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Facility Location

Problem Statement

Metric uncapacitated facility location problem

Problem

1 Let G be a bipartite graph with bipartition (F ,C), where F is the set of facilities and C is the
set of cities.

2 Let fi be the cost of opening facility i , and cij be the cost of connecting city j to (opened)
facility i .

3 The connection costs satisfy the triangle inequality.

4 The problem is to find a subset I ⊆ F of facilities that should be opened, and a function
φ : C→ I assigning cities to open facilities in such a way that the total cost of opening
facilities and connecting cities to open facilities is minimized.
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Facility Location

IP formulation

Integer program

Integer program

1 yi is an indicator variable denoting whether facility i is open

2 xij is an indicator variable denoting whether city j is connected to the facility i
3 The first set of constraints ensures that each city is connected to at least one facility

4 The second set of constraints ensures that this facility must be open

minimize ∑
i∈F , j∈C

cij · xij + ∑
i∈F

fi · yi

subject to ∑
i∈F

xij ≥ 1, j ∈ C

yi − xij ≥ 0, i ∈ F , j ∈ C

xij ∈ {0,1}, i ∈ F , j ∈ C

yi ∈ {0,1}, i ∈ F
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Dual program

maximize ∑
j∈C

αj

subject to αj −βij ≤ cij , i ∈ F , j ∈ C

∑
j∈C

βij ≤ fi , i ∈ F

αj ≥ 0, j ∈ C

βij ≥ 0, i ∈ F , j ∈ C
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An intuitive understanding of the dual

Simple setting

1 Suppose LP has an optimal solution that is integral, say I ⊆ F and φ : C→ I.

2 Then, under this solution, yi = 1 iff i ∈ I, and xij = 1 iff i = φ(j).
3 Let (α,β) denote an optimal dual solution.



Facility Location

An intuitive understanding of the dual

An intuitive understanding of the dual

Simple setting

1 Suppose LP has an optimal solution that is integral, say I ⊆ F and φ : C→ I.

2 Then, under this solution, yi = 1 iff i ∈ I, and xij = 1 iff i = φ(j).

3 Let (α,β) denote an optimal dual solution.



Facility Location

An intuitive understanding of the dual

An intuitive understanding of the dual

Simple setting

1 Suppose LP has an optimal solution that is integral, say I ⊆ F and φ : C→ I.

2 Then, under this solution, yi = 1 iff i ∈ I, and xij = 1 iff i = φ(j).
3 Let (α,β) denote an optimal dual solution.



Facility Location

An intuitive understanding of the dual

An intuitive understanding of the dual

The primal and dual complementary slackness conditions are:

(i) ∀i ∈ F , j ∈ C : xij > 0⇒ αj −βij = cij

(ii) ∀i ∈ F : yi > 0⇒ ∑
j∈C

βij = fi

(iii) ∀j ∈ C : αj > 0⇒ ∑
i∈F

xij = 1

(iv) ∀i ∈ F , j ∈ C : βij > 0⇒ yi = xij

1 By condition (i), if φ(j) = i , then αj −βij = cij .
So, αj can be thought of as the total price paid by city j ; where cij goes towards the use of
edge (i, j), and βij is the contribution of j towards opening facility i .

2 By condition (ii), each open facility must be fully paid for, i.e., if i ∈ I, then ∑
j:φ(j)=i

βij = fi .

3 Now consider condition (iv). If facility i is open, but φ(j) 6= i , then yi 6= xij . This means
βij = 0. In other words, city j does not contribute to opening any facility besides the one to
which it is connected.
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Relaxing primal complementary slackness conditions
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2 Only directly connected cities will pay for opening facilities, i.e., βij can be nonzero only if j
is a directly connected city and i = φ(j).

3 For an indirectly connected city j , the primal condition is relaxed as follows:

(1/3)cφ(j)j ≤ αj ≤ cφ(j)j .

4 All other primal conditions are maintained:

αj −βφ(j)j = cφ(j)j , for a directly connected city j ,

and ∑
j:φ(j)=i

βij = fi , for each open facility i .
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Algorithm 1

Phase 1

In this phase, the algorithm:

1 operates in a primal-dual fashion

2 finds a dual feasible solution
3 determines a set of tight edges and temporarily open facilities, Ft

Phase 2

This phase consists of:

1 choosing a subset I of Ft to open

2 finding a mapping, φ , from cities to I
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Algorithm 1

Phase 1

1 A notion of time is defined in this phase, so that each event can be associated with the time
at which it happened; the phase starts at time 0.

1 Initially, each city is defined to be unconnected.

2 Throughout this phase, the algorithm raises the dual variable αj for each unconnected city j
uniformly at unit rate, i.e., αj will grow by 1 in unit time.

3 When αj = cij for some edge (i, j), the algorithm will declare this edge to be tight.

4 Henceforth, dual variable βij will be raised uniformly, thus ensuring that the first constraint in
the LP is not violated. βij goes towards paying for facility i . Each edge (i, j) such that
βij > 0 is declared special.

5 Facility i is said to be paid for if ∑j βij = fi . If so, the algorithm declares this facility
temporarily open.

1 All unconnected cities having tight edges to this facility are declared connected and facility i is
declared the connecting witness for each of these cities. (Notice that dual variables αj of these
cities are no longer raised.)

2 In the future, as soon as an unconnected city j gets a tight edge to i , j will also be declared
connected and i will be declared the connecting witness for j . (Notice that βij = 0 and thus edge
(i, j) is not special.)

6 When all cities are connected, this phase of the algorithm terminates. If several events
happen simultaneously, the algorithm executes them in arbitrary order.
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Phase 2

1 Let Ft denote the set of temporarily open facilities and T denote the subgraph of G
consisting of all special edges.

1 Let T 2 denote the graph that has edge (u,v) iff there is a path of length at most 2 between u and
v in T , and let H be the subgraph of T 2 induced on Ft .

2 Find any maximal independent set in H, say I.
3 All facilities in the set I are declared open.

2 For city j , define Fj = {i ∈ Ft | (i, j) is special}.
1 Since I is an independent set, at most one of the facilities in Fj is opened.
2 If there is a facility i ∈Fj that is opened, then set φ(j) = i and declare city j directly connected.
3 Otherwise, consider tight edge (i ′, j) such that i ′ was the connecting witness for j .
4 If i ′ ∈ I, again set φ(j) = i ′ and declare city j directly connected. (Notice that in this case βi′ j = 0).
5 In the remaining case that i ′ /∈ I, let i be any neighbor of i ′ in graph H such that i ∈ I.
6 Set φ(j) = i and declare city j indirectly connected.

3 I and φ define primal integral solution: xij = 1 iff φ(j) = i and yi = 1 iff i ∈ I.

4 The values of αj and βij obtained at the end of Phase 1 form a dual feasible solution.
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5 In the remaining case that i ′ /∈ I, let i be any neighbor of i ′ in graph H such that i ∈ I.
6 Set φ(j) = i and declare city j indirectly connected.

3 I and φ define primal integral solution: xij = 1 iff φ(j) = i and yi = 1 iff i ∈ I.

4 The values of αj and βij obtained at the end of Phase 1 form a dual feasible solution.
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Analysis

1 We will show how the dual variables αj ’s pay for the primal costs of opening facilities and
connecting cities to facilities.

2 Denote by α f
j and αe

j the contributions of city j to these two costs respectively;

αj = α f
j +αe

j .

3 If j is indirectly connected, then α f
j = 0 and αe

j = αj

4 If j is directly connected, then the following must hold:

αj = cij +βij ,

where i = φ(j). Now, let α f
j = βij and αe

j = cij .
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Lemma 1

Let i ∈ I. Then, ∑
j:φ(j)=i

α f
j = fi .

Proof

1 Since i is temporarily open at the end of Phase 1, it is completely paid for, i.e.,

∑
j:φ(j)=i

α f
j = fi .

2 Note that each city j that has contributed to fi must be directly connected to i .
For each such city, α f

j = βij .

3 Any other city j ′ that is connected to facility i must satisfy α f
j ′ = 0.

4 The lemma follows. �
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Corollary 2

∑
i∈I

fi = ∑
j∈C

α f
j .

Recall that α f
j was defined to be 0 for indirectly connected cities. Thus, only the directly

connected cities pay for the cost of opening facilities.
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Lemma 3

For an indirectly connected city j,cij ≤ 3αe
j ,where i = φ(j).

Proof

1 Let i ′ be the connecting witness for city j .

2 Since j is indirectly connected to i , (i, i ′) must be an edge in H.
3 In turn, there must be a city, say j ′, such that (i, j ′) and (i ′, j ′) are both special edges.

4 Let t1 and t2 be the times at which i and i ′ were declared temporarily open during Phase 1.
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i

j ′

i ′

j

Proof (cont’d)

1 Since edge (i ′, j) is tight, αj ≥ ci ′ j .

2 Since edges (i ′, j ′) and (i, j ′) are also tight, αj ′ ≥ cij ′ and αj ′ ≥ ci ′ j ′ .
3 Since both these edges are special, they must both have gone tight before either i or i ′

were declared temporarily open.

4 Consider the time min(t1, t2). αj ′ cannot be growing beyond this time. Therefore,
αj ′ ≤ min(t1, t2).

5 Finally, since i ′ is the connecting witness for j , αj ≥ t2.
6 Therefore, αj ≥ αj ′ , and the required inequalities follow. �
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Theorem 4

The primal and dual solutions constructed by the algorithm satisfy:

∑
i∈F , j∈C

cij · xij +3 ∑
i∈F

fi · yi ≤ 3 ∑
j∈C

αj .

Proof

For a directly connected city j , cij = αe
j ≤ 3αe

j ,where φ(j) = i .
Combined with Lemma 3, we get

∑
i∈F , j∈C

cij · xij ≤ 3 ∑
j∈C

α
e
j .

Adding this to the equality stated in Corollary 2, multiplied by 3, gives the theorem. �
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Theorem 5

Algorithm 1 achieves an approximation factor of 3 for the facility location problem and has a
running time of O(m logm).
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Tight example

1 The graph has n cities, c1,c2, ...,cn and two facilities f1 and f2.

2 Each city is at a distance of 1 from f2.
3 City c1 is at a distance of 1 from f1, and c2, ...,cn are at a distance 3 from f1.

4 The opening cost of f1 and f2 are ε and (n+1)ε , respectively, for a small number ε .



Facility Location

Tight example

Tight example

f1

c1

c2

c3

cn

f2

1

3

3

3

1

1

1

1

Tight example

1 The graph has n cities, c1,c2, ...,cn and two facilities f1 and f2.

2 Each city is at a distance of 1 from f2.

3 City c1 is at a distance of 1 from f1, and c2, ...,cn are at a distance 3 from f1.

4 The opening cost of f1 and f2 are ε and (n+1)ε , respectively, for a small number ε .



Facility Location

Tight example

Tight example

f1

c1

c2

c3

cn

f2

1

3

3

3

1

1

1

1

Tight example

1 The graph has n cities, c1,c2, ...,cn and two facilities f1 and f2.

2 Each city is at a distance of 1 from f2.
3 City c1 is at a distance of 1 from f1, and c2, ...,cn are at a distance 3 from f1.

4 The opening cost of f1 and f2 are ε and (n+1)ε , respectively, for a small number ε .



Facility Location

Tight example

Tight example

f1

c1

c2

c3

cn

f2

1

3

3

3

1

1

1

1

Tight example

1 The graph has n cities, c1,c2, ...,cn and two facilities f1 and f2.

2 Each city is at a distance of 1 from f2.
3 City c1 is at a distance of 1 from f1, and c2, ...,cn are at a distance 3 from f1.

4 The opening cost of f1 and f2 are ε and (n+1)ε , respectively, for a small number ε .



Facility Location

Tight example

Tight example

f1

c1

c2

c3

cn

f2

1

3

3

3

1

1

1

1

Tight example (cont’d)

The optimal solution is to open f2 and connect all cities to it, at a total cost of (n+1)ε +n.

However, Algorithm 1 will open facility f1 and connect all cities to it, at a total cost of
ε +1+3(n−1).
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The optimal solution is to open f2 and connect all cities to it, at a total cost of (n+1)ε +n.

However, Algorithm 1 will open facility f1 and connect all cities to it, at a total cost of
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