf we can assign to it its parent job node and remove both from
the graph.

This process continues until the only edges in the graph form even length cycles.

Alternating edges in these cycles form a matching in which each remaining job vertex is
assigned to a unique remaining machine vertex.

Thus at the end of this procedure each job in F has been uniquely assigned to one of the
machines in M.

Wojciechowski UPM

UPM
Definition
IP
Algorithm

Theorem

H has a matching in which each job in F is assigned to a machine in M.

Proof.

In G, every integrally set job has exactly one edge incident to it.

When we remove these jobs and edges the remaining graph is precisely H.

Thus, H is also a pseudo-forest.

In H each job vertex has degree at least 2 and so the leaves are all machine verticies.

If a machine node i is a leaf we can assign to it its parent job node and remove both from
the graph.

This process continues until the only edges in the graph form even length cycles.

Alternating edges in these cycles form a matching in which each remaining job vertex is
assigned to a unique remaining machine vertex.

Thus at the end of this procedure each job in F has been uniquely assigned to one of the
machines in M.

Wojciechowski UPM

UPM
Definition
IP
Algorithm

Theorem

H has a matching in which each job in F is assigned to a machine in M.

Proof.

In G, every integrally set job has exactly one edge incident to it.

When we remove these jobs and edges the remaining graph is precisely H.

Thus, H is also a pseudo-forest.

In H each job vertex has degree at least 2 and so the leaves are all machine verticies.

If a machine node i is a leaf we can assign to it its parent job node and remove both from
the graph.

This process continues until the only edges in the graph form even length cycles.

Alternating edges in these cycles form a matching in which each remaining job vertex is
assigned to a unique remaining machine vertex.

Thus at the end of this procedure each job in F has been uniquely assigned to one of the
machines in M.

Wojciechowski UPM

UPM
Definition
IP
Algorithm

Example

j1

j2

j3

m1 m2 m3

Wojciechowski UPM

UPM
Definition
IP
Algorithm

Example

j1

j2

j3

m1 m2 m3

Wojciechowski UPM

UPM
Definition
IP
Algorithm

Example

j1

j2

m1 m2 m3

j3

Wojciechowski UPM

UPM
Definition
IP
Algorithm

Example

j1

j2

m1 m2 m3

j3

Wojciechowski UPM

UPM
Definition
IP
Algorithm

Example

m3

j3j1

j2

m1 m2

Wojciechowski UPM

UPM
Definition
IP
Algorithm

Outline

1 Scheduling on Unrelated Parallel Machines
Definition
IP formuation
Algorithm

Wojciechowski UPM

UPM
Definition
IP
Algorithm

Algorithm

The approximation algorithm proceeds as follows:

1 Let α be the makespan of the schedule formed by assigning each job to the machine on
which it has the shortest running time.

2 Using a binary search over the interval [α

m ,α] find the smallest T ∈ Z+ such that LP(T) is
linearly feasible. Call this value T ∗.

3 Find x, an extreme point solution to LP(T ∗).

4 Assign each integrally set job to the machine it is assigned in x.
5 Assign each fractionally set job to a unique machine according to the matching found in H.

Wojciechowski UPM

UPM
Definition
IP
Algorithm

Algorithm

The approximation algorithm proceeds as follows:

1 Let α be the makespan of the schedule formed by assigning each job to the machine on
which it has the shortest running time.

2 Using a binary search over the interval [α

m ,α] find the smallest T ∈ Z+ such that LP(T) is
linearly feasible. Call this value T ∗.

3 Find x, an extreme point solution to LP(T ∗).

4 Assign each integrally set job to the machine it is assigned in x.
5 Assign each fractionally set job to a unique machine according to the matching found in H.

Wojciechowski UPM

UPM
Definition
IP
Algorithm

Algorithm

The approximation algorithm proceeds as follows:

1 Let α be the makespan of the schedule formed by assigning each job to the machine on
which it has the shortest running time.

2 Using a binary search over the interval [α

m ,α] find the smallest T ∈ Z+ such that LP(T) is
linearly feasible. Call this value T ∗.

3 Find x, an extreme point solution to LP(T ∗).

4 Assign each integrally set job to the machine it is assigned in x.
5 Assign each fractionally set job to a unique machine according to the matching found in H.

Wojciechowski UPM

UPM
Definition
IP
Algorithm

Algorithm

The approximation algorithm proceeds as follows:

1 Let α be the makespan of the schedule formed by assigning each job to the machine on
which it has the shortest running time.

2 Using a binary search over the interval [α

m ,α] find the smallest T ∈ Z+ such that LP(T) is
linearly feasible. Call this value T ∗.

3 Find x, an extreme point solution to LP(T ∗).

4 Assign each integrally set job to the machine it is assigned in x.

5 Assign each fractionally set job to a unique machine according to the matching found in H.

Wojciechowski UPM

UPM
Definition
IP
Algorithm

Algorithm

The approximation algorithm proceeds as follows:

1 Let α be the makespan of the schedule formed by assigning each job to the machine on
which it has the shortest running time.

2 Using a binary search over the interval [α

m ,α] find the smallest T ∈ Z+ such that LP(T) is
linearly feasible. Call this value T ∗.

3 Find x, an extreme point solution to LP(T ∗).

4 Assign each integrally set job to the machine it is assigned in x.
5 Assign each fractionally set job to a unique machine according to the matching found in H.

Wojciechowski UPM

UPM
Definition
IP
Algorithm

Theorem

The algorithm has an approximation factor of 2.

Proof.

We have that T ∗ ≤ OPT .

The makespan of the schedule corresponding to x is no more than T ∗.

Thus when restricted to integrally assigned jobs the makespan of the schedule is still at
most T ∗.

According to the matching in H each machine is assigned at most one originally fractionally
assigned job.

This increases the makespan of the schedule by at most T ∗.

Thus the resultant schedule has total makespan at most 2 ·T ∗ ≤ 2 ·OPT .

Wojciechowski UPM

UPM
Definition
IP
Algorithm

Theorem

The algorithm has an approximation factor of 2.

Proof.

We have that T ∗ ≤ OPT .

The makespan of the schedule corresponding to x is no more than T ∗.

Thus when restricted to integrally assigned jobs the makespan of the schedule is still at
most T ∗.

According to the matching in H each machine is assigned at most one originally fractionally
assigned job.

This increases the makespan of the schedule by at most T ∗.

Thus the resultant schedule has total makespan at most 2 ·T ∗ ≤ 2 ·OPT .

Wojciechowski UPM

UPM
Definition
IP
Algorithm

Theorem

The algorithm has an approximation factor of 2.

Proof.

We have that T ∗ ≤ OPT .

The makespan of the schedule corresponding to x is no more than T ∗.

Thus when restricted to integrally assigned jobs the makespan of the schedule is still at
most T ∗.

According to the matching in H each machine is assigned at most one originally fractionally
assigned job.

This increases the makespan of the schedule by at most T ∗.

Thus the resultant schedule has total makespan at most 2 ·T ∗ ≤ 2 ·OPT .

Wojciechowski UPM

UPM
Definition
IP
Algorithm

Theorem

The algorithm has an approximation factor of 2.

Proof.

We have that T ∗ ≤ OPT .

The makespan of the schedule corresponding to x is no more than T ∗.

Thus when restricted to integrally assigned jobs the makespan of the schedule is still at
most T ∗.

According to the matching in H each machine is assigned at most one originally fractionally
assigned job.

This increases the makespan of the schedule by at most T ∗.

Thus the resultant schedule has total makespan at most 2 ·T ∗ ≤ 2 ·OPT .

Wojciechowski UPM

UPM
Definition
IP
Algorithm

Theorem

The algorithm has an approximation factor of 2.

Proof.

We have that T ∗ ≤ OPT .

The makespan of the schedule corresponding to x is no more than T ∗.

Thus when restricted to integrally assigned jobs the makespan of the schedule is still at
most T ∗.

According to the matching in H each machine is assigned at most one originally fractionally
assigned job.

This increases the makespan of the schedule by at most T ∗.

Thus the resultant schedule has total makespan at most 2 ·T ∗ ≤ 2 ·OPT .

Wojciechowski UPM

UPM
Definition
IP
Algorithm

Theorem

The algorithm has an approximation factor of 2.

Proof.

We have that T ∗ ≤ OPT .

The makespan of the schedule corresponding to x is no more than T ∗.

Thus when restricted to integrally assigned jobs the makespan of the schedule is still at
most T ∗.

According to the matching in H each machine is assigned at most one originally fractionally
assigned job.

This increases the makespan of the schedule by at most T ∗.

Thus the resultant schedule has total makespan at most 2 ·T ∗ ≤ 2 ·OPT .

Wojciechowski UPM

UPM
Definition
IP
Algorithm

Theorem

The algorithm has an approximation factor of 2.

Proof.

We have that T ∗ ≤ OPT .

The makespan of the schedule corresponding to x is no more than T ∗.

Thus when restricted to integrally assigned jobs the makespan of the schedule is still at
most T ∗.

According to the matching in H each machine is assigned at most one originally fractionally
assigned job.

This increases the makespan of the schedule by at most T ∗.

Thus the resultant schedule has total makespan at most 2 ·T ∗ ≤ 2 ·OPT .

Wojciechowski UPM

	Scheduling on Unrelated Parallel Machines
	Definition
	IP formuation
	Algorithm

