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Metric uncapacitated facility location problem

© Let G be a bipartite graph with bipartition (F, C), where F is the set of facilities and C is the
set of cities.

@ Let f; be the cost of opening facility /, and c; be the cost of connecting city j to (opened)
facility /.

© The connection costs satisfy the triangle inequality.

© The problem is to find a subset / C F of facilities that should be opened, and a function
¢ : C — | assigning cities to open facilities in such a way that the total cost of opening
facilities and connecting cities to open facilities is minimized.
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@ xj is an indicator variable denoting whether city j is connected to the facility
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Simple setting

@ Suppose LP has an optimal solution that is integral, say / C Fand ¢ : C — |.
@ Then, under this solution, y; = 1 iff i € /, and x; = 1 iff i = ¢ ().

© Let (o, ) denote an optimal dual solution.
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@ By condition (i), if ¢(j) = i, then o; — Bj = cj.
So, oy can be thought of as the total price paid by city j; where c¢; goes towards the use of
edge (/,/), and Bj is the contribution of j towards opening facility /.

@ By condition (ii), each open facility must be fully paid for, i.e.,if i € I, then Y Bj=f;.

i:0()=i

© Now consider condition (iv). If facility i is open, but ¢ (j) # i, then y; # x;. This means
Bi; = 0. In other words, city j does not contribute to opening any facility besides the one to
which it is connected.
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@ The cities are partitioned into two sets, directly connected and indirectly connected.

@ Only directly connected cities will pay for opening facilities, i.e., B can be nonzero only if
is a directly connected city and i = ¢ (j).

@ For an indirectly connected city j, the primal condition is relaxed as follows:
(1/3)¢s(s < & < (-

@ All other primal conditions are maintained:
o — ﬁ(b(i)/‘ = Cy(j);» for a directly connected city j,

and Y fj=f; for each open facility i.
i0()=i
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In this phase, the algorithm:

@ operates in a primal-dual fashion
@ finds a dual feasible solution
@ determines a set of tight edges and temporarily open facilities, F;

v

This phase consists of:

@ choosing a subset / of F; to open
@ finding a mapping, ¢, from cities to /

A\
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@ Initially, each city is defined to be unconnected.

© Throughout this phase, the algorithm raises the dual variable ¢; for each unconnected city j
uniformly at unit rate, i.e., o4 will grow by 1 in unit time.

When a; = c; for some edge (/,/), the algorithm will declare this edge to be tight.

© 0

Henceforth, dual variable ﬁ,,/ will be raised uniformly, thus ensuring that the first constraint in
the LP is not violated. B goes towards paying for facility /. Each edge (/,/) such that
Bj > 0is declared special.

@ Facility / is said to be paid for if Y Bij = fi. If so, the algorithm declares this facility
temporarily open.

@ All unconnected cities having tight edges to this facility are declared connected and facility i is
declared the connecting witness for each of these cities. (Notice that dual variables o; of these
cities are no longer raised.)

@ In the future, as soon as an unconnected city j gets a tight edge to /, j will also be declared
connected and i will be declared the connecting witness for . (Notice that B = 0 and thus edge
(i,f) is not special.)

@ When all cities are connected, this phase of the algorithm terminates. If several events
happen simultaneously, the algorithm executes them in arbitrary order.
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@ For city j, define .%; = {i € F; | (i,j) is special}.
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Otherwise, consider tight edge (i, ) such that /" was the connecting witness for j.
If " € 1, again set ¢(j) = i" and declare city j directly connected. (Notice that in this case fB; = 0).
In the remaining case that i’ ¢ I, let i be any neighbor of i’ in graph H such that i € /.
Set ¢(j) = i and declare city j indirectly connected.
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@ Otherwise, consider tight edge (i, ) such that /" was the connecting witness for j.
Q Ifi" €1, again set ¢(j) = i and declare city j directly connected. (Notice that in this case By; = 0).
@ In the remaining case that i/’ ¢ /, let i be any neighbor of i’ in graph H such that i € /.
@ Set ¢(j) = i and declare city j indirectly connected.

© /and ¢ define primal integral solution: x; = 1 iff ¢(j) =iand y; = 1 iff i € I.
@ The values of @; and fB; obtained at the end of Phase 1 form a dual feasible solution.
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@ We will show how the dual variables ¢;’s pay for the primal costs of opening facilities and
connecting cities to facilities.

@ Denote by ocjf and a/-e the contributions of city j to these two costs respectively;
o =of +of.
Q If jis indirectly connected, then o/ = 0 and of =
Q If j is directly connected, then the following must hold:
o; = cj+ By,
where i = ¢(j). Now, let of = B and o = c;.
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Letic I Then, ¥ of =f.
j8()=i

w

@ Since i is temporarily open at the end of Phase 1, it is completely paid for, i.e.,
Y a/.f =f.
29 ()=i
@ Note that each city j that has contributed to f; must be directly connected to i.
For each such city, a]f = B
© Any other city j that is connected to facility i must satisfy a} =0.

©Q The lemma follows. [J )
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Thi=Yof.

iel jec

Recall that txf was defined to be 0 for indirectly connected cities. Thus, only the directly
connected cities pay for the cost of opening facilities.
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For an indirectly connected city j, cjj < 306/9, where i = ¢(j).

@ Let / be the connecting witness for city J.

@ Since j is indirectly connected to /, (i, i) must be an edge in H.

@ In turn, there must be a city, say ', such that (i,j') and (/’, ') are both special edges.

@ Let t; and t, be the times at which i and i were declared temporarily open during Phase 1.
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were declared temporarily open.

© Consider the time min(t;, ).
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Proof (contd)

@ Since edge (7,)) is tight, &; > cy;.
@ Since edges (/',j') and (i,/') are also tight, c;y > ¢;r and o > cyjr.

© Since both these edges are special, they must both have gone tight before either i or i’
were declared temporarily open.

© Consider the time min(t, f2). oy cannot be growing beyond this time.
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Proof (contd)

@ Since edge (7,)) is tight, &; > cy;.
Since edges (i',j') and (i,j’) are also tight, & > ¢ and &y > ¢y

Q

© Since both these edges are special, they must both have gone tight before either i or i’
were declared temporarily open.

(%]

Consider the time min(t, &2). o cannot be growing beyond this time. Therefore,
oy < min(ty, t).
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Proof (contd)

Since edge (i', j) is tight, o; > cy;.
Since edges (i',j') and (i,j’) are also tight, & > ¢ and &y > ¢y

Since both these edges are special, they must both have gone tight before either i or i’
were declared temporarily open.

Consider the time min(t, &2). o cannot be growing beyond this time. Therefore,
oy < min(ty, t).

© ©0 o000

Finally, since /' is the connecting witness for j, 0 > t.
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Proof (contd)

Since edge (i', j) is tight, o; > cy;.

Since edges (i',j') and (i,j’) are also tight, & > ¢ and &y > ¢y

Since both these edges are special, they must both have gone tight before either i or i’
were declared temporarily open.

Consider the time min(t, &2). o cannot be growing beyond this time. Therefore,
oy < min(ty, t).
Finally, since /' is the connecting witness for j, 0 > t.

©0 © 0060

Therefore, o; > o, and the required inequalities follow. [J
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Theorem 4

The primal and dual solutions constructed by the algorithm satisfy:
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The primal and dual solutions constructed by the algorithm satisfy:

Z Cij~X,','+3Zf/‘YI'S3Z(Xj.

ieF,jeC icF jec

| N

Proof

For a directly connected city j, ¢j = (xje < Saf, where ¢ (j) = i.
Combined with Lemma 3, we get

Z ij-X/j§3Z(Xje.

i€F,jeC jec

Adding this to the equality stated in Corollary 2, multiplied by 3, gives the theorem. [J
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Algorithm 1 achieves an approximation factor of 3 for the facility location problem and has a
running time of O(mlog m).
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Tight example

Tight example

@ The graph has ncities, c1, ¢, ..., ¢, and two facilities f; and f,.

@ Each city is at a distance of 1 from f,.

@ City ¢y is at a distance of 1 from f;, and ¢, ..., ¢, are at a distance 3 from f.

@ The opening cost of f; and f, are € and (n+ 1)g, respectively, for a small number €.
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Tight example (contd)

The optimal solution is to open £ and connect all cities to it, at a total cost of (n+1)e + n.
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Tight example (contd)
The optimal solution is to open £ and connect all cities to it, at a total cost of (n+1)e + n.

However, Algorithm 1 will open facility fy and connect all cities to it, at a total cost of
e+1+3(n—1).
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