The Facility Location Problem

Zola Donovan

West Virginia University

April 21, 2014

1 Problem Statement

1 Problem Statement

2 IP formulation

1 Problem Statement

2 IP formulation

3 An intuitive understanding of the dual

1 Problem Statement

2 IP formulation

- An intuitive understanding of the dualRelaxing primal complementary slackness

conditions

1 Problem Statement

5 Primal-dual schema based algorithm

- 2 IP formulation
- 3 An intuitive understanding of the dual
- 4 Relaxing primal complementary slackness

conditions

1 Problem Statement

- 2 IP formulation
- 3 An intuitive understanding of the dual
- 4 Relaxing primal complementary slackness
 - conditions

- 5 Primal-dual schema based algorithm
- 6 Analysis

1 Problem Statement

- 2 IP formulation
- 3 An intuitive understanding of the dual
- 4 Relaxing primal complementary slackness

conditions

- 5 Primal-dual schema based algorithm
- 6 Analysis

Problem

• Let G be a bipartite graph with bipartition (F, C), where F is the set of *facilities* and C is the set of *cities*.

- Let G be a bipartite graph with bipartition (F, C), where F is the set of *facilities* and C is the set of *cities*.
- 2 Let f_i be the cost of opening facility i, and c_{ij} be the cost of connecting city j to (opened) facility i.

- Let G be a bipartite graph with bipartition (F, C), where F is the set of *facilities* and C is the set of *cities*.
- 2 Let f_i be the cost of opening facility i, and c_{ij} be the cost of connecting city j to (opened) facility i.
- The connection costs satisfy the triangle inequality.

- Let G be a bipartite graph with bipartition (F, C), where F is the set of *facilities* and C is the set of *cities*.
- 2 Let f_i be the cost of opening facility i, and c_{ij} be the cost of connecting city j to (opened) facility i.
- The connection costs satisfy the triangle inequality.
- The problem is to find a subset $I \subseteq F$ of facilities that should be opened,

- Let G be a bipartite graph with bipartition (F, C), where F is the set of *facilities* and C is the set of *cities*.
- 2 Let f_i be the cost of opening facility i, and c_{ij} be the cost of connecting city j to (opened) facility i.
- The connection costs satisfy the triangle inequality.
- The problem is to find a subset $I \subseteq F$ of facilities that should be opened, and a function $\phi : C \to I$ assigning cities to open facilities in such a way that the total cost of opening facilities and connecting cities to open facilities is minimized.

Integer program

• y_i is an indicator variable denoting whether facility *i* is open

- \bigcirc y_i is an indicator variable denoting whether facility *i* is open
- 2 x_{ij} is an indicator variable denoting whether city j is connected to the facility i

- \bigcirc y_i is an indicator variable denoting whether facility *i* is open
- 2 x_{ij} is an indicator variable denoting whether city j is connected to the facility i
- O The first set of constraints ensures that each city is connected to at least one facility

- \bigcirc y_i is an indicator variable denoting whether facility *i* is open
- 2 x_{ij} is an indicator variable denoting whether city j is connected to the facility i
- O The first set of constraints ensures that each city is connected to at least one facility
- The second set of constraints ensures that this facility must be open

- y_i is an indicator variable denoting whether facility *i* is open
- 2 x_{ij} is an indicator variable denoting whether city j is connected to the facility i
- O The first set of constraints ensures that each city is connected to at least one facility
- The second set of constraints ensures that this facility must be open

minimize
$$\sum_{i \in F, j \in C} c_{ij} \cdot x_{ij} + \sum_{i \in F} f_i \cdot y_i$$

- y_i is an indicator variable denoting whether facility *i* is open
- 2 x_{ij} is an indicator variable denoting whether city j is connected to the facility i
- O The first set of constraints ensures that each city is connected to at least one facility
- The second set of constraints ensures that this facility must be open

$$\begin{array}{ll} \text{minimize} & \sum\limits_{i \in F, j \in C} c_{ij} \cdot x_{ij} + \sum\limits_{i \in F} f_i \cdot y_i \\ \text{subject to} & \sum\limits_{i \in F} x_{ij} \geq 1, \qquad j \in C \end{array}$$

- y_i is an indicator variable denoting whether facility *i* is open
- 2 x_{ij} is an indicator variable denoting whether city j is connected to the facility i
- O The first set of constraints ensures that each city is connected to at least one facility
- The second set of constraints ensures that this facility must be open

$$\begin{array}{ll} \text{minimize} & \sum\limits_{i \in \mathcal{F}, j \in \mathcal{C}} c_{ij} \cdot x_{ij} + \sum\limits_{i \in \mathcal{F}} f_i \cdot y_i \\ \text{subject to} & \sum\limits_{i \in \mathcal{F}} x_{ij} \geq 1, \qquad j \in \mathcal{C} \\ & y_i - x_{ij} \geq 0, \qquad i \in \mathcal{F}, j \in \mathcal{C} \end{array}$$

- y_i is an indicator variable denoting whether facility *i* is open
- 2 x_{ij} is an indicator variable denoting whether city j is connected to the facility i
- O The first set of constraints ensures that each city is connected to at least one facility
- The second set of constraints ensures that this facility must be open

minimize	$\sum_{i\in F, j\in C} c_{ij} \cdot x_{ij} + \sum_{i\in F} f_i \cdot y_i$	
subject to	$\sum_{i\in F} x_{ij} \geq 1$,	$j \in C$
	$y_i - x_{ij} \geq 0,$	$i \in F, j \in C$
	$x_{ij}\in\{0,1\},$	$i \in F, j \in C$

- y_i is an indicator variable denoting whether facility *i* is open
- 2 x_{ij} is an indicator variable denoting whether city j is connected to the facility i
- O The first set of constraints ensures that each city is connected to at least one facility
- The second set of constraints ensures that this facility must be open

minimize	$\sum_{i\in F, j\in C} c_{ij} \cdot x_{ij} + \sum_{i\in F} f_i \cdot y_i$	
subject to	$\sum_{i\in F} x_{ij} \ge 1$,	$j \in C$
	$y_i - x_{ij} \ge 0,$	$i \in F, j \in C$
	$x_{ij}\in\{0,1\},$	$i \in F, j \in C$
	$y_i \in \{0,1\},$	$i \in F$

LP-Relaxation of program

minimize

$$\sum_{\in F, j \in C} c_{ij} \cdot x_{ij} + \sum_{i \in F} f_i \cdot y_i$$

minimize	$\sum_{i\in F, j\in C} c_{ij} \cdot x_{ij} + \sum_{i\in F} f_i \cdot y_i$	
subject to	$\sum_{i\in F} x_{ij} \geq 1$,	$j \in C$

minimize	$\sum_{i\in F, j\in C} c_{ij} \cdot x_{ij} + \sum_{i\in F} f_i \cdot y_i$	
subject to	$\sum_{i\in F} x_{ij} \geq 1$,	$j \in C$
	$y_i - x_{ij} \ge 0,$	$i \in F, j \in C$

minimize	$\sum_{i \in F, j \in C} c_{ij} \cdot x_{ij} + \sum_{i \in F} f_i \cdot y_i$	
subject to	$\sum_{i\in F} x_{ij} \geq 1$,	$j \in C$
	$y_i - x_{ij} \geq 0$,	$i \in F, j \in C$
	$x_{ij} \geq 0,$	$i \in F, j \in C$

minimize	$\sum_{i \in F, j \in C} c_{ij} \cdot x_{ij} + \sum_{i \in F} f_i \cdot y_i$	
subject to	$\sum_{i\in F} x_{ij} \geq 1$,	$j \in C$
	$y_i - x_{ij} \ge 0,$	$i \in F, j \in C$
	$x_{ij} \ge 0,$	$i \in F, j \in C$
	$y_i \geq 0,$	i∈F

Dual program $\max \sum_{j \in \mathcal{C}} \alpha_j$

maximize	$\sum\limits_{j\in \mathcal{C}} lpha_j$	
subject to	$lpha_{j}-eta_{ij}\leq c_{ij},$	$i \in F, j \in C$
	$\sum_{j\in C}eta_{ij}\leq f_i,$	<i>i</i> ∈ <i>F</i>

maximize	$\sum\limits_{j\in \mathcal{C}}lpha_j$	
subject to	$lpha_{j}-eta_{ij}\leq c_{ij},$	$i \in F, j \in C$
	$\sum_{j\in C} \beta_{ij} \leq f_i,$	$i \in F$
	$lpha_{j}\geq$ 0,	$j \in C$

$\sum\limits_{j\in \mathcal{C}}lpha_j$	
$lpha_{j}-eta_{ij}\leq c_{ij},$	$i \in F, j \in C$
$\sum_{j\in C}\beta_{ij}\leq f_i,$	$i \in F$
$lpha_{j}\geq$ 0,	$j \in C$
$eta_{ij} \geq$ 0,	$i \in F, j \in C$
	$egin{aligned} &\sum\limits_{j\in\mathcal{C}}lpha_j\ &lpha_j-eta_{ij}\leq c_{ij},\ &\sum\limits_{j\in\mathcal{C}}eta_{ij}\leq f_i,\ &lpha_j\geq 0,\ η_{ij}\geq 0, \end{aligned}$

An intuitive understanding of the dual

Simple setting

() Suppose LP has an optimal solution that is integral, say $I \subseteq F$ and $\phi : C \rightarrow I$.

An intuitive understanding of the dual

Simple setting

- **()** Suppose LP has an optimal solution that is integral, say $I \subseteq F$ and $\phi : C \rightarrow I$.
- **2** Then, under this solution, $y_i = 1$ iff $i \in I$, and $x_{ij} = 1$ iff $i = \phi(j)$.

An intuitive understanding of the dual

Simple setting

- **()** Suppose LP has an optimal solution that is integral, say $I \subseteq F$ and $\phi : C \to I$.
- 2 Then, under this solution, $y_i = 1$ iff $i \in I$, and $x_{ij} = 1$ iff $i = \phi(j)$.
- Let (α, β) denote an optimal dual solution.
The primal and dual complementary slackness conditions are:

(i) $\forall i \in F, j \in C : x_{ij} > 0 \Rightarrow \alpha_j - \beta_{ij} = c_{ij}$

(i)
$$\forall i \in F, j \in C : x_{ij} > 0 \Rightarrow \alpha_j - \beta_{ij} = c_{ij}$$

(ii)
$$\forall i \in F : y_i > 0 \Rightarrow \sum_{i \in C} \beta_{ij} = f_i$$

(i)
$$\forall i \in F, j \in C : x_{ij} > 0 \Rightarrow \alpha_j - \beta_{ij} = c_{ij}$$

(ii)
$$\forall i \in F : y_i > 0 \Rightarrow \sum_{j \in C} \beta_{ij} = f_i$$

(iii)
$$\forall j \in C : \alpha_j > 0 \Rightarrow \sum_{i \in F} x_{ij} =$$

(i)
$$\forall i \in F, j \in C : x_{ij} > 0 \Rightarrow \alpha_j - \beta_{ij} = c_{ij}$$

(ii)
$$\forall i \in F : y_i > 0 \Rightarrow \sum_{j \in C} \beta_{ij} = f_i$$

(iii)
$$\forall j \in C : \alpha_j > 0 \Rightarrow \sum_{i \in F} x_{ij} = 1$$

(iv)
$$\forall i \in F, j \in C : \beta_{ij} > 0 \Rightarrow y_i = x_{ij}$$

(i)
$$\forall i \in F, j \in C : x_{ij} > 0 \Rightarrow \alpha_j - \beta_{ij} = c_{ij}$$

(ii)
$$\forall i \in F : y_i > 0 \Rightarrow \sum_{j \in C} \beta_{ij} = f_i$$

(iii)
$$\forall j \in C : \alpha_j > 0 \Rightarrow \sum_{i \in F} x_{ij} = 1$$

(iv)
$$\forall i \in F, j \in C : \beta_{ij} > 0 \Rightarrow y_i = x_{ij}$$

) By condition (i), if
$$\phi(j) = i$$
, then $\alpha_j - \beta_{ij} = c_{ij}$.

The primal and dual complementary slackness conditions are:

(i) $\forall i \in F, j \in C : x_{ij} > 0 \Rightarrow \alpha_j - \beta_{ij} = c_{ij}$

(ii)
$$\forall i \in F : y_i > 0 \Rightarrow \sum_{j \in C} \beta_{ij} = f_i$$

(iii)
$$\forall j \in C : \alpha_j > 0 \Rightarrow \sum_{i \in F} x_{ij} = 1$$

(iv)
$$\forall i \in F, j \in C : \beta_{ij} > 0 \Rightarrow y_i = x_{ij}$$

By condition (i), if φ(j) = i, then α_j - β_{ij} = c_{ij}.
So, α_j can be thought of as the total price paid by city j; where c_{ij} goes towards the use of edge (i, j), and β_{ij} is the contribution of j towards opening facility i.

The primal and dual complementary slackness conditions are:

(i) $\forall i \in F, j \in C : x_{ij} > 0 \Rightarrow \alpha_j - \beta_{ij} = c_{ij}$

(ii)
$$\forall i \in F : y_i > 0 \Rightarrow \sum_{j \in C} \beta_{ij} = f_i$$

(iii)
$$\forall j \in C : \alpha_j > 0 \Rightarrow \sum_{i \in F} x_{ij} = 1$$

(iv)
$$\forall i \in F, j \in C : \beta_{ij} > 0 \Rightarrow y_i = x_{ij}$$

By condition (i), if φ(j) = i, then α_j - β_{ij} = c_{ij}.
So, α_j can be thought of as the total price paid by city j; where c_{ij} goes towards the use of edge (i, j), and β_{ij} is the contribution of j towards opening facility i.

3 By condition (ii), each open facility must be fully paid for, i.e., if $i \in I$, then $\sum_{j: \phi(i)=i} \beta_{ij} = f_i$.

The primal and dual complementary slackness conditions are:

(i) $\forall i \in F, j \in C : x_{ij} > 0 \Rightarrow \alpha_j - \beta_{ij} = c_{ij}$

(ii)
$$\forall i \in F : y_i > 0 \Rightarrow \sum_{j \in C} \beta_{ij} = f_i$$

(iii)
$$\forall j \in C : \alpha_j > 0 \Rightarrow \sum_{i \in F} x_{ij} = 1$$

(iv)
$$\forall i \in F, j \in C : \beta_{ij} > 0 \Rightarrow y_i = x_{ij}$$

By condition (i), if φ(j) = i, then α_j - β_{ij} = c_{ij}.
So, α_j can be thought of as the total price paid by city j; where c_{ij} goes towards the use of edge (i, j), and β_{ij} is the contribution of j towards opening facility i.

O By condition (ii), each open facility must be fully paid for, i.e., if $i \in I$, then $\sum_{j:\phi(i)=i} \beta_{ij} = f_i$.

One of the second term of term

The primal and dual complementary slackness conditions are:

(i) $\forall i \in F, j \in C : x_{ij} > 0 \Rightarrow \alpha_j - \beta_{ij} = c_{ij}$

(ii)
$$\forall i \in F : y_i > 0 \Rightarrow \sum_{j \in C} \beta_{ij} = f_i$$

(iii)
$$\forall j \in C : \alpha_j > 0 \Rightarrow \sum_{i \in F} x_{ij} = 1$$

(iv)
$$\forall i \in F, j \in C : \beta_{ij} > 0 \Rightarrow y_i = x_{ij}$$

By condition (i), if φ(j) = i, then α_j - β_{ij} = c_{ij}.
So, α_j can be thought of as the total price paid by city j; where c_{ij} goes towards the use of edge (i, j), and β_{ij} is the contribution of j towards opening facility i.

3 By condition (ii), each open facility must be fully paid for, i.e., if $i \in I$, then $\sum_{j: \phi(i)=i} \beta_{ij} = f_i$.

() Now consider condition (iv). If facility *i* is open, but $\phi(j) \neq i$, then $y_i \neq x_{ij}$. This means $\beta_{ij} = 0$.

The primal and dual complementary slackness conditions are:

(i) $\forall i \in F, j \in C : x_{ij} > 0 \Rightarrow \alpha_j - \beta_{ij} = c_{ij}$

(ii)
$$\forall i \in F : y_i > 0 \Rightarrow \sum_{j \in C} \beta_{ij} = f_i$$

(iii)
$$\forall j \in C : \alpha_j > 0 \Rightarrow \sum_{i \in F} x_{ij} = 1$$

(iv)
$$\forall i \in F, j \in C : \beta_{ij} > 0 \Rightarrow y_i = x_{ij}$$

By condition (i), if φ(j) = i, then α_j - β_{ij} = c_{ij}.
So, α_j can be thought of as the total price paid by city j; where c_{ij} goes towards the use of edge (i, j), and β_{ij} is the contribution of j towards opening facility i.

O By condition (ii), each open facility must be fully paid for, i.e., if $i \in I$, then $\sum_{j: \phi(i)=i} \beta_{ij} = f_i$.

O Now consider condition (iv). If facility *i* is open, but φ(*j*) ≠ *i*, then y_i ≠ x_{ij}. This means β_{ij} = 0. In other words, city *j* does not contribute to opening any facility besides the one to which it is connected.

Relaxing primal complementary slackness conditions

Relaxing primal complementary slackness conditions

• The cities are partitioned into two sets, *directly connected* and *indirectly connected*.

Relaxing primal complementary slackness conditions

- The cities are partitioned into two sets, *directly connected* and *indirectly connected*.
- Only directly connected cities will pay for opening facilities, i.e., β_{ij} can be nonzero only if j is a directly connected city and i = φ(j).

Relaxing primal complementary slackness conditions

- The cities are partitioned into two sets, *directly connected* and *indirectly connected*.
- Only directly connected cities will pay for opening facilities, i.e., β_{ij} can be nonzero only if j is a directly connected city and i = φ(j).
- **③** For an indirectly connected city *j*, the primal condition is relaxed as follows:

Relaxing primal complementary slackness conditions

- The cities are partitioned into two sets, *directly connected* and *indirectly connected*.
- Only directly connected cities will pay for opening facilities, i.e., β_{ij} can be nonzero only if j is a directly connected city and i = φ(j).
- **③** For an indirectly connected city *j*, the primal condition is relaxed as follows:

 $(1/3)c_{\phi(j)j} \leq \alpha_j \leq c_{\phi(j)j}.$

Relaxing primal complementary slackness conditions

- The cities are partitioned into two sets, directly connected and indirectly connected.
- Only directly connected cities will pay for opening facilities, i.e., β_{ij} can be nonzero only if j is a directly connected city and i = φ(j).
- So For an indirectly connected city *j*, the primal condition is relaxed as follows:

 $(1/3)c_{\phi(j)j} \leq \alpha_j \leq c_{\phi(j)j}.$

All other primal conditions are maintained:

Relaxing primal complementary slackness conditions

- The cities are partitioned into two sets, directly connected and indirectly connected.
- Only directly connected cities will pay for opening facilities, i.e., β_{ij} can be nonzero only if j is a directly connected city and i = φ(j).
- Solution is relaxed as follows:

 $(1/3)c_{\phi(j)j} \leq \alpha_j \leq c_{\phi(j)j}.$

All other primal conditions are maintained:

 $\alpha_j - \beta_{\phi(j)j} = c_{\phi(j)j}$, for a directly connected city *j*,

Relaxing primal complementary slackness conditions

- The cities are partitioned into two sets, directly connected and indirectly connected.
- Only directly connected cities will pay for opening facilities, i.e., β_{ij} can be nonzero only if j is a directly connected city and i = φ(j).
- So For an indirectly connected city *j*, the primal condition is relaxed as follows:

 $(1/3)c_{\phi(j)j} \leq \alpha_j \leq c_{\phi(j)j}.$

All other primal conditions are maintained:

 $\begin{aligned} &\alpha_j - \beta_{\phi(j)j} = c_{\phi(j)j}, \text{ for a directly connected city } j, \\ &\text{and} \sum_{j: \phi(j) = i} \beta_{ij} = f_i, \text{ for each open facility } i. \end{aligned}$

Phase 1

In this phase, the algorithm:

Phase 1

In this phase, the algorithm:

operates in a primal-dual fashion

Phase 1

In this phase, the algorithm:

- operates in a primal-dual fashion
- 2 finds a dual feasible solution

Phase 1

In this phase, the algorithm:

- operates in a primal-dual fashion
- Inds a dual feasible solution
- determines a set of tight edges and temporarily open facilities, F_t

Phase 1

In this phase, the algorithm:

- operates in a primal-dual fashion
- Inds a dual feasible solution
- determines a set of tight edges and temporarily open facilities, F_t

Phase 2

This phase consists of:

Phase 1

In this phase, the algorithm:

- operates in a primal-dual fashion
- Inds a dual feasible solution
- determines a set of tight edges and temporarily open facilities, F_t

Phase 2

This phase consists of:

Choosing a subset I of F_t to open

Phase 1

In this phase, the algorithm:

- operates in a primal-dual fashion
- Inds a dual feasible solution
- \bigcirc determines a set of tight edges and temporarily open facilities, F_t

Phase 2

This phase consists of:

- Choosing a subset I of F_t to open
- 2 finding a mapping, ϕ , from cities to I

Phase 1

• A notion of *time* is defined in this phase, so that each event can be associated with the time at which it happened; the phase starts at time 0.

- A notion of *time* is defined in this phase, so that each event can be associated with the time at which it happened; the phase starts at time 0.
 - Initially, each city is defined to be unconnected.

- A notion of *time* is defined in this phase, so that each event can be associated with the time at which it happened; the phase starts at time 0.
 - Initially, each city is defined to be unconnected.
- O Throughout this phase, the algorithm raises the dual variable α_j for each unconnected city j uniformly at unit rate, i.e., α_j will grow by 1 in unit time.

- A notion of *time* is defined in this phase, so that each event can be associated with the time at which it happened; the phase starts at time 0.
 - Initially, each city is defined to be unconnected.
- O Throughout this phase, the algorithm raises the dual variable α_j for each unconnected city j uniformly at unit rate, i.e., α_j will grow by 1 in unit time.
- So When $\alpha_i = c_{ij}$ for some edge (i, j), the algorithm will declare this edge to be *tight*.

- A notion of *time* is defined in this phase, so that each event can be associated with the time at which it happened; the phase starts at time 0.
 - Initially, each city is defined to be unconnected.
- O Throughout this phase, the algorithm raises the dual variable α_j for each unconnected city j uniformly at unit rate, i.e., α_j will grow by 1 in unit time.
- So When $\alpha_i = c_{ij}$ for some edge (i, j), the algorithm will declare this edge to be *tight*.
- Henceforth, dual variable β_{ij} will be raised uniformly, thus ensuring that the first constraint in the LP is not violated.

- A notion of *time* is defined in this phase, so that each event can be associated with the time at which it happened; the phase starts at time 0.
 - Initially, each city is defined to be unconnected.
- O Throughout this phase, the algorithm raises the dual variable α_j for each unconnected city j uniformly at unit rate, i.e., α_j will grow by 1 in unit time.
- So When $\alpha_i = c_{ij}$ for some edge (i, j), the algorithm will declare this edge to be *tight*.
- Henceforth, dual variable \(\beta_{ij}\) will be raised uniformly, thus ensuring that the first constraint in the LP is not violated. \(\beta_{ij}\) goes towards paying for facility i.\)

- A notion of *time* is defined in this phase, so that each event can be associated with the time at which it happened; the phase starts at time 0.
 - Initially, each city is defined to be unconnected.
- O Throughout this phase, the algorithm raises the dual variable α_j for each unconnected city j uniformly at unit rate, i.e., α_j will grow by 1 in unit time.
- So When $\alpha_i = c_{ij}$ for some edge (i, j), the algorithm will declare this edge to be *tight*.
- Henceforth, dual variable β_{ij} will be raised uniformly, thus ensuring that the first constraint in the LP is not violated. β_{ij} goes towards paying for facility *i*. Each edge (i, j) such that $\beta_{ij} > 0$ is declared *special*.

- A notion of *time* is defined in this phase, so that each event can be associated with the time at which it happened; the phase starts at time 0.
 - Initially, each city is defined to be unconnected.
- O Throughout this phase, the algorithm raises the dual variable α_j for each unconnected city j uniformly at unit rate, i.e., α_j will grow by 1 in unit time.
- So When $\alpha_i = c_{ij}$ for some edge (i, j), the algorithm will declare this edge to be *tight*.
- Henceforth, dual variable β_{ij} will be raised uniformly, thus ensuring that the first constraint in the LP is not violated. β_{ij} goes towards paying for facility *i*. Each edge (i, j) such that $\beta_{ij} > 0$ is declared *special*.
- **9** Facility *i* is said to be *paid* for if $\sum_{j} \beta_{ij} = f_i$. If so, the algorithm declares this facility *temporarily open*.

- A notion of *time* is defined in this phase, so that each event can be associated with the time at which it happened; the phase starts at time 0.
 - Initially, each city is defined to be unconnected.
- O Throughout this phase, the algorithm raises the dual variable α_j for each unconnected city j uniformly at unit rate, i.e., α_j will grow by 1 in unit time.
- So When $\alpha_i = c_{ij}$ for some edge (i, j), the algorithm will declare this edge to be *tight*.
- O Henceforth, dual variable β_{ij} will be raised uniformly, thus ensuring that the first constraint in the LP is not violated. β_{ij} goes towards paying for facility *i*. Each edge (*i*, *j*) such that β_{ij} > 0 is declared *special*.
- **9** Facility *i* is said to be *paid* for if $\sum_{j} \beta_{ij} = f_i$. If so, the algorithm declares this facility *temporarily open*.
 - All unconnected cities having tight edges to this facility are declared *connected* and facility *i* is declared the *connecting witness* for each of these cities. (*Notice that dual variables α_j of these cities are no longer raised.*)

- A notion of *time* is defined in this phase, so that each event can be associated with the time at which it happened; the phase starts at time 0.
 - Initially, each city is defined to be unconnected.
- O Throughout this phase, the algorithm raises the dual variable α_j for each unconnected city j uniformly at unit rate, i.e., α_j will grow by 1 in unit time.
- So When $\alpha_i = c_{ij}$ for some edge (i, j), the algorithm will declare this edge to be *tight*.
- Henceforth, dual variable β_{ij} will be raised uniformly, thus ensuring that the first constraint in the LP is not violated. β_{ij} goes towards paying for facility *i*. Each edge (i, j) such that $\beta_{ij} > 0$ is declared *special*.
- **9** Facility *i* is said to be *paid* for if $\sum_{j} \beta_{ij} = f_i$. If so, the algorithm declares this facility *temporarily open*.
 - All unconnected cities having tight edges to this facility are declared *connected* and facility *i* is declared the *connecting witness* for each of these cities. (*Notice that dual variables α_j of these cities are no longer raised.*)
 - O In the future, as soon as an unconnected city *j* gets a tight edge to *i*, *j* will also be declared connected and *i* will be declared the connecting witness for *j*. (*Notice that* β_{ij} = 0 and thus edge (*i*, *j*) is not special.)

- A notion of *time* is defined in this phase, so that each event can be associated with the time at which it happened; the phase starts at time 0.
 - Initially, each city is defined to be unconnected.
- O Throughout this phase, the algorithm raises the dual variable α_j for each unconnected city j uniformly at unit rate, i.e., α_j will grow by 1 in unit time.
- So When $\alpha_i = c_{ij}$ for some edge (i, j), the algorithm will declare this edge to be *tight*.
- Henceforth, dual variable β_{ij} will be raised uniformly, thus ensuring that the first constraint in the LP is not violated. β_{ij} goes towards paying for facility *i*. Each edge (i, j) such that $\beta_{ij} > 0$ is declared *special*.
- Facility *i* is said to be *paid* for if Σ_j β_{ij} = f_i. If so, the algorithm declares this facility temporarily open.
 - All unconnected cities having tight edges to this facility are declared *connected* and facility *i* is declared the *connecting witness* for each of these cities. (*Notice that dual variables* α_j of these cities are no longer raised.)
 - **Q** In the future, as soon as an unconnected city *j* gets a tight edge to *i*, *j* will also be declared connected and *i* will be declared the connecting witness for *j*. (*Notice that* $\beta_{ij} = 0$ *and thus edge* (*i*, *j*) *is not special*.)
- When all cities are connected, this phase of the algorithm terminates. If several events happen simultaneously, the algorithm executes them in arbitrary order.

Phase 2

• Let *F_t* denote the set of temporarily open facilities and *T* denote the subgraph of G consisting of all special edges.
- Let *F_t* denote the set of temporarily open facilities and *T* denote the subgraph of G consisting of all special edges.
 - Let T² denote the graph that has edge (u, v) iff there is a path of length at most 2 between u and v in T, and let H be the subgraph of T² induced on F_t.

- Let F_t denote the set of temporarily open facilities and T denote the subgraph of G consisting of all special edges.
 - Let T² denote the graph that has edge (u, v) iff there is a path of length at most 2 between u and v in T, and let H be the subgraph of T² induced on F_t.
 - 2 Find any maximal independent set in H, say I.

- Let F_t denote the set of temporarily open facilities and T denote the subgraph of G consisting of all special edges.
 - Let T² denote the graph that has edge (u, v) iff there is a path of length at most 2 between u and v in T, and let H be the subgraph of T² induced on F_t.
 - 2 Find any maximal independent set in H, say I.
 - 3 All facilities in the set I are declared open.

- Let F_t denote the set of temporarily open facilities and T denote the subgraph of G consisting of all special edges.
 - Let T² denote the graph that has edge (u, v) iff there is a path of length at most 2 between u and v in T, and let H be the subgraph of T² induced on F_t.
 - Find any maximal independent set in H, say I.
 - In All facilities in the set I are declared open.
- **②** For city *j*, define $\mathscr{F}_j = \{i \in F_t \mid (i, j) \text{ is special}\}.$

- Let F_t denote the set of temporarily open facilities and T denote the subgraph of G consisting of all special edges.
 - Let T² denote the graph that has edge (u, v) iff there is a path of length at most 2 between u and v in T, and let H be the subgraph of T² induced on F_t.
 - Find any maximal independent set in H, say I.
 - In All facilities in the set I are declared open.
- **②** For city *j*, define $\mathscr{F}_j = \{i \in F_t \mid (i, j) \text{ is special}\}.$

- Let F_t denote the set of temporarily open facilities and T denote the subgraph of G consisting of all special edges.
 - Let T² denote the graph that has edge (u, v) iff there is a path of length at most 2 between u and v in T, and let H be the subgraph of T² induced on F_t.
 - 2 Find any maximal independent set in H, say I.
 - 3 All facilities in the set I are declared open.
- **②** For city *j*, define $\mathscr{F}_j = \{i \in F_t \mid (i, j) \text{ is special}\}.$
 - O Since I is an independent set, at most one of the facilities in ℱ_i is opened.

- Let F_t denote the set of temporarily open facilities and T denote the subgraph of G consisting of all special edges.
 - Let T² denote the graph that has edge (u, v) iff there is a path of length at most 2 between u and v in T, and let H be the subgraph of T² induced on F_t.
 - 2 Find any maximal independent set in H, say I.
 - In All facilities in the set I are declared open.
- **②** For city *j*, define $\mathscr{F}_j = \{i \in F_t \mid (i, j) \text{ is special}\}.$
 - O Since I is an independent set, at most one of the facilities in ℱ_i is opened.
 - **2** If there is a facility $i \in \mathscr{F}_j$ that is opened, then set $\phi(j) = i$ and declare city *j* directly connected.

- Let F_t denote the set of temporarily open facilities and T denote the subgraph of G consisting of all special edges.
 - Let T² denote the graph that has edge (u, v) iff there is a path of length at most 2 between u and v in T, and let H be the subgraph of T² induced on F_t.
 - 2 Find any maximal independent set in H, say I.
 - In All facilities in the set I are declared open.
- **②** For city *j*, define $\mathscr{F}_j = \{i \in F_t \mid (i, j) \text{ is special}\}.$
 - O Since I is an independent set, at most one of the facilities in ℱ_i is opened.
 - **2** If there is a facility $i \in \mathscr{F}_j$ that is opened, then set $\phi(j) = i$ and declare city *j* directly connected.
 - **③** Otherwise, consider tight edge (i', j) such that i' was the connecting witness for j.

- Let F_t denote the set of temporarily open facilities and T denote the subgraph of G consisting of all special edges.
 - Let T² denote the graph that has edge (u, v) iff there is a path of length at most 2 between u and v in T, and let H be the subgraph of T² induced on F_t.
 - 2 Find any maximal independent set in H, say I.
 - In All facilities in the set I are declared open.
- **②** For city *j*, define $\mathscr{F}_j = \{i \in F_t \mid (i, j) \text{ is special}\}.$
 - O Since I is an independent set, at most one of the facilities in ℱ_i is opened.
 - **2** If there is a facility $i \in \mathscr{F}_i$ that is opened, then set $\phi(j) = i$ and declare city *j* directly connected.
 - Otherwise, consider tight edge (i', j) such that i' was the connecting witness for j.
 - **O** If $i' \in I$, again set $\phi(j) = i'$ and declare city *j* directly connected. (Notice that in this case $\beta_{i'j} = 0$).

- Let F_t denote the set of temporarily open facilities and T denote the subgraph of G consisting of all special edges.
 - Let T² denote the graph that has edge (u, v) iff there is a path of length at most 2 between u and v in T, and let H be the subgraph of T² induced on F_t.
 - 2 Find any maximal independent set in H, say I.
 - 3 All facilities in the set I are declared open.
- **②** For city *j*, define $\mathscr{F}_j = \{i \in F_t \mid (i, j) \text{ is special}\}.$
 - O Since I is an independent set, at most one of the facilities in ℱ_i is opened.
 - **2** If there is a facility $i \in \mathscr{F}_i$ that is opened, then set $\phi(j) = i$ and declare city *j* directly connected.
 - **O** Otherwise, consider tight edge (i', j) such that i' was the connecting witness for j.
 - **9** If $i' \in I$, again set $\phi(j) = i'$ and declare city *j* directly connected. (Notice that in this case $\beta_{i'j} = 0$).
 - **3** In the remaining case that $i' \notin I$, let *i* be any neighbor of *i'* in graph *H* such that $i \in I$.

- Let *F_t* denote the set of temporarily open facilities and *T* denote the subgraph of G consisting of all special edges.
 - Let T² denote the graph that has edge (u, v) iff there is a path of length at most 2 between u and v in T, and let H be the subgraph of T² induced on F_t.
 - 2 Find any maximal independent set in H, say I.
 - 3 All facilities in the set I are declared open.
- **②** For city *j*, define $\mathscr{F}_j = \{i \in F_t \mid (i, j) \text{ is special}\}.$
 - O Since I is an independent set, at most one of the facilities in ℱ_i is opened.
 - **2** If there is a facility $i \in \mathscr{F}_i$ that is opened, then set $\phi(j) = i$ and declare city *j* directly connected.
 - Otherwise, consider tight edge (i', j) such that i' was the connecting witness for j.
 - If $i' \in I$, again set $\phi(j) = i'$ and declare city *j* directly connected. (Notice that in this case $\beta_{i'i} = 0$).
 - **③** In the remaining case that $i' \notin I$, let *i* be any neighbor of *i'* in graph *H* such that *i* ∈ *I*.
 - Set $\phi(j) = i$ and declare city *j* indirectly connected.

Phase 2

- Let F_t denote the set of temporarily open facilities and T denote the subgraph of G consisting of all special edges.
 - Let T² denote the graph that has edge (u, v) iff there is a path of length at most 2 between u and v in T, and let H be the subgraph of T² induced on F_t.
 - 2 Find any maximal independent set in H, say I.
 - In All facilities in the set I are declared open.
- **②** For city *j*, define $\mathscr{F}_j = \{i \in F_t \mid (i, j) \text{ is special}\}.$
 - O Since I is an independent set, at most one of the facilities in ℱ_i is opened.
 - **2** If there is a facility $i \in \mathscr{F}_i$ that is opened, then set $\phi(j) = i$ and declare city *j* directly connected.
 - Otherwise, consider tight edge (i', j) such that i' was the connecting witness for j.
 - If $i' \in I$, again set $\phi(j) = i'$ and declare city *j* directly connected. (Notice that in this case $\beta_{i'i} = 0$).
 - **③** In the remaining case that $i' \notin I$, let *i* be any neighbor of *i'* in graph *H* such that *i* ∈ *I*.
 - Set $\phi(j) = i$ and declare city *j* indirectly connected.

3 *I* and ϕ define primal integral solution: $x_{ij} = 1$ iff $\phi(j) = i$ and $y_i = 1$ iff $i \in I$.

- Let F_t denote the set of temporarily open facilities and T denote the subgraph of G consisting of all special edges.
 - Let T² denote the graph that has edge (u, v) iff there is a path of length at most 2 between u and v in T, and let H be the subgraph of T² induced on F_t.
 - 2 Find any maximal independent set in H, say I.
 - In All facilities in the set I are declared open.
- **②** For city *j*, define $\mathscr{F}_j = \{i \in F_t \mid (i, j) \text{ is special}\}.$
 - O Since I is an independent set, at most one of the facilities in ℱ_i is opened.
 - **2** If there is a facility $i \in \mathscr{F}_i$ that is opened, then set $\phi(j) = i$ and declare city *j* directly connected.
 - Otherwise, consider tight edge (i', j) such that i' was the connecting witness for j.
 - If $i' \in I$, again set $\phi(j) = i'$ and declare city *j* directly connected. (Notice that in this case $\beta_{i'i} = 0$).
 - **3** In the remaining case that $i' \notin I$, let *i* be any neighbor of *i'* in graph *H* such that $i \in I$.
 - Set $\phi(j) = i$ and declare city *j* indirectly connected.
- 3 *I* and ϕ define primal integral solution: $x_{ij} = 1$ iff $\phi(j) = i$ and $y_i = 1$ iff $i \in I$.
- The values of α_i and β_{ii} obtained at the end of Phase 1 form a dual feasible solution.

Analysis

We will show how the dual variables α_j's pay for the primal costs of opening facilities and connecting cities to facilities.

Analysis

- We will show how the dual variables α_j's pay for the primal costs of opening facilities and connecting cities to facilities.
- **②** Denote by α_j^f and α_j^e the contributions of city *j* to these two costs respectively; $\alpha_j = \alpha_j^f + \alpha_j^e$.

Analysis

- We will show how the dual variables α_j's pay for the primal costs of opening facilities and connecting cities to facilities.
- **②** Denote by α_j^f and α_j^e the contributions of city *j* to these two costs respectively; $\alpha_j = \alpha_j^f + \alpha_j^e$.
- If *j* is indirectly connected, then $\alpha_j^f = 0$ and $\alpha_j^e = \alpha_j$

Analysis

- We will show how the dual variables α_j's pay for the primal costs of opening facilities and connecting cities to facilities.
- **2** Denote by α_j^f and α_j^e the contributions of city *j* to these two costs respectively; $\alpha_j = \alpha_j^f + \alpha_j^e$.
- If *j* is indirectly connected, then $\alpha_j^f = 0$ and $\alpha_j^e = \alpha_j$
- If *j* is directly connected, then the following must hold:

$$\alpha_j = c_{ij} + \beta_{ij}$$

where $i = \phi(j)$. Now, let $\alpha_i^f = \beta_{ij}$ and $\alpha_i^e = c_{ij}$.

Lemma 1

Let
$$i \in I$$
. Then, $\sum_{j: \phi(j)=i} \alpha_j^f = f_i$

Lemma 1

Let
$$i \in I$$
. Then, $\sum_{j: \phi(j)=i} \alpha_j^f = f_i$

Proof

Since *i* is temporarily open at the end of Phase 1, it is completely paid for, i.e.,

$$\sum_{i:\phi(j)=i}\alpha_j^f=f_i$$

Lemma 1

Let
$$i \in I$$
. Then, $\sum_{j: \phi(j)=i} \alpha_j^f = f_i$

Proof

Since *i* is temporarily open at the end of Phase 1, it is completely paid for, i.e.,

$$\sum_{\substack{i \neq (j)=i}} \alpha_j^f = f_i.$$

2 Note that each city *j* that has contributed to f_i must be directly connected to *i*.

Lemma 1

Let
$$i \in I$$
. Then, $\sum_{j: \phi(j)=i} \alpha_j^f = f_i$

Proof

Since *i* is temporarily open at the end of Phase 1, it is completely paid for, i.e.,

$$\sum_{i:\phi(j)=i}\alpha_j^f=f_i.$$

2 Note that each city *j* that has contributed to f_i must be directly connected to *i*. For each such city, $\alpha_j^f = \beta_{ij}$.

Lemma 1

Let
$$i \in I$$
. Then, $\sum_{j: \phi(j)=i} \alpha_j^f = f_i$

Proof

Since *i* is temporarily open at the end of Phase 1, it is completely paid for, i.e.,

$$\sum_{i:\phi(j)=i}\alpha_j^f=f_i.$$

2 Note that each city *j* that has contributed to f_i must be directly connected to *i*. For each such city, $\alpha_i^f = \beta_{ij}$.

3 Any other city j' that is connected to facility *i* must satisfy $\alpha_{j'}^f = 0$.

Lemma 1

Let
$$i \in I$$
. Then, $\sum_{j: \phi(j)=i} \alpha_j^f = f_i$

Proof

Since *i* is temporarily open at the end of Phase 1, it is completely paid for, i.e.,

$$\sum_{i:\phi(j)=i}\alpha_j^f=f_i.$$

2 Note that each city *j* that has contributed to f_i must be directly connected to *i*. For each such city, $\alpha_i^f = \beta_{ij}$.

3 Any other city j' that is connected to facility *i* must satisfy $\alpha_{i'}^f = 0$.

O The lemma follows. □

Corollary 2

$$\sum_{i\in I}f_i=\sum_{j\in C}\alpha_j^f$$

Corollary 2

 $\sum_{i\in I} f_i = \sum_{j\in C} \alpha_j^f.$

Recall that α_j^f was defined to be 0 for indirectly connected cities. Thus, only the directly connected cities pay for the cost of opening facilities.

Lemma 3

For an indirectly connected city $j, c_{ij} \leq 3\alpha_i^e$, where $i = \phi(j)$.

Lemma 3

For an indirectly connected city $j, c_{ij} \leq 3\alpha_i^e$, where $i = \phi(j)$.

Proof

• Let i' be the connecting witness for city j.

Lemma 3

For an indirectly connected city $j, c_{ij} \leq 3\alpha_i^e$, where $i = \phi(j)$.

Proof

- Let i' be the connecting witness for city j.
- 2 Since *j* is indirectly connected to *i*, (i, i') must be an edge in *H*.

Lemma 3

For an indirectly connected city $j, c_{ij} \leq 3\alpha_i^e$, where $i = \phi(j)$.

Proof

- Let *i*' be the connecting witness for city *j*.
- 2 Since *j* is indirectly connected to *i*, (i, i') must be an edge in *H*.
- 3 In turn, there must be a city, say j', such that (i,j') and (i',j') are both special edges.

Lemma 3

For an indirectly connected city $j, c_{ij} \leq 3\alpha_i^e$, where $i = \phi(j)$.

Proof

- Let *i*' be the connecting witness for city *j*.
- 2 Since *j* is indirectly connected to *i*, (i, i') must be an edge in *H*.
- 3 In turn, there must be a city, say j', such that (i, j') and (i', j') are both special edges.
- Let t_1 and t_2 be the times at which *i* and *i'* were declared temporarily open during Phase 1.

Proof (cont'd)

• Since edge (i', j) is tight, $\alpha_j \ge c_{i'j}$.

- Since edge (i', j) is tight, $\alpha_j \ge c_{i'j}$.
- 3 Since edges (i', j') and (i, j') are also tight, $\alpha_{j'} \ge c_{jj'}$ and $\alpha_{j'} \ge c_{i'j'}$.

- Since edge (i', j) is tight, $\alpha_j \ge c_{i'j}$.
- 3 Since edges (i', j') and (i, j') are also tight, $\alpha_{j'} \ge c_{ij'}$ and $\alpha_{j'} \ge c_{i'j'}$.
- Since both these edges are special, they must both have gone tight before either *i* or *i'* were declared temporarily open.

- Since edge (i', j) is tight, $\alpha_j \ge c_{i'j}$.
- 3 Since edges (i', j') and (i, j') are also tight, $\alpha_{j'} \ge c_{ij'}$ and $\alpha_{j'} \ge c_{i'j'}$.
- Since both these edges are special, they must both have gone tight before either *i* or *i'* were declared temporarily open.
- Consider the time $min(t_1, t_2)$.

- Since edge (i', j) is tight, $\alpha_j \ge c_{i'j}$.
- 3 Since edges (i', j') and (i, j') are also tight, $\alpha_{j'} \ge c_{ij'}$ and $\alpha_{j'} \ge c_{i'j'}$.
- Since both these edges are special, they must both have gone tight before either *i* or *i'* were declared temporarily open.
- **O** Consider the time min(t_1, t_2). $\alpha_{j'}$ cannot be growing beyond this time.

- Since edge (i', j) is tight, $\alpha_j \ge c_{i'j}$.
- 3 Since edges (i', j') and (i, j') are also tight, $\alpha_{j'} \ge c_{ij'}$ and $\alpha_{j'} \ge c_{i'j'}$.
- Since both these edges are special, they must both have gone tight before either *i* or *i'* were declared temporarily open.
- Consider the time $\min(t_1, t_2)$. $\alpha_{j'}$ cannot be growing beyond this time. Therefore, $\alpha_{j'} \leq \min(t_1, t_2)$.

Proof (cont'd)

- Since edge (i', j) is tight, $\alpha_j \ge c_{i'j}$.
- 3 Since edges (i', j') and (i, j') are also tight, $\alpha_{j'} \ge c_{ij'}$ and $\alpha_{j'} \ge c_{i'j'}$.
- Since both these edges are special, they must both have gone tight before either i or i' were declared temporarily open.
- Consider the time $\min(t_1, t_2)$. $\alpha_{j'}$ cannot be growing beyond this time. Therefore, $\alpha_{j'} \leq \min(t_1, t_2)$.
- Finally, since *i'* is the connecting witness for *j*, $\alpha_j \ge t_2$.

Proof (cont'd)

- Since edge (i', j) is tight, $\alpha_j \ge c_{i'j}$.
- 3 Since edges (i', j') and (i, j') are also tight, $\alpha_{j'} \ge c_{ij'}$ and $\alpha_{j'} \ge c_{i'j'}$.
- Since both these edges are special, they must both have gone tight before either i or i' were declared temporarily open.
- Consider the time $\min(t_1, t_2)$. $\alpha_{j'}$ cannot be growing beyond this time. Therefore, $\alpha_{j'} \leq \min(t_1, t_2)$.
- Sinally, since i' is the connecting witness for j, $\alpha_j \ge t_2$.
- Therefore, $\alpha_j \ge \alpha_{j'}$, and the required inequalities follow. \Box

Theorem 4

The primal and dual solutions constructed by the algorithm satisfy:

$$\sum_{\substack{\in F, j \in C}} c_{ij} \cdot x_{ij} + 3\sum_{i \in F} f_i \cdot y_i \leq 3\sum_{j \in C} \alpha_j.$$

Theorem 4

The primal and dual solutions constructed by the algorithm satisfy:

$$\sum_{i \in F, j \in C} c_{ij} \cdot x_{ij} + 3 \sum_{i \in F} f_i \cdot y_i \leq 3 \sum_{j \in C} \alpha_j.$$

Proof

For a directly connected city j, $c_{ij} = \alpha_i^e \leq 3\alpha_i^e$, where $\phi(j) = i$.

Theorem 4

The primal and dual solutions constructed by the algorithm satisfy:

$$\sum_{i\in F, j\in C} c_{ij} \cdot x_{ij} + 3\sum_{i\in F} f_i \cdot y_i \leq 3\sum_{j\in C} \alpha_j.$$

Proof

For a directly connected city *j*, $c_{ij} = \alpha_j^e \le 3\alpha_j^e$, where $\phi(j) = i$. Combined with Lemma 3, we get

$$\sum_{e \in F, j \in C} c_{ij} \cdot x_{ij} \leq 3 \sum_{j \in C} \alpha_j^e.$$

Theorem 4

The primal and dual solutions constructed by the algorithm satisfy:

$$\sum_{i\in F, j\in C} c_{ij} \cdot x_{ij} + 3\sum_{i\in F} f_i \cdot y_i \leq 3\sum_{j\in C} \alpha_j.$$

Proof

For a directly connected city *j*, $c_{ij} = \alpha_j^e \le 3\alpha_j^e$, where $\phi(j) = i$. Combined with Lemma 3, we get

$$\sum_{\in F, j \in C} c_{ij} \cdot x_{ij} \leq 3 \sum_{j \in C} \alpha_j^e.$$

Adding this to the equality stated in Corollary 2, multiplied by 3, gives the theorem. \Box

Theorem 5

Algorithm 1 achieves an approximation factor of 3 for the facility location problem and has a running time of $O(m\log m)$.

Tight example

• The graph has *n* cities, $c_1, c_2, ..., c_n$ and two facilities f_1 and f_2 .

Tight example

- The graph has *n* cities, $c_1, c_2, ..., c_n$ and two facilities f_1 and f_2 .
- 2 Each city is at a distance of 1 from f_2 .

Tight example

- The graph has *n* cities, $c_1, c_2, ..., c_n$ and two facilities f_1 and f_2 .
- 2 Each city is at a distance of 1 from f_2 .
- **3** City c_1 is at a distance of 1 from f_1 , and $c_2, ..., c_n$ are at a distance 3 from f_1 .

Tight example

- The graph has *n* cities, $c_1, c_2, ..., c_n$ and two facilities f_1 and f_2 .
- 2 Each city is at a distance of 1 from f_2 .
- **3** City c_1 is at a distance of 1 from f_1 , and $c_2, ..., c_n$ are at a distance 3 from f_1 .
- The opening cost of f_1 and f_2 are ε and $(n+1)\varepsilon$, respectively, for a small number ε .

Tight example (*cont'd*)

The optimal solution is to open f_2 and connect all cities to it, at a total cost of $(n+1)\varepsilon + n$.

Tight example (*cont'd*)

The optimal solution is to open f_2 and connect all cities to it, at a total cost of $(n+1)\varepsilon + n$.

However, Algorithm 1 will open facility f_1 and connect all cities to it, at a total cost of $\varepsilon + 1 + 3(n-1)$.

References

Vazirani, V.V., 2003: Approximation Algorithms. Springer, 231 – 238.