Feedback Vertex Set Problem: Part 1

Vahan Mkrtchyan

Lane Department of Computer Science and Electrical Engineering West Virginia University

February 18, 2014

・ロ・・ (日・・ (日・・)

э

We are given an undirected graph G = (V, E)

æ

・ロト ・聞 ト ・ ヨ ト ・ ヨ ト …

We are given an undirected graph G = (V, E) and a function *w* assigning non-negative weights to its vertices.

Ъ.

We are given an undirected graph G = (V, E) and a function *w* assigning non-negative weights to its vertices. The objective is to find a minimum weight subset of *V*, whose removal leaves an acyclic graph.

< ロ > < 同 > < 回 > < 回 > .

We are given an undirected graph G = (V, E) and a function *w* assigning non-negative weights to its vertices. The objective is to find a minimum weight subset of *V*, whose removal leaves an acyclic graph.

Definition

A subset of V whose removal from G leaves an acyclic graph, is called a feedback set.

We are given an undirected graph G = (V, E) and a function *w* assigning non-negative weights to its vertices. The objective is to find a minimum weight subset of *V*, whose removal leaves an acyclic graph.

Definition

A subset of V whose removal from G leaves an acyclic graph, is called a feedback set.

Remark

Observe that any graph possesses a feedback set.

< ロ > < 同 > < 回 > < 回 > .

Recalling Some Topics

We need to recall the notion of a field, linear space over a field, and the directed sum of linear spaces.

< 同 > < 回 > < 回 > .

Recalling Some Topics

We need to recall the notion of a field, linear space over a field, and the directed sum of linear spaces.

Source

You may have a look at any book on General and Linear Algebra.

A = A = A = A = A
A = A
A = A
A = A
A = A
A = A
A = A
A = A
A = A
A = A
A = A
A = A
A = A
A = A
A = A
A = A
A = A
A = A
A = A
A = A
A = A
A = A
A = A
A = A
A = A
A = A
A = A
A = A
A = A
A = A
A = A
A = A
A = A
A = A
A = A
A = A
A = A
A = A
A = A
A = A
A = A
A = A
A = A
A = A
A = A
A = A
A = A
A = A
A = A
A = A
A = A
A = A
A = A
A = A
A = A
A = A
A = A
A = A
A = A
A = A
A = A
A = A
A = A
A = A
A = A
A = A
A = A
A = A
A = A
A = A
A = A
A = A
A = A
A = A
A = A
A = A
A = A
A = A
A = A
A = A
A = A
A = A
A = A
A = A
A = A
A = A
A = A
A = A
A = A
A = A
A = A
A = A
A = A
A = A
A = A
A = A
A = A
A = A
A = A
A = A
A = A
A = A
A = A
A = A
A = A
A = A
A = A
A = A
A = A
A = A
A = A
A = A
A = A
A = A
A = A
A = A
A = A
A = A
A = A
A = A
A = A
A = A
A = A
A = A
A = A
A = A
A = A
A = A
A = A
A = A
A = A
A = A
A = A
A = A
A = A
A = A
A = A
A = A
A = A
A = A
A = A
A = A
A = A
A = A
A = A
A = A
A = A
A = A
A = A
A = A
A = A
A = A
A = A
A = A
A = A
A = A
A = A
A = A
A = A
A = A
A = A
A = A
A = A
A = A
A = A
A = A
A = A
A = A
A = A
A = A
A = A
A = A
A = A
A = A
A = A
A = A
A = A
A = A
A = A
A = A
A = A
A = A
A = A
A = A
A = A
A = A
A = A
A = A
A = A
A = A
A = A
A = A
A = A
A = A
A = A
A = A
A = A
A = A
A = A
A = A
A = A
A = A
A = A

Recalling Some Topics

We need to recall the notion of a field, linear space over a field, and the directed sum of linear spaces.

Source

You may have a look at any book on General and Linear Algebra. Also wiki provides good source of information where one can recall basic concepts and facts.

< D > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P

Definition

Let GF(2) denote the set {0, 1} with the operations + and \cdot defined on its elements by the following rules: 0 + 0 = 0, 0 + 1 = 1, 1 + 0 = 1, 1 + 1 = 0,

・ロト ・聞 ト ・ ヨ ト ・ ヨ ト …

Ъ.

Let GF(2) denote the set {0, 1} with the operations + and \cdot defined on its elements by the following rules: 0 + 0 = 0, 0 + 1 = 1, 1 + 0 = 1, 1 + 1 = 0, $0 \cdot 0 = 0$, $0 \cdot 1 = 0$, $1 \cdot 0 = 0$, and $1 \cdot 1 = 1$.

Ъ.

Definition

Let GF(2) denote the set {0, 1} with the operations + and \cdot defined on its elements by the following rules: 0 + 0 = 0, 0 + 1 = 1, 1 + 0 = 1, 1 + 1 = 0, $0 \cdot 0 = 0$, $0 \cdot 1 = 0$, $1 \cdot 0 = 0$, and $1 \cdot 1 = 1$.

Definition

For a positive integer $m \ge 1$, let $GF(2)^m$ denote the set of all vectors of length m, whose elements are from GF(2).

< ロ > < 同 > < 三 > < 三 > -

Definition

Let GF(2) denote the set {0, 1} with the operations + and \cdot defined on its elements by the following rules: 0 + 0 = 0, 0 + 1 = 1, 1 + 0 = 1, 1 + 1 = 0, $0 \cdot 0 = 0$, $0 \cdot 1 = 0$, $1 \cdot 0 = 0$, and $1 \cdot 1 = 1$.

Definition

For a positive integer $m \ge 1$, let $GF(2)^m$ denote the set of all vectors of length m, whose elements are from GF(2). If $x = (x_1, ..., x_m)$ and $y = (y_1, ..., y_m)$ are two vectors from $GF(2)^m$, then the vector x + y is defined as follows: $x + y = (x_1 + y_1, ..., x_m + y_m)$.

< ロ > < 同 > < 三 > < 三 > -

Definition

Let GF(2) denote the set {0, 1} with the operations + and \cdot defined on its elements by the following rules: 0 + 0 = 0, 0 + 1 = 1, 1 + 0 = 1, 1 + 1 = 0, $0 \cdot 0 = 0$, $0 \cdot 1 = 0$, $1 \cdot 0 = 0$, and $1 \cdot 1 = 1$.

Definition

For a positive integer $m \ge 1$, let $GF(2)^m$ denote the set of all vectors of length m, whose elements are from GF(2). If $x = (x_1, ..., x_m)$ and $y = (y_1, ..., y_m)$ are two vectors from $GF(2)^m$, then the vector x + y is defined as follows: $x + y = (x_1 + y_1, ..., x_m + y_m)$. If $\lambda \in GF(2)$ and $x = (x_1, ..., x_m) \in GF(2)^m$, then the vector $\lambda \cdot x$ is defined as $\lambda \cdot x = (\lambda \cdot x_1, ..., \lambda \cdot x_m)$.

< ロ > < 同 > < 三 > < 三 > -

Definition

Let GF(2) denote the set {0, 1} with the operations + and \cdot defined on its elements by the following rules: 0 + 0 = 0, 0 + 1 = 1, 1 + 0 = 1, 1 + 1 = 0, $0 \cdot 0 = 0$, $0 \cdot 1 = 0$, $1 \cdot 0 = 0$, and $1 \cdot 1 = 1$.

Definition

For a positive integer $m \ge 1$, let $GF(2)^m$ denote the set of all vectors of length m, whose elements are from GF(2). If $x = (x_1, ..., x_m)$ and $y = (y_1, ..., y_m)$ are two vectors from $GF(2)^m$, then the vector x + y is defined as follows: $x + y = (x_1 + y_1, ..., x_m + y_m)$. If $\lambda \in GF(2)$ and $x = (x_1, ..., x_m) \in GF(2)^m$, then the vector $\lambda \cdot x$ is defined as $\lambda \cdot x = (\lambda \cdot x_1, ..., \lambda \cdot x_m)$.

Definition

A non-empty set $L \subseteq GF(2)^m$ is defined to be a linear space over GF(2), if for any $x, y \in L$ one has $x + y \in L$.

Definition

Let GF(2) denote the set {0, 1} with the operations + and \cdot defined on its elements by the following rules: 0 + 0 = 0, 0 + 1 = 1, 1 + 0 = 1, 1 + 1 = 0, $0 \cdot 0 = 0$, $0 \cdot 1 = 0$, $1 \cdot 0 = 0$, and $1 \cdot 1 = 1$.

Definition

For a positive integer $m \ge 1$, let $GF(2)^m$ denote the set of all vectors of length m, whose elements are from GF(2). If $x = (x_1, ..., x_m)$ and $y = (y_1, ..., y_m)$ are two vectors from $GF(2)^m$, then the vector x + y is defined as follows: $x + y = (x_1 + y_1, ..., x_m + y_m)$. If $\lambda \in GF(2)$ and $x = (x_1, ..., x_m) \in GF(2)^m$, then the vector $\lambda \cdot x$ is defined as $\lambda \cdot x = (\lambda \cdot x_1, ..., \lambda \cdot x_m)$.

Definition

A non-empty set $L \subseteq GF(2)^m$ is defined to be a linear space over GF(2), if for any $x, y \in L$ one has $x + y \in L$.

Remark

Observe that both of $L = \{0 = (0, ..., 0)\}$ and $L = GF(2)^m$ form a linear space over GF(2).

ヘロマ ヘビマ ヘビマ

Definition

If $L, L' \subseteq GF(2)^m$ are two linear spaces over GF(2), and $L \subseteq L'$, then L is said to be a subspace of L'.

< □ > < □ > < □ > < □ > < □ > < □ >

Ъ.

Definition

If $L, L' \subseteq GF(2)^m$ are two linear spaces over GF(2), and $L \subseteq L'$, then L is said to be a subspace of L'.

Definition

If $x_1, ..., x_k$ are k vectors from $GF(2)^m$, then these vectors are said to be linearly independent over GF(2), if for any $\lambda_1, ..., \lambda_k \in GF(2)$ the equality $\lambda_1 \cdot x_1 + ... + \lambda_k \cdot x_k = 0 = (0, ..., 0)$ implies that $\lambda_1 = ... = \lambda_k = 0$.

< ロ > < 同 > < 回 > < 回 > .

Definition

If $L, L' \subseteq GF(2)^m$ are two linear spaces over GF(2), and $L \subseteq L'$, then L is said to be a subspace of L'.

Definition

If $x_1, ..., x_k$ are k vectors from $GF(2)^m$, then these vectors are said to be linearly independent over GF(2), if for any $\lambda_1, ..., \lambda_k \in GF(2)$ the equality $\lambda_1 \cdot x_1 + ... + \lambda_k \cdot x_k = 0 = (0, ..., 0)$ implies that $\lambda_1 = ... = \lambda_k = 0$.

Definition

If $L \subseteq GF(2)^m$ is a linear space, then its dimension is defined to be the maximum number of linearly independent vectors from *L*.

< ロ > < 同 > < 回 > < 回 > .

Definition

If $L, L' \subseteq GF(2)^m$ are two linear spaces over GF(2), and $L \subseteq L'$, then L is said to be a subspace of L'.

Definition

If $x_1, ..., x_k$ are k vectors from $GF(2)^m$, then these vectors are said to be linearly independent over GF(2), if for any $\lambda_1, ..., \lambda_k \in GF(2)$ the equality $\lambda_1 \cdot x_1 + ... + \lambda_k \cdot x_k = 0 = (0, ..., 0)$ implies that $\lambda_1 = ... = \lambda_k = 0$.

Definition

If $L \subseteq GF(2)^m$ is a linear space, then its dimension is defined to be the maximum number of linearly independent vectors from *L*.

Remark

Observe that the dimension of $L = \{0 = (0, ..., 0)\}$ is zero, while it can be shown that the dimension of $L = GF(2)^m$ is m.

< ロ > < 同 > < 三 > < 三 >

If $x_1, ..., x_k$ are k vectors from $GF(2)^m$, then an expression of the form $\lambda_1 \cdot x_1 + ... + \lambda_k \cdot x_k$ is called a linear combination of $x_1, ..., x_k$.

If $x_1, ..., x_k$ are k vectors from $GF(2)^m$, then an expression of the form $\lambda_1 \cdot x_1 + ... + \lambda_k \cdot x_k$ is called a linear combination of $x_1, ..., x_k$.

Definition

The set of all $(=2^k)$ linear combinations of $x_1, ..., x_k$ forms a linear space, which is called the span of the vectors $x_1, ..., x_k$.

(日) (四) (日) (日)

If $x_1, ..., x_k$ are k vectors from $GF(2)^m$, then an expression of the form $\lambda_1 \cdot x_1 + ... + \lambda_k \cdot x_k$ is called a linear combination of $x_1, ..., x_k$.

Definition

The set of all $(=2^k)$ linear combinations of $x_1, ..., x_k$ forms a linear space, which is called the span of the vectors $x_1, ..., x_k$. This is in fact the smallest subspace of $GF(2)^m$ that contains the vectors $x_1, ..., x_k$.

< ロ > < 同 > < 回 > < 回 > < 回 > <

Definition

Let L, L', L'' be linear subspaces of $GF(2)^m$.

э

□→▲目→▲目→

Definition

Let L, L', L'' be linear subspaces of $GF(2)^m$. Then L is said to be directed sum of subspaces L' and L'', if for each $x \in L$ there exist exactly one $x' \in L'$ and exactly one $x'' \in L''$, such that x = x' + x''.

Definition

Let L, L', L'' be linear subspaces of $GF(2)^m$. Then L is said to be directed sum of subspaces L' and L'', if for each $x \in L$ there exist exactly one $x' \in L'$ and exactly one $x'' \in L''$, such that x = x' + x''. This fact will be denoted by $L = L' \oplus L''$.

Definition

Let L, L', L'' be linear subspaces of $GF(2)^m$. Then L is said to be directed sum of subspaces L' and L'', if for each $x \in L$ there exist exactly one $x' \in L'$ and exactly one $x'' \in L''$, such that x = x' + x''. This fact will be denoted by $L = L' \oplus L''$.

Theorem

If $L = L' \oplus L''$, then the dimension of L is equal to the sum of dimensions L' and L''.

< ロ > < 同 > < 回 > < 回 > .

Let G be a graph, which contains m edges.

> < 문 > < 문 >

Let *G* be a graph, which contains *m* edges. Assume that its edges are ordered as follows: $e_1, ..., e_m$.

< ロ > < 団 > < 豆 > < 豆 > .

Ъ.

Let *G* be a graph, which contains *m* edges. Assume that its edges are ordered as follows: $e_1, .., e_m$. Let *C* be a simple cycle of *G*.

Let *G* be a graph, which contains *m* edges. Assume that its edges are ordered as follows: $e_1, ..., e_m$. Let *C* be a simple cycle of *G*. Consider the characteristic vector of *C* defined as follows: $\chi_C = (l_1(C), ..., l_m(C))$, where $l_i(C) = 1$ if $e_i \in C$, and $l_i(C) = 0$ if $e_i \notin C$.

< ロ > < 同 > < 回 > < 回 > .

Let *G* be a graph, which contains *m* edges. Assume that its edges are ordered as follows: $e_1, ..., e_m$. Let *C* be a simple cycle of *G*. Consider the characteristic vector of *C* defined as follows: $\chi_C = (l_1(C), ..., l_m(C))$, where $l_i(C) = 1$ if $e_i \in C$, and $l_i(C) = 0$ if $e_i \notin C$.

The Cycle Space

The span of characteristic vectors corresponding to all simple cycles of G, is called cycle space of the graph G.

< D > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P

Theorem

The dimension of the cycle space of a graph G = (V, E), denoted by cyc(G), is given by the formula: cyc(G) = |E| - |V| + comps(G), where comps(G) is the number of connected components of *G*.

・ロト ・聞 ト ・ ヨ ト ・ ヨ ト …

Ъ.

Theorem

The dimension of the cycle space of a graph G = (V, E), denoted by cyc(G), is given by the formula: cyc(G) = |E| - |V| + comps(G), where comps(G) is the number of connected components of *G*.

Definition

cyc(G) is called the cyclomatic number of a graph G.

< □ > < □ > < □ > < □ > < □ > < □ >

Theorem

The dimension of the cycle space of a graph G = (V, E), denoted by cyc(G), is given by the formula: cyc(G) = |E| - |V| + comps(G), where comps(G) is the number of connected components of *G*.

Definition

cyc(G) is called the cyclomatic number of a graph G.

Proof.

The proof can be found in chapter 6 of Vazirani's book. It uses the notion of an orthogonal subspace in Euclidean spaces.

< ロ > < 同 > < 回 > < 回 > < 回 > <