Feedback Vertex Set Problem: Part 2

Vahan Mkrtchyan

Lane Department of Computer Science and Electrical Engineering West Virginia University

February 21, 2014

Vahan Mkrtchyan Feedback Vertex Set Problem: Part 2

・ロ・・ (日・・ (日・・)

э

Let $F = \{v_1, ..., v_f\}$ be a feedback set, then $cyc(G) = \sum_{i=1}^f \delta_{G_{i-1}}(v_i) \le \sum_{v \in F} \delta_G(v)$, where $G = G_0$ and $G_i = G - \{v_1, ..., v_i\}$.

<ロ> <同> <同> < 回> < 回> < 三</p>

Let $F = \{v_1, ..., v_f\}$ be a feedback set, then $cyc(G) = \sum_{i=1}^f \delta_{G_{i-1}}(v_i) \le \sum_{v \in F} \delta_G(v)$, where $G = G_0$ and $G_i = G - \{v_1, ..., v_i\}$.

Definition

A vertex weight *w* is cyclomatic, if for any vertex *v* of *G*, one has: $w(v) = c \cdot \delta_G(v)$.

< ロ > < 同 > < 三 > < 三 > -

Ъ.

Let $F = \{v_1, ..., v_f\}$ be a feedback set, then $cyc(G) = \sum_{i=1}^f \delta_{G_{i-1}}(v_i) \le \sum_{v \in F} \delta_G(v)$, where $G = G_0$ and $G_i = G - \{v_1, ..., v_i\}$.

Definition

A vertex weight *w* is cyclomatic, if for any vertex *v* of *G*, one has: $w(v) = c \cdot \delta_G(v)$.

A lower bound for OPT

If *w* is cyclomatic, and *F* is an optimal feedback set, then $c \cdot cyc(G) \leq c \cdot \sum_{v \in F} \delta_G(v) = w(F) = OPT$, hence $c \cdot cyc(G)$ is a lower bound for *OPT*.

Let $F = \{v_1, ..., v_f\}$ be a feedback set, then $cyc(G) = \sum_{i=1}^f \delta_{G_{i-1}}(v_i) \le \sum_{v \in F} \delta_G(v)$, where $G = G_0$ and $G_i = G - \{v_1, ..., v_i\}$.

Definition

A vertex weight *w* is cyclomatic, if for any vertex *v* of *G*, one has: $w(v) = c \cdot \delta_G(v)$.

A lower bound for OPT

If w is cyclomatic, and F is an optimal feedback set, then $c \cdot cyc(G) \leq c \cdot \sum_{v \in F} \delta_G(v) = w(F) = OPT$, hence $c \cdot cyc(G)$ is a lower bound for OPT.

2-approximation algorithm for cyclomatic case

If *w* is cyclomatic, and *F* is a minimal feedback set, then $w(F) = c \cdot \sum_{v \in F} \delta_G(v) \le 2 \cdot c \cdot cyc(G) \le 2 \cdot OPT.$

Let $F = \{v_1, ..., v_f\}$ be a feedback set, then $cyc(G) = \sum_{i=1}^f \delta_{G_{i-1}}(v_i) \le \sum_{v \in F} \delta_G(v)$, where $G = G_0$ and $G_i = G - \{v_1, ..., v_i\}$.

Definition

A vertex weight *w* is cyclomatic, if for any vertex *v* of *G*, one has: $w(v) = c \cdot \delta_G(v)$.

A lower bound for OPT

If w is cyclomatic, and F is an optimal feedback set, then $c \cdot cyc(G) \leq c \cdot \sum_{v \in F} \delta_G(v) = w(F) = OPT$, hence $c \cdot cyc(G)$ is a lower bound for OPT.

2-approximation algorithm for cyclomatic case

If *w* is cyclomatic, and *F* is a minimal feedback set, then $w(F) = c \cdot \sum_{v \in F} \delta_G(v) \le 2 \cdot c \cdot cyc(G) \le 2 \cdot OPT$. Hence a minimal feedback set approximates the optimal solution within a factor of 2 in case of cyclomatic weights.

For a graph G = (V, E) and a weight function w, let $c = \min_{v \in V} \{ \frac{w(v)}{\delta_G(v)} \}$.

<回><モン<

<br

Ъ.

For a graph G = (V, E) and a weight function w, let $c = \min_{v \in V} \{\frac{w(v)}{\delta_G(v)}\}$. $t(v) = c \cdot \delta_G(v)$ is called the largest cyclomatic weight function, and w'(v) = w(v) - t(v) is called the residual weight function.

□ ▶ ▲ 臣 ▶ ▲ 臣 ▶ □

For a graph G = (V, E) and a weight function w, let $c = \min_{v \in V} \{\frac{w(v)}{\delta_G(v)}\}$. $t(v) = c \cdot \delta_G(v)$ is called the largest cyclomatic weight function, and w'(v) = w(v) - t(v) is called the residual weight function. Let V' be the set of vertices with positive residual weight, and let G' be the subgraph of G induced on V'.

< 同 > < 回 > < 回 > -

For a graph G = (V, E) and a weight function w, let $c = \min_{v \in V} \{\frac{w(v)}{\delta_G(v)}\}$. $t(v) = c \cdot \delta_G(v)$ is called the largest cyclomatic weight function, and w'(v) = w(v) - t(v) is called the residual weight function. Let V' be the set of vertices with positive residual weight, and let G' be the subgraph of G induced on V'.

Decomposing into nested sequence of graphs and Cyclomatic Weight Functions

Repeated application of the above construction will result into a nested sequence $G_k \subset ... \subset G_1 \subset G_0 = G$ of induced subgraphs of *G* (where G_k is acyclic), and a largest cyclomatic weight function t_i defined on G_i (i = 0, ..., (k - 1)).

For a graph G = (V, E) and a weight function w, let $c = \min_{v \in V} \{\frac{w(v)}{\delta_G(v)}\}$. $t(v) = c \cdot \delta_G(v)$ is called the largest cyclomatic weight function, and w'(v) = w(v) - t(v) is called the residual weight function. Let V' be the set of vertices with positive residual weight, and let G' be the subgraph of G induced on V'.

Decomposing into nested sequence of graphs and Cyclomatic Weight Functions

Repeated application of the above construction will result into a nested sequence $G_k \subset ... \subset G_1 \subset G_0 = G$ of induced subgraphs of *G* (where G_k is acyclic), and a largest cyclomatic weight function t_i defined on G_i (i = 0, ..., (k - 1)). For the sake of convenience, we take $t_k = w_k$.

・ロン ・ 日 ・ ・ ヨ ・ ・ 日 ・

Since the weight of a vertex v has been decomposed into the weights $t_0, t_1, ..., t_k$, we have $\sum_{i:v \in V(G_i)} t_i(v) = w(v)$.

æ.

《曰》《聞》《臣》《臣》

Since the weight of a vertex v has been decomposed into the weights $t_0, t_1, ..., t_k$, we have $\sum_{i:v \in V(G_i)} t_i(v) = w(v)$.

2-approximation algorithm

The following lemma will play a crucial role in the design of a 2-approximation algorithm for the problem in case of general weights.

< ロ > < 同 > < 回 > < 回 > .

Since the weight of a vertex v has been decomposed into the weights $t_0, t_1, ..., t_k$, we have $\sum_{i:v \in V(G_i)} t_i(v) = w(v)$.

2-approximation algorithm

The following lemma will play a crucial role in the design of a 2-approximation algorithm for the problem in case of general weights.

Lemma

Let *H* be a subgraph of a graph G = (V, E) induced on the vertex set $V' \subset V$.

Since the weight of a vertex v has been decomposed into the weights $t_0, t_1, ..., t_k$, we have $\sum_{i:v \in V(G_i)} t_i(v) = w(v)$.

2-approximation algorithm

The following lemma will play a crucial role in the design of a 2-approximation algorithm for the problem in case of general weights.

Lemma

Let H be a subgraph of a graph G = (V, E) induced on the vertex set $V' \subset V$. Let F be a minimal feedback vertex set in H, and let $F' \subseteq V - V'$ be a minimal set, such that $F \cup F'$ is a feedback vertex set for G.

Since the weight of a vertex v has been decomposed into the weights $t_0, t_1, ..., t_k$, we have $\sum_{i:v \in V(G_i)} t_i(v) = w(v)$.

2-approximation algorithm

The following lemma will play a crucial role in the design of a 2-approximation algorithm for the problem in case of general weights.

Lemma

Let *H* be a subgraph of a graph G = (V, E) induced on the vertex set $V' \subset V$. Let *F* be a minimal feedback vertex set in *H*, and let $F' \subseteq V - V'$ be a minimal set, such that $F \cup F'$ is a feedback vertex set for *G*. Then $F \cup F'$ is a **minimal** feedback set for *G*.

 For the input graph G = (V, E) and a weight function w defined on it, construct the nested sequence G_k ⊂ ... ⊂ G₁ ⊂ G₀ = G of induced subgraphs of G (where G_k is acyclic), and a largest cyclomatic weight function t_i defined on G_i (i = 1,..., k) defined above.

- For the input graph G = (V, E) and a weight function w defined on it, construct the nested sequence G_k ⊂ ... ⊂ G₁ ⊂ G₀ = G of induced subgraphs of G (where G_k is acyclic), and a largest cyclomatic weight function t_i defined on G_i (i = 1,..., k) defined above.
- Since G_k is acyclic, $F_k = \emptyset$ is a minimal feedback vertex set.

- For the input graph G = (V, E) and a weight function w defined on it, construct the nested sequence G_k ⊂ ... ⊂ G₁ ⊂ G₀ = G of induced subgraphs of G (where G_k is acyclic), and a largest cyclomatic weight function t_i defined on G_i (i = 1,..., k) defined above.
- Since G_k is acyclic, $F_k = \emptyset$ is a minimal feedback vertex set.
- Repeatedly construct a minimal feedback vertex set in *G_i*, using the lemma.

- For the input graph G = (V, E) and a weight function w defined on it, construct the nested sequence G_k ⊂ ... ⊂ G₁ ⊂ G₀ = G of induced subgraphs of G (where G_k is acyclic), and a largest cyclomatic weight function t_i defined on G_i (i = 1,..., k) defined above.
- Since G_k is acyclic, $F_k = \emptyset$ is a minimal feedback vertex set.
- Repeatedly construct a minimal feedback vertex set in *G_i*, using the lemma.
- return $F = F_0$.

Ъ.

The algorithm is a 2-approximation algorithm for the Feedback Vertex Set problem.

э

<ロ> < 四> < 四> < 回> < 回> < 回> < 回> <

The algorithm is a 2-approximation algorithm for the Feedback Vertex Set problem.

Proof.

Let F^* be an optimal feedback set.

イロト イヨト イヨト イヨト

The algorithm is a 2-approximation algorithm for the Feedback Vertex Set problem.

Proof.

Let F^* be an optimal feedback set. Then $F^* \cap V(G_i)$ is a feedback set for G_i .

The algorithm is a 2-approximation algorithm for the Feedback Vertex Set problem.

Proof.

Let F^* be an optimal feedback set. Then $F^* \cap V(G_i)$ is a feedback set for G_i . Thus: $OPT = w(F^*) = \sum_{i=0}^{k} t_i(F^* \cap V(G_i)) \ge \sum_{i=0}^{k} OPT_i.$

・ 同 ト ・ ヨ ト ・ ヨ ト ・

The algorithm is a 2-approximation algorithm for the Feedback Vertex Set problem.

Proof.

Let F^* be an optimal feedback set. Then $F^* \cap V(G_i)$ is a feedback set for G_i . Thus: $OPT = w(F^*) = \sum_{i=0}^{k} t_i(F^* \cap V(G_i)) \ge \sum_{i=0}^{k} OPT_i$. Now let F_0 be the feedback set returned by the algorithm.

The algorithm is a 2-approximation algorithm for the Feedback Vertex Set problem.

Proof.

Let F^* be an optimal feedback set. Then $F^* \cap V(G_i)$ is a feedback set for G_i . Thus: $OPT = w(F^*) = \sum_{i=0}^{k} t_i(F^* \cap V(G_i)) \ge \sum_{i=0}^{k} OPT_i$. Now let F_0 be the feedback set returned by the algorithm. We have: $w(F_0) = \sum_{i=0}^{k} t_i(F_0 \cap V(G_i)) = \sum_{i=0}^{k} t_i(F_i) \le 2 \cdot \sum_{i=0}^{k} OPT_i \le 2 \cdot OPT$.