
Inapproximability in Combinatorial Optimization

Inapproximability in Combinatorial Optimization

Vahan Mkrtchyan

Lane Department of Computer Science and Electrical Engineering
West Virginia University

May 2, 2014

Inapproximability in Combinatorial Optimization

Hardness of Approximation

Hardness of Vertex Cover

How to show the hardness of approximation of Vertex cover

Suppose we would like to show that Vertex Cover cannot be approximated within some factor
α > 1.

In order to achieve this, we can find a polynomial reduction say from SAT, such that it
maps an instance Φ of SAT to a graph G = (V ,E) that the following conditions are satisfied:

if Φ is satisfiable, then G has a vertex cover of size ≤ 2
3 · |V |,

if Φ is not satisfiable, then the size of the smallest vertex cover of G is > α · 2
3 · |V |.

Theorem

Vertex Cover does not admit an approximation algorithm within factor α , unless P=NP.

Inapproximability in Combinatorial Optimization

Hardness of Approximation

Hardness of Vertex Cover

How to show the hardness of approximation of Vertex cover

Suppose we would like to show that Vertex Cover cannot be approximated within some factor
α > 1. In order to achieve this, we can find a polynomial reduction say from SAT, such that it
maps an instance Φ of SAT to a graph G = (V ,E) that the following conditions are satisfied:

if Φ is satisfiable, then G has a vertex cover of size ≤ 2
3 · |V |,

if Φ is not satisfiable, then the size of the smallest vertex cover of G is > α · 2
3 · |V |.

Theorem

Vertex Cover does not admit an approximation algorithm within factor α , unless P=NP.

Inapproximability in Combinatorial Optimization

Hardness of Approximation

Hardness of Vertex Cover

How to show the hardness of approximation of Vertex cover

Suppose we would like to show that Vertex Cover cannot be approximated within some factor
α > 1. In order to achieve this, we can find a polynomial reduction say from SAT, such that it
maps an instance Φ of SAT to a graph G = (V ,E) that the following conditions are satisfied:

if Φ is satisfiable, then G has a vertex cover of size ≤ 2
3 · |V |,

if Φ is not satisfiable, then the size of the smallest vertex cover of G is > α · 2
3 · |V |.

Theorem

Vertex Cover does not admit an approximation algorithm within factor α , unless P=NP.

Inapproximability in Combinatorial Optimization

Hardness of Approximation

Hardness of Vertex Cover

How to show the hardness of approximation of Vertex cover

Suppose we would like to show that Vertex Cover cannot be approximated within some factor
α > 1. In order to achieve this, we can find a polynomial reduction say from SAT, such that it
maps an instance Φ of SAT to a graph G = (V ,E) that the following conditions are satisfied:

if Φ is satisfiable, then G has a vertex cover of size ≤ 2
3 · |V |,

if Φ is not satisfiable, then the size of the smallest vertex cover of G is > α · 2
3 · |V |.

Theorem

Vertex Cover does not admit an approximation algorithm within factor α , unless P=NP.

Inapproximability in Combinatorial Optimization

Hardness of Approximation

Hardness of Vertex Cover

How to show the hardness of approximation of Vertex cover

Suppose we would like to show that Vertex Cover cannot be approximated within some factor
α > 1. In order to achieve this, we can find a polynomial reduction say from SAT, such that it
maps an instance Φ of SAT to a graph G = (V ,E) that the following conditions are satisfied:

if Φ is satisfiable, then G has a vertex cover of size ≤ 2
3 · |V |,

if Φ is not satisfiable, then the size of the smallest vertex cover of G is > α · 2
3 · |V |.

Theorem

Vertex Cover does not admit an approximation algorithm within factor α , unless P=NP.

Inapproximability in Combinatorial Optimization

Hardness of Approximation

Gap Introducing Reduction

Definition

Let Π be a minimization problem.

A gap-introducing reduction from SAT to Π comes with two
parameters, functions f and α . Given an instance Φ of SAT, it in polynomial time outputs an
instance x of Π such that

if Φ is satisfiable, then OPT (x)≤ f (x),

if Φ is not satisfiable, then OPT (x) > α(|x |) · f (x).

Some remarks

Notice that f is a function of the instance, and α is a function of the size of the instance. Since Π
is a minimization problem, the function α satisfies α(|x |)≥ 1.

Inapproximability in Combinatorial Optimization

Hardness of Approximation

Gap Introducing Reduction

Definition

Let Π be a minimization problem. A gap-introducing reduction from SAT to Π comes with two
parameters, functions f and α .

Given an instance Φ of SAT, it in polynomial time outputs an
instance x of Π such that

if Φ is satisfiable, then OPT (x)≤ f (x),

if Φ is not satisfiable, then OPT (x) > α(|x |) · f (x).

Some remarks

Notice that f is a function of the instance, and α is a function of the size of the instance. Since Π
is a minimization problem, the function α satisfies α(|x |)≥ 1.

Inapproximability in Combinatorial Optimization

Hardness of Approximation

Gap Introducing Reduction

Definition

Let Π be a minimization problem. A gap-introducing reduction from SAT to Π comes with two
parameters, functions f and α . Given an instance Φ of SAT, it in polynomial time outputs an
instance x of Π such that

if Φ is satisfiable, then OPT (x)≤ f (x),

if Φ is not satisfiable, then OPT (x) > α(|x |) · f (x).

Some remarks

Notice that f is a function of the instance, and α is a function of the size of the instance. Since Π
is a minimization problem, the function α satisfies α(|x |)≥ 1.

Inapproximability in Combinatorial Optimization

Hardness of Approximation

Gap Introducing Reduction

Definition

Let Π be a minimization problem. A gap-introducing reduction from SAT to Π comes with two
parameters, functions f and α . Given an instance Φ of SAT, it in polynomial time outputs an
instance x of Π such that

if Φ is satisfiable, then OPT (x)≤ f (x),

if Φ is not satisfiable, then OPT (x) > α(|x |) · f (x).

Some remarks

Notice that f is a function of the instance, and α is a function of the size of the instance. Since Π
is a minimization problem, the function α satisfies α(|x |)≥ 1.

Inapproximability in Combinatorial Optimization

Hardness of Approximation

Gap Introducing Reduction

Definition

Let Π be a minimization problem. A gap-introducing reduction from SAT to Π comes with two
parameters, functions f and α . Given an instance Φ of SAT, it in polynomial time outputs an
instance x of Π such that

if Φ is satisfiable, then OPT (x)≤ f (x),

if Φ is not satisfiable, then OPT (x) > α(|x |) · f (x).

Some remarks

Notice that f is a function of the instance, and α is a function of the size of the instance. Since Π
is a minimization problem, the function α satisfies α(|x |)≥ 1.

Inapproximability in Combinatorial Optimization

Hardness of Approximation

Gap Introducing Reduction

Definition

Let Π be a minimization problem. A gap-introducing reduction from SAT to Π comes with two
parameters, functions f and α . Given an instance Φ of SAT, it in polynomial time outputs an
instance x of Π such that

if Φ is satisfiable, then OPT (x)≤ f (x),

if Φ is not satisfiable, then OPT (x) > α(|x |) · f (x).

Some remarks

Notice that f is a function of the instance, and α is a function of the size of the instance.

Since Π
is a minimization problem, the function α satisfies α(|x |)≥ 1.

Inapproximability in Combinatorial Optimization

Hardness of Approximation

Gap Introducing Reduction

Definition

Let Π be a minimization problem. A gap-introducing reduction from SAT to Π comes with two
parameters, functions f and α . Given an instance Φ of SAT, it in polynomial time outputs an
instance x of Π such that

if Φ is satisfiable, then OPT (x)≤ f (x),

if Φ is not satisfiable, then OPT (x) > α(|x |) · f (x).

Some remarks

Notice that f is a function of the instance, and α is a function of the size of the instance. Since Π
is a minimization problem, the function α satisfies α(|x |)≥ 1.

Inapproximability in Combinatorial Optimization

Hardness of Approximation

Gap Introducing Reduction

Definition

Let Π be a maximization problem.

In this case the following conditions must satisfy:

if Φ is satisfiable, then OPT (x)≥ f (x),

if Φ is not satisfiable, then OPT (x) < α(|x |) · f (x).

Some remarks

Notice that f is a function of the instance, and α is a function of the size of the instance. Since Π
is a maximization problem, the function α satisfies α(|x |)≤ 1.

Inapproximability in Combinatorial Optimization

Hardness of Approximation

Gap Introducing Reduction

Definition

Let Π be a maximization problem. In this case the following conditions must satisfy:

if Φ is satisfiable, then OPT (x)≥ f (x),

if Φ is not satisfiable, then OPT (x) < α(|x |) · f (x).

Some remarks

Notice that f is a function of the instance, and α is a function of the size of the instance. Since Π
is a maximization problem, the function α satisfies α(|x |)≤ 1.

Inapproximability in Combinatorial Optimization

Hardness of Approximation

Gap Introducing Reduction

Definition

Let Π be a maximization problem. In this case the following conditions must satisfy:

if Φ is satisfiable, then OPT (x)≥ f (x),

if Φ is not satisfiable, then OPT (x) < α(|x |) · f (x).

Some remarks

Notice that f is a function of the instance, and α is a function of the size of the instance. Since Π
is a maximization problem, the function α satisfies α(|x |)≤ 1.

Inapproximability in Combinatorial Optimization

Hardness of Approximation

Gap Introducing Reduction

Definition

Let Π be a maximization problem. In this case the following conditions must satisfy:

if Φ is satisfiable, then OPT (x)≥ f (x),

if Φ is not satisfiable, then OPT (x) < α(|x |) · f (x).

Some remarks

Notice that f is a function of the instance, and α is a function of the size of the instance. Since Π
is a maximization problem, the function α satisfies α(|x |)≤ 1.

Inapproximability in Combinatorial Optimization

Hardness of Approximation

Gap Introducing Reduction

Definition

Let Π be a maximization problem. In this case the following conditions must satisfy:

if Φ is satisfiable, then OPT (x)≥ f (x),

if Φ is not satisfiable, then OPT (x) < α(|x |) · f (x).

Some remarks

Notice that f is a function of the instance, and α is a function of the size of the instance.

Since Π
is a maximization problem, the function α satisfies α(|x |)≤ 1.

Inapproximability in Combinatorial Optimization

Hardness of Approximation

Gap Introducing Reduction

Definition

Let Π be a maximization problem. In this case the following conditions must satisfy:

if Φ is satisfiable, then OPT (x)≥ f (x),

if Φ is not satisfiable, then OPT (x) < α(|x |) · f (x).

Some remarks

Notice that f is a function of the instance, and α is a function of the size of the instance. Since Π
is a maximization problem, the function α satisfies α(|x |)≤ 1.

Inapproximability in Combinatorial Optimization

Hardness of Approximation

Gap Preserving Reduction

Definition

Let Π1 be a minimization problem, and let Π2 be a maximization problem.

A gap-preserving
reduction Γ from Π1 to Π2 comes with four parameters f1, α , f2 and β . Given an instance x of
Π1, it computes in polynomial time an instance y of Π2, such that

if OPT (x)≤ f1(x), then OPT (y)≥ f2(y),

if OPT (x) > α(|x |) · f1(x), then OPT (y) < β(|y |) · f2(y).

Inapproximability in Combinatorial Optimization

Hardness of Approximation

Gap Preserving Reduction

Definition

Let Π1 be a minimization problem, and let Π2 be a maximization problem. A gap-preserving
reduction Γ from Π1 to Π2 comes with four parameters f1, α , f2 and β .

Given an instance x of
Π1, it computes in polynomial time an instance y of Π2, such that

if OPT (x)≤ f1(x), then OPT (y)≥ f2(y),

if OPT (x) > α(|x |) · f1(x), then OPT (y) < β(|y |) · f2(y).

Inapproximability in Combinatorial Optimization

Hardness of Approximation

Gap Preserving Reduction

Definition

Let Π1 be a minimization problem, and let Π2 be a maximization problem. A gap-preserving
reduction Γ from Π1 to Π2 comes with four parameters f1, α , f2 and β . Given an instance x of
Π1, it computes in polynomial time an instance y of Π2, such that

if OPT (x)≤ f1(x), then OPT (y)≥ f2(y),

if OPT (x) > α(|x |) · f1(x), then OPT (y) < β(|y |) · f2(y).

Inapproximability in Combinatorial Optimization

Hardness of Approximation

Gap Preserving Reduction

Definition

Let Π1 be a minimization problem, and let Π2 be a maximization problem. A gap-preserving
reduction Γ from Π1 to Π2 comes with four parameters f1, α , f2 and β . Given an instance x of
Π1, it computes in polynomial time an instance y of Π2, such that

if OPT (x)≤ f1(x), then OPT (y)≥ f2(y),

if OPT (x) > α(|x |) · f1(x), then OPT (y) < β(|y |) · f2(y).

Inapproximability in Combinatorial Optimization

Hardness of Approximation

Gap Preserving Reduction

Definition

Let Π1 be a minimization problem, and let Π2 be a maximization problem. A gap-preserving
reduction Γ from Π1 to Π2 comes with four parameters f1, α , f2 and β . Given an instance x of
Π1, it computes in polynomial time an instance y of Π2, such that

if OPT (x)≤ f1(x), then OPT (y)≥ f2(y),

if OPT (x) > α(|x |) · f1(x), then OPT (y) < β(|y |) · f2(y).

Inapproximability in Combinatorial Optimization

Hardness of Approximation

The class NP and Probabilistically Checkable Proofs (PCP)

PCP system

A PCP system comes with two parameters, the number of random bits required by the verifier,
and the number of bits of the witness (or proof), that the verifier is allowed to examine.

Verifier

The verifier is a polynomial time algorithm, which besides the input and work tapes, has a
special tape that provides it with a string of random bits and another special tape on which
it is provided with the proof.

The machine can read any bit of the proof by simply specifying its location.

The particular locations that it examines are a function of the input string and the random
string.

At the end of computation, the machine either goes to accept state or reject state.

Inapproximability in Combinatorial Optimization

Hardness of Approximation

The class NP and Probabilistically Checkable Proofs (PCP)

PCP system

A PCP system comes with two parameters, the number of random bits required by the verifier,
and the number of bits of the witness (or proof), that the verifier is allowed to examine.

Verifier

The verifier is a polynomial time algorithm, which besides the input and work tapes, has a
special tape that provides it with a string of random bits and another special tape on which
it is provided with the proof.

The machine can read any bit of the proof by simply specifying its location.

The particular locations that it examines are a function of the input string and the random
string.

At the end of computation, the machine either goes to accept state or reject state.

Inapproximability in Combinatorial Optimization

Hardness of Approximation

The class NP and Probabilistically Checkable Proofs (PCP)

PCP system

A PCP system comes with two parameters, the number of random bits required by the verifier,
and the number of bits of the witness (or proof), that the verifier is allowed to examine.

Verifier

The verifier is a polynomial time algorithm, which besides the input and work tapes, has a
special tape that provides it with a string of random bits and another special tape on which
it is provided with the proof.

The machine can read any bit of the proof by simply specifying its location.

The particular locations that it examines are a function of the input string and the random
string.

At the end of computation, the machine either goes to accept state or reject state.

Inapproximability in Combinatorial Optimization

Hardness of Approximation

The class NP and Probabilistically Checkable Proofs (PCP)

PCP system

A PCP system comes with two parameters, the number of random bits required by the verifier,
and the number of bits of the witness (or proof), that the verifier is allowed to examine.

Verifier

The verifier is a polynomial time algorithm, which besides the input and work tapes, has a
special tape that provides it with a string of random bits and another special tape on which
it is provided with the proof.

The machine can read any bit of the proof by simply specifying its location.

The particular locations that it examines are a function of the input string and the random
string.

At the end of computation, the machine either goes to accept state or reject state.

Inapproximability in Combinatorial Optimization

Hardness of Approximation

The class NP and Probabilistically Checkable Proofs (PCP)

PCP system

A PCP system comes with two parameters, the number of random bits required by the verifier,
and the number of bits of the witness (or proof), that the verifier is allowed to examine.

Verifier

The verifier is a polynomial time algorithm, which besides the input and work tapes, has a
special tape that provides it with a string of random bits and another special tape on which
it is provided with the proof.

The machine can read any bit of the proof by simply specifying its location.

The particular locations that it examines are a function of the input string and the random
string.

At the end of computation, the machine either goes to accept state or reject state.

Inapproximability in Combinatorial Optimization

Hardness of Approximation

The class NP and Probabilistically Checkable Proofs (PCP)

Definition

For two functions r(n) and q(n), the class PCP(r(n),q(n)) is comprised of all languages L,

for
which there is a verifier V , such that on any input x the verifier obtains O(r(n)) random bits and
queries O(q(n)) bits of the proof. Furthermore,

if x ∈ L, then there is a proof y that makes V accept with probability 1,

if x /∈ L, then for every proof y , V accepts with probability < 1
2 ,

where the probability is taken over all random strings. The probability of accepting in case x /∈ L
is called error probability.

Inapproximability in Combinatorial Optimization

Hardness of Approximation

The class NP and Probabilistically Checkable Proofs (PCP)

Definition

For two functions r(n) and q(n), the class PCP(r(n),q(n)) is comprised of all languages L, for
which there is a verifier V , such that on any input x the verifier obtains O(r(n)) random bits and
queries O(q(n)) bits of the proof.

Furthermore,

if x ∈ L, then there is a proof y that makes V accept with probability 1,

if x /∈ L, then for every proof y , V accepts with probability < 1
2 ,

where the probability is taken over all random strings. The probability of accepting in case x /∈ L
is called error probability.

Inapproximability in Combinatorial Optimization

Hardness of Approximation

The class NP and Probabilistically Checkable Proofs (PCP)

Definition

For two functions r(n) and q(n), the class PCP(r(n),q(n)) is comprised of all languages L, for
which there is a verifier V , such that on any input x the verifier obtains O(r(n)) random bits and
queries O(q(n)) bits of the proof. Furthermore,

if x ∈ L, then there is a proof y that makes V accept with probability 1,

if x /∈ L, then for every proof y , V accepts with probability < 1
2 ,

where the probability is taken over all random strings. The probability of accepting in case x /∈ L
is called error probability.

Inapproximability in Combinatorial Optimization

Hardness of Approximation

The class NP and Probabilistically Checkable Proofs (PCP)

Definition

For two functions r(n) and q(n), the class PCP(r(n),q(n)) is comprised of all languages L, for
which there is a verifier V , such that on any input x the verifier obtains O(r(n)) random bits and
queries O(q(n)) bits of the proof. Furthermore,

if x ∈ L, then there is a proof y that makes V accept with probability 1,

if x /∈ L, then for every proof y , V accepts with probability < 1
2 ,

where the probability is taken over all random strings. The probability of accepting in case x /∈ L
is called error probability.

Inapproximability in Combinatorial Optimization

Hardness of Approximation

The class NP and Probabilistically Checkable Proofs (PCP)

Definition

For two functions r(n) and q(n), the class PCP(r(n),q(n)) is comprised of all languages L, for
which there is a verifier V , such that on any input x the verifier obtains O(r(n)) random bits and
queries O(q(n)) bits of the proof. Furthermore,

if x ∈ L, then there is a proof y that makes V accept with probability 1,

if x /∈ L, then for every proof y , V accepts with probability < 1
2 ,

where the probability is taken over all random strings.

The probability of accepting in case x /∈ L
is called error probability.

Inapproximability in Combinatorial Optimization

Hardness of Approximation

The class NP and Probabilistically Checkable Proofs (PCP)

Definition

For two functions r(n) and q(n), the class PCP(r(n),q(n)) is comprised of all languages L, for
which there is a verifier V , such that on any input x the verifier obtains O(r(n)) random bits and
queries O(q(n)) bits of the proof. Furthermore,

if x ∈ L, then there is a proof y that makes V accept with probability 1,

if x /∈ L, then for every proof y , V accepts with probability < 1
2 ,

where the probability is taken over all random strings. The probability of accepting in case x /∈ L
is called error probability.

Inapproximability in Combinatorial Optimization

Hardness of Approximation

The class NP and Probabilistically Checkable Proofs (PCP)

The definition of class NP

If poly(n) =
⋃

k≥0{nk}, then the definition of the class NP can be re-written as:
NP=PCP(0,poly(n)).

The PCP theorem

The well-known PCP theorem offers a new definition of the class NP.

Theorem

NP=PCP(log(n),1).

Inapproximability in Combinatorial Optimization

Hardness of Approximation

The class NP and Probabilistically Checkable Proofs (PCP)

The definition of class NP

If poly(n) =
⋃

k≥0{nk}, then the definition of the class NP can be re-written as:
NP=PCP(0,poly(n)).

The PCP theorem

The well-known PCP theorem offers a new definition of the class NP.

Theorem

NP=PCP(log(n),1).

Inapproximability in Combinatorial Optimization

Hardness of Approximation

The class NP and Probabilistically Checkable Proofs (PCP)

The definition of class NP

If poly(n) =
⋃

k≥0{nk}, then the definition of the class NP can be re-written as:
NP=PCP(0,poly(n)).

The PCP theorem

The well-known PCP theorem offers a new definition of the class NP.

Theorem

NP=PCP(log(n),1).

Inapproximability in Combinatorial Optimization

Hardness of Approximation

First Implication of PCP theorem

The problem of maximizing the accept probability

Let V be a PCP(log(n),1) verifier for SAT. On input Φ, a SAT formula, find a proof, that
maximizes the probability of acceptance of V .

Theorem

If P 6= NP, then there is no 1
2 -factor approximation algorithm for the above problem.

Proof.

if Φ is satisfiable, then there is a proof that makes V accept with probability 1, and if Φ is
not satisfiable, then on every proof V accepts with probability < 1

2 .

Suppose that there exists a 1
2 -factor approximation algorithm for the problem. If Φ is

satisfiable, then this algorithm must provide a proof that makes V accept with probability
≥ 1

2 .

The acceptance probability can be computed in polynomial time, by simply simulating V for
all random strings of length O(log(n)).

Observe that we created a gap with 1
2 -factor approximation algorithm for the problem.

Thus, this approximation algorithm can be used for deciding SAT in polynomial time.

Inapproximability in Combinatorial Optimization

Hardness of Approximation

First Implication of PCP theorem

The problem of maximizing the accept probability

Let V be a PCP(log(n),1) verifier for SAT. On input Φ, a SAT formula, find a proof, that
maximizes the probability of acceptance of V .

Theorem

If P 6= NP, then there is no 1
2 -factor approximation algorithm for the above problem.

Proof.

if Φ is satisfiable, then there is a proof that makes V accept with probability 1, and if Φ is
not satisfiable, then on every proof V accepts with probability < 1

2 .

Suppose that there exists a 1
2 -factor approximation algorithm for the problem. If Φ is

satisfiable, then this algorithm must provide a proof that makes V accept with probability
≥ 1

2 .

The acceptance probability can be computed in polynomial time, by simply simulating V for
all random strings of length O(log(n)).

Observe that we created a gap with 1
2 -factor approximation algorithm for the problem.

Thus, this approximation algorithm can be used for deciding SAT in polynomial time.

Inapproximability in Combinatorial Optimization

Hardness of Approximation

First Implication of PCP theorem

The problem of maximizing the accept probability

Let V be a PCP(log(n),1) verifier for SAT. On input Φ, a SAT formula, find a proof, that
maximizes the probability of acceptance of V .

Theorem

If P 6= NP, then there is no 1
2 -factor approximation algorithm for the above problem.

Proof.

if Φ is satisfiable, then there is a proof that makes V accept with probability 1, and if Φ is
not satisfiable, then on every proof V accepts with probability < 1

2 .

Suppose that there exists a 1
2 -factor approximation algorithm for the problem. If Φ is

satisfiable, then this algorithm must provide a proof that makes V accept with probability
≥ 1

2 .

The acceptance probability can be computed in polynomial time, by simply simulating V for
all random strings of length O(log(n)).

Observe that we created a gap with 1
2 -factor approximation algorithm for the problem.

Thus, this approximation algorithm can be used for deciding SAT in polynomial time.

Inapproximability in Combinatorial Optimization

Hardness of Approximation

First Implication of PCP theorem

The problem of maximizing the accept probability

Let V be a PCP(log(n),1) verifier for SAT. On input Φ, a SAT formula, find a proof, that
maximizes the probability of acceptance of V .

Theorem

If P 6= NP, then there is no 1
2 -factor approximation algorithm for the above problem.

Proof.

if Φ is satisfiable, then there is a proof that makes V accept with probability 1, and if Φ is
not satisfiable, then on every proof V accepts with probability < 1

2 .

Suppose that there exists a 1
2 -factor approximation algorithm for the problem.

If Φ is
satisfiable, then this algorithm must provide a proof that makes V accept with probability
≥ 1

2 .

The acceptance probability can be computed in polynomial time, by simply simulating V for
all random strings of length O(log(n)).

Observe that we created a gap with 1
2 -factor approximation algorithm for the problem.

Thus, this approximation algorithm can be used for deciding SAT in polynomial time.

Inapproximability in Combinatorial Optimization

Hardness of Approximation

First Implication of PCP theorem

The problem of maximizing the accept probability

Let V be a PCP(log(n),1) verifier for SAT. On input Φ, a SAT formula, find a proof, that
maximizes the probability of acceptance of V .

Theorem

If P 6= NP, then there is no 1
2 -factor approximation algorithm for the above problem.

Proof.

if Φ is satisfiable, then there is a proof that makes V accept with probability 1, and if Φ is
not satisfiable, then on every proof V accepts with probability < 1

2 .

Suppose that there exists a 1
2 -factor approximation algorithm for the problem. If Φ is

satisfiable, then this algorithm must provide a proof that makes V accept with probability
≥ 1

2 .

The acceptance probability can be computed in polynomial time, by simply simulating V for
all random strings of length O(log(n)).

Observe that we created a gap with 1
2 -factor approximation algorithm for the problem.

Thus, this approximation algorithm can be used for deciding SAT in polynomial time.

Inapproximability in Combinatorial Optimization

Hardness of Approximation

First Implication of PCP theorem

The problem of maximizing the accept probability

Let V be a PCP(log(n),1) verifier for SAT. On input Φ, a SAT formula, find a proof, that
maximizes the probability of acceptance of V .

Theorem

If P 6= NP, then there is no 1
2 -factor approximation algorithm for the above problem.

Proof.

if Φ is satisfiable, then there is a proof that makes V accept with probability 1, and if Φ is
not satisfiable, then on every proof V accepts with probability < 1

2 .

Suppose that there exists a 1
2 -factor approximation algorithm for the problem. If Φ is

satisfiable, then this algorithm must provide a proof that makes V accept with probability
≥ 1

2 .

The acceptance probability can be computed in polynomial time, by simply simulating V for
all random strings of length O(log(n)).

Observe that we created a gap with 1
2 -factor approximation algorithm for the problem.

Thus, this approximation algorithm can be used for deciding SAT in polynomial time.

Inapproximability in Combinatorial Optimization

Hardness of Approximation

First Implication of PCP theorem

The problem of maximizing the accept probability

Let V be a PCP(log(n),1) verifier for SAT. On input Φ, a SAT formula, find a proof, that
maximizes the probability of acceptance of V .

Theorem

If P 6= NP, then there is no 1
2 -factor approximation algorithm for the above problem.

Proof.

if Φ is satisfiable, then there is a proof that makes V accept with probability 1, and if Φ is
not satisfiable, then on every proof V accepts with probability < 1

2 .

Suppose that there exists a 1
2 -factor approximation algorithm for the problem. If Φ is

satisfiable, then this algorithm must provide a proof that makes V accept with probability
≥ 1

2 .

The acceptance probability can be computed in polynomial time, by simply simulating V for
all random strings of length O(log(n)).

Observe that we created a gap with 1
2 -factor approximation algorithm for the problem.

Thus, this approximation algorithm can be used for deciding SAT in polynomial time.

Inapproximability in Combinatorial Optimization

Hardness of Approximation

First Implication of PCP theorem

The problem of maximizing the accept probability

Let V be a PCP(log(n),1) verifier for SAT. On input Φ, a SAT formula, find a proof, that
maximizes the probability of acceptance of V .

Theorem

If P 6= NP, then there is no 1
2 -factor approximation algorithm for the above problem.

Proof.

if Φ is satisfiable, then there is a proof that makes V accept with probability 1, and if Φ is
not satisfiable, then on every proof V accepts with probability < 1

2 .

Suppose that there exists a 1
2 -factor approximation algorithm for the problem. If Φ is

satisfiable, then this algorithm must provide a proof that makes V accept with probability
≥ 1

2 .

The acceptance probability can be computed in polynomial time, by simply simulating V for
all random strings of length O(log(n)).

Observe that we created a gap with 1
2 -factor approximation algorithm for the problem.

Thus, this approximation algorithm can be used for deciding SAT in polynomial time.

Inapproximability in Combinatorial Optimization

Hardness of Approximation

MAX-k -Function-SAT

The formulation of MAX-k -Function-SAT

Given n boolean variables x1, ...,xn and m functions f1, ..., fm each of which is a function of the k
of variables.

Find a truth assignment to x1, ...,xn that maximizes the number of satisfied
functions. Here k is assumed to be a fixed constant (not part of the input).

Lemma

There is a constant k, for which there is a gap-introducing reduction from SAT to
MAX-k-Function-SAT that transforms a boolean formula Φ to an instance I of
MAX-k-Function-SAT, such that

if Φ is satisfiable, then OPT (I) = m,

if Φ is not satisfiable, then OPT (I) < m
2 ,

where m is the number of formulae in I.

Inapproximability in Combinatorial Optimization

Hardness of Approximation

MAX-k -Function-SAT

The formulation of MAX-k -Function-SAT

Given n boolean variables x1, ...,xn and m functions f1, ..., fm each of which is a function of the k
of variables. Find a truth assignment to x1, ...,xn that maximizes the number of satisfied
functions.

Here k is assumed to be a fixed constant (not part of the input).

Lemma

There is a constant k, for which there is a gap-introducing reduction from SAT to
MAX-k-Function-SAT that transforms a boolean formula Φ to an instance I of
MAX-k-Function-SAT, such that

if Φ is satisfiable, then OPT (I) = m,

if Φ is not satisfiable, then OPT (I) < m
2 ,

where m is the number of formulae in I.

Inapproximability in Combinatorial Optimization

Hardness of Approximation

MAX-k -Function-SAT

The formulation of MAX-k -Function-SAT

Given n boolean variables x1, ...,xn and m functions f1, ..., fm each of which is a function of the k
of variables. Find a truth assignment to x1, ...,xn that maximizes the number of satisfied
functions. Here k is assumed to be a fixed constant (not part of the input).

Lemma

There is a constant k, for which there is a gap-introducing reduction from SAT to
MAX-k-Function-SAT that transforms a boolean formula Φ to an instance I of
MAX-k-Function-SAT, such that

if Φ is satisfiable, then OPT (I) = m,

if Φ is not satisfiable, then OPT (I) < m
2 ,

where m is the number of formulae in I.

Inapproximability in Combinatorial Optimization

Hardness of Approximation

MAX-k -Function-SAT

The formulation of MAX-k -Function-SAT

Given n boolean variables x1, ...,xn and m functions f1, ..., fm each of which is a function of the k
of variables. Find a truth assignment to x1, ...,xn that maximizes the number of satisfied
functions. Here k is assumed to be a fixed constant (not part of the input).

Lemma

There is a constant k, for which there is a gap-introducing reduction from SAT to
MAX-k-Function-SAT

that transforms a boolean formula Φ to an instance I of
MAX-k-Function-SAT, such that

if Φ is satisfiable, then OPT (I) = m,

if Φ is not satisfiable, then OPT (I) < m
2 ,

where m is the number of formulae in I.

Inapproximability in Combinatorial Optimization

Hardness of Approximation

MAX-k -Function-SAT

The formulation of MAX-k -Function-SAT

Given n boolean variables x1, ...,xn and m functions f1, ..., fm each of which is a function of the k
of variables. Find a truth assignment to x1, ...,xn that maximizes the number of satisfied
functions. Here k is assumed to be a fixed constant (not part of the input).

Lemma

There is a constant k, for which there is a gap-introducing reduction from SAT to
MAX-k-Function-SAT that transforms a boolean formula Φ to an instance I of
MAX-k-Function-SAT, such that

if Φ is satisfiable, then OPT (I) = m,

if Φ is not satisfiable, then OPT (I) < m
2 ,

where m is the number of formulae in I.

Inapproximability in Combinatorial Optimization

Hardness of Approximation

MAX-k -Function-SAT

The formulation of MAX-k -Function-SAT

Given n boolean variables x1, ...,xn and m functions f1, ..., fm each of which is a function of the k
of variables. Find a truth assignment to x1, ...,xn that maximizes the number of satisfied
functions. Here k is assumed to be a fixed constant (not part of the input).

Lemma

There is a constant k, for which there is a gap-introducing reduction from SAT to
MAX-k-Function-SAT that transforms a boolean formula Φ to an instance I of
MAX-k-Function-SAT, such that

if Φ is satisfiable, then OPT (I) = m,

if Φ is not satisfiable, then OPT (I) < m
2 ,

where m is the number of formulae in I.

Inapproximability in Combinatorial Optimization

Hardness of Approximation

MAX-k -Function-SAT

The formulation of MAX-k -Function-SAT

Given n boolean variables x1, ...,xn and m functions f1, ..., fm each of which is a function of the k
of variables. Find a truth assignment to x1, ...,xn that maximizes the number of satisfied
functions. Here k is assumed to be a fixed constant (not part of the input).

Lemma

There is a constant k, for which there is a gap-introducing reduction from SAT to
MAX-k-Function-SAT that transforms a boolean formula Φ to an instance I of
MAX-k-Function-SAT, such that

if Φ is satisfiable, then OPT (I) = m,

if Φ is not satisfiable, then OPT (I) < m
2 ,

where m is the number of formulae in I.

Inapproximability in Combinatorial Optimization

Hardness of Approximation

MAX-k -Function-SAT

The formulation of MAX-k -Function-SAT

Given n boolean variables x1, ...,xn and m functions f1, ..., fm each of which is a function of the k
of variables. Find a truth assignment to x1, ...,xn that maximizes the number of satisfied
functions. Here k is assumed to be a fixed constant (not part of the input).

Lemma

There is a constant k, for which there is a gap-introducing reduction from SAT to
MAX-k-Function-SAT that transforms a boolean formula Φ to an instance I of
MAX-k-Function-SAT, such that

if Φ is satisfiable, then OPT (I) = m,

if Φ is not satisfiable, then OPT (I) < m
2 ,

where m is the number of formulae in I.

Inapproximability in Combinatorial Optimization

Hardness of Approximation

The proof of Lemma on MAX-k -Function-SAT

Proof.

Let V be a PCP(log(n),1) verifier for SAT with associated parameters c and q.

Let Φ be
an instance of SAT of length n.

Corresponding to each string r of length c · log(n), V reads q bits of the proof. Thus V
reads a total of ≤ q ·nc bits of the proof.

Let B be a set of boolean variables corresponding to each of these bits.The relevant part of
each proof corresponds to an assignment to the variables of B.

We will establish lemma for k = q. The acceptance or rejection of V is a function of Φ, r
and the q-bits of the proof read by V . When Φ and r are fixed, consider the restriction of
this function to the q bits of the proof. Denote the function by fr .

Clearly, there is a polynomial algorithm which for the input Φ, outputs all m = nc functions
fr .

If Φ is satisfiable, then there is a proof that V accepts with probability 1. The corresponding
assignment to B satisfies all nc functions fr . On the other hand, if Φ is not satisfiable, then
on every proof V accepts with probability < 1

2 . Thus in this case every assignment satisfies
< 1

2 ·n
c of these functions.

Inapproximability in Combinatorial Optimization

Hardness of Approximation

The proof of Lemma on MAX-k -Function-SAT

Proof.

Let V be a PCP(log(n),1) verifier for SAT with associated parameters c and q. Let Φ be
an instance of SAT of length n.

Corresponding to each string r of length c · log(n), V reads q bits of the proof. Thus V
reads a total of ≤ q ·nc bits of the proof.

Let B be a set of boolean variables corresponding to each of these bits.The relevant part of
each proof corresponds to an assignment to the variables of B.

We will establish lemma for k = q. The acceptance or rejection of V is a function of Φ, r
and the q-bits of the proof read by V . When Φ and r are fixed, consider the restriction of
this function to the q bits of the proof. Denote the function by fr .

Clearly, there is a polynomial algorithm which for the input Φ, outputs all m = nc functions
fr .

If Φ is satisfiable, then there is a proof that V accepts with probability 1. The corresponding
assignment to B satisfies all nc functions fr . On the other hand, if Φ is not satisfiable, then
on every proof V accepts with probability < 1

2 . Thus in this case every assignment satisfies
< 1

2 ·n
c of these functions.

Inapproximability in Combinatorial Optimization

Hardness of Approximation

The proof of Lemma on MAX-k -Function-SAT

Proof.

Let V be a PCP(log(n),1) verifier for SAT with associated parameters c and q. Let Φ be
an instance of SAT of length n.

Corresponding to each string r of length c · log(n), V reads q bits of the proof.

Thus V
reads a total of ≤ q ·nc bits of the proof.

Let B be a set of boolean variables corresponding to each of these bits.The relevant part of
each proof corresponds to an assignment to the variables of B.

We will establish lemma for k = q. The acceptance or rejection of V is a function of Φ, r
and the q-bits of the proof read by V . When Φ and r are fixed, consider the restriction of
this function to the q bits of the proof. Denote the function by fr .

Clearly, there is a polynomial algorithm which for the input Φ, outputs all m = nc functions
fr .

If Φ is satisfiable, then there is a proof that V accepts with probability 1. The corresponding
assignment to B satisfies all nc functions fr . On the other hand, if Φ is not satisfiable, then
on every proof V accepts with probability < 1

2 . Thus in this case every assignment satisfies
< 1

2 ·n
c of these functions.

Inapproximability in Combinatorial Optimization

Hardness of Approximation

The proof of Lemma on MAX-k -Function-SAT

Proof.

Let V be a PCP(log(n),1) verifier for SAT with associated parameters c and q. Let Φ be
an instance of SAT of length n.

Corresponding to each string r of length c · log(n), V reads q bits of the proof. Thus V
reads a total of ≤ q ·nc bits of the proof.

Let B be a set of boolean variables corresponding to each of these bits.The relevant part of
each proof corresponds to an assignment to the variables of B.

We will establish lemma for k = q. The acceptance or rejection of V is a function of Φ, r
and the q-bits of the proof read by V . When Φ and r are fixed, consider the restriction of
this function to the q bits of the proof. Denote the function by fr .

Clearly, there is a polynomial algorithm which for the input Φ, outputs all m = nc functions
fr .

If Φ is satisfiable, then there is a proof that V accepts with probability 1. The corresponding
assignment to B satisfies all nc functions fr . On the other hand, if Φ is not satisfiable, then
on every proof V accepts with probability < 1

2 . Thus in this case every assignment satisfies
< 1

2 ·n
c of these functions.

Inapproximability in Combinatorial Optimization

Hardness of Approximation

The proof of Lemma on MAX-k -Function-SAT

Proof.

Let V be a PCP(log(n),1) verifier for SAT with associated parameters c and q. Let Φ be
an instance of SAT of length n.

Corresponding to each string r of length c · log(n), V reads q bits of the proof. Thus V
reads a total of ≤ q ·nc bits of the proof.

Let B be a set of boolean variables corresponding to each of these bits.

The relevant part of
each proof corresponds to an assignment to the variables of B.

We will establish lemma for k = q. The acceptance or rejection of V is a function of Φ, r
and the q-bits of the proof read by V . When Φ and r are fixed, consider the restriction of
this function to the q bits of the proof. Denote the function by fr .

Clearly, there is a polynomial algorithm which for the input Φ, outputs all m = nc functions
fr .

If Φ is satisfiable, then there is a proof that V accepts with probability 1. The corresponding
assignment to B satisfies all nc functions fr . On the other hand, if Φ is not satisfiable, then
on every proof V accepts with probability < 1

2 . Thus in this case every assignment satisfies
< 1

2 ·n
c of these functions.

Inapproximability in Combinatorial Optimization

Hardness of Approximation

The proof of Lemma on MAX-k -Function-SAT

Proof.

Let V be a PCP(log(n),1) verifier for SAT with associated parameters c and q. Let Φ be
an instance of SAT of length n.

Corresponding to each string r of length c · log(n), V reads q bits of the proof. Thus V
reads a total of ≤ q ·nc bits of the proof.

Let B be a set of boolean variables corresponding to each of these bits.The relevant part of
each proof corresponds to an assignment to the variables of B.

We will establish lemma for k = q. The acceptance or rejection of V is a function of Φ, r
and the q-bits of the proof read by V . When Φ and r are fixed, consider the restriction of
this function to the q bits of the proof. Denote the function by fr .

Clearly, there is a polynomial algorithm which for the input Φ, outputs all m = nc functions
fr .

If Φ is satisfiable, then there is a proof that V accepts with probability 1. The corresponding
assignment to B satisfies all nc functions fr . On the other hand, if Φ is not satisfiable, then
on every proof V accepts with probability < 1

2 . Thus in this case every assignment satisfies
< 1

2 ·n
c of these functions.

Inapproximability in Combinatorial Optimization

Hardness of Approximation

The proof of Lemma on MAX-k -Function-SAT

Proof.

Let V be a PCP(log(n),1) verifier for SAT with associated parameters c and q. Let Φ be
an instance of SAT of length n.

Corresponding to each string r of length c · log(n), V reads q bits of the proof. Thus V
reads a total of ≤ q ·nc bits of the proof.

Let B be a set of boolean variables corresponding to each of these bits.The relevant part of
each proof corresponds to an assignment to the variables of B.

We will establish lemma for k = q.

The acceptance or rejection of V is a function of Φ, r
and the q-bits of the proof read by V . When Φ and r are fixed, consider the restriction of
this function to the q bits of the proof. Denote the function by fr .

Clearly, there is a polynomial algorithm which for the input Φ, outputs all m = nc functions
fr .

If Φ is satisfiable, then there is a proof that V accepts with probability 1. The corresponding
assignment to B satisfies all nc functions fr . On the other hand, if Φ is not satisfiable, then
on every proof V accepts with probability < 1

2 . Thus in this case every assignment satisfies
< 1

2 ·n
c of these functions.

Inapproximability in Combinatorial Optimization

Hardness of Approximation

The proof of Lemma on MAX-k -Function-SAT

Proof.

Let V be a PCP(log(n),1) verifier for SAT with associated parameters c and q. Let Φ be
an instance of SAT of length n.

Corresponding to each string r of length c · log(n), V reads q bits of the proof. Thus V
reads a total of ≤ q ·nc bits of the proof.

Let B be a set of boolean variables corresponding to each of these bits.The relevant part of
each proof corresponds to an assignment to the variables of B.

We will establish lemma for k = q. The acceptance or rejection of V is a function of Φ, r
and the q-bits of the proof read by V .

When Φ and r are fixed, consider the restriction of
this function to the q bits of the proof. Denote the function by fr .

Clearly, there is a polynomial algorithm which for the input Φ, outputs all m = nc functions
fr .

If Φ is satisfiable, then there is a proof that V accepts with probability 1. The corresponding
assignment to B satisfies all nc functions fr . On the other hand, if Φ is not satisfiable, then
on every proof V accepts with probability < 1

2 . Thus in this case every assignment satisfies
< 1

2 ·n
c of these functions.

Inapproximability in Combinatorial Optimization

Hardness of Approximation

The proof of Lemma on MAX-k -Function-SAT

Proof.

Let V be a PCP(log(n),1) verifier for SAT with associated parameters c and q. Let Φ be
an instance of SAT of length n.

Corresponding to each string r of length c · log(n), V reads q bits of the proof. Thus V
reads a total of ≤ q ·nc bits of the proof.

Let B be a set of boolean variables corresponding to each of these bits.The relevant part of
each proof corresponds to an assignment to the variables of B.

We will establish lemma for k = q. The acceptance or rejection of V is a function of Φ, r
and the q-bits of the proof read by V . When Φ and r are fixed, consider the restriction of
this function to the q bits of the proof. Denote the function by fr .

Clearly, there is a polynomial algorithm which for the input Φ, outputs all m = nc functions
fr .

If Φ is satisfiable, then there is a proof that V accepts with probability 1. The corresponding
assignment to B satisfies all nc functions fr . On the other hand, if Φ is not satisfiable, then
on every proof V accepts with probability < 1

2 . Thus in this case every assignment satisfies
< 1

2 ·n
c of these functions.

Inapproximability in Combinatorial Optimization

Hardness of Approximation

The proof of Lemma on MAX-k -Function-SAT

Proof.

Let V be a PCP(log(n),1) verifier for SAT with associated parameters c and q. Let Φ be
an instance of SAT of length n.

Corresponding to each string r of length c · log(n), V reads q bits of the proof. Thus V
reads a total of ≤ q ·nc bits of the proof.

Let B be a set of boolean variables corresponding to each of these bits.The relevant part of
each proof corresponds to an assignment to the variables of B.

We will establish lemma for k = q. The acceptance or rejection of V is a function of Φ, r
and the q-bits of the proof read by V . When Φ and r are fixed, consider the restriction of
this function to the q bits of the proof. Denote the function by fr .

Clearly, there is a polynomial algorithm which for the input Φ, outputs all m = nc functions
fr .

If Φ is satisfiable, then there is a proof that V accepts with probability 1. The corresponding
assignment to B satisfies all nc functions fr . On the other hand, if Φ is not satisfiable, then
on every proof V accepts with probability < 1

2 . Thus in this case every assignment satisfies
< 1

2 ·n
c of these functions.

Inapproximability in Combinatorial Optimization

Hardness of Approximation

The proof of Lemma on MAX-k -Function-SAT

Proof.

Let V be a PCP(log(n),1) verifier for SAT with associated parameters c and q. Let Φ be
an instance of SAT of length n.

Corresponding to each string r of length c · log(n), V reads q bits of the proof. Thus V
reads a total of ≤ q ·nc bits of the proof.

Let B be a set of boolean variables corresponding to each of these bits.The relevant part of
each proof corresponds to an assignment to the variables of B.

We will establish lemma for k = q. The acceptance or rejection of V is a function of Φ, r
and the q-bits of the proof read by V . When Φ and r are fixed, consider the restriction of
this function to the q bits of the proof. Denote the function by fr .

Clearly, there is a polynomial algorithm which for the input Φ, outputs all m = nc functions
fr .

If Φ is satisfiable, then there is a proof that V accepts with probability 1.

The corresponding
assignment to B satisfies all nc functions fr . On the other hand, if Φ is not satisfiable, then
on every proof V accepts with probability < 1

2 . Thus in this case every assignment satisfies
< 1

2 ·n
c of these functions.

Inapproximability in Combinatorial Optimization

Hardness of Approximation

The proof of Lemma on MAX-k -Function-SAT

Proof.

Let V be a PCP(log(n),1) verifier for SAT with associated parameters c and q. Let Φ be
an instance of SAT of length n.

Corresponding to each string r of length c · log(n), V reads q bits of the proof. Thus V
reads a total of ≤ q ·nc bits of the proof.

Let B be a set of boolean variables corresponding to each of these bits.The relevant part of
each proof corresponds to an assignment to the variables of B.

We will establish lemma for k = q. The acceptance or rejection of V is a function of Φ, r
and the q-bits of the proof read by V . When Φ and r are fixed, consider the restriction of
this function to the q bits of the proof. Denote the function by fr .

Clearly, there is a polynomial algorithm which for the input Φ, outputs all m = nc functions
fr .

If Φ is satisfiable, then there is a proof that V accepts with probability 1. The corresponding
assignment to B satisfies all nc functions fr .

On the other hand, if Φ is not satisfiable, then
on every proof V accepts with probability < 1

2 . Thus in this case every assignment satisfies
< 1

2 ·n
c of these functions.

Inapproximability in Combinatorial Optimization

Hardness of Approximation

The proof of Lemma on MAX-k -Function-SAT

Proof.

Let V be a PCP(log(n),1) verifier for SAT with associated parameters c and q. Let Φ be
an instance of SAT of length n.

Corresponding to each string r of length c · log(n), V reads q bits of the proof. Thus V
reads a total of ≤ q ·nc bits of the proof.

Let B be a set of boolean variables corresponding to each of these bits.The relevant part of
each proof corresponds to an assignment to the variables of B.

We will establish lemma for k = q. The acceptance or rejection of V is a function of Φ, r
and the q-bits of the proof read by V . When Φ and r are fixed, consider the restriction of
this function to the q bits of the proof. Denote the function by fr .

Clearly, there is a polynomial algorithm which for the input Φ, outputs all m = nc functions
fr .

If Φ is satisfiable, then there is a proof that V accepts with probability 1. The corresponding
assignment to B satisfies all nc functions fr . On the other hand, if Φ is not satisfiable, then
on every proof V accepts with probability < 1

2 .

Thus in this case every assignment satisfies
< 1

2 ·n
c of these functions.

Inapproximability in Combinatorial Optimization

Hardness of Approximation

The proof of Lemma on MAX-k -Function-SAT

Proof.

Let V be a PCP(log(n),1) verifier for SAT with associated parameters c and q. Let Φ be
an instance of SAT of length n.

Corresponding to each string r of length c · log(n), V reads q bits of the proof. Thus V
reads a total of ≤ q ·nc bits of the proof.

Let B be a set of boolean variables corresponding to each of these bits.The relevant part of
each proof corresponds to an assignment to the variables of B.

We will establish lemma for k = q. The acceptance or rejection of V is a function of Φ, r
and the q-bits of the proof read by V . When Φ and r are fixed, consider the restriction of
this function to the q bits of the proof. Denote the function by fr .

Clearly, there is a polynomial algorithm which for the input Φ, outputs all m = nc functions
fr .

If Φ is satisfiable, then there is a proof that V accepts with probability 1. The corresponding
assignment to B satisfies all nc functions fr . On the other hand, if Φ is not satisfiable, then
on every proof V accepts with probability < 1

2 . Thus in this case every assignment satisfies
< 1

2 ·n
c of these functions.

Inapproximability in Combinatorial Optimization

Hardness of Approximation

MAX-SAT and MAX-3-SAT

The formulation of MAX-SAT

Given a conjunctive normal form f (x1, ...,xn) = D1 ∧ ...∧Dr . Find a truth assignment to boolean
variables x1, ...,xn that maximizes the number of satisfied clauses.

The formulation of MAX-3-SAT

Given a conjunctive normal form f (x1, ...,xn) = D1 ∧ ...∧Dr , where each Dj contains at most
three literals. Find a truth assignment to boolean variables x1, ...,xn that maximizes the number
of satisfied clauses.

Inapproximability in Combinatorial Optimization

Hardness of Approximation

MAX-SAT and MAX-3-SAT

The formulation of MAX-SAT

Given a conjunctive normal form f (x1, ...,xn) = D1 ∧ ...∧Dr . Find a truth assignment to boolean
variables x1, ...,xn that maximizes the number of satisfied clauses.

The formulation of MAX-3-SAT

Given a conjunctive normal form f (x1, ...,xn) = D1 ∧ ...∧Dr , where each Dj contains at most
three literals. Find a truth assignment to boolean variables x1, ...,xn that maximizes the number
of satisfied clauses.

Inapproximability in Combinatorial Optimization

Hardness of Approximation

The main result on MAX-3-SAT

Theorem

There is a constant εM > 0 for which there is a gap-introducing reduction from SAT to
MAX-3-SAT that transforms a boolean formula Φ to Ψ, such that

if Φ is satisfiable, then OPT (Ψ) = m,

if Φ is not satisfiable, then OPT (Ψ) < (1− εM) ·m,

where m is the number of clauses in Ψ.

Corollary

There is no approximation algorithm for MAX-3-SAT with approximation factor (1− εM)
assuming P6= NP, where εM is the constant defined in the above theorem.

Inapproximability in Combinatorial Optimization

Hardness of Approximation

The main result on MAX-3-SAT

Theorem

There is a constant εM > 0 for which there is a gap-introducing reduction from SAT to
MAX-3-SAT that transforms a boolean formula Φ to Ψ, such that

if Φ is satisfiable, then OPT (Ψ) = m,

if Φ is not satisfiable, then OPT (Ψ) < (1− εM) ·m,

where m is the number of clauses in Ψ.

Corollary

There is no approximation algorithm for MAX-3-SAT with approximation factor (1− εM)
assuming P6= NP, where εM is the constant defined in the above theorem.

Inapproximability in Combinatorial Optimization

Hardness of Approximation

The main result on MAX-3-SAT

Theorem

There is a constant εM > 0 for which there is a gap-introducing reduction from SAT to
MAX-3-SAT that transforms a boolean formula Φ to Ψ, such that

if Φ is satisfiable, then OPT (Ψ) = m,

if Φ is not satisfiable, then OPT (Ψ) < (1− εM) ·m,

where m is the number of clauses in Ψ.

Corollary

There is no approximation algorithm for MAX-3-SAT with approximation factor (1− εM)
assuming P6= NP, where εM is the constant defined in the above theorem.

Inapproximability in Combinatorial Optimization

Hardness of Approximation

The main result on MAX-3-SAT

Theorem

There is a constant εM > 0 for which there is a gap-introducing reduction from SAT to
MAX-3-SAT that transforms a boolean formula Φ to Ψ, such that

if Φ is satisfiable, then OPT (Ψ) = m,

if Φ is not satisfiable, then OPT (Ψ) < (1− εM) ·m,

where m is the number of clauses in Ψ.

Corollary

There is no approximation algorithm for MAX-3-SAT with approximation factor (1− εM)
assuming P6= NP, where εM is the constant defined in the above theorem.

Inapproximability in Combinatorial Optimization

Hardness of Approximation

The Proof of a Result on MAX-3-SAT

Proof.

Using the lemma on MAX-k-Function-SAT, we transform a SAT formula Φ to an instance of
MAX-k-Function-SAT.

Now we show how to obtain a 3-SAT formula from the nc functions.

Each function fr constructed in the lemma can be written as a SAT formula ψr containing at
most 2q clauses. Each clause of ψr contains at most q literals. Let ψ =

∧
r ψr .

If an assignment satisfies fr , then it satisfies all the clauses of ψr . On the other hand, if it
does not satisfy fr , then it must leave at least one clause of ψr unsatisfied. Hence if Φ is
not satisfiable, then any assignment must leave > 1

2 ·n
c clauses of ψ unsatisfied.

Inapproximability in Combinatorial Optimization

Hardness of Approximation

The Proof of a Result on MAX-3-SAT

Proof.

Using the lemma on MAX-k-Function-SAT, we transform a SAT formula Φ to an instance of
MAX-k-Function-SAT. Now we show how to obtain a 3-SAT formula from the nc functions.

Each function fr constructed in the lemma can be written as a SAT formula ψr containing at
most 2q clauses. Each clause of ψr contains at most q literals. Let ψ =

∧
r ψr .

If an assignment satisfies fr , then it satisfies all the clauses of ψr . On the other hand, if it
does not satisfy fr , then it must leave at least one clause of ψr unsatisfied. Hence if Φ is
not satisfiable, then any assignment must leave > 1

2 ·n
c clauses of ψ unsatisfied.

Inapproximability in Combinatorial Optimization

Hardness of Approximation

The Proof of a Result on MAX-3-SAT

Proof.

Using the lemma on MAX-k-Function-SAT, we transform a SAT formula Φ to an instance of
MAX-k-Function-SAT. Now we show how to obtain a 3-SAT formula from the nc functions.

Each function fr constructed in the lemma can be written as a SAT formula ψr containing at
most 2q clauses.

Each clause of ψr contains at most q literals. Let ψ =
∧

r ψr .

If an assignment satisfies fr , then it satisfies all the clauses of ψr . On the other hand, if it
does not satisfy fr , then it must leave at least one clause of ψr unsatisfied. Hence if Φ is
not satisfiable, then any assignment must leave > 1

2 ·n
c clauses of ψ unsatisfied.

Inapproximability in Combinatorial Optimization

Hardness of Approximation

The Proof of a Result on MAX-3-SAT

Proof.

Using the lemma on MAX-k-Function-SAT, we transform a SAT formula Φ to an instance of
MAX-k-Function-SAT. Now we show how to obtain a 3-SAT formula from the nc functions.

Each function fr constructed in the lemma can be written as a SAT formula ψr containing at
most 2q clauses. Each clause of ψr contains at most q literals.

Let ψ =
∧

r ψr .

If an assignment satisfies fr , then it satisfies all the clauses of ψr . On the other hand, if it
does not satisfy fr , then it must leave at least one clause of ψr unsatisfied. Hence if Φ is
not satisfiable, then any assignment must leave > 1

2 ·n
c clauses of ψ unsatisfied.

Inapproximability in Combinatorial Optimization

Hardness of Approximation

The Proof of a Result on MAX-3-SAT

Proof.

Using the lemma on MAX-k-Function-SAT, we transform a SAT formula Φ to an instance of
MAX-k-Function-SAT. Now we show how to obtain a 3-SAT formula from the nc functions.

Each function fr constructed in the lemma can be written as a SAT formula ψr containing at
most 2q clauses. Each clause of ψr contains at most q literals. Let ψ =

∧
r ψr .

If an assignment satisfies fr , then it satisfies all the clauses of ψr . On the other hand, if it
does not satisfy fr , then it must leave at least one clause of ψr unsatisfied. Hence if Φ is
not satisfiable, then any assignment must leave > 1

2 ·n
c clauses of ψ unsatisfied.

Inapproximability in Combinatorial Optimization

Hardness of Approximation

The Proof of a Result on MAX-3-SAT

Proof.

Using the lemma on MAX-k-Function-SAT, we transform a SAT formula Φ to an instance of
MAX-k-Function-SAT. Now we show how to obtain a 3-SAT formula from the nc functions.

Each function fr constructed in the lemma can be written as a SAT formula ψr containing at
most 2q clauses. Each clause of ψr contains at most q literals. Let ψ =

∧
r ψr .

If an assignment satisfies fr , then it satisfies all the clauses of ψr .

On the other hand, if it
does not satisfy fr , then it must leave at least one clause of ψr unsatisfied. Hence if Φ is
not satisfiable, then any assignment must leave > 1

2 ·n
c clauses of ψ unsatisfied.

Inapproximability in Combinatorial Optimization

Hardness of Approximation

The Proof of a Result on MAX-3-SAT

Proof.

Using the lemma on MAX-k-Function-SAT, we transform a SAT formula Φ to an instance of
MAX-k-Function-SAT. Now we show how to obtain a 3-SAT formula from the nc functions.

Each function fr constructed in the lemma can be written as a SAT formula ψr containing at
most 2q clauses. Each clause of ψr contains at most q literals. Let ψ =

∧
r ψr .

If an assignment satisfies fr , then it satisfies all the clauses of ψr . On the other hand, if it
does not satisfy fr , then it must leave at least one clause of ψr unsatisfied.

Hence if Φ is
not satisfiable, then any assignment must leave > 1

2 ·n
c clauses of ψ unsatisfied.

Inapproximability in Combinatorial Optimization

Hardness of Approximation

The Proof of a Result on MAX-3-SAT

Proof.

Using the lemma on MAX-k-Function-SAT, we transform a SAT formula Φ to an instance of
MAX-k-Function-SAT. Now we show how to obtain a 3-SAT formula from the nc functions.

Each function fr constructed in the lemma can be written as a SAT formula ψr containing at
most 2q clauses. Each clause of ψr contains at most q literals. Let ψ =

∧
r ψr .

If an assignment satisfies fr , then it satisfies all the clauses of ψr . On the other hand, if it
does not satisfy fr , then it must leave at least one clause of ψr unsatisfied. Hence if Φ is
not satisfiable, then any assignment must leave > 1

2 ·n
c clauses of ψ unsatisfied.

Inapproximability in Combinatorial Optimization

Hardness of Approximation

The Proof of a Result on MAX-3-SAT

Proof.

Let us transform ψ into a 3-SAT formula.

Consider a clause C = (x1 ∨ ...∨ xk) with k > 3.
Introduce new variables y1, ...,yk−2, and consider the formula

C = (x1 ∨ x2 ∨ y1)∧ (ȳ1 ∨ x3 ∨ y2)∧ ...∧ (ȳk−2 ∨ xk−1 ∨ xk).

Let τ be any assignment to x1, ...,xk . If τ satisfies C, then it can be extended to an
assignment satisfying all clauses of f . On the other hand, if τ does not satisfy C, then for
any values of y1, ...,yk−2, at least one of the clauses of f remains unsatisfied.

Apply this trick to any clause of ψ with more than 3 literals. Let ψ ′ be the resulting 3-SAT
formula. It contains at most nc ·2q · (q−2) clauses. If Φ is satisfiable, then there is an
assignment satisfying all clauses of ψ ′. If Φ is not satisfiable, then > 1

2 ·n
c of the clauses

remain unsatisfied under any assignment.

Taking εM = 1
2q+1·(q−2)

gives the proof of the theorem.

Inapproximability in Combinatorial Optimization

Hardness of Approximation

The Proof of a Result on MAX-3-SAT

Proof.

Let us transform ψ into a 3-SAT formula. Consider a clause C = (x1 ∨ ...∨ xk) with k > 3.

Introduce new variables y1, ...,yk−2, and consider the formula

C = (x1 ∨ x2 ∨ y1)∧ (ȳ1 ∨ x3 ∨ y2)∧ ...∧ (ȳk−2 ∨ xk−1 ∨ xk).

Let τ be any assignment to x1, ...,xk . If τ satisfies C, then it can be extended to an
assignment satisfying all clauses of f . On the other hand, if τ does not satisfy C, then for
any values of y1, ...,yk−2, at least one of the clauses of f remains unsatisfied.

Apply this trick to any clause of ψ with more than 3 literals. Let ψ ′ be the resulting 3-SAT
formula. It contains at most nc ·2q · (q−2) clauses. If Φ is satisfiable, then there is an
assignment satisfying all clauses of ψ ′. If Φ is not satisfiable, then > 1

2 ·n
c of the clauses

remain unsatisfied under any assignment.

Taking εM = 1
2q+1·(q−2)

gives the proof of the theorem.

Inapproximability in Combinatorial Optimization

Hardness of Approximation

The Proof of a Result on MAX-3-SAT

Proof.

Let us transform ψ into a 3-SAT formula. Consider a clause C = (x1 ∨ ...∨ xk) with k > 3.
Introduce new variables y1, ...,yk−2, and consider the formula

C = (x1 ∨ x2 ∨ y1)∧ (ȳ1 ∨ x3 ∨ y2)∧ ...∧ (ȳk−2 ∨ xk−1 ∨ xk).

Let τ be any assignment to x1, ...,xk . If τ satisfies C, then it can be extended to an
assignment satisfying all clauses of f . On the other hand, if τ does not satisfy C, then for
any values of y1, ...,yk−2, at least one of the clauses of f remains unsatisfied.

Apply this trick to any clause of ψ with more than 3 literals. Let ψ ′ be the resulting 3-SAT
formula. It contains at most nc ·2q · (q−2) clauses. If Φ is satisfiable, then there is an
assignment satisfying all clauses of ψ ′. If Φ is not satisfiable, then > 1

2 ·n
c of the clauses

remain unsatisfied under any assignment.

Taking εM = 1
2q+1·(q−2)

gives the proof of the theorem.

Inapproximability in Combinatorial Optimization

Hardness of Approximation

The Proof of a Result on MAX-3-SAT

Proof.

Let us transform ψ into a 3-SAT formula. Consider a clause C = (x1 ∨ ...∨ xk) with k > 3.
Introduce new variables y1, ...,yk−2, and consider the formula

C = (x1 ∨ x2 ∨ y1)∧ (ȳ1 ∨ x3 ∨ y2)∧ ...∧ (ȳk−2 ∨ xk−1 ∨ xk).

Let τ be any assignment to x1, ...,xk .

If τ satisfies C, then it can be extended to an
assignment satisfying all clauses of f . On the other hand, if τ does not satisfy C, then for
any values of y1, ...,yk−2, at least one of the clauses of f remains unsatisfied.

Apply this trick to any clause of ψ with more than 3 literals. Let ψ ′ be the resulting 3-SAT
formula. It contains at most nc ·2q · (q−2) clauses. If Φ is satisfiable, then there is an
assignment satisfying all clauses of ψ ′. If Φ is not satisfiable, then > 1

2 ·n
c of the clauses

remain unsatisfied under any assignment.

Taking εM = 1
2q+1·(q−2)

gives the proof of the theorem.

Inapproximability in Combinatorial Optimization

Hardness of Approximation

The Proof of a Result on MAX-3-SAT

Proof.

Let us transform ψ into a 3-SAT formula. Consider a clause C = (x1 ∨ ...∨ xk) with k > 3.
Introduce new variables y1, ...,yk−2, and consider the formula

C = (x1 ∨ x2 ∨ y1)∧ (ȳ1 ∨ x3 ∨ y2)∧ ...∧ (ȳk−2 ∨ xk−1 ∨ xk).

Let τ be any assignment to x1, ...,xk . If τ satisfies C, then it can be extended to an
assignment satisfying all clauses of f .

On the other hand, if τ does not satisfy C, then for
any values of y1, ...,yk−2, at least one of the clauses of f remains unsatisfied.

Apply this trick to any clause of ψ with more than 3 literals. Let ψ ′ be the resulting 3-SAT
formula. It contains at most nc ·2q · (q−2) clauses. If Φ is satisfiable, then there is an
assignment satisfying all clauses of ψ ′. If Φ is not satisfiable, then > 1

2 ·n
c of the clauses

remain unsatisfied under any assignment.

Taking εM = 1
2q+1·(q−2)

gives the proof of the theorem.

Inapproximability in Combinatorial Optimization

Hardness of Approximation

The Proof of a Result on MAX-3-SAT

Proof.

Let us transform ψ into a 3-SAT formula. Consider a clause C = (x1 ∨ ...∨ xk) with k > 3.
Introduce new variables y1, ...,yk−2, and consider the formula

C = (x1 ∨ x2 ∨ y1)∧ (ȳ1 ∨ x3 ∨ y2)∧ ...∧ (ȳk−2 ∨ xk−1 ∨ xk).

Let τ be any assignment to x1, ...,xk . If τ satisfies C, then it can be extended to an
assignment satisfying all clauses of f . On the other hand, if τ does not satisfy C, then for
any values of y1, ...,yk−2, at least one of the clauses of f remains unsatisfied.

Apply this trick to any clause of ψ with more than 3 literals. Let ψ ′ be the resulting 3-SAT
formula. It contains at most nc ·2q · (q−2) clauses. If Φ is satisfiable, then there is an
assignment satisfying all clauses of ψ ′. If Φ is not satisfiable, then > 1

2 ·n
c of the clauses

remain unsatisfied under any assignment.

Taking εM = 1
2q+1·(q−2)

gives the proof of the theorem.

Inapproximability in Combinatorial Optimization

Hardness of Approximation

The Proof of a Result on MAX-3-SAT

Proof.

Let us transform ψ into a 3-SAT formula. Consider a clause C = (x1 ∨ ...∨ xk) with k > 3.
Introduce new variables y1, ...,yk−2, and consider the formula

C = (x1 ∨ x2 ∨ y1)∧ (ȳ1 ∨ x3 ∨ y2)∧ ...∧ (ȳk−2 ∨ xk−1 ∨ xk).

Let τ be any assignment to x1, ...,xk . If τ satisfies C, then it can be extended to an
assignment satisfying all clauses of f . On the other hand, if τ does not satisfy C, then for
any values of y1, ...,yk−2, at least one of the clauses of f remains unsatisfied.

Apply this trick to any clause of ψ with more than 3 literals.

Let ψ ′ be the resulting 3-SAT
formula. It contains at most nc ·2q · (q−2) clauses. If Φ is satisfiable, then there is an
assignment satisfying all clauses of ψ ′. If Φ is not satisfiable, then > 1

2 ·n
c of the clauses

remain unsatisfied under any assignment.

Taking εM = 1
2q+1·(q−2)

gives the proof of the theorem.

Inapproximability in Combinatorial Optimization

Hardness of Approximation

The Proof of a Result on MAX-3-SAT

Proof.

Let us transform ψ into a 3-SAT formula. Consider a clause C = (x1 ∨ ...∨ xk) with k > 3.
Introduce new variables y1, ...,yk−2, and consider the formula

C = (x1 ∨ x2 ∨ y1)∧ (ȳ1 ∨ x3 ∨ y2)∧ ...∧ (ȳk−2 ∨ xk−1 ∨ xk).

Let τ be any assignment to x1, ...,xk . If τ satisfies C, then it can be extended to an
assignment satisfying all clauses of f . On the other hand, if τ does not satisfy C, then for
any values of y1, ...,yk−2, at least one of the clauses of f remains unsatisfied.

Apply this trick to any clause of ψ with more than 3 literals. Let ψ ′ be the resulting 3-SAT
formula.

It contains at most nc ·2q · (q−2) clauses. If Φ is satisfiable, then there is an
assignment satisfying all clauses of ψ ′. If Φ is not satisfiable, then > 1

2 ·n
c of the clauses

remain unsatisfied under any assignment.

Taking εM = 1
2q+1·(q−2)

gives the proof of the theorem.

Inapproximability in Combinatorial Optimization

Hardness of Approximation

The Proof of a Result on MAX-3-SAT

Proof.

Let us transform ψ into a 3-SAT formula. Consider a clause C = (x1 ∨ ...∨ xk) with k > 3.
Introduce new variables y1, ...,yk−2, and consider the formula

C = (x1 ∨ x2 ∨ y1)∧ (ȳ1 ∨ x3 ∨ y2)∧ ...∧ (ȳk−2 ∨ xk−1 ∨ xk).

Let τ be any assignment to x1, ...,xk . If τ satisfies C, then it can be extended to an
assignment satisfying all clauses of f . On the other hand, if τ does not satisfy C, then for
any values of y1, ...,yk−2, at least one of the clauses of f remains unsatisfied.

Apply this trick to any clause of ψ with more than 3 literals. Let ψ ′ be the resulting 3-SAT
formula. It contains at most nc ·2q · (q−2) clauses.

If Φ is satisfiable, then there is an
assignment satisfying all clauses of ψ ′. If Φ is not satisfiable, then > 1

2 ·n
c of the clauses

remain unsatisfied under any assignment.

Taking εM = 1
2q+1·(q−2)

gives the proof of the theorem.

Inapproximability in Combinatorial Optimization

Hardness of Approximation

The Proof of a Result on MAX-3-SAT

Proof.

Let us transform ψ into a 3-SAT formula. Consider a clause C = (x1 ∨ ...∨ xk) with k > 3.
Introduce new variables y1, ...,yk−2, and consider the formula

C = (x1 ∨ x2 ∨ y1)∧ (ȳ1 ∨ x3 ∨ y2)∧ ...∧ (ȳk−2 ∨ xk−1 ∨ xk).

Let τ be any assignment to x1, ...,xk . If τ satisfies C, then it can be extended to an
assignment satisfying all clauses of f . On the other hand, if τ does not satisfy C, then for
any values of y1, ...,yk−2, at least one of the clauses of f remains unsatisfied.

Apply this trick to any clause of ψ with more than 3 literals. Let ψ ′ be the resulting 3-SAT
formula. It contains at most nc ·2q · (q−2) clauses. If Φ is satisfiable, then there is an
assignment satisfying all clauses of ψ ′.

If Φ is not satisfiable, then > 1
2 ·n

c of the clauses
remain unsatisfied under any assignment.

Taking εM = 1
2q+1·(q−2)

gives the proof of the theorem.

Inapproximability in Combinatorial Optimization

Hardness of Approximation

The Proof of a Result on MAX-3-SAT

Proof.

Let us transform ψ into a 3-SAT formula. Consider a clause C = (x1 ∨ ...∨ xk) with k > 3.
Introduce new variables y1, ...,yk−2, and consider the formula

C = (x1 ∨ x2 ∨ y1)∧ (ȳ1 ∨ x3 ∨ y2)∧ ...∧ (ȳk−2 ∨ xk−1 ∨ xk).

Let τ be any assignment to x1, ...,xk . If τ satisfies C, then it can be extended to an
assignment satisfying all clauses of f . On the other hand, if τ does not satisfy C, then for
any values of y1, ...,yk−2, at least one of the clauses of f remains unsatisfied.

Apply this trick to any clause of ψ with more than 3 literals. Let ψ ′ be the resulting 3-SAT
formula. It contains at most nc ·2q · (q−2) clauses. If Φ is satisfiable, then there is an
assignment satisfying all clauses of ψ ′. If Φ is not satisfiable, then > 1

2 ·n
c of the clauses

remain unsatisfied under any assignment.

Taking εM = 1
2q+1·(q−2)

gives the proof of the theorem.

Inapproximability in Combinatorial Optimization

Hardness of Approximation

The Proof of a Result on MAX-3-SAT

Proof.

Let us transform ψ into a 3-SAT formula. Consider a clause C = (x1 ∨ ...∨ xk) with k > 3.
Introduce new variables y1, ...,yk−2, and consider the formula

C = (x1 ∨ x2 ∨ y1)∧ (ȳ1 ∨ x3 ∨ y2)∧ ...∧ (ȳk−2 ∨ xk−1 ∨ xk).

Let τ be any assignment to x1, ...,xk . If τ satisfies C, then it can be extended to an
assignment satisfying all clauses of f . On the other hand, if τ does not satisfy C, then for
any values of y1, ...,yk−2, at least one of the clauses of f remains unsatisfied.

Apply this trick to any clause of ψ with more than 3 literals. Let ψ ′ be the resulting 3-SAT
formula. It contains at most nc ·2q · (q−2) clauses. If Φ is satisfiable, then there is an
assignment satisfying all clauses of ψ ′. If Φ is not satisfiable, then > 1

2 ·n
c of the clauses

remain unsatisfied under any assignment.

Taking εM = 1
2q+1·(q−2)

gives the proof of the theorem.

Inapproximability in Combinatorial Optimization

Hardness of Approximation

Expanders

Definition

A graph G = (V ,E) is an expander, if G is regular, that is every vertex has the same degree, and
for every /0⊂ S ⊂ V one has

|E(S, S̄)|> min{|S|, |S̄|},

where E(S, S̄) denotes the set of edges of G that have one endpoint in S and the other in S̄.

Theorem

There exists an algorithm A and a number N0, such that for each N ≥ N0, A constructs a degree
14 expander on N vertices in time polynomial in N.

Remark

See remark 29.12 and section 29.9 of the Vazirani’s book for details on this theorem.

Inapproximability in Combinatorial Optimization

Hardness of Approximation

Expanders

Definition

A graph G = (V ,E) is an expander, if G is regular, that is every vertex has the same degree, and
for every /0⊂ S ⊂ V one has

|E(S, S̄)|> min{|S|, |S̄|},

where E(S, S̄) denotes the set of edges of G that have one endpoint in S and the other in S̄.

Theorem

There exists an algorithm A and a number N0, such that for each N ≥ N0, A constructs a degree
14 expander on N vertices in time polynomial in N.

Remark

See remark 29.12 and section 29.9 of the Vazirani’s book for details on this theorem.

Inapproximability in Combinatorial Optimization

Hardness of Approximation

Expanders

Definition

A graph G = (V ,E) is an expander, if G is regular, that is every vertex has the same degree, and
for every /0⊂ S ⊂ V one has

|E(S, S̄)|> min{|S|, |S̄|},

where E(S, S̄) denotes the set of edges of G that have one endpoint in S and the other in S̄.

Theorem

There exists an algorithm A and a number N0, such that for each N ≥ N0, A constructs a degree
14 expander on N vertices in time polynomial in N.

Remark

See remark 29.12 and section 29.9 of the Vazirani’s book for details on this theorem.

Inapproximability in Combinatorial Optimization

Hardness of Approximation

The problem MAX-3-SAT(k)

Definition

For each fixed k , let MAX-3-SAT(k) denote the restriction of MAX-3-SAT to instances, in which
each variable occurs at most k times.

Theorem

There is a a gap-preserving reduction from MAX-3-SAT to MAX-3-SAT(29) that transforms a
boolean formula Φ to Ψ, such that

if OPT (Φ) = m, then OPT (Ψ) = m′,

if OPT (Φ) < (1− εM) ·m, then OPT (Ψ) < (1− εb) ·m′,
where m and m′ are the number of clauses in Φ and Ψ, and εb = εM

43 .

Inapproximability in Combinatorial Optimization

Hardness of Approximation

The problem MAX-3-SAT(k)

Definition

For each fixed k , let MAX-3-SAT(k) denote the restriction of MAX-3-SAT to instances, in which
each variable occurs at most k times.

Theorem

There is a a gap-preserving reduction from MAX-3-SAT to MAX-3-SAT(29) that transforms a
boolean formula Φ to Ψ, such that

if OPT (Φ) = m, then OPT (Ψ) = m′,

if OPT (Φ) < (1− εM) ·m, then OPT (Ψ) < (1− εb) ·m′,
where m and m′ are the number of clauses in Φ and Ψ, and εb = εM

43 .

Inapproximability in Combinatorial Optimization

Hardness of Approximation

The problem MAX-3-SAT(k)

Definition

For each fixed k , let MAX-3-SAT(k) denote the restriction of MAX-3-SAT to instances, in which
each variable occurs at most k times.

Theorem

There is a a gap-preserving reduction from MAX-3-SAT to MAX-3-SAT(29) that transforms a
boolean formula Φ to Ψ, such that

if OPT (Φ) = m, then OPT (Ψ) = m′,

if OPT (Φ) < (1− εM) ·m, then OPT (Ψ) < (1− εb) ·m′,

where m and m′ are the number of clauses in Φ and Ψ, and εb = εM
43 .

Inapproximability in Combinatorial Optimization

Hardness of Approximation

The problem MAX-3-SAT(k)

Definition

For each fixed k , let MAX-3-SAT(k) denote the restriction of MAX-3-SAT to instances, in which
each variable occurs at most k times.

Theorem

There is a a gap-preserving reduction from MAX-3-SAT to MAX-3-SAT(29) that transforms a
boolean formula Φ to Ψ, such that

if OPT (Φ) = m, then OPT (Ψ) = m′,

if OPT (Φ) < (1− εM) ·m, then OPT (Ψ) < (1− εb) ·m′,
where m and m′ are the number of clauses in Φ and Ψ, and εb = εM

43 .

Inapproximability in Combinatorial Optimization

Hardness of Approximation

The problem MAX-3-SAT(k)

Proof.

Let k ≥ N0, and let Gx be a degree 14 expander on k vertices.

Label the vertices with
distinct boolean variables x1, ...,xk .

Construct a CNF ψx as follows: corresponding to each edge (xi ,xj) of Gx , we include the
clauses (x̄i ∨ xj) and (x̄j ∨ xi) in ψx .

An assignment is said to be consistent if either all the variables are set to true or all are set
to false.

An inconsistent assignment partitions the vertices of Gx into two sets S and S̄. Assume
that S is the smaller.

Corresponding to each edge in E(S, S̄), ψx will have an unsatisfied clause. Therefore, the
number of unsatisfied clauses, that is |E(S, S̄)|, is at least |S|+ 1.

Inapproximability in Combinatorial Optimization

Hardness of Approximation

The problem MAX-3-SAT(k)

Proof.

Let k ≥ N0, and let Gx be a degree 14 expander on k vertices. Label the vertices with
distinct boolean variables x1, ...,xk .

Construct a CNF ψx as follows: corresponding to each edge (xi ,xj) of Gx , we include the
clauses (x̄i ∨ xj) and (x̄j ∨ xi) in ψx .

An assignment is said to be consistent if either all the variables are set to true or all are set
to false.

An inconsistent assignment partitions the vertices of Gx into two sets S and S̄. Assume
that S is the smaller.

Corresponding to each edge in E(S, S̄), ψx will have an unsatisfied clause. Therefore, the
number of unsatisfied clauses, that is |E(S, S̄)|, is at least |S|+ 1.

Inapproximability in Combinatorial Optimization

Hardness of Approximation

The problem MAX-3-SAT(k)

Proof.

Let k ≥ N0, and let Gx be a degree 14 expander on k vertices. Label the vertices with
distinct boolean variables x1, ...,xk .

Construct a CNF ψx as follows: corresponding to each edge (xi ,xj) of Gx , we include the
clauses (x̄i ∨ xj) and (x̄j ∨ xi) in ψx .

An assignment is said to be consistent if either all the variables are set to true or all are set
to false.

An inconsistent assignment partitions the vertices of Gx into two sets S and S̄. Assume
that S is the smaller.

Corresponding to each edge in E(S, S̄), ψx will have an unsatisfied clause. Therefore, the
number of unsatisfied clauses, that is |E(S, S̄)|, is at least |S|+ 1.

Inapproximability in Combinatorial Optimization

Hardness of Approximation

The problem MAX-3-SAT(k)

Proof.

Let k ≥ N0, and let Gx be a degree 14 expander on k vertices. Label the vertices with
distinct boolean variables x1, ...,xk .

Construct a CNF ψx as follows: corresponding to each edge (xi ,xj) of Gx , we include the
clauses (x̄i ∨ xj) and (x̄j ∨ xi) in ψx .

An assignment is said to be consistent if either all the variables are set to true or all are set
to false.

An inconsistent assignment partitions the vertices of Gx into two sets S and S̄. Assume
that S is the smaller.

Corresponding to each edge in E(S, S̄), ψx will have an unsatisfied clause. Therefore, the
number of unsatisfied clauses, that is |E(S, S̄)|, is at least |S|+ 1.

Inapproximability in Combinatorial Optimization

Hardness of Approximation

The problem MAX-3-SAT(k)

Proof.

Let k ≥ N0, and let Gx be a degree 14 expander on k vertices. Label the vertices with
distinct boolean variables x1, ...,xk .

Construct a CNF ψx as follows: corresponding to each edge (xi ,xj) of Gx , we include the
clauses (x̄i ∨ xj) and (x̄j ∨ xi) in ψx .

An assignment is said to be consistent if either all the variables are set to true or all are set
to false.

An inconsistent assignment partitions the vertices of Gx into two sets S and S̄.

Assume
that S is the smaller.

Corresponding to each edge in E(S, S̄), ψx will have an unsatisfied clause. Therefore, the
number of unsatisfied clauses, that is |E(S, S̄)|, is at least |S|+ 1.

Inapproximability in Combinatorial Optimization

Hardness of Approximation

The problem MAX-3-SAT(k)

Proof.

Let k ≥ N0, and let Gx be a degree 14 expander on k vertices. Label the vertices with
distinct boolean variables x1, ...,xk .

Construct a CNF ψx as follows: corresponding to each edge (xi ,xj) of Gx , we include the
clauses (x̄i ∨ xj) and (x̄j ∨ xi) in ψx .

An assignment is said to be consistent if either all the variables are set to true or all are set
to false.

An inconsistent assignment partitions the vertices of Gx into two sets S and S̄. Assume
that S is the smaller.

Corresponding to each edge in E(S, S̄), ψx will have an unsatisfied clause. Therefore, the
number of unsatisfied clauses, that is |E(S, S̄)|, is at least |S|+ 1.

Inapproximability in Combinatorial Optimization

Hardness of Approximation

The problem MAX-3-SAT(k)

Proof.

Let k ≥ N0, and let Gx be a degree 14 expander on k vertices. Label the vertices with
distinct boolean variables x1, ...,xk .

Construct a CNF ψx as follows: corresponding to each edge (xi ,xj) of Gx , we include the
clauses (x̄i ∨ xj) and (x̄j ∨ xi) in ψx .

An assignment is said to be consistent if either all the variables are set to true or all are set
to false.

An inconsistent assignment partitions the vertices of Gx into two sets S and S̄. Assume
that S is the smaller.

Corresponding to each edge in E(S, S̄), ψx will have an unsatisfied clause.

Therefore, the
number of unsatisfied clauses, that is |E(S, S̄)|, is at least |S|+ 1.

Inapproximability in Combinatorial Optimization

Hardness of Approximation

The problem MAX-3-SAT(k)

Proof.

Let k ≥ N0, and let Gx be a degree 14 expander on k vertices. Label the vertices with
distinct boolean variables x1, ...,xk .

Construct a CNF ψx as follows: corresponding to each edge (xi ,xj) of Gx , we include the
clauses (x̄i ∨ xj) and (x̄j ∨ xi) in ψx .

An assignment is said to be consistent if either all the variables are set to true or all are set
to false.

An inconsistent assignment partitions the vertices of Gx into two sets S and S̄. Assume
that S is the smaller.

Corresponding to each edge in E(S, S̄), ψx will have an unsatisfied clause. Therefore, the
number of unsatisfied clauses, that is |E(S, S̄)|, is at least |S|+ 1.

Inapproximability in Combinatorial Optimization

Hardness of Approximation

The problem MAX-3-SAT(k)

Proof.

Now we describe the reduction.

We may assume w.l.o.g. that every variable occurs in Φ at
least N0 times. If not, we can replicate each clause N0 times without changing the
approximability properties of the formula.

Let B be the set of variables occurring in Φ. For each variable x ∈ B suppose x occurs
k ≥ N0 times in Φ.

Let Vx = {x1, ...,xk} be a set of new variables. Let Gx be a degree 14 expander on k
vertices. Label its vertices with variables from Vx and obtain a formula ψx as described
above. Finally replace each occurrence of x in Φ by a distinct variable from Vx .

After this process, every occurrence of a variable from Φ is replaced by a distinct variable
from

V =
⋃

x∈B

Vx .

Let Φ′ be the resulting formula. In addition to each variable x ∈ B, a formula ψx has been
constructed. Let

ψ = Φ′ ∧
∧

x∈B

ψx .

Inapproximability in Combinatorial Optimization

Hardness of Approximation

The problem MAX-3-SAT(k)

Proof.

Now we describe the reduction. We may assume w.l.o.g. that every variable occurs in Φ at
least N0 times.

If not, we can replicate each clause N0 times without changing the
approximability properties of the formula.

Let B be the set of variables occurring in Φ. For each variable x ∈ B suppose x occurs
k ≥ N0 times in Φ.

Let Vx = {x1, ...,xk} be a set of new variables. Let Gx be a degree 14 expander on k
vertices. Label its vertices with variables from Vx and obtain a formula ψx as described
above. Finally replace each occurrence of x in Φ by a distinct variable from Vx .

After this process, every occurrence of a variable from Φ is replaced by a distinct variable
from

V =
⋃

x∈B

Vx .

Let Φ′ be the resulting formula. In addition to each variable x ∈ B, a formula ψx has been
constructed. Let

ψ = Φ′ ∧
∧

x∈B

ψx .

Inapproximability in Combinatorial Optimization

Hardness of Approximation

The problem MAX-3-SAT(k)

Proof.

Now we describe the reduction. We may assume w.l.o.g. that every variable occurs in Φ at
least N0 times. If not, we can replicate each clause N0 times without changing the
approximability properties of the formula.

Let B be the set of variables occurring in Φ. For each variable x ∈ B suppose x occurs
k ≥ N0 times in Φ.

Let Vx = {x1, ...,xk} be a set of new variables. Let Gx be a degree 14 expander on k
vertices. Label its vertices with variables from Vx and obtain a formula ψx as described
above. Finally replace each occurrence of x in Φ by a distinct variable from Vx .

After this process, every occurrence of a variable from Φ is replaced by a distinct variable
from

V =
⋃

x∈B

Vx .

Let Φ′ be the resulting formula. In addition to each variable x ∈ B, a formula ψx has been
constructed. Let

ψ = Φ′ ∧
∧

x∈B

ψx .

Inapproximability in Combinatorial Optimization

Hardness of Approximation

The problem MAX-3-SAT(k)

Proof.

Now we describe the reduction. We may assume w.l.o.g. that every variable occurs in Φ at
least N0 times. If not, we can replicate each clause N0 times without changing the
approximability properties of the formula.

Let B be the set of variables occurring in Φ.

For each variable x ∈ B suppose x occurs
k ≥ N0 times in Φ.

Let Vx = {x1, ...,xk} be a set of new variables. Let Gx be a degree 14 expander on k
vertices. Label its vertices with variables from Vx and obtain a formula ψx as described
above. Finally replace each occurrence of x in Φ by a distinct variable from Vx .

After this process, every occurrence of a variable from Φ is replaced by a distinct variable
from

V =
⋃

x∈B

Vx .

Let Φ′ be the resulting formula. In addition to each variable x ∈ B, a formula ψx has been
constructed. Let

ψ = Φ′ ∧
∧

x∈B

ψx .

Inapproximability in Combinatorial Optimization

Hardness of Approximation

The problem MAX-3-SAT(k)

Proof.

Now we describe the reduction. We may assume w.l.o.g. that every variable occurs in Φ at
least N0 times. If not, we can replicate each clause N0 times without changing the
approximability properties of the formula.

Let B be the set of variables occurring in Φ. For each variable x ∈ B suppose x occurs
k ≥ N0 times in Φ.

Let Vx = {x1, ...,xk} be a set of new variables. Let Gx be a degree 14 expander on k
vertices. Label its vertices with variables from Vx and obtain a formula ψx as described
above. Finally replace each occurrence of x in Φ by a distinct variable from Vx .

After this process, every occurrence of a variable from Φ is replaced by a distinct variable
from

V =
⋃

x∈B

Vx .

Let Φ′ be the resulting formula. In addition to each variable x ∈ B, a formula ψx has been
constructed. Let

ψ = Φ′ ∧
∧

x∈B

ψx .

Inapproximability in Combinatorial Optimization

Hardness of Approximation

The problem MAX-3-SAT(k)

Proof.

Now we describe the reduction. We may assume w.l.o.g. that every variable occurs in Φ at
least N0 times. If not, we can replicate each clause N0 times without changing the
approximability properties of the formula.

Let B be the set of variables occurring in Φ. For each variable x ∈ B suppose x occurs
k ≥ N0 times in Φ.

Let Vx = {x1, ...,xk} be a set of new variables.

Let Gx be a degree 14 expander on k
vertices. Label its vertices with variables from Vx and obtain a formula ψx as described
above. Finally replace each occurrence of x in Φ by a distinct variable from Vx .

After this process, every occurrence of a variable from Φ is replaced by a distinct variable
from

V =
⋃

x∈B

Vx .

Let Φ′ be the resulting formula. In addition to each variable x ∈ B, a formula ψx has been
constructed. Let

ψ = Φ′ ∧
∧

x∈B

ψx .

Inapproximability in Combinatorial Optimization

Hardness of Approximation

The problem MAX-3-SAT(k)

Proof.

Now we describe the reduction. We may assume w.l.o.g. that every variable occurs in Φ at
least N0 times. If not, we can replicate each clause N0 times without changing the
approximability properties of the formula.

Let B be the set of variables occurring in Φ. For each variable x ∈ B suppose x occurs
k ≥ N0 times in Φ.

Let Vx = {x1, ...,xk} be a set of new variables. Let Gx be a degree 14 expander on k
vertices.

Label its vertices with variables from Vx and obtain a formula ψx as described
above. Finally replace each occurrence of x in Φ by a distinct variable from Vx .

After this process, every occurrence of a variable from Φ is replaced by a distinct variable
from

V =
⋃

x∈B

Vx .

Let Φ′ be the resulting formula. In addition to each variable x ∈ B, a formula ψx has been
constructed. Let

ψ = Φ′ ∧
∧

x∈B

ψx .

Inapproximability in Combinatorial Optimization

Hardness of Approximation

The problem MAX-3-SAT(k)

Proof.

Now we describe the reduction. We may assume w.l.o.g. that every variable occurs in Φ at
least N0 times. If not, we can replicate each clause N0 times without changing the
approximability properties of the formula.

Let B be the set of variables occurring in Φ. For each variable x ∈ B suppose x occurs
k ≥ N0 times in Φ.

Let Vx = {x1, ...,xk} be a set of new variables. Let Gx be a degree 14 expander on k
vertices. Label its vertices with variables from Vx and obtain a formula ψx as described
above.

Finally replace each occurrence of x in Φ by a distinct variable from Vx .

After this process, every occurrence of a variable from Φ is replaced by a distinct variable
from

V =
⋃

x∈B

Vx .

Let Φ′ be the resulting formula. In addition to each variable x ∈ B, a formula ψx has been
constructed. Let

ψ = Φ′ ∧
∧

x∈B

ψx .

Inapproximability in Combinatorial Optimization

Hardness of Approximation

The problem MAX-3-SAT(k)

Proof.

Now we describe the reduction. We may assume w.l.o.g. that every variable occurs in Φ at
least N0 times. If not, we can replicate each clause N0 times without changing the
approximability properties of the formula.

Let B be the set of variables occurring in Φ. For each variable x ∈ B suppose x occurs
k ≥ N0 times in Φ.

Let Vx = {x1, ...,xk} be a set of new variables. Let Gx be a degree 14 expander on k
vertices. Label its vertices with variables from Vx and obtain a formula ψx as described
above. Finally replace each occurrence of x in Φ by a distinct variable from Vx .

After this process, every occurrence of a variable from Φ is replaced by a distinct variable
from

V =
⋃

x∈B

Vx .

Let Φ′ be the resulting formula. In addition to each variable x ∈ B, a formula ψx has been
constructed. Let

ψ = Φ′ ∧
∧

x∈B

ψx .

Inapproximability in Combinatorial Optimization

Hardness of Approximation

The problem MAX-3-SAT(k)

Proof.

Now we describe the reduction. We may assume w.l.o.g. that every variable occurs in Φ at
least N0 times. If not, we can replicate each clause N0 times without changing the
approximability properties of the formula.

Let B be the set of variables occurring in Φ. For each variable x ∈ B suppose x occurs
k ≥ N0 times in Φ.

Let Vx = {x1, ...,xk} be a set of new variables. Let Gx be a degree 14 expander on k
vertices. Label its vertices with variables from Vx and obtain a formula ψx as described
above. Finally replace each occurrence of x in Φ by a distinct variable from Vx .

After this process, every occurrence of a variable from Φ is replaced by a distinct variable
from

V =
⋃

x∈B

Vx .

Let Φ′ be the resulting formula. In addition to each variable x ∈ B, a formula ψx has been
constructed. Let

ψ = Φ′ ∧
∧

x∈B

ψx .

Inapproximability in Combinatorial Optimization

Hardness of Approximation

The problem MAX-3-SAT(k)

Proof.

Now we describe the reduction. We may assume w.l.o.g. that every variable occurs in Φ at
least N0 times. If not, we can replicate each clause N0 times without changing the
approximability properties of the formula.

Let B be the set of variables occurring in Φ. For each variable x ∈ B suppose x occurs
k ≥ N0 times in Φ.

Let Vx = {x1, ...,xk} be a set of new variables. Let Gx be a degree 14 expander on k
vertices. Label its vertices with variables from Vx and obtain a formula ψx as described
above. Finally replace each occurrence of x in Φ by a distinct variable from Vx .

After this process, every occurrence of a variable from Φ is replaced by a distinct variable
from

V =
⋃

x∈B

Vx .

Let Φ′ be the resulting formula.

In addition to each variable x ∈ B, a formula ψx has been
constructed. Let

ψ = Φ′ ∧
∧

x∈B

ψx .

Inapproximability in Combinatorial Optimization

Hardness of Approximation

The problem MAX-3-SAT(k)

Proof.

Now we describe the reduction. We may assume w.l.o.g. that every variable occurs in Φ at
least N0 times. If not, we can replicate each clause N0 times without changing the
approximability properties of the formula.

Let B be the set of variables occurring in Φ. For each variable x ∈ B suppose x occurs
k ≥ N0 times in Φ.

Let Vx = {x1, ...,xk} be a set of new variables. Let Gx be a degree 14 expander on k
vertices. Label its vertices with variables from Vx and obtain a formula ψx as described
above. Finally replace each occurrence of x in Φ by a distinct variable from Vx .

After this process, every occurrence of a variable from Φ is replaced by a distinct variable
from

V =
⋃

x∈B

Vx .

Let Φ′ be the resulting formula. In addition to each variable x ∈ B, a formula ψx has been
constructed.

Let

ψ = Φ′ ∧
∧

x∈B

ψx .

Inapproximability in Combinatorial Optimization

Hardness of Approximation

The problem MAX-3-SAT(k)

Proof.

Now we describe the reduction. We may assume w.l.o.g. that every variable occurs in Φ at
least N0 times. If not, we can replicate each clause N0 times without changing the
approximability properties of the formula.

Let B be the set of variables occurring in Φ. For each variable x ∈ B suppose x occurs
k ≥ N0 times in Φ.

Let Vx = {x1, ...,xk} be a set of new variables. Let Gx be a degree 14 expander on k
vertices. Label its vertices with variables from Vx and obtain a formula ψx as described
above. Finally replace each occurrence of x in Φ by a distinct variable from Vx .

After this process, every occurrence of a variable from Φ is replaced by a distinct variable
from

V =
⋃

x∈B

Vx .

Let Φ′ be the resulting formula. In addition to each variable x ∈ B, a formula ψx has been
constructed. Let

ψ = Φ′ ∧
∧

x∈B

ψx .

Inapproximability in Combinatorial Optimization

Hardness of Approximation

The problem MAX-3-SAT(k)

Proof.

Observe that for each x ∈ B each variable of Vx occurs exactly 29 times in ψ- once in Φ′

and 28 times in ψx .

Therefore, ψ is an instance of MAX-3-SAT(29). We will say that the
clauses of Φ′ are Type I clauses, and the remaining clauses of ψ are Type II clauses.

Let us show that an optimal assignment for ψ must satisfy all Type II clauses, and hence it
must be consistent for each set Vx ,x ∈ B. On the opposite assumption consider an optimal
assignment τ , that is not consistent for Vx for some x ∈ B.

τ partitions the vertices of Gx into two sets S and S̄ with S being the smaller set.Flip the
assignment to variables in S keeping the rest of the assignment the same as τ .

As a result, some Type I clauses that were satisfied under τ may now not be satisfied. Each
of these must contain a variable of S, hence their number is at most |S|. On the other hand,
we get at least |S|+ 1 new satisfied clauses corresponding to edges in E(S, S̄).

Thus, the flipped assignment satisfies more clauses than τ does contradicting the choice of
τ .

Inapproximability in Combinatorial Optimization

Hardness of Approximation

The problem MAX-3-SAT(k)

Proof.

Observe that for each x ∈ B each variable of Vx occurs exactly 29 times in ψ- once in Φ′

and 28 times in ψx . Therefore, ψ is an instance of MAX-3-SAT(29).

We will say that the
clauses of Φ′ are Type I clauses, and the remaining clauses of ψ are Type II clauses.

Let us show that an optimal assignment for ψ must satisfy all Type II clauses, and hence it
must be consistent for each set Vx ,x ∈ B. On the opposite assumption consider an optimal
assignment τ , that is not consistent for Vx for some x ∈ B.

τ partitions the vertices of Gx into two sets S and S̄ with S being the smaller set.Flip the
assignment to variables in S keeping the rest of the assignment the same as τ .

As a result, some Type I clauses that were satisfied under τ may now not be satisfied. Each
of these must contain a variable of S, hence their number is at most |S|. On the other hand,
we get at least |S|+ 1 new satisfied clauses corresponding to edges in E(S, S̄).

Thus, the flipped assignment satisfies more clauses than τ does contradicting the choice of
τ .

Inapproximability in Combinatorial Optimization

Hardness of Approximation

The problem MAX-3-SAT(k)

Proof.

Observe that for each x ∈ B each variable of Vx occurs exactly 29 times in ψ- once in Φ′

and 28 times in ψx . Therefore, ψ is an instance of MAX-3-SAT(29). We will say that the
clauses of Φ′ are Type I clauses, and the remaining clauses of ψ are Type II clauses.

Let us show that an optimal assignment for ψ must satisfy all Type II clauses, and hence it
must be consistent for each set Vx ,x ∈ B. On the opposite assumption consider an optimal
assignment τ , that is not consistent for Vx for some x ∈ B.

τ partitions the vertices of Gx into two sets S and S̄ with S being the smaller set.Flip the
assignment to variables in S keeping the rest of the assignment the same as τ .

As a result, some Type I clauses that were satisfied under τ may now not be satisfied. Each
of these must contain a variable of S, hence their number is at most |S|. On the other hand,
we get at least |S|+ 1 new satisfied clauses corresponding to edges in E(S, S̄).

Thus, the flipped assignment satisfies more clauses than τ does contradicting the choice of
τ .

Inapproximability in Combinatorial Optimization

Hardness of Approximation

The problem MAX-3-SAT(k)

Proof.

Observe that for each x ∈ B each variable of Vx occurs exactly 29 times in ψ- once in Φ′

and 28 times in ψx . Therefore, ψ is an instance of MAX-3-SAT(29). We will say that the
clauses of Φ′ are Type I clauses, and the remaining clauses of ψ are Type II clauses.

Let us show that an optimal assignment for ψ must satisfy all Type II clauses, and hence it
must be consistent for each set Vx ,x ∈ B.

On the opposite assumption consider an optimal
assignment τ , that is not consistent for Vx for some x ∈ B.

τ partitions the vertices of Gx into two sets S and S̄ with S being the smaller set.Flip the
assignment to variables in S keeping the rest of the assignment the same as τ .

As a result, some Type I clauses that were satisfied under τ may now not be satisfied. Each
of these must contain a variable of S, hence their number is at most |S|. On the other hand,
we get at least |S|+ 1 new satisfied clauses corresponding to edges in E(S, S̄).

Thus, the flipped assignment satisfies more clauses than τ does contradicting the choice of
τ .

Inapproximability in Combinatorial Optimization

Hardness of Approximation

The problem MAX-3-SAT(k)

Proof.

Observe that for each x ∈ B each variable of Vx occurs exactly 29 times in ψ- once in Φ′

and 28 times in ψx . Therefore, ψ is an instance of MAX-3-SAT(29). We will say that the
clauses of Φ′ are Type I clauses, and the remaining clauses of ψ are Type II clauses.

Let us show that an optimal assignment for ψ must satisfy all Type II clauses, and hence it
must be consistent for each set Vx ,x ∈ B. On the opposite assumption consider an optimal
assignment τ , that is not consistent for Vx for some x ∈ B.

τ partitions the vertices of Gx into two sets S and S̄ with S being the smaller set.Flip the
assignment to variables in S keeping the rest of the assignment the same as τ .

As a result, some Type I clauses that were satisfied under τ may now not be satisfied. Each
of these must contain a variable of S, hence their number is at most |S|. On the other hand,
we get at least |S|+ 1 new satisfied clauses corresponding to edges in E(S, S̄).

Thus, the flipped assignment satisfies more clauses than τ does contradicting the choice of
τ .

Inapproximability in Combinatorial Optimization

Hardness of Approximation

The problem MAX-3-SAT(k)

Proof.

Observe that for each x ∈ B each variable of Vx occurs exactly 29 times in ψ- once in Φ′

and 28 times in ψx . Therefore, ψ is an instance of MAX-3-SAT(29). We will say that the
clauses of Φ′ are Type I clauses, and the remaining clauses of ψ are Type II clauses.

Let us show that an optimal assignment for ψ must satisfy all Type II clauses, and hence it
must be consistent for each set Vx ,x ∈ B. On the opposite assumption consider an optimal
assignment τ , that is not consistent for Vx for some x ∈ B.

τ partitions the vertices of Gx into two sets S and S̄ with S being the smaller set.

Flip the
assignment to variables in S keeping the rest of the assignment the same as τ .

As a result, some Type I clauses that were satisfied under τ may now not be satisfied. Each
of these must contain a variable of S, hence their number is at most |S|. On the other hand,
we get at least |S|+ 1 new satisfied clauses corresponding to edges in E(S, S̄).

Thus, the flipped assignment satisfies more clauses than τ does contradicting the choice of
τ .

Inapproximability in Combinatorial Optimization

Hardness of Approximation

The problem MAX-3-SAT(k)

Proof.

Observe that for each x ∈ B each variable of Vx occurs exactly 29 times in ψ- once in Φ′

and 28 times in ψx . Therefore, ψ is an instance of MAX-3-SAT(29). We will say that the
clauses of Φ′ are Type I clauses, and the remaining clauses of ψ are Type II clauses.

Let us show that an optimal assignment for ψ must satisfy all Type II clauses, and hence it
must be consistent for each set Vx ,x ∈ B. On the opposite assumption consider an optimal
assignment τ , that is not consistent for Vx for some x ∈ B.

τ partitions the vertices of Gx into two sets S and S̄ with S being the smaller set.Flip the
assignment to variables in S keeping the rest of the assignment the same as τ .

As a result, some Type I clauses that were satisfied under τ may now not be satisfied. Each
of these must contain a variable of S, hence their number is at most |S|. On the other hand,
we get at least |S|+ 1 new satisfied clauses corresponding to edges in E(S, S̄).

Thus, the flipped assignment satisfies more clauses than τ does contradicting the choice of
τ .

Inapproximability in Combinatorial Optimization

Hardness of Approximation

The problem MAX-3-SAT(k)

Proof.

Observe that for each x ∈ B each variable of Vx occurs exactly 29 times in ψ- once in Φ′

and 28 times in ψx . Therefore, ψ is an instance of MAX-3-SAT(29). We will say that the
clauses of Φ′ are Type I clauses, and the remaining clauses of ψ are Type II clauses.

Let us show that an optimal assignment for ψ must satisfy all Type II clauses, and hence it
must be consistent for each set Vx ,x ∈ B. On the opposite assumption consider an optimal
assignment τ , that is not consistent for Vx for some x ∈ B.

τ partitions the vertices of Gx into two sets S and S̄ with S being the smaller set.Flip the
assignment to variables in S keeping the rest of the assignment the same as τ .

As a result, some Type I clauses that were satisfied under τ may now not be satisfied.

Each
of these must contain a variable of S, hence their number is at most |S|. On the other hand,
we get at least |S|+ 1 new satisfied clauses corresponding to edges in E(S, S̄).

Thus, the flipped assignment satisfies more clauses than τ does contradicting the choice of
τ .

Inapproximability in Combinatorial Optimization

Hardness of Approximation

The problem MAX-3-SAT(k)

Proof.

Observe that for each x ∈ B each variable of Vx occurs exactly 29 times in ψ- once in Φ′

and 28 times in ψx . Therefore, ψ is an instance of MAX-3-SAT(29). We will say that the
clauses of Φ′ are Type I clauses, and the remaining clauses of ψ are Type II clauses.

Let us show that an optimal assignment for ψ must satisfy all Type II clauses, and hence it
must be consistent for each set Vx ,x ∈ B. On the opposite assumption consider an optimal
assignment τ , that is not consistent for Vx for some x ∈ B.

τ partitions the vertices of Gx into two sets S and S̄ with S being the smaller set.Flip the
assignment to variables in S keeping the rest of the assignment the same as τ .

As a result, some Type I clauses that were satisfied under τ may now not be satisfied. Each
of these must contain a variable of S, hence their number is at most |S|.

On the other hand,
we get at least |S|+ 1 new satisfied clauses corresponding to edges in E(S, S̄).

Thus, the flipped assignment satisfies more clauses than τ does contradicting the choice of
τ .

Inapproximability in Combinatorial Optimization

Hardness of Approximation

The problem MAX-3-SAT(k)

Proof.

Observe that for each x ∈ B each variable of Vx occurs exactly 29 times in ψ- once in Φ′

and 28 times in ψx . Therefore, ψ is an instance of MAX-3-SAT(29). We will say that the
clauses of Φ′ are Type I clauses, and the remaining clauses of ψ are Type II clauses.

Let us show that an optimal assignment for ψ must satisfy all Type II clauses, and hence it
must be consistent for each set Vx ,x ∈ B. On the opposite assumption consider an optimal
assignment τ , that is not consistent for Vx for some x ∈ B.

τ partitions the vertices of Gx into two sets S and S̄ with S being the smaller set.Flip the
assignment to variables in S keeping the rest of the assignment the same as τ .

As a result, some Type I clauses that were satisfied under τ may now not be satisfied. Each
of these must contain a variable of S, hence their number is at most |S|. On the other hand,
we get at least |S|+ 1 new satisfied clauses corresponding to edges in E(S, S̄).

Thus, the flipped assignment satisfies more clauses than τ does contradicting the choice of
τ .

Inapproximability in Combinatorial Optimization

Hardness of Approximation

The problem MAX-3-SAT(k)

Proof.

Observe that for each x ∈ B each variable of Vx occurs exactly 29 times in ψ- once in Φ′

and 28 times in ψx . Therefore, ψ is an instance of MAX-3-SAT(29). We will say that the
clauses of Φ′ are Type I clauses, and the remaining clauses of ψ are Type II clauses.

Let us show that an optimal assignment for ψ must satisfy all Type II clauses, and hence it
must be consistent for each set Vx ,x ∈ B. On the opposite assumption consider an optimal
assignment τ , that is not consistent for Vx for some x ∈ B.

τ partitions the vertices of Gx into two sets S and S̄ with S being the smaller set.Flip the
assignment to variables in S keeping the rest of the assignment the same as τ .

As a result, some Type I clauses that were satisfied under τ may now not be satisfied. Each
of these must contain a variable of S, hence their number is at most |S|. On the other hand,
we get at least |S|+ 1 new satisfied clauses corresponding to edges in E(S, S̄).

Thus, the flipped assignment satisfies more clauses than τ does contradicting the choice of
τ .

Inapproximability in Combinatorial Optimization

Hardness of Approximation

The problem MAX-3-SAT(k)

Proof.

Let m and m′ be the number of clauses in Φ and ψ .

The total number of occurrences of all
variables in Φ is at most 3 ·m. Each occurrence participates in 28 Type II two-literal
clauses, giving a total of at most 42 ·m Type II clauses. In addition ψ has m Type I clauses.
Therefore m′ ≤ 43 ·m.

If Φ is satisfiable, then so is ψ . Next consider the case OPT (Φ) < (1− εM) ·m, that is,
> εM ·m clauses of Φ remain unsatisfied under any assignment. If so, by the above claim,
> εM ·m ≥ εM · m′

43 of the clauses of ψ remain unsatisfied. The proof of the theorem is
completed.

Inapproximability in Combinatorial Optimization

Hardness of Approximation

The problem MAX-3-SAT(k)

Proof.

Let m and m′ be the number of clauses in Φ and ψ . The total number of occurrences of all
variables in Φ is at most 3 ·m.

Each occurrence participates in 28 Type II two-literal
clauses, giving a total of at most 42 ·m Type II clauses. In addition ψ has m Type I clauses.
Therefore m′ ≤ 43 ·m.

If Φ is satisfiable, then so is ψ . Next consider the case OPT (Φ) < (1− εM) ·m, that is,
> εM ·m clauses of Φ remain unsatisfied under any assignment. If so, by the above claim,
> εM ·m ≥ εM · m′

43 of the clauses of ψ remain unsatisfied. The proof of the theorem is
completed.

Inapproximability in Combinatorial Optimization

Hardness of Approximation

The problem MAX-3-SAT(k)

Proof.

Let m and m′ be the number of clauses in Φ and ψ . The total number of occurrences of all
variables in Φ is at most 3 ·m. Each occurrence participates in 28 Type II two-literal
clauses, giving a total of at most 42 ·m Type II clauses.

In addition ψ has m Type I clauses.
Therefore m′ ≤ 43 ·m.

If Φ is satisfiable, then so is ψ . Next consider the case OPT (Φ) < (1− εM) ·m, that is,
> εM ·m clauses of Φ remain unsatisfied under any assignment. If so, by the above claim,
> εM ·m ≥ εM · m′

43 of the clauses of ψ remain unsatisfied. The proof of the theorem is
completed.

Inapproximability in Combinatorial Optimization

Hardness of Approximation

The problem MAX-3-SAT(k)

Proof.

Let m and m′ be the number of clauses in Φ and ψ . The total number of occurrences of all
variables in Φ is at most 3 ·m. Each occurrence participates in 28 Type II two-literal
clauses, giving a total of at most 42 ·m Type II clauses. In addition ψ has m Type I clauses.

Therefore m′ ≤ 43 ·m.

If Φ is satisfiable, then so is ψ . Next consider the case OPT (Φ) < (1− εM) ·m, that is,
> εM ·m clauses of Φ remain unsatisfied under any assignment. If so, by the above claim,
> εM ·m ≥ εM · m′

43 of the clauses of ψ remain unsatisfied. The proof of the theorem is
completed.

Inapproximability in Combinatorial Optimization

Hardness of Approximation

The problem MAX-3-SAT(k)

Proof.

Let m and m′ be the number of clauses in Φ and ψ . The total number of occurrences of all
variables in Φ is at most 3 ·m. Each occurrence participates in 28 Type II two-literal
clauses, giving a total of at most 42 ·m Type II clauses. In addition ψ has m Type I clauses.
Therefore m′ ≤ 43 ·m.

If Φ is satisfiable, then so is ψ . Next consider the case OPT (Φ) < (1− εM) ·m, that is,
> εM ·m clauses of Φ remain unsatisfied under any assignment. If so, by the above claim,
> εM ·m ≥ εM · m′

43 of the clauses of ψ remain unsatisfied. The proof of the theorem is
completed.

Inapproximability in Combinatorial Optimization

Hardness of Approximation

The problem MAX-3-SAT(k)

Proof.

Let m and m′ be the number of clauses in Φ and ψ . The total number of occurrences of all
variables in Φ is at most 3 ·m. Each occurrence participates in 28 Type II two-literal
clauses, giving a total of at most 42 ·m Type II clauses. In addition ψ has m Type I clauses.
Therefore m′ ≤ 43 ·m.

If Φ is satisfiable, then so is ψ .

Next consider the case OPT (Φ) < (1− εM) ·m, that is,
> εM ·m clauses of Φ remain unsatisfied under any assignment. If so, by the above claim,
> εM ·m ≥ εM · m′

43 of the clauses of ψ remain unsatisfied. The proof of the theorem is
completed.

Inapproximability in Combinatorial Optimization

Hardness of Approximation

The problem MAX-3-SAT(k)

Proof.

Let m and m′ be the number of clauses in Φ and ψ . The total number of occurrences of all
variables in Φ is at most 3 ·m. Each occurrence participates in 28 Type II two-literal
clauses, giving a total of at most 42 ·m Type II clauses. In addition ψ has m Type I clauses.
Therefore m′ ≤ 43 ·m.

If Φ is satisfiable, then so is ψ . Next consider the case OPT (Φ) < (1− εM) ·m, that is,
> εM ·m clauses of Φ remain unsatisfied under any assignment.

If so, by the above claim,
> εM ·m ≥ εM · m′

43 of the clauses of ψ remain unsatisfied. The proof of the theorem is
completed.

Inapproximability in Combinatorial Optimization

Hardness of Approximation

The problem MAX-3-SAT(k)

Proof.

Let m and m′ be the number of clauses in Φ and ψ . The total number of occurrences of all
variables in Φ is at most 3 ·m. Each occurrence participates in 28 Type II two-literal
clauses, giving a total of at most 42 ·m Type II clauses. In addition ψ has m Type I clauses.
Therefore m′ ≤ 43 ·m.

If Φ is satisfiable, then so is ψ . Next consider the case OPT (Φ) < (1− εM) ·m, that is,
> εM ·m clauses of Φ remain unsatisfied under any assignment. If so, by the above claim,
> εM ·m ≥ εM · m′

43 of the clauses of ψ remain unsatisfied. The proof of the theorem is
completed.

Inapproximability in Combinatorial Optimization

Hardness of Approximation

The problem Vertex Cover(d)

Definition

For each fixed d ≥ 1, let Vertex Cover(d) denote the restriction of the Vertex Cover to instances
in which each vertex of the graph is of degree at most d .

Theorem

There is a a gap-preserving reduction from MAX-3-SAT(29) to Vertex Cover(30) that transforms
a boolean formula Φ to a graph G = (V ,E), such that

if OPT (Φ) = m, then OPT (G)≤ 2
3 · |V |,

if OPT (Φ) < (1− εb) ·m, then OPT (G) > (1 + εv) · 2
3 · |V |,

where m is the number of clauses in Φ, and εv = εb
2 .

Inapproximability in Combinatorial Optimization

Hardness of Approximation

The problem Vertex Cover(d)

Definition

For each fixed d ≥ 1, let Vertex Cover(d) denote the restriction of the Vertex Cover to instances
in which each vertex of the graph is of degree at most d .

Theorem

There is a a gap-preserving reduction from MAX-3-SAT(29) to Vertex Cover(30) that transforms
a boolean formula Φ to a graph G = (V ,E), such that

if OPT (Φ) = m, then OPT (G)≤ 2
3 · |V |,

if OPT (Φ) < (1− εb) ·m, then OPT (G) > (1 + εv) · 2
3 · |V |,

where m is the number of clauses in Φ, and εv = εb
2 .

Inapproximability in Combinatorial Optimization

Hardness of Approximation

The problem Vertex Cover(d)

Definition

For each fixed d ≥ 1, let Vertex Cover(d) denote the restriction of the Vertex Cover to instances
in which each vertex of the graph is of degree at most d .

Theorem

There is a a gap-preserving reduction from MAX-3-SAT(29) to Vertex Cover(30) that transforms
a boolean formula Φ to a graph G = (V ,E), such that

if OPT (Φ) = m, then OPT (G)≤ 2
3 · |V |,

if OPT (Φ) < (1− εb) ·m, then OPT (G) > (1 + εv) · 2
3 · |V |,

where m is the number of clauses in Φ, and εv = εb
2 .

Inapproximability in Combinatorial Optimization

Hardness of Approximation

The problem Vertex Cover(d)

Definition

For each fixed d ≥ 1, let Vertex Cover(d) denote the restriction of the Vertex Cover to instances
in which each vertex of the graph is of degree at most d .

Theorem

There is a a gap-preserving reduction from MAX-3-SAT(29) to Vertex Cover(30) that transforms
a boolean formula Φ to a graph G = (V ,E), such that

if OPT (Φ) = m, then OPT (G)≤ 2
3 · |V |,

if OPT (Φ) < (1− εb) ·m, then OPT (G) > (1 + εv) · 2
3 · |V |,

where m is the number of clauses in Φ, and εv = εb
2 .

Inapproximability in Combinatorial Optimization

Hardness of Approximation

The problem Vertex Cover(d)

Definition

For each fixed d ≥ 1, let Vertex Cover(d) denote the restriction of the Vertex Cover to instances
in which each vertex of the graph is of degree at most d .

Theorem

There is a a gap-preserving reduction from MAX-3-SAT(29) to Vertex Cover(30) that transforms
a boolean formula Φ to a graph G = (V ,E), such that

if OPT (Φ) = m, then OPT (G)≤ 2
3 · |V |,

if OPT (Φ) < (1− εb) ·m, then OPT (G) > (1 + εv) · 2
3 · |V |,

where m is the number of clauses in Φ, and εv = εb
2 .

Inapproximability in Combinatorial Optimization

Hardness of Approximation

The problem Vertex Cover(30)

Proof.

W.l.o.g. assume that each clause of Φ has exactly 3 literals (repeat literals within a clause if
necessary).

Corresponding to each clause of Φ G has three vertices. Each of these vertices is labeled
with one literal of the clause. Thus |V |= 3 ·m.

G has two types of edges: for each clause G has 3 edges connecting its 3 vertices, and for
each u,v ∈ V if the literals labeling u and v are negations of each other, then (u,v) is an
edge in G.

Each vertex of G has two edges of the first type, and at most 28 edges of the second type,
hence G has degree at most 30.

Inapproximability in Combinatorial Optimization

Hardness of Approximation

The problem Vertex Cover(30)

Proof.

W.l.o.g. assume that each clause of Φ has exactly 3 literals (repeat literals within a clause if
necessary).

Corresponding to each clause of Φ G has three vertices.

Each of these vertices is labeled
with one literal of the clause. Thus |V |= 3 ·m.

G has two types of edges: for each clause G has 3 edges connecting its 3 vertices, and for
each u,v ∈ V if the literals labeling u and v are negations of each other, then (u,v) is an
edge in G.

Each vertex of G has two edges of the first type, and at most 28 edges of the second type,
hence G has degree at most 30.

Inapproximability in Combinatorial Optimization

Hardness of Approximation

The problem Vertex Cover(30)

Proof.

W.l.o.g. assume that each clause of Φ has exactly 3 literals (repeat literals within a clause if
necessary).

Corresponding to each clause of Φ G has three vertices. Each of these vertices is labeled
with one literal of the clause.

Thus |V |= 3 ·m.

G has two types of edges: for each clause G has 3 edges connecting its 3 vertices, and for
each u,v ∈ V if the literals labeling u and v are negations of each other, then (u,v) is an
edge in G.

Each vertex of G has two edges of the first type, and at most 28 edges of the second type,
hence G has degree at most 30.

Inapproximability in Combinatorial Optimization

Hardness of Approximation

The problem Vertex Cover(30)

Proof.

W.l.o.g. assume that each clause of Φ has exactly 3 literals (repeat literals within a clause if
necessary).

Corresponding to each clause of Φ G has three vertices. Each of these vertices is labeled
with one literal of the clause. Thus |V |= 3 ·m.

G has two types of edges: for each clause G has 3 edges connecting its 3 vertices, and for
each u,v ∈ V if the literals labeling u and v are negations of each other, then (u,v) is an
edge in G.

Each vertex of G has two edges of the first type, and at most 28 edges of the second type,
hence G has degree at most 30.

Inapproximability in Combinatorial Optimization

Hardness of Approximation

The problem Vertex Cover(30)

Proof.

W.l.o.g. assume that each clause of Φ has exactly 3 literals (repeat literals within a clause if
necessary).

Corresponding to each clause of Φ G has three vertices. Each of these vertices is labeled
with one literal of the clause. Thus |V |= 3 ·m.

G has two types of edges: for each clause G has 3 edges connecting its 3 vertices,

and for
each u,v ∈ V if the literals labeling u and v are negations of each other, then (u,v) is an
edge in G.

Each vertex of G has two edges of the first type, and at most 28 edges of the second type,
hence G has degree at most 30.

Inapproximability in Combinatorial Optimization

Hardness of Approximation

The problem Vertex Cover(30)

Proof.

W.l.o.g. assume that each clause of Φ has exactly 3 literals (repeat literals within a clause if
necessary).

Corresponding to each clause of Φ G has three vertices. Each of these vertices is labeled
with one literal of the clause. Thus |V |= 3 ·m.

G has two types of edges: for each clause G has 3 edges connecting its 3 vertices, and for
each u,v ∈ V if the literals labeling u and v are negations of each other, then (u,v) is an
edge in G.

Each vertex of G has two edges of the first type, and at most 28 edges of the second type,
hence G has degree at most 30.

Inapproximability in Combinatorial Optimization

Hardness of Approximation

The problem Vertex Cover(30)

Proof.

W.l.o.g. assume that each clause of Φ has exactly 3 literals (repeat literals within a clause if
necessary).

Corresponding to each clause of Φ G has three vertices. Each of these vertices is labeled
with one literal of the clause. Thus |V |= 3 ·m.

G has two types of edges: for each clause G has 3 edges connecting its 3 vertices, and for
each u,v ∈ V if the literals labeling u and v are negations of each other, then (u,v) is an
edge in G.

Each vertex of G has two edges of the first type, and at most 28 edges of the second type,
hence G has degree at most 30.

Inapproximability in Combinatorial Optimization

Hardness of Approximation

The problem Vertex Cover(30)

Example

Let Φ = (x1 ∨ x̄2 ∨ x3)∧ (x̄1 ∨ x2 ∨ x3).

Then its corresponding graph will be:

x̄2

x1

x3

x2

x̄1

x3

Figure: The graph G from reduction

Inapproximability in Combinatorial Optimization

Hardness of Approximation

The problem Vertex Cover(30)

Example

Let Φ = (x1 ∨ x̄2 ∨ x3)∧ (x̄1 ∨ x2 ∨ x3). Then its corresponding graph will be:

x̄2

x1

x3

x2

x̄1

x3

Figure: The graph G from reduction

Inapproximability in Combinatorial Optimization

Hardness of Approximation

The problem Vertex Cover(30)

Proof.

Let us show that the size of maximum independent set in G is exactly OPT (Φ).

Consider an optimal assignment and pick one vertex corresponding to a satisfied literal
from each clause. Clearly, picked vertices form an independent set.

Conversely, consider an independent set I in G, and set the literals corresponding to its
vertices to be true. Any extension of this assignment satisfies at least |I| clauses.

The complement of a maximum independent set is a minimum vertex cover, hence if
OPT (Φ) = m then OPT (G) = 2 ·m. On the other hand, if OPT (Φ) < (1− εb) ·m, then
OPT (G) > (1 + εb) ·m. The proof is completed.

Inapproximability in Combinatorial Optimization

Hardness of Approximation

The problem Vertex Cover(30)

Proof.

Let us show that the size of maximum independent set in G is exactly OPT (Φ).

Consider an optimal assignment and pick one vertex corresponding to a satisfied literal
from each clause.

Clearly, picked vertices form an independent set.

Conversely, consider an independent set I in G, and set the literals corresponding to its
vertices to be true. Any extension of this assignment satisfies at least |I| clauses.

The complement of a maximum independent set is a minimum vertex cover, hence if
OPT (Φ) = m then OPT (G) = 2 ·m. On the other hand, if OPT (Φ) < (1− εb) ·m, then
OPT (G) > (1 + εb) ·m. The proof is completed.

Inapproximability in Combinatorial Optimization

Hardness of Approximation

The problem Vertex Cover(30)

Proof.

Let us show that the size of maximum independent set in G is exactly OPT (Φ).

Consider an optimal assignment and pick one vertex corresponding to a satisfied literal
from each clause. Clearly, picked vertices form an independent set.

Conversely, consider an independent set I in G, and set the literals corresponding to its
vertices to be true. Any extension of this assignment satisfies at least |I| clauses.

The complement of a maximum independent set is a minimum vertex cover, hence if
OPT (Φ) = m then OPT (G) = 2 ·m. On the other hand, if OPT (Φ) < (1− εb) ·m, then
OPT (G) > (1 + εb) ·m. The proof is completed.

Inapproximability in Combinatorial Optimization

Hardness of Approximation

The problem Vertex Cover(30)

Proof.

Let us show that the size of maximum independent set in G is exactly OPT (Φ).

Consider an optimal assignment and pick one vertex corresponding to a satisfied literal
from each clause. Clearly, picked vertices form an independent set.

Conversely, consider an independent set I in G, and set the literals corresponding to its
vertices to be true.

Any extension of this assignment satisfies at least |I| clauses.

The complement of a maximum independent set is a minimum vertex cover, hence if
OPT (Φ) = m then OPT (G) = 2 ·m. On the other hand, if OPT (Φ) < (1− εb) ·m, then
OPT (G) > (1 + εb) ·m. The proof is completed.

Inapproximability in Combinatorial Optimization

Hardness of Approximation

The problem Vertex Cover(30)

Proof.

Let us show that the size of maximum independent set in G is exactly OPT (Φ).

Consider an optimal assignment and pick one vertex corresponding to a satisfied literal
from each clause. Clearly, picked vertices form an independent set.

Conversely, consider an independent set I in G, and set the literals corresponding to its
vertices to be true. Any extension of this assignment satisfies at least |I| clauses.

The complement of a maximum independent set is a minimum vertex cover, hence if
OPT (Φ) = m then OPT (G) = 2 ·m. On the other hand, if OPT (Φ) < (1− εb) ·m, then
OPT (G) > (1 + εb) ·m. The proof is completed.

Inapproximability in Combinatorial Optimization

Hardness of Approximation

The problem Vertex Cover(30)

Proof.

Let us show that the size of maximum independent set in G is exactly OPT (Φ).

Consider an optimal assignment and pick one vertex corresponding to a satisfied literal
from each clause. Clearly, picked vertices form an independent set.

Conversely, consider an independent set I in G, and set the literals corresponding to its
vertices to be true. Any extension of this assignment satisfies at least |I| clauses.

The complement of a maximum independent set is a minimum vertex cover,

hence if
OPT (Φ) = m then OPT (G) = 2 ·m. On the other hand, if OPT (Φ) < (1− εb) ·m, then
OPT (G) > (1 + εb) ·m. The proof is completed.

Inapproximability in Combinatorial Optimization

Hardness of Approximation

The problem Vertex Cover(30)

Proof.

Let us show that the size of maximum independent set in G is exactly OPT (Φ).

Consider an optimal assignment and pick one vertex corresponding to a satisfied literal
from each clause. Clearly, picked vertices form an independent set.

Conversely, consider an independent set I in G, and set the literals corresponding to its
vertices to be true. Any extension of this assignment satisfies at least |I| clauses.

The complement of a maximum independent set is a minimum vertex cover, hence if
OPT (Φ) = m then OPT (G) = 2 ·m.

On the other hand, if OPT (Φ) < (1− εb) ·m, then
OPT (G) > (1 + εb) ·m. The proof is completed.

Inapproximability in Combinatorial Optimization

Hardness of Approximation

The problem Vertex Cover(30)

Proof.

Let us show that the size of maximum independent set in G is exactly OPT (Φ).

Consider an optimal assignment and pick one vertex corresponding to a satisfied literal
from each clause. Clearly, picked vertices form an independent set.

Conversely, consider an independent set I in G, and set the literals corresponding to its
vertices to be true. Any extension of this assignment satisfies at least |I| clauses.

The complement of a maximum independent set is a minimum vertex cover, hence if
OPT (Φ) = m then OPT (G) = 2 ·m. On the other hand, if OPT (Φ) < (1− εb) ·m, then
OPT (G) > (1 + εb) ·m. The proof is completed.

Inapproximability in Combinatorial Optimization

Hardness of Approximation

The Steiner Tree Problem

Theorem

There is a a gap-preserving reduction from Vertex Cover(30) to the Steiner Tree Problem.

It
transforms an instance G = (V ,E) of Vertex Cover(30), to an instance H = (R,S,cost) of
Steiner tree problem, where R and S are the required and Steiner vertices of H, and cost is a
metric defined on R∪S. It satisfies

if OPT (G)≤ 2
3 · |V |, then OPT (H)≤ |R|+ 2

3 · |S|−1,

if OPT (G) > (1 + εv) · 2
3 · |V |, then OPT (H) > (1 + εs) · (|R|+ 2

3 · |S|−1),

where εs = 4εv
97 .

Inapproximability in Combinatorial Optimization

Hardness of Approximation

The Steiner Tree Problem

Theorem

There is a a gap-preserving reduction from Vertex Cover(30) to the Steiner Tree Problem. It
transforms an instance G = (V ,E) of Vertex Cover(30), to an instance H = (R,S,cost) of
Steiner tree problem, where R and S are the required and Steiner vertices of H, and cost is a
metric defined on R∪S.

It satisfies

if OPT (G)≤ 2
3 · |V |, then OPT (H)≤ |R|+ 2

3 · |S|−1,

if OPT (G) > (1 + εv) · 2
3 · |V |, then OPT (H) > (1 + εs) · (|R|+ 2

3 · |S|−1),

where εs = 4εv
97 .

Inapproximability in Combinatorial Optimization

Hardness of Approximation

The Steiner Tree Problem

Theorem

There is a a gap-preserving reduction from Vertex Cover(30) to the Steiner Tree Problem. It
transforms an instance G = (V ,E) of Vertex Cover(30), to an instance H = (R,S,cost) of
Steiner tree problem, where R and S are the required and Steiner vertices of H, and cost is a
metric defined on R∪S. It satisfies

if OPT (G)≤ 2
3 · |V |, then OPT (H)≤ |R|+ 2

3 · |S|−1,

if OPT (G) > (1 + εv) · 2
3 · |V |, then OPT (H) > (1 + εs) · (|R|+ 2

3 · |S|−1),

where εs = 4εv
97 .

Inapproximability in Combinatorial Optimization

Hardness of Approximation

The Steiner Tree Problem

Theorem

There is a a gap-preserving reduction from Vertex Cover(30) to the Steiner Tree Problem. It
transforms an instance G = (V ,E) of Vertex Cover(30), to an instance H = (R,S,cost) of
Steiner tree problem, where R and S are the required and Steiner vertices of H, and cost is a
metric defined on R∪S. It satisfies

if OPT (G)≤ 2
3 · |V |, then OPT (H)≤ |R|+ 2

3 · |S|−1,

if OPT (G) > (1 + εv) · 2
3 · |V |, then OPT (H) > (1 + εs) · (|R|+ 2

3 · |S|−1),

where εs = 4εv
97 .

Inapproximability in Combinatorial Optimization

Hardness of Approximation

The Steiner Tree Problem

Theorem

There is a a gap-preserving reduction from Vertex Cover(30) to the Steiner Tree Problem. It
transforms an instance G = (V ,E) of Vertex Cover(30), to an instance H = (R,S,cost) of
Steiner tree problem, where R and S are the required and Steiner vertices of H, and cost is a
metric defined on R∪S. It satisfies

if OPT (G)≤ 2
3 · |V |, then OPT (H)≤ |R|+ 2

3 · |S|−1,

if OPT (G) > (1 + εv) · 2
3 · |V |, then OPT (H) > (1 + εs) · (|R|+ 2

3 · |S|−1),

where εs = 4εv
97 .

Inapproximability in Combinatorial Optimization

Hardness of Approximation

The Steiner Tree Problem

Proof.

The instance H = (R,S,cost) will have a required vertex re for each edge e ∈ E , and a
Steiner vertex sv for each vertex v ∈ V .

Costs are defined as follows: an edge between a pair of Steiner vertices is of cost 1, and an
edge between a pair of required vertices is of cost 2. An edge (re,sv) is of cost 1 if edge e
is incident at vertex v in G, and it is of cost 2 otherwise.

Let us show that G has a vertex cover of size c if and only if H has a Steiner tree of cost
|R|+ c−1.

Let Sc be the set of Steiner vertices in H corresponding to the c vertices in the cover.
Observe that there is a tree in H covering R∪Sc using cost 1 edges only (since every edge
e ∈ E must be incident at a vertex in the cover). This Steiner tree has cost |R|+ c−1.

For the opposite direction, let T be a Steiner tree in H of cost |R|+ c−1. We will show
below that T can be transformed into a Steiner tree of the same cost that uses edges of
cost 1 only.

If so, the latter tree must contain exactly c Steiner vertices. Moreover, every required vertex
of H must have a unit cost edge to one of these Steiner vertices. Therefore, the
corresponding c vertices of G form a cover.

Inapproximability in Combinatorial Optimization

Hardness of Approximation

The Steiner Tree Problem

Proof.

The instance H = (R,S,cost) will have a required vertex re for each edge e ∈ E , and a
Steiner vertex sv for each vertex v ∈ V .

Costs are defined as follows: an edge between a pair of Steiner vertices is of cost 1, and an
edge between a pair of required vertices is of cost 2.

An edge (re,sv) is of cost 1 if edge e
is incident at vertex v in G, and it is of cost 2 otherwise.

Let us show that G has a vertex cover of size c if and only if H has a Steiner tree of cost
|R|+ c−1.

Let Sc be the set of Steiner vertices in H corresponding to the c vertices in the cover.
Observe that there is a tree in H covering R∪Sc using cost 1 edges only (since every edge
e ∈ E must be incident at a vertex in the cover). This Steiner tree has cost |R|+ c−1.

For the opposite direction, let T be a Steiner tree in H of cost |R|+ c−1. We will show
below that T can be transformed into a Steiner tree of the same cost that uses edges of
cost 1 only.

If so, the latter tree must contain exactly c Steiner vertices. Moreover, every required vertex
of H must have a unit cost edge to one of these Steiner vertices. Therefore, the
corresponding c vertices of G form a cover.

Inapproximability in Combinatorial Optimization

Hardness of Approximation

The Steiner Tree Problem

Proof.

The instance H = (R,S,cost) will have a required vertex re for each edge e ∈ E , and a
Steiner vertex sv for each vertex v ∈ V .

Costs are defined as follows: an edge between a pair of Steiner vertices is of cost 1, and an
edge between a pair of required vertices is of cost 2. An edge (re,sv) is of cost 1 if edge e
is incident at vertex v in G, and it is of cost 2 otherwise.

Let us show that G has a vertex cover of size c if and only if H has a Steiner tree of cost
|R|+ c−1.

Let Sc be the set of Steiner vertices in H corresponding to the c vertices in the cover.
Observe that there is a tree in H covering R∪Sc using cost 1 edges only (since every edge
e ∈ E must be incident at a vertex in the cover). This Steiner tree has cost |R|+ c−1.

For the opposite direction, let T be a Steiner tree in H of cost |R|+ c−1. We will show
below that T can be transformed into a Steiner tree of the same cost that uses edges of
cost 1 only.

If so, the latter tree must contain exactly c Steiner vertices. Moreover, every required vertex
of H must have a unit cost edge to one of these Steiner vertices. Therefore, the
corresponding c vertices of G form a cover.

Inapproximability in Combinatorial Optimization

Hardness of Approximation

The Steiner Tree Problem

Proof.

The instance H = (R,S,cost) will have a required vertex re for each edge e ∈ E , and a
Steiner vertex sv for each vertex v ∈ V .

Costs are defined as follows: an edge between a pair of Steiner vertices is of cost 1, and an
edge between a pair of required vertices is of cost 2. An edge (re,sv) is of cost 1 if edge e
is incident at vertex v in G, and it is of cost 2 otherwise.

Let us show that G has a vertex cover of size c if and only if H has a Steiner tree of cost
|R|+ c−1.

Let Sc be the set of Steiner vertices in H corresponding to the c vertices in the cover.
Observe that there is a tree in H covering R∪Sc using cost 1 edges only (since every edge
e ∈ E must be incident at a vertex in the cover). This Steiner tree has cost |R|+ c−1.

For the opposite direction, let T be a Steiner tree in H of cost |R|+ c−1. We will show
below that T can be transformed into a Steiner tree of the same cost that uses edges of
cost 1 only.

If so, the latter tree must contain exactly c Steiner vertices. Moreover, every required vertex
of H must have a unit cost edge to one of these Steiner vertices. Therefore, the
corresponding c vertices of G form a cover.

Inapproximability in Combinatorial Optimization

Hardness of Approximation

The Steiner Tree Problem

Proof.

The instance H = (R,S,cost) will have a required vertex re for each edge e ∈ E , and a
Steiner vertex sv for each vertex v ∈ V .

Costs are defined as follows: an edge between a pair of Steiner vertices is of cost 1, and an
edge between a pair of required vertices is of cost 2. An edge (re,sv) is of cost 1 if edge e
is incident at vertex v in G, and it is of cost 2 otherwise.

Let us show that G has a vertex cover of size c if and only if H has a Steiner tree of cost
|R|+ c−1.

Let Sc be the set of Steiner vertices in H corresponding to the c vertices in the cover.

Observe that there is a tree in H covering R∪Sc using cost 1 edges only (since every edge
e ∈ E must be incident at a vertex in the cover). This Steiner tree has cost |R|+ c−1.

For the opposite direction, let T be a Steiner tree in H of cost |R|+ c−1. We will show
below that T can be transformed into a Steiner tree of the same cost that uses edges of
cost 1 only.

If so, the latter tree must contain exactly c Steiner vertices. Moreover, every required vertex
of H must have a unit cost edge to one of these Steiner vertices. Therefore, the
corresponding c vertices of G form a cover.

Inapproximability in Combinatorial Optimization

Hardness of Approximation

The Steiner Tree Problem

Proof.

The instance H = (R,S,cost) will have a required vertex re for each edge e ∈ E , and a
Steiner vertex sv for each vertex v ∈ V .

Costs are defined as follows: an edge between a pair of Steiner vertices is of cost 1, and an
edge between a pair of required vertices is of cost 2. An edge (re,sv) is of cost 1 if edge e
is incident at vertex v in G, and it is of cost 2 otherwise.

Let us show that G has a vertex cover of size c if and only if H has a Steiner tree of cost
|R|+ c−1.

Let Sc be the set of Steiner vertices in H corresponding to the c vertices in the cover.
Observe that there is a tree in H covering R∪Sc using cost 1 edges only (since every edge
e ∈ E must be incident at a vertex in the cover).

This Steiner tree has cost |R|+ c−1.

For the opposite direction, let T be a Steiner tree in H of cost |R|+ c−1. We will show
below that T can be transformed into a Steiner tree of the same cost that uses edges of
cost 1 only.

If so, the latter tree must contain exactly c Steiner vertices. Moreover, every required vertex
of H must have a unit cost edge to one of these Steiner vertices. Therefore, the
corresponding c vertices of G form a cover.

Inapproximability in Combinatorial Optimization

Hardness of Approximation

The Steiner Tree Problem

Proof.

The instance H = (R,S,cost) will have a required vertex re for each edge e ∈ E , and a
Steiner vertex sv for each vertex v ∈ V .

Costs are defined as follows: an edge between a pair of Steiner vertices is of cost 1, and an
edge between a pair of required vertices is of cost 2. An edge (re,sv) is of cost 1 if edge e
is incident at vertex v in G, and it is of cost 2 otherwise.

Let us show that G has a vertex cover of size c if and only if H has a Steiner tree of cost
|R|+ c−1.

Let Sc be the set of Steiner vertices in H corresponding to the c vertices in the cover.
Observe that there is a tree in H covering R∪Sc using cost 1 edges only (since every edge
e ∈ E must be incident at a vertex in the cover). This Steiner tree has cost |R|+ c−1.

For the opposite direction, let T be a Steiner tree in H of cost |R|+ c−1. We will show
below that T can be transformed into a Steiner tree of the same cost that uses edges of
cost 1 only.

If so, the latter tree must contain exactly c Steiner vertices. Moreover, every required vertex
of H must have a unit cost edge to one of these Steiner vertices. Therefore, the
corresponding c vertices of G form a cover.

Inapproximability in Combinatorial Optimization

Hardness of Approximation

The Steiner Tree Problem

Proof.

The instance H = (R,S,cost) will have a required vertex re for each edge e ∈ E , and a
Steiner vertex sv for each vertex v ∈ V .

Costs are defined as follows: an edge between a pair of Steiner vertices is of cost 1, and an
edge between a pair of required vertices is of cost 2. An edge (re,sv) is of cost 1 if edge e
is incident at vertex v in G, and it is of cost 2 otherwise.

Let us show that G has a vertex cover of size c if and only if H has a Steiner tree of cost
|R|+ c−1.

Let Sc be the set of Steiner vertices in H corresponding to the c vertices in the cover.
Observe that there is a tree in H covering R∪Sc using cost 1 edges only (since every edge
e ∈ E must be incident at a vertex in the cover). This Steiner tree has cost |R|+ c−1.

For the opposite direction, let T be a Steiner tree in H of cost |R|+ c−1.

We will show
below that T can be transformed into a Steiner tree of the same cost that uses edges of
cost 1 only.

If so, the latter tree must contain exactly c Steiner vertices. Moreover, every required vertex
of H must have a unit cost edge to one of these Steiner vertices. Therefore, the
corresponding c vertices of G form a cover.

Inapproximability in Combinatorial Optimization

Hardness of Approximation

The Steiner Tree Problem

Proof.

The instance H = (R,S,cost) will have a required vertex re for each edge e ∈ E , and a
Steiner vertex sv for each vertex v ∈ V .

Costs are defined as follows: an edge between a pair of Steiner vertices is of cost 1, and an
edge between a pair of required vertices is of cost 2. An edge (re,sv) is of cost 1 if edge e
is incident at vertex v in G, and it is of cost 2 otherwise.

Let us show that G has a vertex cover of size c if and only if H has a Steiner tree of cost
|R|+ c−1.

Let Sc be the set of Steiner vertices in H corresponding to the c vertices in the cover.
Observe that there is a tree in H covering R∪Sc using cost 1 edges only (since every edge
e ∈ E must be incident at a vertex in the cover). This Steiner tree has cost |R|+ c−1.

For the opposite direction, let T be a Steiner tree in H of cost |R|+ c−1. We will show
below that T can be transformed into a Steiner tree of the same cost that uses edges of
cost 1 only.

If so, the latter tree must contain exactly c Steiner vertices. Moreover, every required vertex
of H must have a unit cost edge to one of these Steiner vertices. Therefore, the
corresponding c vertices of G form a cover.

Inapproximability in Combinatorial Optimization

Hardness of Approximation

The Steiner Tree Problem

Proof.

The instance H = (R,S,cost) will have a required vertex re for each edge e ∈ E , and a
Steiner vertex sv for each vertex v ∈ V .

Costs are defined as follows: an edge between a pair of Steiner vertices is of cost 1, and an
edge between a pair of required vertices is of cost 2. An edge (re,sv) is of cost 1 if edge e
is incident at vertex v in G, and it is of cost 2 otherwise.

Let us show that G has a vertex cover of size c if and only if H has a Steiner tree of cost
|R|+ c−1.

Let Sc be the set of Steiner vertices in H corresponding to the c vertices in the cover.
Observe that there is a tree in H covering R∪Sc using cost 1 edges only (since every edge
e ∈ E must be incident at a vertex in the cover). This Steiner tree has cost |R|+ c−1.

For the opposite direction, let T be a Steiner tree in H of cost |R|+ c−1. We will show
below that T can be transformed into a Steiner tree of the same cost that uses edges of
cost 1 only.

If so, the latter tree must contain exactly c Steiner vertices.

Moreover, every required vertex
of H must have a unit cost edge to one of these Steiner vertices. Therefore, the
corresponding c vertices of G form a cover.

Inapproximability in Combinatorial Optimization

Hardness of Approximation

The Steiner Tree Problem

Proof.

The instance H = (R,S,cost) will have a required vertex re for each edge e ∈ E , and a
Steiner vertex sv for each vertex v ∈ V .

Costs are defined as follows: an edge between a pair of Steiner vertices is of cost 1, and an
edge between a pair of required vertices is of cost 2. An edge (re,sv) is of cost 1 if edge e
is incident at vertex v in G, and it is of cost 2 otherwise.

Let us show that G has a vertex cover of size c if and only if H has a Steiner tree of cost
|R|+ c−1.

Let Sc be the set of Steiner vertices in H corresponding to the c vertices in the cover.
Observe that there is a tree in H covering R∪Sc using cost 1 edges only (since every edge
e ∈ E must be incident at a vertex in the cover). This Steiner tree has cost |R|+ c−1.

For the opposite direction, let T be a Steiner tree in H of cost |R|+ c−1. We will show
below that T can be transformed into a Steiner tree of the same cost that uses edges of
cost 1 only.

If so, the latter tree must contain exactly c Steiner vertices. Moreover, every required vertex
of H must have a unit cost edge to one of these Steiner vertices.

Therefore, the
corresponding c vertices of G form a cover.

Inapproximability in Combinatorial Optimization

Hardness of Approximation

The Steiner Tree Problem

Proof.

The instance H = (R,S,cost) will have a required vertex re for each edge e ∈ E , and a
Steiner vertex sv for each vertex v ∈ V .

Costs are defined as follows: an edge between a pair of Steiner vertices is of cost 1, and an
edge between a pair of required vertices is of cost 2. An edge (re,sv) is of cost 1 if edge e
is incident at vertex v in G, and it is of cost 2 otherwise.

Let us show that G has a vertex cover of size c if and only if H has a Steiner tree of cost
|R|+ c−1.

Let Sc be the set of Steiner vertices in H corresponding to the c vertices in the cover.
Observe that there is a tree in H covering R∪Sc using cost 1 edges only (since every edge
e ∈ E must be incident at a vertex in the cover). This Steiner tree has cost |R|+ c−1.

For the opposite direction, let T be a Steiner tree in H of cost |R|+ c−1. We will show
below that T can be transformed into a Steiner tree of the same cost that uses edges of
cost 1 only.

If so, the latter tree must contain exactly c Steiner vertices. Moreover, every required vertex
of H must have a unit cost edge to one of these Steiner vertices. Therefore, the
corresponding c vertices of G form a cover.

Inapproximability in Combinatorial Optimization

Hardness of Approximation

The Steiner Tree Problem

Proof.

Let (u,v) be an edge of cost 2 in T .

We may assume w.l.o.g. that u and v are both
required. If u is Steiner, remove (u,v) from T , getting two components. Throw in an edge
from v to a required vertex to connect the two sides, and get a Steiner tree of the same cost
as T .

Let eu and ev be the edges, in G, corresponding to these vertices. Since G is connected,
there is a path, p, from one of the endpoints of eu to one of the endpoints of ev in G.

Now, removing (u,v) from T gives two connected components. Let the set of required
vertices in these two sets be R1 and R2. Clearly, u and v lie in different sets, so path p
must have two adjacent edges, say (a,b) and (b,c) such that their corresponding vertices,
say w and w ′, lie in R1 and R2 , respectively.

Let the Steiner vertex, in H, corresponding to b be sb . Now, throwing in the edges (sb,w)
and (sb,w ′) must connect the two components. Observe that these two edges are of unit
cost.

Now, if OPT (G)≤ 2
3 · |V |, then OPT (H)≤ |R|+ 2

3 · |S|−1. On the other hand, if
OPT (G) > (1 + εv) · 2

3 · |V |, then OPT (H) > |R|+ (1 + εv) · 2
3 · |S|−1. The proof of the

theorem is completed.

Inapproximability in Combinatorial Optimization

Hardness of Approximation

The Steiner Tree Problem

Proof.

Let (u,v) be an edge of cost 2 in T . We may assume w.l.o.g. that u and v are both
required.

If u is Steiner, remove (u,v) from T , getting two components. Throw in an edge
from v to a required vertex to connect the two sides, and get a Steiner tree of the same cost
as T .

Let eu and ev be the edges, in G, corresponding to these vertices. Since G is connected,
there is a path, p, from one of the endpoints of eu to one of the endpoints of ev in G.

Now, removing (u,v) from T gives two connected components. Let the set of required
vertices in these two sets be R1 and R2. Clearly, u and v lie in different sets, so path p
must have two adjacent edges, say (a,b) and (b,c) such that their corresponding vertices,
say w and w ′, lie in R1 and R2 , respectively.

Let the Steiner vertex, in H, corresponding to b be sb . Now, throwing in the edges (sb,w)
and (sb,w ′) must connect the two components. Observe that these two edges are of unit
cost.

Now, if OPT (G)≤ 2
3 · |V |, then OPT (H)≤ |R|+ 2

3 · |S|−1. On the other hand, if
OPT (G) > (1 + εv) · 2

3 · |V |, then OPT (H) > |R|+ (1 + εv) · 2
3 · |S|−1. The proof of the

theorem is completed.

Inapproximability in Combinatorial Optimization

Hardness of Approximation

The Steiner Tree Problem

Proof.

Let (u,v) be an edge of cost 2 in T . We may assume w.l.o.g. that u and v are both
required. If u is Steiner, remove (u,v) from T , getting two components. Throw in an edge
from v to a required vertex to connect the two sides, and get a Steiner tree of the same cost
as T .

Let eu and ev be the edges, in G, corresponding to these vertices. Since G is connected,
there is a path, p, from one of the endpoints of eu to one of the endpoints of ev in G.

Now, removing (u,v) from T gives two connected components. Let the set of required
vertices in these two sets be R1 and R2. Clearly, u and v lie in different sets, so path p
must have two adjacent edges, say (a,b) and (b,c) such that their corresponding vertices,
say w and w ′, lie in R1 and R2 , respectively.

Let the Steiner vertex, in H, corresponding to b be sb . Now, throwing in the edges (sb,w)
and (sb,w ′) must connect the two components. Observe that these two edges are of unit
cost.

Now, if OPT (G)≤ 2
3 · |V |, then OPT (H)≤ |R|+ 2

3 · |S|−1. On the other hand, if
OPT (G) > (1 + εv) · 2

3 · |V |, then OPT (H) > |R|+ (1 + εv) · 2
3 · |S|−1. The proof of the

theorem is completed.

Inapproximability in Combinatorial Optimization

Hardness of Approximation

The Steiner Tree Problem

Proof.

Let (u,v) be an edge of cost 2 in T . We may assume w.l.o.g. that u and v are both
required. If u is Steiner, remove (u,v) from T , getting two components. Throw in an edge
from v to a required vertex to connect the two sides, and get a Steiner tree of the same cost
as T .

Let eu and ev be the edges, in G, corresponding to these vertices.

Since G is connected,
there is a path, p, from one of the endpoints of eu to one of the endpoints of ev in G.

Now, removing (u,v) from T gives two connected components. Let the set of required
vertices in these two sets be R1 and R2. Clearly, u and v lie in different sets, so path p
must have two adjacent edges, say (a,b) and (b,c) such that their corresponding vertices,
say w and w ′, lie in R1 and R2 , respectively.

Let the Steiner vertex, in H, corresponding to b be sb . Now, throwing in the edges (sb,w)
and (sb,w ′) must connect the two components. Observe that these two edges are of unit
cost.

Now, if OPT (G)≤ 2
3 · |V |, then OPT (H)≤ |R|+ 2

3 · |S|−1. On the other hand, if
OPT (G) > (1 + εv) · 2

3 · |V |, then OPT (H) > |R|+ (1 + εv) · 2
3 · |S|−1. The proof of the

theorem is completed.

Inapproximability in Combinatorial Optimization

Hardness of Approximation

The Steiner Tree Problem

Proof.

Let (u,v) be an edge of cost 2 in T . We may assume w.l.o.g. that u and v are both
required. If u is Steiner, remove (u,v) from T , getting two components. Throw in an edge
from v to a required vertex to connect the two sides, and get a Steiner tree of the same cost
as T .

Let eu and ev be the edges, in G, corresponding to these vertices. Since G is connected,
there is a path, p, from one of the endpoints of eu to one of the endpoints of ev in G.

Now, removing (u,v) from T gives two connected components. Let the set of required
vertices in these two sets be R1 and R2. Clearly, u and v lie in different sets, so path p
must have two adjacent edges, say (a,b) and (b,c) such that their corresponding vertices,
say w and w ′, lie in R1 and R2 , respectively.

Let the Steiner vertex, in H, corresponding to b be sb . Now, throwing in the edges (sb,w)
and (sb,w ′) must connect the two components. Observe that these two edges are of unit
cost.

Now, if OPT (G)≤ 2
3 · |V |, then OPT (H)≤ |R|+ 2

3 · |S|−1. On the other hand, if
OPT (G) > (1 + εv) · 2

3 · |V |, then OPT (H) > |R|+ (1 + εv) · 2
3 · |S|−1. The proof of the

theorem is completed.

Inapproximability in Combinatorial Optimization

Hardness of Approximation

The Steiner Tree Problem

Proof.

Let (u,v) be an edge of cost 2 in T . We may assume w.l.o.g. that u and v are both
required. If u is Steiner, remove (u,v) from T , getting two components. Throw in an edge
from v to a required vertex to connect the two sides, and get a Steiner tree of the same cost
as T .

Let eu and ev be the edges, in G, corresponding to these vertices. Since G is connected,
there is a path, p, from one of the endpoints of eu to one of the endpoints of ev in G.

Now, removing (u,v) from T gives two connected components. Let the set of required
vertices in these two sets be R1 and R2.

Clearly, u and v lie in different sets, so path p
must have two adjacent edges, say (a,b) and (b,c) such that their corresponding vertices,
say w and w ′, lie in R1 and R2 , respectively.

Let the Steiner vertex, in H, corresponding to b be sb . Now, throwing in the edges (sb,w)
and (sb,w ′) must connect the two components. Observe that these two edges are of unit
cost.

Now, if OPT (G)≤ 2
3 · |V |, then OPT (H)≤ |R|+ 2

3 · |S|−1. On the other hand, if
OPT (G) > (1 + εv) · 2

3 · |V |, then OPT (H) > |R|+ (1 + εv) · 2
3 · |S|−1. The proof of the

theorem is completed.

Inapproximability in Combinatorial Optimization

Hardness of Approximation

The Steiner Tree Problem

Proof.

Let (u,v) be an edge of cost 2 in T . We may assume w.l.o.g. that u and v are both
required. If u is Steiner, remove (u,v) from T , getting two components. Throw in an edge
from v to a required vertex to connect the two sides, and get a Steiner tree of the same cost
as T .

Let eu and ev be the edges, in G, corresponding to these vertices. Since G is connected,
there is a path, p, from one of the endpoints of eu to one of the endpoints of ev in G.

Now, removing (u,v) from T gives two connected components. Let the set of required
vertices in these two sets be R1 and R2. Clearly, u and v lie in different sets, so path p
must have two adjacent edges, say (a,b) and (b,c) such that their corresponding vertices,
say w and w ′, lie in R1 and R2 , respectively.

Let the Steiner vertex, in H, corresponding to b be sb . Now, throwing in the edges (sb,w)
and (sb,w ′) must connect the two components. Observe that these two edges are of unit
cost.

Now, if OPT (G)≤ 2
3 · |V |, then OPT (H)≤ |R|+ 2

3 · |S|−1. On the other hand, if
OPT (G) > (1 + εv) · 2

3 · |V |, then OPT (H) > |R|+ (1 + εv) · 2
3 · |S|−1. The proof of the

theorem is completed.

Inapproximability in Combinatorial Optimization

Hardness of Approximation

The Steiner Tree Problem

Proof.

Let (u,v) be an edge of cost 2 in T . We may assume w.l.o.g. that u and v are both
required. If u is Steiner, remove (u,v) from T , getting two components. Throw in an edge
from v to a required vertex to connect the two sides, and get a Steiner tree of the same cost
as T .

Let eu and ev be the edges, in G, corresponding to these vertices. Since G is connected,
there is a path, p, from one of the endpoints of eu to one of the endpoints of ev in G.

Now, removing (u,v) from T gives two connected components. Let the set of required
vertices in these two sets be R1 and R2. Clearly, u and v lie in different sets, so path p
must have two adjacent edges, say (a,b) and (b,c) such that their corresponding vertices,
say w and w ′, lie in R1 and R2 , respectively.

Let the Steiner vertex, in H, corresponding to b be sb .

Now, throwing in the edges (sb,w)
and (sb,w ′) must connect the two components. Observe that these two edges are of unit
cost.

Now, if OPT (G)≤ 2
3 · |V |, then OPT (H)≤ |R|+ 2

3 · |S|−1. On the other hand, if
OPT (G) > (1 + εv) · 2

3 · |V |, then OPT (H) > |R|+ (1 + εv) · 2
3 · |S|−1. The proof of the

theorem is completed.

Inapproximability in Combinatorial Optimization

Hardness of Approximation

The Steiner Tree Problem

Proof.

Let (u,v) be an edge of cost 2 in T . We may assume w.l.o.g. that u and v are both
required. If u is Steiner, remove (u,v) from T , getting two components. Throw in an edge
from v to a required vertex to connect the two sides, and get a Steiner tree of the same cost
as T .

Let eu and ev be the edges, in G, corresponding to these vertices. Since G is connected,
there is a path, p, from one of the endpoints of eu to one of the endpoints of ev in G.

Now, removing (u,v) from T gives two connected components. Let the set of required
vertices in these two sets be R1 and R2. Clearly, u and v lie in different sets, so path p
must have two adjacent edges, say (a,b) and (b,c) such that their corresponding vertices,
say w and w ′, lie in R1 and R2 , respectively.

Let the Steiner vertex, in H, corresponding to b be sb . Now, throwing in the edges (sb,w)
and (sb,w ′) must connect the two components. Observe that these two edges are of unit
cost.

Now, if OPT (G)≤ 2
3 · |V |, then OPT (H)≤ |R|+ 2

3 · |S|−1. On the other hand, if
OPT (G) > (1 + εv) · 2

3 · |V |, then OPT (H) > |R|+ (1 + εv) · 2
3 · |S|−1. The proof of the

theorem is completed.

Inapproximability in Combinatorial Optimization

Hardness of Approximation

The Steiner Tree Problem

Proof.

Let (u,v) be an edge of cost 2 in T . We may assume w.l.o.g. that u and v are both
required. If u is Steiner, remove (u,v) from T , getting two components. Throw in an edge
from v to a required vertex to connect the two sides, and get a Steiner tree of the same cost
as T .

Let eu and ev be the edges, in G, corresponding to these vertices. Since G is connected,
there is a path, p, from one of the endpoints of eu to one of the endpoints of ev in G.

Now, removing (u,v) from T gives two connected components. Let the set of required
vertices in these two sets be R1 and R2. Clearly, u and v lie in different sets, so path p
must have two adjacent edges, say (a,b) and (b,c) such that their corresponding vertices,
say w and w ′, lie in R1 and R2 , respectively.

Let the Steiner vertex, in H, corresponding to b be sb . Now, throwing in the edges (sb,w)
and (sb,w ′) must connect the two components. Observe that these two edges are of unit
cost.

Now, if OPT (G)≤ 2
3 · |V |, then OPT (H)≤ |R|+ 2

3 · |S|−1.

On the other hand, if
OPT (G) > (1 + εv) · 2

3 · |V |, then OPT (H) > |R|+ (1 + εv) · 2
3 · |S|−1. The proof of the

theorem is completed.

Inapproximability in Combinatorial Optimization

Hardness of Approximation

The Steiner Tree Problem

Proof.

Let (u,v) be an edge of cost 2 in T . We may assume w.l.o.g. that u and v are both
required. If u is Steiner, remove (u,v) from T , getting two components. Throw in an edge
from v to a required vertex to connect the two sides, and get a Steiner tree of the same cost
as T .

Let eu and ev be the edges, in G, corresponding to these vertices. Since G is connected,
there is a path, p, from one of the endpoints of eu to one of the endpoints of ev in G.

Now, removing (u,v) from T gives two connected components. Let the set of required
vertices in these two sets be R1 and R2. Clearly, u and v lie in different sets, so path p
must have two adjacent edges, say (a,b) and (b,c) such that their corresponding vertices,
say w and w ′, lie in R1 and R2 , respectively.

Let the Steiner vertex, in H, corresponding to b be sb . Now, throwing in the edges (sb,w)
and (sb,w ′) must connect the two components. Observe that these two edges are of unit
cost.

Now, if OPT (G)≤ 2
3 · |V |, then OPT (H)≤ |R|+ 2

3 · |S|−1. On the other hand, if
OPT (G) > (1 + εv) · 2

3 · |V |, then OPT (H) > |R|+ (1 + εv) · 2
3 · |S|−1. The proof of the

theorem is completed.

Inapproximability in Combinatorial Optimization

Hardness of Approximation

The maximum clique problem

Theorem

For fixed constants b and q, there is a gap-introducing reduction from SAT to clique problem that
transforms a boolean formula Φ of size n to a graph G = (V ,E), where |V |= 2q ·nb such that

if Φ is satisfiable, then OPT (G)≥ nb ,

if Φ is not satisfiable, then OPT (G) < 1
2 ·n

b .

Corollary

There is no 1
2 -approximation algorithm for maximum clique problem unless P=NP.

Inapproximability in Combinatorial Optimization

Hardness of Approximation

The maximum clique problem

Theorem

For fixed constants b and q, there is a gap-introducing reduction from SAT to clique problem that
transforms a boolean formula Φ of size n to a graph G = (V ,E), where |V |= 2q ·nb such that

if Φ is satisfiable, then OPT (G)≥ nb ,

if Φ is not satisfiable, then OPT (G) < 1
2 ·n

b .

Corollary

There is no 1
2 -approximation algorithm for maximum clique problem unless P=NP.

Inapproximability in Combinatorial Optimization

Hardness of Approximation

The maximum clique problem

Theorem

For fixed constants b and q, there is a gap-introducing reduction from SAT to clique problem that
transforms a boolean formula Φ of size n to a graph G = (V ,E), where |V |= 2q ·nb such that

if Φ is satisfiable, then OPT (G)≥ nb ,

if Φ is not satisfiable, then OPT (G) < 1
2 ·n

b .

Corollary

There is no 1
2 -approximation algorithm for maximum clique problem unless P=NP.

Inapproximability in Combinatorial Optimization

Hardness of Approximation

The maximum clique problem

Proof.

Let F be a PCP(log(n),1) verifier for SAT that requires b · log(n) random bits and queries q
bits of the proof.

We will transform a SAT instance Φ of size n to a graph G = (V ,E) constructed as follows:
for each choice of random string of length b · log(n) and each assignment τ to q Boolean
variables, there is a vertex vr ,τ in G. Observe that |V |= 2q ·nb .

Let Q(r) be the q positions in the proof that F queries when it is given string r as a random
string.

We will say that vertex vr ,τ is accepting if F accepts when it is given random string r and
when it reads τ in the Q(r) positions of the proof, and it is rejecting otherwise.

We will say that vertices vr1,τ1 and vr2,τ2 are consistent, if τ1 and τ2 agree at each position
at which Q(r1) and Q(r2) overlap. Clearly, a necessary condition for consistency is that
r1 6= r2.

Two distinct vertices vr1,τ1 and vr2 ,τ2 are connected by an edge in G if and only if they are
consistent and they are both accepting.

Vertex vr ,τ is consistent with proof p if positions Q(r) of p contains τ .

Inapproximability in Combinatorial Optimization

Hardness of Approximation

The maximum clique problem

Proof.

Let F be a PCP(log(n),1) verifier for SAT that requires b · log(n) random bits and queries q
bits of the proof.

We will transform a SAT instance Φ of size n to a graph G = (V ,E) constructed as follows:

for each choice of random string of length b · log(n) and each assignment τ to q Boolean
variables, there is a vertex vr ,τ in G. Observe that |V |= 2q ·nb .

Let Q(r) be the q positions in the proof that F queries when it is given string r as a random
string.

We will say that vertex vr ,τ is accepting if F accepts when it is given random string r and
when it reads τ in the Q(r) positions of the proof, and it is rejecting otherwise.

We will say that vertices vr1,τ1 and vr2,τ2 are consistent, if τ1 and τ2 agree at each position
at which Q(r1) and Q(r2) overlap. Clearly, a necessary condition for consistency is that
r1 6= r2.

Two distinct vertices vr1,τ1 and vr2 ,τ2 are connected by an edge in G if and only if they are
consistent and they are both accepting.

Vertex vr ,τ is consistent with proof p if positions Q(r) of p contains τ .

Inapproximability in Combinatorial Optimization

Hardness of Approximation

The maximum clique problem

Proof.

Let F be a PCP(log(n),1) verifier for SAT that requires b · log(n) random bits and queries q
bits of the proof.

We will transform a SAT instance Φ of size n to a graph G = (V ,E) constructed as follows:
for each choice of random string of length b · log(n) and each assignment τ to q Boolean
variables, there is a vertex vr ,τ in G.

Observe that |V |= 2q ·nb .

Let Q(r) be the q positions in the proof that F queries when it is given string r as a random
string.

We will say that vertex vr ,τ is accepting if F accepts when it is given random string r and
when it reads τ in the Q(r) positions of the proof, and it is rejecting otherwise.

We will say that vertices vr1,τ1 and vr2,τ2 are consistent, if τ1 and τ2 agree at each position
at which Q(r1) and Q(r2) overlap. Clearly, a necessary condition for consistency is that
r1 6= r2.

Two distinct vertices vr1,τ1 and vr2 ,τ2 are connected by an edge in G if and only if they are
consistent and they are both accepting.

Vertex vr ,τ is consistent with proof p if positions Q(r) of p contains τ .

Inapproximability in Combinatorial Optimization

Hardness of Approximation

The maximum clique problem

Proof.

Let F be a PCP(log(n),1) verifier for SAT that requires b · log(n) random bits and queries q
bits of the proof.

We will transform a SAT instance Φ of size n to a graph G = (V ,E) constructed as follows:
for each choice of random string of length b · log(n) and each assignment τ to q Boolean
variables, there is a vertex vr ,τ in G. Observe that |V |= 2q ·nb .

Let Q(r) be the q positions in the proof that F queries when it is given string r as a random
string.

We will say that vertex vr ,τ is accepting if F accepts when it is given random string r and
when it reads τ in the Q(r) positions of the proof, and it is rejecting otherwise.

We will say that vertices vr1,τ1 and vr2,τ2 are consistent, if τ1 and τ2 agree at each position
at which Q(r1) and Q(r2) overlap. Clearly, a necessary condition for consistency is that
r1 6= r2.

Two distinct vertices vr1,τ1 and vr2 ,τ2 are connected by an edge in G if and only if they are
consistent and they are both accepting.

Vertex vr ,τ is consistent with proof p if positions Q(r) of p contains τ .

Inapproximability in Combinatorial Optimization

Hardness of Approximation

The maximum clique problem

Proof.

Let F be a PCP(log(n),1) verifier for SAT that requires b · log(n) random bits and queries q
bits of the proof.

We will transform a SAT instance Φ of size n to a graph G = (V ,E) constructed as follows:
for each choice of random string of length b · log(n) and each assignment τ to q Boolean
variables, there is a vertex vr ,τ in G. Observe that |V |= 2q ·nb .

Let Q(r) be the q positions in the proof that F queries when it is given string r as a random
string.

We will say that vertex vr ,τ is accepting if F accepts when it is given random string r and
when it reads τ in the Q(r) positions of the proof, and it is rejecting otherwise.

We will say that vertices vr1,τ1 and vr2,τ2 are consistent, if τ1 and τ2 agree at each position
at which Q(r1) and Q(r2) overlap. Clearly, a necessary condition for consistency is that
r1 6= r2.

Two distinct vertices vr1,τ1 and vr2 ,τ2 are connected by an edge in G if and only if they are
consistent and they are both accepting.

Vertex vr ,τ is consistent with proof p if positions Q(r) of p contains τ .

Inapproximability in Combinatorial Optimization

Hardness of Approximation

The maximum clique problem

Proof.

Let F be a PCP(log(n),1) verifier for SAT that requires b · log(n) random bits and queries q
bits of the proof.

We will transform a SAT instance Φ of size n to a graph G = (V ,E) constructed as follows:
for each choice of random string of length b · log(n) and each assignment τ to q Boolean
variables, there is a vertex vr ,τ in G. Observe that |V |= 2q ·nb .

Let Q(r) be the q positions in the proof that F queries when it is given string r as a random
string.

We will say that vertex vr ,τ is accepting if F accepts when it is given random string r and
when it reads τ in the Q(r) positions of the proof,

and it is rejecting otherwise.

We will say that vertices vr1,τ1 and vr2,τ2 are consistent, if τ1 and τ2 agree at each position
at which Q(r1) and Q(r2) overlap. Clearly, a necessary condition for consistency is that
r1 6= r2.

Two distinct vertices vr1,τ1 and vr2 ,τ2 are connected by an edge in G if and only if they are
consistent and they are both accepting.

Vertex vr ,τ is consistent with proof p if positions Q(r) of p contains τ .

Inapproximability in Combinatorial Optimization

Hardness of Approximation

The maximum clique problem

Proof.

Let F be a PCP(log(n),1) verifier for SAT that requires b · log(n) random bits and queries q
bits of the proof.

We will transform a SAT instance Φ of size n to a graph G = (V ,E) constructed as follows:
for each choice of random string of length b · log(n) and each assignment τ to q Boolean
variables, there is a vertex vr ,τ in G. Observe that |V |= 2q ·nb .

Let Q(r) be the q positions in the proof that F queries when it is given string r as a random
string.

We will say that vertex vr ,τ is accepting if F accepts when it is given random string r and
when it reads τ in the Q(r) positions of the proof, and it is rejecting otherwise.

We will say that vertices vr1,τ1 and vr2,τ2 are consistent, if τ1 and τ2 agree at each position
at which Q(r1) and Q(r2) overlap. Clearly, a necessary condition for consistency is that
r1 6= r2.

Two distinct vertices vr1,τ1 and vr2 ,τ2 are connected by an edge in G if and only if they are
consistent and they are both accepting.

Vertex vr ,τ is consistent with proof p if positions Q(r) of p contains τ .

Inapproximability in Combinatorial Optimization

Hardness of Approximation

The maximum clique problem

Proof.

Let F be a PCP(log(n),1) verifier for SAT that requires b · log(n) random bits and queries q
bits of the proof.

We will transform a SAT instance Φ of size n to a graph G = (V ,E) constructed as follows:
for each choice of random string of length b · log(n) and each assignment τ to q Boolean
variables, there is a vertex vr ,τ in G. Observe that |V |= 2q ·nb .

Let Q(r) be the q positions in the proof that F queries when it is given string r as a random
string.

We will say that vertex vr ,τ is accepting if F accepts when it is given random string r and
when it reads τ in the Q(r) positions of the proof, and it is rejecting otherwise.

We will say that vertices vr1,τ1 and vr2,τ2 are consistent, if τ1 and τ2 agree at each position
at which Q(r1) and Q(r2) overlap.

Clearly, a necessary condition for consistency is that
r1 6= r2.

Two distinct vertices vr1,τ1 and vr2 ,τ2 are connected by an edge in G if and only if they are
consistent and they are both accepting.

Vertex vr ,τ is consistent with proof p if positions Q(r) of p contains τ .

Inapproximability in Combinatorial Optimization

Hardness of Approximation

The maximum clique problem

Proof.

Let F be a PCP(log(n),1) verifier for SAT that requires b · log(n) random bits and queries q
bits of the proof.

We will transform a SAT instance Φ of size n to a graph G = (V ,E) constructed as follows:
for each choice of random string of length b · log(n) and each assignment τ to q Boolean
variables, there is a vertex vr ,τ in G. Observe that |V |= 2q ·nb .

Let Q(r) be the q positions in the proof that F queries when it is given string r as a random
string.

We will say that vertex vr ,τ is accepting if F accepts when it is given random string r and
when it reads τ in the Q(r) positions of the proof, and it is rejecting otherwise.

We will say that vertices vr1,τ1 and vr2,τ2 are consistent, if τ1 and τ2 agree at each position
at which Q(r1) and Q(r2) overlap. Clearly, a necessary condition for consistency is that
r1 6= r2.

Two distinct vertices vr1,τ1 and vr2 ,τ2 are connected by an edge in G if and only if they are
consistent and they are both accepting.

Vertex vr ,τ is consistent with proof p if positions Q(r) of p contains τ .

Inapproximability in Combinatorial Optimization

Hardness of Approximation

The maximum clique problem

Proof.

Let F be a PCP(log(n),1) verifier for SAT that requires b · log(n) random bits and queries q
bits of the proof.

We will transform a SAT instance Φ of size n to a graph G = (V ,E) constructed as follows:
for each choice of random string of length b · log(n) and each assignment τ to q Boolean
variables, there is a vertex vr ,τ in G. Observe that |V |= 2q ·nb .

Let Q(r) be the q positions in the proof that F queries when it is given string r as a random
string.

We will say that vertex vr ,τ is accepting if F accepts when it is given random string r and
when it reads τ in the Q(r) positions of the proof, and it is rejecting otherwise.

We will say that vertices vr1,τ1 and vr2,τ2 are consistent, if τ1 and τ2 agree at each position
at which Q(r1) and Q(r2) overlap. Clearly, a necessary condition for consistency is that
r1 6= r2.

Two distinct vertices vr1 ,τ1 and vr2 ,τ2 are connected by an edge in G if and only if they are
consistent and they are both accepting.

Vertex vr ,τ is consistent with proof p if positions Q(r) of p contains τ .

Inapproximability in Combinatorial Optimization

Hardness of Approximation

The maximum clique problem

Proof.

Let F be a PCP(log(n),1) verifier for SAT that requires b · log(n) random bits and queries q
bits of the proof.

We will transform a SAT instance Φ of size n to a graph G = (V ,E) constructed as follows:
for each choice of random string of length b · log(n) and each assignment τ to q Boolean
variables, there is a vertex vr ,τ in G. Observe that |V |= 2q ·nb .

Let Q(r) be the q positions in the proof that F queries when it is given string r as a random
string.

We will say that vertex vr ,τ is accepting if F accepts when it is given random string r and
when it reads τ in the Q(r) positions of the proof, and it is rejecting otherwise.

We will say that vertices vr1,τ1 and vr2,τ2 are consistent, if τ1 and τ2 agree at each position
at which Q(r1) and Q(r2) overlap. Clearly, a necessary condition for consistency is that
r1 6= r2.

Two distinct vertices vr1 ,τ1 and vr2 ,τ2 are connected by an edge in G if and only if they are
consistent and they are both accepting.

Vertex vr ,τ is consistent with proof p if positions Q(r) of p contains τ .

Inapproximability in Combinatorial Optimization

Hardness of Approximation

The maximum clique problem

Proof.

If Φ is satisfiable, then there is a proof, p, on which F accepts for each choice, r , of the
random string.

For each r let p(r) be the truth setting assigned by proof p to positions Q(r).

Now, the vertices {vr ,p(r) : |r |= b · log(n)} form a clique of G of size nb .

Suppose that Φ is not satisfiable, and let C be a clique in G. Since the vertices of C are
pairwise consistent, there is a proof, p, that is consistent with all vertices of C.Therefore, the
probability of acceptance of F on proof p is at least ICI

nb (notice that the vertices of C must
correspond to distinct random strings).

Since the probability of acceptance of any proof is < 1
2 , the largest clique in G must be of

size < 1
2 ·n

b .

Inapproximability in Combinatorial Optimization

Hardness of Approximation

The maximum clique problem

Proof.

If Φ is satisfiable, then there is a proof, p, on which F accepts for each choice, r , of the
random string. For each r let p(r) be the truth setting assigned by proof p to positions Q(r).

Now, the vertices {vr ,p(r) : |r |= b · log(n)} form a clique of G of size nb .

Suppose that Φ is not satisfiable, and let C be a clique in G. Since the vertices of C are
pairwise consistent, there is a proof, p, that is consistent with all vertices of C.Therefore, the
probability of acceptance of F on proof p is at least ICI

nb (notice that the vertices of C must
correspond to distinct random strings).

Since the probability of acceptance of any proof is < 1
2 , the largest clique in G must be of

size < 1
2 ·n

b .

Inapproximability in Combinatorial Optimization

Hardness of Approximation

The maximum clique problem

Proof.

If Φ is satisfiable, then there is a proof, p, on which F accepts for each choice, r , of the
random string. For each r let p(r) be the truth setting assigned by proof p to positions Q(r).

Now, the vertices {vr ,p(r) : |r |= b · log(n)} form a clique of G of size nb .

Suppose that Φ is not satisfiable, and let C be a clique in G.

Since the vertices of C are
pairwise consistent, there is a proof, p, that is consistent with all vertices of C.Therefore, the
probability of acceptance of F on proof p is at least ICI

nb (notice that the vertices of C must
correspond to distinct random strings).

Since the probability of acceptance of any proof is < 1
2 , the largest clique in G must be of

size < 1
2 ·n

b .

Inapproximability in Combinatorial Optimization

Hardness of Approximation

The maximum clique problem

Proof.

If Φ is satisfiable, then there is a proof, p, on which F accepts for each choice, r , of the
random string. For each r let p(r) be the truth setting assigned by proof p to positions Q(r).

Now, the vertices {vr ,p(r) : |r |= b · log(n)} form a clique of G of size nb .

Suppose that Φ is not satisfiable, and let C be a clique in G. Since the vertices of C are
pairwise consistent, there is a proof, p, that is consistent with all vertices of C.

Therefore, the
probability of acceptance of F on proof p is at least ICI

nb (notice that the vertices of C must
correspond to distinct random strings).

Since the probability of acceptance of any proof is < 1
2 , the largest clique in G must be of

size < 1
2 ·n

b .

Inapproximability in Combinatorial Optimization

Hardness of Approximation

The maximum clique problem

Proof.

If Φ is satisfiable, then there is a proof, p, on which F accepts for each choice, r , of the
random string. For each r let p(r) be the truth setting assigned by proof p to positions Q(r).

Now, the vertices {vr ,p(r) : |r |= b · log(n)} form a clique of G of size nb .

Suppose that Φ is not satisfiable, and let C be a clique in G. Since the vertices of C are
pairwise consistent, there is a proof, p, that is consistent with all vertices of C.Therefore, the
probability of acceptance of F on proof p is at least ICI

nb (notice that the vertices of C must
correspond to distinct random strings).

Since the probability of acceptance of any proof is < 1
2 , the largest clique in G must be of

size < 1
2 ·n

b .

Inapproximability in Combinatorial Optimization

Hardness of Approximation

The maximum clique problem

Proof.

If Φ is satisfiable, then there is a proof, p, on which F accepts for each choice, r , of the
random string. For each r let p(r) be the truth setting assigned by proof p to positions Q(r).

Now, the vertices {vr ,p(r) : |r |= b · log(n)} form a clique of G of size nb .

Suppose that Φ is not satisfiable, and let C be a clique in G. Since the vertices of C are
pairwise consistent, there is a proof, p, that is consistent with all vertices of C.Therefore, the
probability of acceptance of F on proof p is at least ICI

nb (notice that the vertices of C must
correspond to distinct random strings).

Since the probability of acceptance of any proof is < 1
2 , the largest clique in G must be of

size < 1
2 ·n

b .

Inapproximability in Combinatorial Optimization

Hardness of Approximation

Extending the definition of the class PCP

Definition

The new definition of the class PCP comes with two additional parameters, c and s called
completeness and soundness.

For two functions r(n) and q(n), the class PCPc,s(r(n),q(n)) is
comprised of all languages L, for which there is a verifier V , such that on any input x the verifier
obtains O(r(n)) random bits and quires O(q(n)) bits of the proof. Furthermore,

if x ∈ L, then there is a proof y that makes V accept with probability ≥ c,

if x /∈ L, then for every proof y , V accepts with probability < s.

Corollary

For the previously introduced class PCP(r(n),q(n)), one has the following equality:
PCP(r(n),q(n)) = PCP1, 1

2
(r(n),q(n)).

Remark

In general the parameters c and s may be functions of n.

Theorem

The following equality holds: NP = PCP1, 1
n

(log(n), log(n)).

Inapproximability in Combinatorial Optimization

Hardness of Approximation

Extending the definition of the class PCP

Definition

The new definition of the class PCP comes with two additional parameters, c and s called
completeness and soundness. For two functions r(n) and q(n), the class PCPc,s(r(n),q(n)) is
comprised of all languages L,

for which there is a verifier V , such that on any input x the verifier
obtains O(r(n)) random bits and quires O(q(n)) bits of the proof. Furthermore,

if x ∈ L, then there is a proof y that makes V accept with probability ≥ c,

if x /∈ L, then for every proof y , V accepts with probability < s.

Corollary

For the previously introduced class PCP(r(n),q(n)), one has the following equality:
PCP(r(n),q(n)) = PCP1, 1

2
(r(n),q(n)).

Remark

In general the parameters c and s may be functions of n.

Theorem

The following equality holds: NP = PCP1, 1
n

(log(n), log(n)).

Inapproximability in Combinatorial Optimization

Hardness of Approximation

Extending the definition of the class PCP

Definition

The new definition of the class PCP comes with two additional parameters, c and s called
completeness and soundness. For two functions r(n) and q(n), the class PCPc,s(r(n),q(n)) is
comprised of all languages L, for which there is a verifier V , such that on any input x the verifier
obtains O(r(n)) random bits and quires O(q(n)) bits of the proof.

Furthermore,

if x ∈ L, then there is a proof y that makes V accept with probability ≥ c,

if x /∈ L, then for every proof y , V accepts with probability < s.

Corollary

For the previously introduced class PCP(r(n),q(n)), one has the following equality:
PCP(r(n),q(n)) = PCP1, 1

2
(r(n),q(n)).

Remark

In general the parameters c and s may be functions of n.

Theorem

The following equality holds: NP = PCP1, 1
n

(log(n), log(n)).

Inapproximability in Combinatorial Optimization

Hardness of Approximation

Extending the definition of the class PCP

Definition

The new definition of the class PCP comes with two additional parameters, c and s called
completeness and soundness. For two functions r(n) and q(n), the class PCPc,s(r(n),q(n)) is
comprised of all languages L, for which there is a verifier V , such that on any input x the verifier
obtains O(r(n)) random bits and quires O(q(n)) bits of the proof. Furthermore,

if x ∈ L, then there is a proof y that makes V accept with probability ≥ c,

if x /∈ L, then for every proof y , V accepts with probability < s.

Corollary

For the previously introduced class PCP(r(n),q(n)), one has the following equality:
PCP(r(n),q(n)) = PCP1, 1

2
(r(n),q(n)).

Remark

In general the parameters c and s may be functions of n.

Theorem

The following equality holds: NP = PCP1, 1
n

(log(n), log(n)).

Inapproximability in Combinatorial Optimization

Hardness of Approximation

Extending the definition of the class PCP

Definition

The new definition of the class PCP comes with two additional parameters, c and s called
completeness and soundness. For two functions r(n) and q(n), the class PCPc,s(r(n),q(n)) is
comprised of all languages L, for which there is a verifier V , such that on any input x the verifier
obtains O(r(n)) random bits and quires O(q(n)) bits of the proof. Furthermore,

if x ∈ L, then there is a proof y that makes V accept with probability ≥ c,

if x /∈ L, then for every proof y , V accepts with probability < s.

Corollary

For the previously introduced class PCP(r(n),q(n)), one has the following equality:
PCP(r(n),q(n)) = PCP1, 1

2
(r(n),q(n)).

Remark

In general the parameters c and s may be functions of n.

Theorem

The following equality holds: NP = PCP1, 1
n

(log(n), log(n)).

Inapproximability in Combinatorial Optimization

Hardness of Approximation

Extending the definition of the class PCP

Definition

The new definition of the class PCP comes with two additional parameters, c and s called
completeness and soundness. For two functions r(n) and q(n), the class PCPc,s(r(n),q(n)) is
comprised of all languages L, for which there is a verifier V , such that on any input x the verifier
obtains O(r(n)) random bits and quires O(q(n)) bits of the proof. Furthermore,

if x ∈ L, then there is a proof y that makes V accept with probability ≥ c,

if x /∈ L, then for every proof y , V accepts with probability < s.

Corollary

For the previously introduced class PCP(r(n),q(n)), one has the following equality:
PCP(r(n),q(n)) = PCP1, 1

2
(r(n),q(n)).

Remark

In general the parameters c and s may be functions of n.

Theorem

The following equality holds: NP = PCP1, 1
n

(log(n), log(n)).

Inapproximability in Combinatorial Optimization

Hardness of Approximation

Extending the definition of the class PCP

Definition

The new definition of the class PCP comes with two additional parameters, c and s called
completeness and soundness. For two functions r(n) and q(n), the class PCPc,s(r(n),q(n)) is
comprised of all languages L, for which there is a verifier V , such that on any input x the verifier
obtains O(r(n)) random bits and quires O(q(n)) bits of the proof. Furthermore,

if x ∈ L, then there is a proof y that makes V accept with probability ≥ c,

if x /∈ L, then for every proof y , V accepts with probability < s.

Corollary

For the previously introduced class PCP(r(n),q(n)), one has the following equality:
PCP(r(n),q(n)) = PCP1, 1

2
(r(n),q(n)).

Remark

In general the parameters c and s may be functions of n.

Theorem

The following equality holds: NP = PCP1, 1
n

(log(n), log(n)).

Inapproximability in Combinatorial Optimization

Hardness of Approximation

Extending the definition of the class PCP

Definition

The new definition of the class PCP comes with two additional parameters, c and s called
completeness and soundness. For two functions r(n) and q(n), the class PCPc,s(r(n),q(n)) is
comprised of all languages L, for which there is a verifier V , such that on any input x the verifier
obtains O(r(n)) random bits and quires O(q(n)) bits of the proof. Furthermore,

if x ∈ L, then there is a proof y that makes V accept with probability ≥ c,

if x /∈ L, then for every proof y , V accepts with probability < s.

Corollary

For the previously introduced class PCP(r(n),q(n)), one has the following equality:
PCP(r(n),q(n)) = PCP1, 1

2
(r(n),q(n)).

Remark

In general the parameters c and s may be functions of n.

Theorem

The following equality holds: NP = PCP1, 1
n

(log(n), log(n)).

Inapproximability in Combinatorial Optimization

Hardness of Approximation

Strong hardness result for maximum clique problem

Theorem

For fixed constants b and q, there is a gap-introducing reduction from SAT to clique problem that
transforms a boolean formula Φ of size n to a graph G = (V ,E), where |V |= nb+q such that

if Φ is satisfiable, then OPT (G)≥ nb ,

if Φ is not satisfiable, then OPT (G) < nb−1.

Corollary

There is no 1
(nεq)

-factor approximation algorithm for maximum clique problem, where εq = 1
(b+q)

unless P=NP.

Inapproximability in Combinatorial Optimization

Hardness of Approximation

Strong hardness result for maximum clique problem

Theorem

For fixed constants b and q, there is a gap-introducing reduction from SAT to clique problem that
transforms a boolean formula Φ of size n to a graph G = (V ,E), where |V |= nb+q such that

if Φ is satisfiable, then OPT (G)≥ nb ,

if Φ is not satisfiable, then OPT (G) < nb−1.

Corollary

There is no 1
(nεq)

-factor approximation algorithm for maximum clique problem, where εq = 1
(b+q)

unless P=NP.

Inapproximability in Combinatorial Optimization

Hardness of Approximation

Strong hardness result for maximum clique problem

Theorem

For fixed constants b and q, there is a gap-introducing reduction from SAT to clique problem that
transforms a boolean formula Φ of size n to a graph G = (V ,E), where |V |= nb+q such that

if Φ is satisfiable, then OPT (G)≥ nb ,

if Φ is not satisfiable, then OPT (G) < nb−1.

Corollary

There is no 1
(nεq)

-factor approximation algorithm for maximum clique problem, where εq = 1
(b+q)

unless P=NP.

Inapproximability in Combinatorial Optimization

Hardness of Approximation

Strong hardness result for maximum clique problem

Proof.

Let F be a PCP1, 1
n

(log(n), log(n)) verifier for SAT, that requires b · log(n) random bits and

queries q · log(n) bits of the proof.

The transformation of SAT instance Φ to graph G is
exactly as in 1

2 -inapproximability result. The only difference is that the increased number of
bits queried results in a larger number of vertices.

The correctness is also almost the same.

If Φ is satisfiable, then let p be a good proof, and pick the nb vertices of G that are
consistent with p, one for each choice of the random string. These vertices will form a
clique in G.

Furthermore, any clique C in G gives rise to a proof that is accepted by F with probability
≥ ICI

nb . Since the soundness of F is 1
n , if Φ is not satisfiable, then the largest clique is of

size < nb−1.

Inapproximability in Combinatorial Optimization

Hardness of Approximation

Strong hardness result for maximum clique problem

Proof.

Let F be a PCP1, 1
n

(log(n), log(n)) verifier for SAT, that requires b · log(n) random bits and

queries q · log(n) bits of the proof. The transformation of SAT instance Φ to graph G is
exactly as in 1

2 -inapproximability result. The only difference is that the increased number of
bits queried results in a larger number of vertices.

The correctness is also almost the same.

If Φ is satisfiable, then let p be a good proof, and pick the nb vertices of G that are
consistent with p, one for each choice of the random string. These vertices will form a
clique in G.

Furthermore, any clique C in G gives rise to a proof that is accepted by F with probability
≥ ICI

nb . Since the soundness of F is 1
n , if Φ is not satisfiable, then the largest clique is of

size < nb−1.

Inapproximability in Combinatorial Optimization

Hardness of Approximation

Strong hardness result for maximum clique problem

Proof.

Let F be a PCP1, 1
n

(log(n), log(n)) verifier for SAT, that requires b · log(n) random bits and

queries q · log(n) bits of the proof. The transformation of SAT instance Φ to graph G is
exactly as in 1

2 -inapproximability result. The only difference is that the increased number of
bits queried results in a larger number of vertices.

The correctness is also almost the same.

If Φ is satisfiable, then let p be a good proof, and pick the nb vertices of G that are
consistent with p, one for each choice of the random string. These vertices will form a
clique in G.

Furthermore, any clique C in G gives rise to a proof that is accepted by F with probability
≥ ICI

nb . Since the soundness of F is 1
n , if Φ is not satisfiable, then the largest clique is of

size < nb−1.

Inapproximability in Combinatorial Optimization

Hardness of Approximation

Strong hardness result for maximum clique problem

Proof.

Let F be a PCP1, 1
n

(log(n), log(n)) verifier for SAT, that requires b · log(n) random bits and

queries q · log(n) bits of the proof. The transformation of SAT instance Φ to graph G is
exactly as in 1

2 -inapproximability result. The only difference is that the increased number of
bits queried results in a larger number of vertices.

The correctness is also almost the same.

If Φ is satisfiable, then let p be a good proof, and pick the nb vertices of G that are
consistent with p, one for each choice of the random string. These vertices will form a
clique in G.

Furthermore, any clique C in G gives rise to a proof that is accepted by F with probability
≥ ICI

nb . Since the soundness of F is 1
n , if Φ is not satisfiable, then the largest clique is of

size < nb−1.

Inapproximability in Combinatorial Optimization

Hardness of Approximation

Strong hardness result for maximum clique problem

Proof.

Let F be a PCP1, 1
n

(log(n), log(n)) verifier for SAT, that requires b · log(n) random bits and

queries q · log(n) bits of the proof. The transformation of SAT instance Φ to graph G is
exactly as in 1

2 -inapproximability result. The only difference is that the increased number of
bits queried results in a larger number of vertices.

The correctness is also almost the same.

If Φ is satisfiable, then let p be a good proof, and pick the nb vertices of G that are
consistent with p, one for each choice of the random string. These vertices will form a
clique in G.

Furthermore, any clique C in G gives rise to a proof that is accepted by F with probability
≥ ICI

nb .

Since the soundness of F is 1
n , if Φ is not satisfiable, then the largest clique is of

size < nb−1.

Inapproximability in Combinatorial Optimization

Hardness of Approximation

Strong hardness result for maximum clique problem

Proof.

Let F be a PCP1, 1
n

(log(n), log(n)) verifier for SAT, that requires b · log(n) random bits and

queries q · log(n) bits of the proof. The transformation of SAT instance Φ to graph G is
exactly as in 1

2 -inapproximability result. The only difference is that the increased number of
bits queried results in a larger number of vertices.

The correctness is also almost the same.

If Φ is satisfiable, then let p be a good proof, and pick the nb vertices of G that are
consistent with p, one for each choice of the random string. These vertices will form a
clique in G.

Furthermore, any clique C in G gives rise to a proof that is accepted by F with probability
≥ ICI

nb . Since the soundness of F is 1
n , if Φ is not satisfiable, then the largest clique is of

size < nb−1.

Inapproximability in Combinatorial Optimization

Hardness of Approximation

Strong hardness result for set cover problem

Theorem

There is a constant c > 0 for which there is a randomized gap-introducing reduction Γ, requiring
nO(log log(n)) time, from SAT to set cover problem that transforms a boolean formula Φ to a set
system S over a universal set of size nO(log log(n)) such that

if Φ is satisfiable, then OPT (S) = 2 ·nk ,

if Φ is not satisfiable, then Pr [OPT (S) > c ·nk k log(n)] > 1
2 ,

where n is polynomial in the size of Φ. The parameter k is log log(n).

Inapproximability in Combinatorial Optimization

Hardness of Approximation

Strong hardness result for set cover problem

Theorem

There is a constant c > 0 for which there is a randomized gap-introducing reduction Γ, requiring
nO(log log(n)) time, from SAT to set cover problem that transforms a boolean formula Φ to a set
system S over a universal set of size nO(log log(n)) such that

if Φ is satisfiable, then OPT (S) = 2 ·nk ,

if Φ is not satisfiable, then Pr [OPT (S) > c ·nk k log(n)] > 1
2 ,

where n is polynomial in the size of Φ. The parameter k is log log(n).

Inapproximability in Combinatorial Optimization

Hardness of Approximation

Strong hardness result for set cover problem

Theorem

There is a constant c > 0 for which there is a randomized gap-introducing reduction Γ, requiring
nO(log log(n)) time, from SAT to set cover problem that transforms a boolean formula Φ to a set
system S over a universal set of size nO(log log(n)) such that

if Φ is satisfiable, then OPT (S) = 2 ·nk ,

if Φ is not satisfiable, then Pr [OPT (S) > c ·nk k log(n)] > 1
2 ,

where n is polynomial in the size of Φ. The parameter k is log log(n).

Inapproximability in Combinatorial Optimization

Hardness of Approximation

The Book Used for Presentation

Vazirani’s book

This talk is based on Chapter 29 of V. V. Vazirani, ”Approximation Algorithms”, Springer,
Corrected Second Printing 2003.

