The Facility Location Problem

Zola Donovan

West Virginia University

April 21, 2014



Outline

Kl Problem Statement



Outline

Kl Problem Statement

B P formulation



Outline

Kl Problem Statement
B P formulation

E An intuitive understanding of the dual



Outline

Kl Problem Statement
B P formulation

E An intuitive understanding of the dual
B Relaxing primal complementary slackness

conditions



Outline

El Problem Statement H Primal-dual schema based algorithm

B P formulation

E An intuitive understanding of the dual
B Relaxing primal complementary slackness

conditions



Outline

El Problem Statement H Primal-dual schema based algorithm

B P formulation
A Analysis

E An intuitive understanding of the dual
B Relaxing primal complementary slackness

conditions



Outline

El Problem Statement H Primal-dual schema based algorithm

B P formulation
A Analysis
E An intuitive understanding of the dual

B Relaxing primal complementary slackness
2l . Y Tight example

conditions



Metric uncapacitated facility location problem

© Let G be a bipartite graph with bipartition (F, C), where F is the set of facilities and C is the
set of cities.




Metric uncapacitated facility location problem

© Let G be a bipartite graph with bipartition (F, C), where F is the set of facilities and C is the
set of cities.

@ Let f; be the cost of opening facility /, and c; be the cost of connecting city j to (opened)
facility /.




Metric uncapacitated facility location problem

© Let G be a bipartite graph with bipartition (F, C), where F is the set of facilities and C is the
set of cities.

@ Let f; be the cost of opening facility /, and c; be the cost of connecting city j to (opened)
facility /.

© The connection costs satisfy the triangle inequality.




Metric uncapacitated facility location problem

© Let G be a bipartite graph with bipartition (F, C), where F is the set of facilities and C is the
set of cities.

@ Let f; be the cost of opening facility /, and c; be the cost of connecting city j to (opened)
facility /.

© The connection costs satisfy the triangle inequality.

@ The problem is to find a subset / C F of facilities that should be opened,




Metric uncapacitated facility location problem

© Let G be a bipartite graph with bipartition (F, C), where F is the set of facilities and C is the
set of cities.

@ Let f; be the cost of opening facility /, and c; be the cost of connecting city j to (opened)
facility /.

© The connection costs satisfy the triangle inequality.

© The problem is to find a subset / C F of facilities that should be opened, and a function
¢ : C — | assigning cities to open facilities in such a way that the total cost of opening
facilities and connecting cities to open facilities is minimized.




Integer program

Integer program

@ y; is an indicator variable denoting whether facility / is open




Integer program

Integer program

@ y; is an indicator variable denoting whether facility / is open

@ xj is an indicator variable denoting whether city j is connected to the facility




Integer program

Integer program

@ y; is an indicator variable denoting whether facility / is open

@ xj is an indicator variable denoting whether city j is connected to the facility
© The first set of constraints ensures that each city is connected to at least one facility




Integer program

Integer program

@ y; is an indicator variable denoting whether facility / is open

@ xj is an indicator variable denoting whether city j is connected to the facility
© The first set of constraints ensures that each city is connected to at least one facility
© The second set of constraints ensures that this facility must be open




Integer program

Integer program

@ y; is an indicator variable denoting whether facility / is open

@ xj is an indicator variable denoting whether city j is connected to the facility
© The first set of constraints ensures that each city is connected to at least one facility
© The second set of constraints ensures that this facility must be open

minimize Y ci-xi+ X fi-yi
i€F,jeC ieF




Integer program

Integer program

@ y; is an indicator variable denoting whether facility / is open

@ xj is an indicator variable denoting whether city j is connected to the facility
© The first set of constraints ensures that each city is connected to at least one facility
© The second set of constraints ensures that this facility must be open

minimize Y ci-xi+ X fi-yi
i€F,jeC ieF
subject to Y xj>1, jecC
icF




Integer program

Integer program

@ y; is an indicator variable denoting whether facility / is open

@ xj is an indicator variable denoting whether city j is connected to the facility
© The first set of constraints ensures that each city is connected to at least one facility
© The second set of constraints ensures that this facility must be open

minimize Y ci-xi+ X fi-yi
i€F,jeC ieF
subject to Y xj>1, jecC
icF

lV,'fX,'jZO7 ieF,jeC




Integer program

Integer program

@ y; is an indicator variable denoting whether facility / is open

@ xj is an indicator variable denoting whether city j is connected to the facility
© The first set of constraints ensures that each city is connected to at least one facility
© The second set of constraints ensures that this facility must be open

minimize Y ci-xi+ X fi-yi
i€F,jeC ieF
subject to Y xj>1, jecC
icF
Yi—Xj >0, ieF,jeC

xj€{0,1}, ieF,jeC




Integer program

Integer program

@ y; is an indicator variable denoting whether facility / is open

@ xj is an indicator variable denoting whether city j is connected to the facility
© The first set of constraints ensures that each city is connected to at least one facility
© The second set of constraints ensures that this facility must be open

minimize Y ci-xi+ X fi-yi
i€F,jeC ieF
subject to Y xj>1, jecC
icF
l\/,'fX,'jZO7 iGF,jGC
xj€{0,1}, ieF,jeC

yi€{0,1}, ieF




LP-Relaxation of program

LP-Relaxation of program

minimize Y ci-xj+Xfi-y
i€F.jeC ieF




LP-Relaxation of program

LP-Relaxation of program

minimize Y ci-xj+Xfi-y

i€F.jeC icF

subject to Y x>1, jec
icF




LP-Relaxation of program

LP-Relaxation of program

minimize Y ci-xj+Xfi-y
i€F.jeC icF
subject to Y x>1, jec
icF

y,'—X,'/'ZO7 ieF,jeC




LP-Relaxation of program

LP-Relaxation of program

minimize Y ci-xj+Xfi-y
i€F.jeC icF
subject to Y x>1, jec
icF
Yi—x;j 20, i€EF,jeC

Xj >0, ieF,jecC




LP-Relaxation of program

LP-Relaxation of program

minimize Y ci-xj+Xfi-y
ieF jec icF
subject to Y x> 1, jec
icF
Yi—x;j 20, i€EF,jeC
x>0, icFjec
yi 20, ieF




Dual program

Dual program




Dual program

Dual program

maximize ro
jec




Dual program

Dual program

maximize ro
jec

subjectto o5 —Bj<cj, i€EF,jeC




Dual program

Dual program

maximize Y o
jec
subjectto o5 —Bj<cj, i€EF,jeC

Y Bi<fi, i€F
jec




Dual program

Dual program

maximize Y o
jec
subjectto o5 —Bj<cj, i€EF,jeC

Y Bi<fi, i€F
jec

o >0, jecC




Dual program

Dual program

maximize Y o
jec
subjectto o5 —Bj<cj, i€EF,jeC

Y Bi<fi, i€F
jec

o >0, jecC
Bj=0, i€F,jeC




An intuitive understanding of the dual

Simple setting

@ Suppose LP has an optimal solution that is integral, say / C Fand ¢ : C — |.




An intuitive understanding of the dual

Simple setting

@ Suppose LP has an optimal solution that is integral, say / C Fand ¢ : C — |.
@ Then, under this solution, y; = 1 iff i € /, and x; = 1 iff i = ¢ ().




An intuitive understanding of the dual

Simple setting

@ Suppose LP has an optimal solution that is integral, say / C Fand ¢ : C — |.
@ Then, under this solution, y; = 1 iff i € /, and x; = 1 iff i = ¢ ().

© Let (o, ) denote an optimal dual solution.




An intuitive understanding of the dual

The primal and dual complementary slackness conditions are:

(i) ViEF,jGCZX/j>0:>(Xj—ﬁ,'j:Ci/‘




An intuitive understanding of the dual

The primal and dual complementary slackness conditions are:

(i) ViEF,jGCZX/j>0:>(Xj—ﬁ,'j:Ci/‘
(i) VieF:yi>0= Zﬁ”:f,
jec




An intuitive understanding of the dual

The primal and dual complementary slackness conditions are:

(i) ViEF,jGCZX/j>0:>(Xj—ﬁ,'j:Ci/‘
(i) VieF:yi>0= Zﬁ”:f,
jec

(i) VeEC:0j>0= ¥ xj=1
i€eF




An intuitive understanding of the dual

The primal and dual complementary slackness conditions are:

(i) ViEF,jGCZX/j>0:>(Xj—ﬁ,'j:Ci/‘
(i) VieF:yi>0= Zﬁ”:f,
jec

(i) VeEC:0j>0= ¥ xj=1
i€eF

(iv) VieF,jeC:B,-,->0:>y,-:X,-,-




An intuitive understanding of the dual

The primal and dual complementary slackness conditions are:

(i) ViEF,jGCZX/j>0:>(Xj—ﬁ,'j:Ci/‘
(i) VieF:yi>0= Zﬁ”:f,
jec

(i) VeEC:0j>0= ¥ xj=1
i€eF

(iv) VieF,jeC:B,-,->0:>y,-:X,-,-

@ By condition (i), if ¢(j) = i, then o; — Bj = cj.




An intuitive understanding of the dual

The primal and dual complementary slackness conditions are:
(i) ViEF,jGCZX/j>0:>(Xj—ﬁ,'j:Ci/‘
(i) VieF:y;>0=> Y Bj=F
jec
(i) VjeC:o;>0= ¥ xj =1
ieF
(iv) VieF,jeC:B,-,->0:>y,-:X,-,-

@ By condition (i), if ¢(j) = i, then o; — Bj = cj.

So, oy can be thought of as the total price paid by city j; where c¢; goes towards the use of
edge (/,/), and Bj is the contribution of j towards opening facility /.




An intuitive understanding of the dual

The primal and dual complementary slackness conditions are:
(i) ViEF,jGCZX/j>0:>(Xj—ﬁ,'j:Ci/‘
(i) VieF:y;>0=> Y Bj=F
jec
(i) VjeC:o;>0= ¥ xj =1
ieF
(iv) VieF,jeC:B,-,->0:>y,-:X,-,-

@ By condition (i), if ¢(j) = i, then o; — Bj = cj.
So, oy can be thought of as the total price paid by city j; where c¢; goes towards the use of
edge (/,/), and Bj is the contribution of j towards opening facility /.

@ By condition (ii), each open facility must be fully paid for, i.e.,if i € I, then Y Bj=f;.
i:0()=i




An intuitive understanding of the dual

The primal and dual complementary slackness conditions are:
(i) ViEF,jGCZX/j>0:>(Xj—ﬁ,'j:Ci/‘
(i) VieF:y;>0=> Y Bj=F
jec
(i) VjeC:o;>0= ¥ xj =1
ieF

(iv) VieF,jeC:B,-,->0:>y,-:X,-,-

@ By condition (i), if ¢(j) = i, then o; — Bj = cj.

So, oy can be thought of as the total price paid by city j; where c¢; goes towards the use of
edge (/,/), and Bj is the contribution of j towards opening facility /.
@ By condition (ii), each open facility must be fully paid for, i.e.,if i € I, then Y Bj=f;.

je()=i
© Now consider condition (iv).




An intuitive understanding of the dual

The primal and dual complementary slackness conditions are:
(i) ViEF,jGCZX/j>0:>(Xj—ﬁ,'j:Ci/‘
(i) VieF:y;>0=> Y Bj=F
jec
(i) VjeC:o;>0= ¥ xj =1
ieF

(iv) VieF,jeC:B,-,->0:>y,-:X,-,-

@ By condition (i), if ¢(j) = i, then o; — Bj = cj.

So, oy can be thought of as the total price paid by city j; where c¢; goes towards the use of
edge (/,/), and Bj is the contribution of j towards opening facility /.

@ By condition (ii), each open facility must be fully paid for, i.e.,if i € I, then Y Bj=f;.

i:0()=i

© Now consider condition (iv). If facility i is open, but ¢ (j) # i, then y; # x;. This means
Bi=0.




An intuitive understanding of the dual

The primal and dual complementary slackness conditions are:

(i) ViGF,jGCZX/j>0:>(Xj—ﬁ,'j:Ci/‘
(i) VieF:yi>0= Zﬁ”:f,
jec

(i) VeEC:0j>0= ¥ xj=1
i€eF

(iv) ViEF,jECZﬁ,‘/‘>0ﬁyi:X,‘/‘

@ By condition (i), if ¢(j) = i, then o; — Bj = cj.
So, oy can be thought of as the total price paid by city j; where c¢; goes towards the use of
edge (/,/), and Bj is the contribution of j towards opening facility /.

@ By condition (ii), each open facility must be fully paid for, i.e.,if i € I, then Y Bj=f;.

i:0()=i

© Now consider condition (iv). If facility i is open, but ¢ (j) # i, then y; # x;. This means
Bi; = 0. In other words, city j does not contribute to opening any facility besides the one to
which it is connected.




Relaxing primal complementary slackness conditions

Relaxing primal complementary slackness conditions

@ The cities are partitioned into two sets, directly connected and indirectly connected.




Relaxing primal complementary slackness conditions

Relaxing primal complementary slackness conditions

@ The cities are partitioned into two sets, directly connected and indirectly connected.

@ Only directly connected cities will pay for opening facilities, i.e., B can be nonzero only if
is a directly connected city and i = ¢ (j).




Relaxing primal complementary slackness conditions

Relaxing primal complementary slackness conditions
@ The cities are partitioned into two sets, directly connected and indirectly connected.

@ Only directly connected cities will pay for opening facilities, i.e., B can be nonzero only if
is a directly connected city and i = ¢ (j).

@ For an indirectly connected city j, the primal condition is relaxed as follows:




Relaxing primal complementary slackness conditions

Relaxing primal complementary slackness conditions
@ The cities are partitioned into two sets, directly connected and indirectly connected.

@ Only directly connected cities will pay for opening facilities, i.e., B can be nonzero only if
is a directly connected city and i = ¢ (j).

@ For an indirectly connected city j, the primal condition is relaxed as follows:
(1/3)¢s(s < & < (-




Relaxing primal complementary slackness conditions

Relaxing primal complementary slackness conditions
@ The cities are partitioned into two sets, directly connected and indirectly connected.

@ Only directly connected cities will pay for opening facilities, i.e., B can be nonzero only if
is a directly connected city and i = ¢ (j).

@ For an indirectly connected city j, the primal condition is relaxed as follows:
(1/3)¢s(s < & < (-

@ All other primal conditions are maintained:




Relaxing primal complementary slackness conditions

Relaxing primal complementary slackness conditions
@ The cities are partitioned into two sets, directly connected and indirectly connected.

@ Only directly connected cities will pay for opening facilities, i.e., B can be nonzero only if
is a directly connected city and i = ¢ (j).

@ For an indirectly connected city j, the primal condition is relaxed as follows:
(1/3)¢s(s < & < (-
@ All other primal conditions are maintained:

o — ﬁ(b(i)/‘ = Cy(j);» for a directly connected city j,




Relaxing primal complementary slackness conditions

Relaxing primal complementary slackness conditions
@ The cities are partitioned into two sets, directly connected and indirectly connected.

@ Only directly connected cities will pay for opening facilities, i.e., B can be nonzero only if
is a directly connected city and i = ¢ (j).

@ For an indirectly connected city j, the primal condition is relaxed as follows:
(1/3)¢s(s < & < (-

@ All other primal conditions are maintained:
o — ﬁ(b(i)/‘ = Cy(j);» for a directly connected city j,

and Y fj=f; for each open facility i.
i0()=i




Algorithm 1

In this phase, the algorithm:




Algorithm 1

In this phase, the algorithm:
@ operates in a primal-dual fashion




Algorithm 1

In this phase, the algorithm:
@ operates in a primal-dual fashion
@ finds a dual feasible solution




Algorithm 1

In this phase, the algorithm:
@ operates in a primal-dual fashion
@ finds a dual feasible solution
@ determines a set of tight edges and temporarily open facilities, F;




Algorithm 1

In this phase, the algorithm:

@ operates in a primal-dual fashion
@ finds a dual feasible solution
@ determines a set of tight edges and temporarily open facilities, F;

v

This phase consists of:

A\




Algorithm 1

In this phase, the algorithm:

@ operates in a primal-dual fashion
@ finds a dual feasible solution
@ determines a set of tight edges and temporarily open facilities, F;

v

This phase consists of:

@ choosing a subset / of F; to open

A\




Algorithm 1

In this phase, the algorithm:

@ operates in a primal-dual fashion
@ finds a dual feasible solution
@ determines a set of tight edges and temporarily open facilities, F;

v

This phase consists of:

@ choosing a subset / of F; to open
@ finding a mapping, ¢, from cities to /

A\




Algorithm 1

@ A notion of time is defined in this phase, so that each event can be associated with the time
at which it happened; the phase starts at time 0.




Algorithm 1

@ A notion of time is defined in this phase, so that each event can be associated with the time
at which it happened; the phase starts at time 0.

@ Initially, each city is defined to be unconnected.




Algorithm 1

@ A notion of time is defined in this phase, so that each event can be associated with the time
at which it happened; the phase starts at time 0.

@ Initially, each city is defined to be unconnected.

© Throughout this phase, the algorithm raises the dual variable ¢; for each unconnected city j
uniformly at unit rate, i.e., o4 will grow by 1 in unit time.




Algorithm 1

@ A notion of time is defined in this phase, so that each event can be associated with the time
at which it happened; the phase starts at time 0.

@ Initially, each city is defined to be unconnected.

© Throughout this phase, the algorithm raises the dual variable ¢; for each unconnected city j
uniformly at unit rate, i.e., o4 will grow by 1 in unit time.

© When a; = ¢; for some edge (/,/), the algorithm will declare this edge to be tight.




Algorithm 1

@ A notion of time is defined in this phase, so that each event can be associated with the time
at which it happened; the phase starts at time 0.

@ Initially, each city is defined to be unconnected.

© Throughout this phase, the algorithm raises the dual variable ¢; for each unconnected city j
uniformly at unit rate, i.e., o4 will grow by 1 in unit time.

© When a; = ¢; for some edge (/,/), the algorithm will declare this edge to be tight.

©Q Henceforth, dual variable ﬁ,,/ will be raised uniformly, thus ensuring that the first constraint in
the LP is not violated.




Algorithm 1

@ A notion of time is defined in this phase, so that each event can be associated with the time
at which it happened; the phase starts at time 0.

@ Initially, each city is defined to be unconnected.

© Throughout this phase, the algorithm raises the dual variable ¢; for each unconnected city j
uniformly at unit rate, i.e., o4 will grow by 1 in unit time.

© When a; = ¢; for some edge (/,/), the algorithm will declare this edge to be tight.

©Q Henceforth, dual variable ﬁ,,/ will be raised uniformly, thus ensuring that the first constraint in
the LP is not violated. B goes towards paying for facility /.




Algorithm 1

@ A notion of time is defined in this phase, so that each event can be associated with the time
at which it happened; the phase starts at time 0.
@ Initially, each city is defined to be unconnected.
© Throughout this phase, the algorithm raises the dual variable ¢; for each unconnected city j
uniformly at unit rate, i.e., o4 will grow by 1 in unit time.

© When a; = ¢; for some edge (/,/), the algorithm will declare this edge to be tight.

©Q Henceforth, dual variable ﬁ,,/ will be raised uniformly, thus ensuring that the first constraint in
the LP is not violated. B goes towards paying for facility /. Each edge (/,/) such that
Bj > 0is declared special.




Algorithm 1

@ A notion of time is defined in this phase, so that each event can be associated with the time
at which it happened; the phase starts at time 0.

@ Initially, each city is defined to be unconnected.

© Throughout this phase, the algorithm raises the dual variable ¢; for each unconnected city j
uniformly at unit rate, i.e., o4 will grow by 1 in unit time.

When a; = c; for some edge (/,/), the algorithm will declare this edge to be tight.

© 0

Henceforth, dual variable ﬁ,,/ will be raised uniformly, thus ensuring that the first constraint in
the LP is not violated. B goes towards paying for facility /. Each edge (/,/) such that
Bj > 0is declared special.

@ Facility / is said to be paid for if Y Bij = fi. If so, the algorithm declares this facility
temporarily open.




Algorithm 1

@ A notion of time is defined in this phase, so that each event can be associated with the time
at which it happened; the phase starts at time 0.

@ Initially, each city is defined to be unconnected.

© Throughout this phase, the algorithm raises the dual variable ¢; for each unconnected city j
uniformly at unit rate, i.e., o4 will grow by 1 in unit time.

When a; = c; for some edge (/,/), the algorithm will declare this edge to be tight.

© 0

Henceforth, dual variable ﬁ,,/ will be raised uniformly, thus ensuring that the first constraint in
the LP is not violated. B goes towards paying for facility /. Each edge (/,/) such that
Bj > 0is declared special.

@ Facility / is said to be paid for if Y Bij = fi. If so, the algorithm declares this facility
temporarily open.
@ All unconnected cities having tight edges to this facility are declared connected and facility i is
declared the connecting witness for each of these cities. (Notice that dual variables o; of these
cities are no longer raised.)




Algorithm 1

@ A notion of time is defined in this phase, so that each event can be associated with the time
at which it happened; the phase starts at time 0.

@ Initially, each city is defined to be unconnected.

© Throughout this phase, the algorithm raises the dual variable ¢; for each unconnected city j
uniformly at unit rate, i.e., o4 will grow by 1 in unit time.

When a; = c; for some edge (/,/), the algorithm will declare this edge to be tight.

Henceforth, dual variable ﬁ,,/ will be raised uniformly, thus ensuring that the first constraint in
the LP is not violated. B goes towards paying for facility /. Each edge (/,/) such that
Bj > 0is declared special.

@ Facility / is said to be paid for if Y Bij = fi. If so, the algorithm declares this facility
temporarily open.

@ All unconnected cities having tight edges to this facility are declared connected and facility i is
declared the connecting witness for each of these cities. (Notice that dual variables o; of these
cities are no longer raised.)

@ In the future, as soon as an unconnected city j gets a tight edge to /, j will also be declared
connected and i will be declared the connecting witness for . (Notice that B = 0 and thus edge
(i,f) is not special.)

© 0




Algorithm 1

@ A notion of time is defined in this phase, so that each event can be associated with the time
at which it happened; the phase starts at time 0.

@ Initially, each city is defined to be unconnected.

© Throughout this phase, the algorithm raises the dual variable ¢; for each unconnected city j
uniformly at unit rate, i.e., o4 will grow by 1 in unit time.

When a; = c; for some edge (/,/), the algorithm will declare this edge to be tight.

© 0

Henceforth, dual variable ﬁ,,/ will be raised uniformly, thus ensuring that the first constraint in
the LP is not violated. B goes towards paying for facility /. Each edge (/,/) such that
Bj > 0is declared special.

@ Facility / is said to be paid for if Y Bij = fi. If so, the algorithm declares this facility
temporarily open.

@ All unconnected cities having tight edges to this facility are declared connected and facility i is
declared the connecting witness for each of these cities. (Notice that dual variables o; of these
cities are no longer raised.)

@ In the future, as soon as an unconnected city j gets a tight edge to /, j will also be declared
connected and i will be declared the connecting witness for . (Notice that B = 0 and thus edge
(i,f) is not special.)

@ When all cities are connected, this phase of the algorithm terminates. If several events
happen simultaneously, the algorithm executes them in arbitrary order.




Algorithm 1

@ Let F; denote the set of temporarily open facilities and T denote the subgraph of G
consisting of all special edges.




Algorithm 1

@ Let F; denote the set of temporarily open facilities and T denote the subgraph of G
consisting of all special edges.
@ Let T2 denote the graph that has edge (u, v) iff there is a path of length at most 2 between u and
vin T, and let H be the subgraph of T2 induced on F;.




Algorithm 1

@ Let F; denote the set of temporarily open facilities and T denote the subgraph of G
consisting of all special edges.
@ Let T2 denote the graph that has edge (u, v) iff there is a path of length at most 2 between u and
vin T, and let H be the subgraph of T2 induced on F;.
@ Find any maximal independent set in H, say /.




Algorithm 1

@ Let F; denote the set of temporarily open facilities and T denote the subgraph of G
consisting of all special edges.
@ Let T2 denote the graph that has edge (u, v) iff there is a path of length at most 2 between u and
vin T, and let H be the subgraph of T2 induced on F;.
@ Find any maximal independent set in H, say /.
@ All facilities in the set / are declared open.




Algorithm 1

@ Let F; denote the set of temporarily open facilities and T denote the subgraph of G
consisting of all special edges.
@ Let T2 denote the graph that has edge (u, v) iff there is a path of length at most 2 between u and
vin T, and let H be the subgraph of T2 induced on F;.
@ Find any maximal independent set in H, say /.
@ All facilities in the set / are declared open.

@ For city j, define .%; = {i € F; | (i,j) is special}.




Algorithm 1

@ Let F; denote the set of temporarily open facilities and T denote the subgraph of G
consisting of all special edges.
@ Let T2 denote the graph that has edge (u, v) iff there is a path of length at most 2 between u and
vin T, and let H be the subgraph of T2 induced on F;.
@ Find any maximal independent set in H, say /.
@ All facilities in the set / are declared open.

@ For city j, define .%; = {i € F; | (i,j) is special}.




Algorithm 1

@ Let F; denote the set of temporarily open facilities and T denote the subgraph of G
consisting of all special edges.
@ Let T2 denote the graph that has edge (u, v) iff there is a path of length at most 2 between u and
vin T, and let H be the subgraph of T2 induced on F;.
@ Find any maximal independent set in H, say /.
@ All facilities in the set / are declared open.
@ For city j, define .%; = {i € F; | (i,j) is special}.
@ Since /is an independent set, at most one of the facilities in .%; is opened.




Algorithm 1

@ Let F; denote the set of temporarily open facilities and T denote the subgraph of G
consisting of all special edges.
@ Let T2 denote the graph that has edge (u, v) iff there is a path of length at most 2 between u and
vin T, and let H be the subgraph of T2 induced on F;.
@ Find any maximal independent set in H, say /.
@ All facilities in the set / are declared open.

@ For city j, define .%; = {i € F; | (i,j) is special}.
J
@ Since /is an independent set, at most one of the facilities in .%; is opened.
@ If there is a facility / € .%; that is opened, then set ¢(j) = i and declare city j directly connected.




Algorithm 1

@ Let F; denote the set of temporarily open facilities and T denote the subgraph of G
consisting of all special edges.
@ Let T2 denote the graph that has edge (u, v) iff there is a path of length at most 2 between u and
vin T, and let H be the subgraph of T2 induced on F;.
@ Find any maximal independent set in H, say /.
@ All facilities in the set / are declared open.

@ For city j, define .%; = {i € F; | (i,j) is special}.
J
@ Since /is an independent set, at most one of the facilities in .%; is opened.

@ If there is a facility / € .%; that is opened, then set ¢(j) = i and declare city j directly connected.
@ Otherwise, consider tight edge (i, ) such that /" was the connecting witness for j.




Algorithm 1

@ Let F; denote the set of temporarily open facilities and T denote the subgraph of G
consisting of all special edges.
@ Let T2 denote the graph that has edge (u, v) iff there is a path of length at most 2 between u and
vin T, and let H be the subgraph of T2 induced on F;.
@ Find any maximal independent set in H, say /.
@ All facilities in the set / are declared open.
@ For city j, define .%; = {i € F; | (i,j) is special}.
@ Since /is an independent set, at most one of the facilities in .%; is opened.
@ If there is a facility / € .%; that is opened, then set ¢(j) = i and declare city j directly connected.
@ Otherwise, consider tight edge (i, ) such that /" was the connecting witness for j.
Q Ifi' €1, again set ¢(j) = i and declare city j directly connected. (Notice that in this case By; = 0).




Algorithm 1

@ Let F; denote the set of temporarily open facilities and T denote the subgraph of G
consisting of all special edges.
@ Let T2 denote the graph that has edge (u, v) iff there is a path of length at most 2 between u and
vin T, and let H be the subgraph of T2 induced on F;.
@ Find any maximal independent set in H, say /.
@ All facilities in the set / are declared open.
@ For city j, define .%; = {i € F; | (i,j) is special}.
@ Since /is an independent set, at most one of the facilities in .%; is opened.
@ If there is a facility / € .%; that is opened, then set ¢(j) = i and declare city j directly connected.
@ Otherwise, consider tight edge (i, ) such that /" was the connecting witness for j.
Q Ifi" €1, again set ¢(j) = i and declare city j directly connected. (Notice that in this case By; = 0).
@ In the remaining case that i/’ ¢ /, let i be any neighbor of i’ in graph H such that i € /.




Algorithm 1

@ Let F; denote the set of temporarily open facilities and T denote the subgraph of G
consisting of all special edges.
@ Let T2 denote the graph that has edge (u, v) iff there is a path of length at most 2 between u and
vin T, and let H be the subgraph of T2 induced on F;.
@ Find any maximal independent set in H, say /.
@ All facilities in the set / are declared open.
@ For city j, define .%; = {i € F; | (i,j) is special}.
Since /is an independent set, at most one of the facilities in .%; is opened.
If there is a facility i € .%; that is opened, then set ¢(j) = i/ and declare city j directly connected.
Otherwise, consider tight edge (i, ) such that /" was the connecting witness for j.
If " € 1, again set ¢(j) = i" and declare city j directly connected. (Notice that in this case fB; = 0).
In the remaining case that i’ ¢ I, let i be any neighbor of i’ in graph H such that i € /.
Set ¢(j) = i and declare city j indirectly connected.

Q00000




Algorithm 1

@ Let F; denote the set of temporarily open facilities and T denote the subgraph of G
consisting of all special edges.
@ Let T2 denote the graph that has edge (u, v) iff there is a path of length at most 2 between u and
vin T, and let H be the subgraph of T2 induced on F;.
@ Find any maximal independent set in H, say /.
@ All facilities in the set / are declared open.
@ For city j, define .%; = {i € F; | (i,j) is special}.
@ Since /is an independent set, at most one of the facilities in .%; is opened.
@ If there is a facility / € .%; that is opened, then set ¢(j) = i and declare city j directly connected.
@ Otherwise, consider tight edge (i, ) such that /" was the connecting witness for j.
Q Ifi" €1, again set ¢(j) = i and declare city j directly connected. (Notice that in this case By; = 0).
@ In the remaining case that i/’ ¢ /, let i be any neighbor of i’ in graph H such that i € /.
@ Set ¢(j) = i and declare city j indirectly connected.

© /and ¢ define primal integral solution: x; = 1 iff ¢(j) =iand y; = 1 iff i € I.




Algorithm 1

@ Let F; denote the set of temporarily open facilities and T denote the subgraph of G
consisting of all special edges.
@ Let T2 denote the graph that has edge (u, v) iff there is a path of length at most 2 between u and
vin T, and let H be the subgraph of T2 induced on F;.
@ Find any maximal independent set in H, say /.
@ All facilities in the set / are declared open.
@ For city j, define .%; = {i € F; | (i,j) is special}.
@ Since /is an independent set, at most one of the facilities in .%; is opened.
@ If there is a facility / € .%; that is opened, then set ¢(j) = i and declare city j directly connected.
@ Otherwise, consider tight edge (i, ) such that /" was the connecting witness for j.
Q Ifi" €1, again set ¢(j) = i and declare city j directly connected. (Notice that in this case By; = 0).
@ In the remaining case that i/’ ¢ /, let i be any neighbor of i’ in graph H such that i € /.
@ Set ¢(j) = i and declare city j indirectly connected.

© /and ¢ define primal integral solution: x; = 1 iff ¢(j) =iand y; = 1 iff i € I.
@ The values of @; and fB; obtained at the end of Phase 1 form a dual feasible solution.




Analysis

@ We will show how the dual variables ¢;’s pay for the primal costs of opening facilities and
connecting cities to facilities.




Analysis

@ We will show how the dual variables ¢;’s pay for the primal costs of opening facilities and
connecting cities to facilities.

@ Denote by ocjf and a/-e the contributions of city j to these two costs respectively;
o =of +of.




Analysis

@ We will show how the dual variables ¢;’s pay for the primal costs of opening facilities and
connecting cities to facilities.

@ Denote by ocjf and a/-e the contributions of city j to these two costs respectively;
o =of +of.

@ If jis indirectly connected, then oc/’ =0and aje =0




Analysis

@ We will show how the dual variables ¢;’s pay for the primal costs of opening facilities and
connecting cities to facilities.

@ Denote by ocjf and a/-e the contributions of city j to these two costs respectively;
o =of +of.
Q If jis indirectly connected, then o/ = 0 and of =
Q If j is directly connected, then the following must hold:
o; = cj+ By,
where i = ¢(j). Now, let of = B and o = c;.




Analysis

Letic I Then, ¥ of =f.
j0()=i




Analysis

Letic I Then, ¥ of =f.
j8()=i

w

@ Since i is temporarily open at the end of Phase 1, it is completely paid for, i.e.,

Y a/.f =f.
J:9()=i




Analysis

Letic I Then, ¥ of =f.
j8()=i

w

@ Since i is temporarily open at the end of Phase 1, it is completely paid for, i.e.,
Y o=t
J:9()=i
@ Note that each city j that has contributed to f; must be directly connected to i.




Analysis

Letic I Then, ¥ of =f.
j8()=i

w

@ Since i is temporarily open at the end of Phase 1, it is completely paid for, i.e.,
Y a/.f =f.
29 ()=i
@ Note that each city j that has contributed to f; must be directly connected to i.
For each such city, a]f = B




Analysis

Letic I Then, ¥ of =f.
j8()=i

w

@ Since i is temporarily open at the end of Phase 1, it is completely paid for, i.e.,
Y a/.f =f.
29 ()=i
@ Note that each city j that has contributed to f; must be directly connected to i.
For each such city, a]f = B

© Any other city j that is connected to facility i must satisfy a} =0.




Analysis

Letic I Then, ¥ of =f.
j8()=i

w

@ Since i is temporarily open at the end of Phase 1, it is completely paid for, i.e.,
Y a/.f =f.
29 ()=i
@ Note that each city j that has contributed to f; must be directly connected to i.
For each such city, a]f = B
© Any other city j that is connected to facility i must satisfy a} =0.

©Q The lemma follows. [J )




Analysis




Analysis

Thi=Yof.

iel jec

Recall that txf was defined to be 0 for indirectly connected cities. Thus, only the directly
connected cities pay for the cost of opening facilities.




Analysis

For an indirectly connected city j, cjj < 306/9, where i = ¢(j).




Analysis

For an indirectly connected city j, cjj < 306/9, where i = ¢(j).

@ Let / be the connecting witness for city J.




Analysis

For an indirectly connected city j, cjj < 306/9, where i = ¢(j).

@ Let / be the connecting witness for city J.
@ Since j is indirectly connected to /, (i, i) must be an edge in H.




Analysis

For an indirectly connected city j, cjj < 306/9, where i = ¢(j).

@ Let / be the connecting witness for city J.
@ Since j is indirectly connected to /, (i, i) must be an edge in H.
@ In turn, there must be a city, say ', such that (i,j') and (/’, ') are both special edges.




Analysis

For an indirectly connected city j, cjj < 306/9, where i = ¢(j).

@ Let / be the connecting witness for city J.

@ Since j is indirectly connected to /, (i, i) must be an edge in H.

@ In turn, there must be a city, say ', such that (i,j') and (/’, ') are both special edges.

@ Let t; and t, be the times at which i and i were declared temporarily open during Phase 1.




Analysis

Proof (contd)

@ Since edge (7,)) is tight, &; > cy;.




Analysis

Proof (contd)

@ Since edge (7,)) is tight, &; > cy;.
@ Since edges (/',j') and (i,/') are also tight, c;y > ¢;r and o > cyjr.




Analysis

Proof (contd)

@ Since edge (7,)) is tight, &; > cy;.
@ Since edges (/',j') and (i,/') are also tight, c;y > ¢;r and o > cyjr.

© Since both these edges are special, they must both have gone tight before either i or i’
were declared temporarily open.




Analysis

Proof (contd)

@ Since edge (7,)) is tight, &; > cy;.
@ Since edges (/',j') and (i,/') are also tight, c;y > ¢;r and o > cyjr.

© Since both these edges are special, they must both have gone tight before either i or i’
were declared temporarily open.

© Consider the time min(t;, ).




Analysis

Proof (contd)

@ Since edge (7,)) is tight, &; > cy;.
@ Since edges (/',j') and (i,/') are also tight, c;y > ¢;r and o > cyjr.

© Since both these edges are special, they must both have gone tight before either i or i’
were declared temporarily open.

© Consider the time min(t, f2). oy cannot be growing beyond this time.




Analysis

Proof (contd)

@ Since edge (7,)) is tight, &; > cy;.
Since edges (i',j') and (i,j’) are also tight, & > ¢ and &y > ¢y

Q

© Since both these edges are special, they must both have gone tight before either i or i’
were declared temporarily open.

(%]

Consider the time min(t, &2). o cannot be growing beyond this time. Therefore,
oy < min(ty, t).




Analysis

Proof (contd)

Since edge (i', j) is tight, o; > cy;.
Since edges (i',j') and (i,j’) are also tight, & > ¢ and &y > ¢y

Since both these edges are special, they must both have gone tight before either i or i’
were declared temporarily open.

Consider the time min(t, &2). o cannot be growing beyond this time. Therefore,
oy < min(ty, t).

© ©0 o000

Finally, since /' is the connecting witness for j, 0 > t.




Analysis

Proof (contd)

Since edge (i', j) is tight, o; > cy;.

Since edges (i',j') and (i,j’) are also tight, & > ¢ and &y > ¢y

Since both these edges are special, they must both have gone tight before either i or i’
were declared temporarily open.

Consider the time min(t, &2). o cannot be growing beyond this time. Therefore,
oy < min(ty, t).
Finally, since /' is the connecting witness for j, 0 > t.

©0 © 0060

Therefore, o; > o, and the required inequalities follow. [J




Analysis

Theorem 4

The primal and dual solutions constructed by the algorithm satisfy:

Z C,']'~X,','+3Zf/‘}’i§3zaj.

i€F,jeC ieF jec




Analysis

The primal and dual solutions constructed by the algorithm satisfy:

Z C,]'~X,','+3Zf/‘}’i§3zaj.

ieF,jeC ieF jec

v

For a directly connected city j, ¢j = (xf < Saf, where ¢ (j) = i.




Analysis

The primal and dual solutions constructed by the algorithm satisfy:

Z C,]'~X,','+3Zf/‘}’i§3zaj.

ieF,jeC ieF jec

v

For a directly connected city j, ¢j = (xf < Saf, where ¢ (j) = i.
Combined with Lemma 3, we get

Z ij-X/j§3Z(X/e.

i€F,jeC jec




Analysis

The primal and dual solutions constructed by the algorithm satisfy:

Z Cij~X,','+3Zf/‘YI'S3Z(Xj.

ieF,jeC icF jec

| N

Proof

For a directly connected city j, ¢j = (xje < Saf, where ¢ (j) = i.
Combined with Lemma 3, we get

Z ij-X/j§3Z(Xje.

i€F,jeC jec

Adding this to the equality stated in Corollary 2, multiplied by 3, gives the theorem. [J




Analysis

Algorithm 1 achieves an approximation factor of 3 for the facility location problem and has a
running time of O(mlog m).




Tight example

Tight example

@ The graph has ncities, c1, ¢, ..., ¢, and two facilities f; and f,.




Tight example

Tight example

@ The graph has ncities, c1, ¢, ..., ¢, and two facilities f; and f,.
@ Each city is at a distance of 1 from f,.




Tight example

Tight example

@ The graph has ncities, c1, ¢, ..., ¢, and two facilities f; and f,.
@ Each city is at a distance of 1 from f,.
@ City ¢y is at a distance of 1 from f;, and ¢, ..., ¢, are at a distance 3 from f.




Tight example

Tight example

@ The graph has ncities, c1, ¢, ..., ¢, and two facilities f; and f,.

@ Each city is at a distance of 1 from f,.

@ City ¢y is at a distance of 1 from f;, and ¢, ..., ¢, are at a distance 3 from f.

@ The opening cost of f; and f, are € and (n+ 1)g, respectively, for a small number €.




Tight example

Tight example (contd)

The optimal solution is to open £ and connect all cities to it, at a total cost of (n+1)e + n.




Tight example

Tight example (contd)
The optimal solution is to open £ and connect all cities to it, at a total cost of (n+1)e + n.

However, Algorithm 1 will open facility fy and connect all cities to it, at a total cost of
e+1+3(n—1).




References

@ Vazirani, V.V., 2003: Approximation Algorithms. Springer, 231 — 238.



	Problem Statement
	IP formulation
	An intuitive understanding of the dual
	Relaxing primal complementary slackness conditions
	Primal-dual schema based algorithm
	Analysis
	Tight example

