Vahan Mkrtchyan

Lane Department of Computer Science and Electrical Engineering West Virginia University

February 24, 2014

(a)

Shortest Superstring Problem

The Formulation of the Problem

Given a finite alphabet Σ ,

・ロ・・ (日・・ (日・・)

э

The Formulation of the Problem

Given a finite alphabet Σ , and a set of *n* strings $S = \{s_1, ..., s_n\}$.

<ロ> < 四> < 四> < 回> < 回> < 回> < 回> <

Ъ.

The Formulation of the Problem

Given a finite alphabet Σ , and a set of *n* strings $S = \{s_1, ..., s_n\}$. The objective is to find a shortest string that contains each s_i as a substring.

The Formulation of the Problem

Given a finite alphabet Σ , and a set of *n* strings $S = \{s_1, ..., s_n\}$. The objective is to find a shortest string that contains each s_i as a substring.

Remark

Observe that without loss of generality, we can assume that no string s_i is a substring of s_j for $i \neq j$.

< ロ > < 同 > < 回 > < 回 > .

The Formulation of the Problem

Given a finite alphabet Σ , and a set of *n* strings $S = \{s_1, ..., s_n\}$. The objective is to find a shortest string that contains each s_i as a substring.

Remark

Observe that without loss of generality, we can assume that no string s_i is a substring of s_j for $i \neq j$.

Example

Observe that if $s_1 = ab$ and $s_2 = ba$, then the concatenation gives s = abba, while the shortest superstring is s' = aba.

< □ > < □ > < □ > < □ > < □ > < □ >

The Formulation of the Problem

Given a finite alphabet Σ , and a set of *n* strings $S = \{s_1, ..., s_n\}$. The objective is to find a shortest string that contains each s_i as a substring.

Remark

Observe that without loss of generality, we can assume that no string s_i is a substring of s_j for $i \neq j$.

Example

Observe that if $s_1 = ab$ and $s_2 = ba$, then the concatenation gives s = abba, while the shortest superstring is s' = aba.

The complexity of Shortest Superstring Problem

The Shortest Superstring Problem is **NP-hard**, in great contrast with Largest Common Substring problem which can be solved in polynomial time with the help of dynamic programming.

< ロ > < 同 > < 三 > < 三 >

The definition of overlap

The overlap of two strings *s* and *t* denoted by overlap(s, t) is the suffix of maximum length of *s*, which is also a prefix of *t*.

< ロ > < 同 > < 回 > < 回 > .

The definition of overlap

The overlap of two strings s and t denoted by overlap(s, t) is the suffix of maximum length of s, which is also a prefix of t.

The Algorithm

 Choose two strings with maximum overlap, and replace them with one obtained by overlapping them as much as possible.

< D > < P > < E > < E > <</p>

The definition of overlap

The overlap of two strings *s* and *t* denoted by overlap(s, t) is the suffix of maximum length of *s*, which is also a prefix of *t*.

The Algorithm

- Choose two strings with maximum overlap, and replace them with one obtained by overlapping them as much as possible.
- Repeat the above step until one string is obtained.

< ロ > < 同 > < 回 > < 回 > :

The definition of overlap

The overlap of two strings s and t denoted by overlap(s, t) is the suffix of maximum length of s, which is also a prefix of t.

The Algorithm

- Choose two strings with maximum overlap, and replace them with one obtained by overlapping them as much as possible.
- Repeat the above step until one string is obtained.

The Algorithm

This algorithm is conjectured to have performance ratio 2.

The definition of overlap

The overlap of two strings *s* and *t* denoted by overlap(s, t) is the suffix of maximum length of *s*, which is also a prefix of *t*.

The Algorithm

- Choose two strings with maximum overlap, and replace them with one obtained by overlapping them as much as possible.
- Repeat the above step until one string is obtained.

The Algorithm

This algorithm is conjectured to have performance ratio 2. The following example shows that the coefficient cannot be improved: ab^k , b^kc , and b^{k+1} .

The definition of overlap

The overlap of two strings *s* and *t* denoted by overlap(s, t) is the suffix of maximum length of *s*, which is also a prefix of *t*.

The Algorithm

- Choose two strings with maximum overlap, and replace them with one obtained by overlapping them as much as possible.
- Repeat the above step until one string is obtained.

The Algorithm

This algorithm is conjectured to have performance ratio 2. The following example shows that the coefficient cannot be improved: ab^k , b^kc , and b^{k+1} . OPT = k + 3, ALG = 2k + 3.

Constructing the Instance of Set Cover

For s_i, s_j ∈ S and k > 0, if the k last symbols of s_i are the same as the first k symbols of s_j, then let σ_{i,j,k} denote the string obtained by overlapping these k positions of s_i and s_i.

Constructing the Instance of Set Cover

- For s_i, s_j ∈ S and k > 0, if the k last symbols of s_i are the same as the first k symbols of s_j, then let σ_{i,j,k} denote the string obtained by overlapping these k positions of s_i and s_i.
- Let *M* be the set of all strings $\sigma_{i,j,k}$ for all valid choices of *i*, *j*, *k*.

同 > < 三 > < 三 >

Constructing the Instance of Set Cover

- For s_i, s_j ∈ S and k > 0, if the k last symbols of s_i are the same as the first k symbols of s_j, then let σ_{i,j,k} denote the string obtained by overlapping these k positions of s_i and s_i.
- Let *M* be the set of all strings σ_{i,j,k} for all valid choices of *i*, *j*, *k*. For a string π let set(π) be the set of all strings of *S* that are a substring of π.

< ロ > < 同 > < 三 > < 三 >

Constructing the Instance of Set Cover

- For s_i, s_j ∈ S and k > 0, if the k last symbols of s_i are the same as the first k symbols of s_j, then let σ_{i,j,k} denote the string obtained by overlapping these k positions of s_i and s_i.
- Let *M* be the set of all strings σ_{i,j,k} for all valid choices of *i*, *j*, *k*. For a string π let set(π) be the set of all strings of *S* that are a substring of π.
- The instance ${\mathcal T}$ of set cover is constructed as follows:

A (1) > A (2) > A (2)

Constructing the Instance of Set Cover

- For s_i, s_j ∈ S and k > 0, if the k last symbols of s_i are the same as the first k symbols of s_j, then let σ_{i,j,k} denote the string obtained by overlapping these k positions of s_i and s_i.
- Let *M* be the set of all strings σ_{i,j,k} for all valid choices of *i*, *j*, *k*. For a string π let set(π) be the set of all strings of *S* that are a substring of π.
- The instance *T* of set cover is constructed as follows: the universal set of *T* is *S*, and the specified subsets of *S* are the sets set(*π*) which correspond to all sets *π* ∈ *S* ∪ *M*.

< ロ > < 同 > < 三 > < 三 >

Constructing the Instance of Set Cover

- For s_i, s_j ∈ S and k > 0, if the k last symbols of s_i are the same as the first k symbols of s_j, then let σ_{i,j,k} denote the string obtained by overlapping these k positions of s_i and s_i.
- Let *M* be the set of all strings σ_{i,j,k} for all valid choices of *i*, *j*, *k*. For a string π let set(π) be the set of all strings of *S* that are a substring of π.
- The instance *T* of set cover is constructed as follows: the universal set of *T* is *S*, and the specified subsets of *S* are the sets set(*π*) which correspond to all sets *π* ∈ *S* ∪ *M*. The cost of set(*π*) is the length of *π*.

< D > < P > < E > < E</p>

Constructing the Instance of Set Cover

- For s_i, s_j ∈ S and k > 0, if the k last symbols of s_i are the same as the first k symbols of s_j, then let σ_{i,j,k} denote the string obtained by overlapping these k positions of s_i and s_i.
- Let *M* be the set of all strings σ_{i,j,k} for all valid choices of *i*, *j*, *k*. For a string π let set(π) be the set of all strings of *S* that are a substring of π.
- The instance *T* of set cover is constructed as follows: the universal set of *T* is *S*, and the specified subsets of *S* are the sets set(*π*) which correspond to all sets *π* ∈ *S* ∪ *M*. The cost of set(*π*) is the length of *π*.
- Let OPT and OPT_T denote the length of the shortest superstring of S and the cost of an optimal solution to T.

< ロ > < 同 > < 三 > < 三 >

The description of the algorithm

• Construct the instance ${\mathcal T}$ and solve it by the greedy algorithm.

・ 同 ト ・ ヨ ト ・ ヨ ト

The description of the algorithm

• Construct the instance \mathcal{T} and solve it by the greedy algorithm. Let $set(\pi_1), ..., set(\pi_k)$ be the sets picked by this cover.

・ 同 ト ・ ヨ ト ・ ヨ ト

The description of the algorithm

- Construct the instance T and solve it by the greedy algorithm. Let $set(\pi_1), ..., set(\pi_k)$ be the sets picked by this cover.
- Concatenate the strings $\pi_1, ..., \pi_k$ in any order.

The description of the algorithm

- Construct the instance T and solve it by the greedy algorithm. Let $set(\pi_1), ..., set(\pi_k)$ be the sets picked by this cover.
- Concatenate the strings $\pi_1,...,\pi_k$ in any order.
- Output the resulting string s.

The description of the algorithm

- Construct the instance T and solve it by the greedy algorithm. Let $set(\pi_1), ..., set(\pi_k)$ be the sets picked by this cover.
- Concatenate the strings $\pi_1, ..., \pi_k$ in any order.
- Output the resulting string s.

Theorem

 $OPT \leq OPT_{\mathcal{T}} \leq 2 \cdot OPT.$

< ロ > < 同 > < 回 > < 回 > .

The description of the algorithm

- Construct the instance *T* and solve it by the greedy algorithm. Let set(π₁), ..., set(π_k) be the sets picked by this cover.
- Concatenate the strings $\pi_1, ..., \pi_k$ in any order.
- Output the resulting string s.

Theorem

 $OPT \leq OPT_{\mathcal{T}} \leq 2 \cdot OPT.$

Corollary

The above algorithm has performance ratio $2 \cdot H_n$.

The definition of prefix

If *overlap*(s_i , s_j) denotes the maximum overlap between s_i and s_j , then let *prefix*(s_i , s_j) be the prefix of s_i obtained by removing its overlap with s_j .

The definition of prefix

If *overlap*(s_i , s_j) denotes the maximum overlap between s_i and s_j , then let *prefix*(s_i , s_j) be the prefix of s_i obtained by removing its overlap with s_j .

The definition of prefix graph

The vertex set of the prefix graph is the set $\{1, ..., n\}$, and for each $i, j i \neq j$ the graph contains an arc from *i* to *j* whose weight is $|prefix(s_i, s_j)|$.

The definition of prefix

If *overlap*(s_i , s_j) denotes the maximum overlap between s_i and s_j , then let *prefix*(s_i , s_j) be the prefix of s_i obtained by removing its overlap with s_j .

The definition of prefix graph

The vertex set of the prefix graph is the set $\{1, ..., n\}$, and for each $i, j i \neq j$ the graph contains an arc from *i* to *j* whose weight is $|prefix(s_i, s_j)|$.

Remark

Minimum weight cycle cover can be found in polynomial time.

The definition of prefix

If *overlap*(s_i , s_j) denotes the maximum overlap between s_i and s_j , then let *prefix*(s_i , s_j) be the prefix of s_i obtained by removing its overlap with s_j .

The definition of prefix graph

The vertex set of the prefix graph is the set $\{1, ..., n\}$, and for each $i, j i \neq j$ the graph contains an arc from *i* to *j* whose weight is $|prefix(s_i, s_j)|$.

Remark

Minimum weight cycle cover can be found in polynomial time.

The actual bound

If $s_1, ..., s_n$ are numbered in order of leftmost occurrence in the shortest superstring s, then

OPT = |s|

- $= |\textit{prefix}(s_1, s_2)| + ... + |\textit{prefix}(s_{n-1}, s_n)| + |\textit{prefix}(s_n, s_1)| + |\textit{overlap}(s_n, s_1)|$
- $\geq |prefix(s_1, s_2)| + ... + |prefix(s_{n-1}, s_n)| + |prefix(s_n, s_1)|$
- \geq the length of the shortest cycle cover in prefix graph.

A notation

If
$$c = (i_1 \rightarrow i_2 \rightarrow ... \rightarrow i_l \rightarrow i_1)$$
 is a cycle in the prefix graph, then let $\alpha(c) = prefix(s_1, s_2) \cdot ... \cdot prefix(s_{i_l-1}, s_{i_l}) \cdot prefix(s_{i_l}, s_{i_l}).$

Ξ.

A notation

If $c = (i_1 \rightarrow i_2 \rightarrow ... \rightarrow i_l \rightarrow i_1)$ is a cycle in the prefix graph, then let $\alpha(c) = prefix(s_1, s_2) \cdot ... \cdot prefix(s_{i_{l-1}}, s_{i_l}) \cdot prefix(s_{i_l}, s_{i_l})$. Define the weight of cycle c, to be the length of $\alpha(c)$.

《口》《聞》《臣》《臣》 [] 臣

A notation

If $c = (i_1 \rightarrow i_2 \rightarrow ... \rightarrow i_l \rightarrow i_1)$ is a cycle in the prefix graph, then let $\alpha(c) = prefix(s_1, s_2) \cdot ... \cdot prefix(s_{i_{l-1}}, s_{i_l}) \cdot prefix(s_{i_l}, s_{i_l})$. Define the weight of cycle c, to be the length of $\alpha(c)$.

Remark

Notice that each string $s_{i_1}, ..., s_{i_l}$ is a substring of $(\alpha(c))^{\infty}$.

《口》《聞》《臣》《臣》 [] 臣

A notation

If $c = (i_1 \rightarrow i_2 \rightarrow ... \rightarrow i_l \rightarrow i_1)$ is a cycle in the prefix graph, then let $\alpha(c) = prefix(s_1, s_2) \cdot ... \cdot prefix(s_{i_{l-1}}, s_{i_l}) \cdot prefix(s_{i_l}, s_{i_l})$. Define the weight of cycle c, to be the length of $\alpha(c)$.

Remark

Notice that each string $s_{i_1},...,s_{i_l}$ is a substring of $(\alpha(c))^{\infty}$.

One more notation

 $\sigma(\mathbf{C}) = \alpha(\mathbf{C}) \cdot \mathbf{S}_{i_1}.$

< 回 > < 回 > < 回 > < 回 > < 三 >

A notation

If $c = (i_1 \rightarrow i_2 \rightarrow ... \rightarrow i_l \rightarrow i_1)$ is a cycle in the prefix graph, then let $\alpha(c) = prefix(s_1, s_2) \cdot ... \cdot prefix(s_{i_{l-1}}, s_{i_l}) \cdot prefix(s_{i_l}, s_{i_1})$. Define the weight of cycle c, to be the length of $\alpha(c)$.

Remark

Notice that each string $s_{i_1}, ..., s_{i_l}$ is a substring of $(\alpha(c))^{\infty}$.

One more notation

 $\sigma(\mathbf{C}) = \alpha(\mathbf{C}) \cdot \mathbf{S}_{i_1}.$

Remark

Notice that $\sigma(c)$ is a superstring of $s_{i_1}, ..., s_{i_l}$.

- コン (雪) (ヨ) (ヨ)

Ъ.

A notation

If $c = (i_1 \rightarrow i_2 \rightarrow ... \rightarrow i_l \rightarrow i_1)$ is a cycle in the prefix graph, then let $\alpha(c) = prefix(s_1, s_2) \cdot ... \cdot prefix(s_{i_{l-1}}, s_{i_l}) \cdot prefix(s_{i_l}, s_{i_1})$. Define the weight of cycle c, to be the length of $\alpha(c)$.

Remark

Notice that each string $s_{i_1},...,s_{i_l}$ is a substring of $(\alpha(c))^{\infty}$.

One more notation

 $\sigma(\mathbf{C}) = \alpha(\mathbf{C}) \cdot \mathbf{S}_{i_1}.$

Remark

Notice that $\sigma(c)$ is a superstring of $s_{i_1}, ..., s_{i_l}$.

Definition

 s_{i_1} is called the representative string for *c*.

Shortest Superstring Problem

The description of 4-approximation algorithm

The Algorithm

• Construct the prefix graph corresponding to strings in S.

▲ 同 ▶ ▲ 三 ▶

⊒ →

The description of 4-approximation algorithm

The Algorithm

- Construct the prefix graph corresponding to strings in S.
- Find a minimum cycle cover of the prefix graph $C = \{c_1, ..., c_k\}$.

The description of 4-approximation algorithm

The Algorithm

- Construct the prefix graph corresponding to strings in S.
- Find a minimum cycle cover of the prefix graph $C = \{c_1, ..., c_k\}$.
- Output the string $\sigma(c_1) \cdot \ldots \cdot \sigma(c_k)$.

< ロ > < 同 > < 三 > < 三 > -

The description of 4-approximation algorithm

The Algorithm

- Construct the prefix graph corresponding to strings in S.
- Find a minimum cycle cover of the prefix graph $C = \{c_1, ..., c_k\}$.
- Output the string $\sigma(c_1) \cdot \ldots \cdot \sigma(c_k)$.

Remark

Observe that the algorithm constructs a superstring of strings of S.

< ロ > < 同 > < 三 > < 三 > -

Lemma

If each string in $S' \subseteq S$ is a substring of t^{∞} for a string t, then there is a cycle of weight at most length of t in the prefix graph covering all the vertices corresponding to strings in S'.

< ロ > < 同 > < 回 > < 回 > < 回 > <

Lemma

If each string in $S' \subseteq S$ is a substring of t^{∞} for a string t, then there is a cycle of weight at most length of t in the prefix graph covering all the vertices corresponding to strings in S'.

Lemma

Let c and c' be two cycles in C, and let r, r' be representative strings from these cycles.

< ロ > < 同 > < 回 > < 回 > < 回 > <

Lemma

If each string in $S' \subseteq S$ is a substring of t^{∞} for a string t, then there is a cycle of weight at most length of t in the prefix graph covering all the vertices corresponding to strings in S'.

Lemma

Let *c* and *c'* be two cycles in C, and let *r*, *r'* be representative strings from these cycles. Then |overlap(r, r')| < weight(c) + weight(c').

< ロ > < 同 > < 回 > < 回 > :

Theorem

The algorithm achieves an approximation factor 4 for the shortest superstring problem.

< ロ > < 団 > < 豆 > < 豆 > .

Theorem

The algorithm achieves an approximation factor 4 for the shortest superstring problem.

Proof.

Let weight(C) = $\sum_{i=1}^{k} weight(c_i)$.

< ロ > < 同 > < 回 > < 回 > < 回 > <

Theorem

The algorithm achieves an approximation factor 4 for the shortest superstring problem.

Proof.

Let weight(C) = $\sum_{i=1}^{k} weight(c_i)$. Then

$$LG = \sum_{i=1}^{k} |\sigma(c_i)|$$

= weight(C) + $\sum_{i=1}^{k} |r_i|$
 $\leq OPT + \sum_{i=1}^{k} |r_i|.$

< ロ > < 同 > < 回 > < 回 > < 回 > <

Shortest Superstring Problem

The analyses of the algorithm

Proof.

<ロ> <同> <同> < 同> < 同> < 同>

æ

Proof.

On the other hand,

$$OPT \ge \sum_{i=1}^{k} |r_i| - \sum_{i=1}^{k-1} |overlap(r_i, r_{i+1})|$$
$$\ge \sum_{i=1}^{k} |r_i| - 2 \cdot weight(C)$$

<ロ> <同> <同> < 同> < 同> < 同>

æ

Proof.

On the other hand,

$$egin{aligned} \mathsf{OPT} \geq \sum_{i=1}^{k} |r_i| - \sum_{i=1}^{k-1} |\mathit{overlap}(r_i, r_{i+1})| \ \geq \sum_{i=1}^{k} |r_i| - 2 \cdot \mathit{weight}(\mathcal{C}) \end{aligned}$$

which implies that

$$\sum_{i=1}^{k} |r_i| \le 2 \cdot weight(\mathcal{C}) + OPT$$
$$\le 3 \cdot OPT.$$

<ロ> <同> <同> < 回> < 回> < 回>

æ

Shortest Superstring Problem

Some definitions and notations

A notation

If X is a set of strings, then let ||X|| denote the sum of lengths of strings in X.

< □ > < □ > < □ > < □ > < □ > <

э

Some definitions and notations

A notation

If X is a set of strings, then let ||X|| denote the sum of lengths of strings in X.

Definition

Compression achieved by a superstring *s* of the set of strings *S* is defined as ||S|| - |s|.

<ロ> < 四> < 四> < 回> < 回> < 回> < 回> <

Some definitions and notations

A notation

If X is a set of strings, then let ||X|| denote the sum of lengths of strings in X.

Definition

Compression achieved by a superstring *s* of the set of strings *S* is defined as ||S|| - |s|.

Remark

Clearly, maximum compression is achieved by the shortest superstring.

• □ ▶ • • □ ▶ • □ ▶ • • □ ▶ •

Shortest Superstring Problem

The description of 3-approximation algorithm

The Algorithm

• Construct the prefix graph corresponding to strings in S.

< D > < P > < E > < E > <</p>

The description of 3-approximation algorithm

The Algorithm

- Construct the prefix graph corresponding to strings in *S*.
- Find a minimum cycle cover of the prefix graph $C = \{c_1, ..., c_k\}$.

<ロ> < 四> < 四> < 回> < 回> < 回> < 回> <

The description of 3-approximation algorithm

The Algorithm

- Construct the prefix graph corresponding to strings in S.
- Find a minimum cycle cover of the prefix graph $C = \{c_1, ..., c_k\}$.
- Run any half-optimal-compression achieving algorithm on $\{\sigma(c_1), ..., \sigma(c_k)\}$ and output the resulting string, say τ .

• □ ▶ • • □ ▶ • □ ▶ • • □ ▶ •

The description of 3-approximation algorithm

The Algorithm

- Construct the prefix graph corresponding to strings in S.
- Find a minimum cycle cover of the prefix graph $C = \{c_1, ..., c_k\}$.
- Run any half-optimal-compression achieving algorithm on $\{\sigma(c_1), ..., \sigma(c_k)\}$ and output the resulting string, say τ .

Remark

Observe that the algorithm constructs a superstring of strings of S.

< D > < P > < E > < E > <</p>

A notation

Let OPT_{σ} denote the length of the shortest superstring of the strings in $S_{\sigma} = \{\sigma(c_1), ..., \sigma(c_k)\}$

э

<ロ> < 四> < 四> < 回> < 回> < 回> <

A notation

Let OPT_{σ} denote the length of the shortest superstring of the strings in $S_{\sigma} = \{\sigma(c_1), ..., \sigma(c_k)\}$ and let r_i be the representatives string of c_i .

< ロ > < 団 > < 豆 > < 豆 > .

A notation

Let OPT_{σ} denote the length of the shortest superstring of the strings in $S_{\sigma} = \{\sigma(c_1), ..., \sigma(c_k)\}$ and let r_i be the representatives string of c_i .

Lemma

 $|\tau| \leq OPT_{\sigma} + weight(\mathcal{C}).$

<ロ> < 四> < 四> < 回> < 回> < 回> < 回> <

A notation

Let OPT_{σ} denote the length of the shortest superstring of the strings in $S_{\sigma} = \{\sigma(c_1), ..., \sigma(c_k)\}$ and let r_i be the representatives string of c_i .

Lemma

 $|\tau| \leq OPT_{\sigma} + weight(\mathcal{C}).$

Proof.

Suppose that $\sigma(c_1), ..., \sigma(c_k)$ appear in this order in the shortest superstring.

A notation

Let OPT_{σ} denote the length of the shortest superstring of the strings in $S_{\sigma} = \{\sigma(c_1), ..., \sigma(c_k)\}$ and let r_i be the representatives string of c_i .

Lemma

 $|\tau| \leq OPT_{\sigma} + weight(\mathcal{C}).$

Proof.

Suppose that $\sigma(c_1), ..., \sigma(c_k)$ appear in this order in the shortest superstring. Then

$$\begin{split} ||S_{\sigma}|| - OPT_{\sigma} &= \sum_{i=1}^{k-1} |\textit{overlap}(\sigma(c_i), \sigma(c_{i+1}))| \\ &\leq \sum_{i=1}^{k-1} |\textit{overlap}(r_i, r_{i+1})| \\ &\leq 2 \cdot \textit{weight}(\mathcal{C}). \end{split}$$

Proof.

Since the compression is half-optimal, we have $||S_{\sigma}|| - |\tau| \geq \frac{1}{2}(||S_{\sigma}|| - OPT_{\sigma})$,

<ロ> <同> <同> < 同> < 同> < 三> < 三>

Proof.

Since the compression is half-optimal, we have $||S_{\sigma}|| - |\tau| \ge \frac{1}{2}(||S_{\sigma}|| - OPT_{\sigma})$, which implies that

$$2 \cdot (| au| - OPT_{\sigma}) \le ||S_{\sigma}|| - OPT_{\sigma} \le 2 \cdot weight(C)$$

< ロ > < 同 > < 三 > < 三 > 、

Proof.

Since the compression is half-optimal, we have $||S_{\sigma}|| - |\tau| \ge \frac{1}{2}(||S_{\sigma}|| - OPT_{\sigma})$, which implies that

$$2 \cdot (| au| - OPT_{\sigma}) \le ||S_{\sigma}|| - OPT_{\sigma} \le 2 \cdot weight(\mathcal{C})$$

or

 $|\tau| \leq OPT_{\sigma} + weight(\mathcal{C}).$

Lemma

 $OPT_{\sigma} \leq OPT + weight(C).$

<ロ> <同> <同> < 同> < 回> < □> < □> <

훈.

Lemma

 $OPT_{\sigma} \leq OPT + weight(C).$

Proof.

Let OPT_r be the length of shortest superstring of $\{r_1, ..., r_k\}$, and assume that they appear in this order in the shortest superstring.

< ロ > < 同 > < 回 > < 回 > .

Lemma

 $OPT_{\sigma} \leq OPT + weight(C).$

Proof.

Let OPT_r be the length of shortest superstring of $\{r_1, ..., r_k\}$, and assume that they appear in this order in the shortest superstring. Since $\sigma(c_i)$ begins and ends with r_i , one has

 $||S_{\sigma}|| - OPT_{\sigma} \ge ||S_{r}|| - OPT_{r},$

< ロ > < 同 > < 三 > < 三 > -

Lemma

 $OPT_{\sigma} \leq OPT + weight(C).$

Proof.

Let OPT_r be the length of shortest superstring of $\{r_1, ..., r_k\}$, and assume that they appear in this order in the shortest superstring. Since $\sigma(c_i)$ begins and ends with r_i , one has

$$||S_{\sigma}|| - OPT_{\sigma} \geq ||S_{r}|| - OPT_{r},$$

But $||S_{\sigma}|| = ||S_{r}|| + weight(C)$, which implies that

 $OPT_{\sigma} \leq OPT_{r} + weight(\mathcal{C})$ $\leq OPT + weight(\mathcal{C}).$

< ロ > < 同 > < 三 > < 三 > -

Lemma

 $OPT_{\sigma} \leq OPT + weight(C).$

Proof.

Let OPT_r be the length of shortest superstring of $\{r_1, ..., r_k\}$, and assume that they appear in this order in the shortest superstring. Since $\sigma(c_i)$ begins and ends with r_i , one has

$$||S_{\sigma}|| - OPT_{\sigma} \geq ||S_{r}|| - OPT_{r},$$

But $||S_{\sigma}|| = ||S_{r}|| + weight(C)$, which implies that

 $OPT_{\sigma} \leq OPT_{r} + weight(\mathcal{C})$ $\leq OPT + weight(\mathcal{C}).$

Theorem

The algorithm achieves an approximation factor 3 for the shortest superstring problem.

(D) (P) (E) (E)