
Bin-Packing

Bin-Packing

K. Subramani1

1Lane Department of Computer Science and Electrical Engineering
West Virginia University

March 17, 2014

Bin-Packing

Outline

Outline

1 Preliminaries

2 Online Algorithms

3 Offline Algorithms

4 Inapproximability

Bin-Packing

Outline

Outline

1 Preliminaries

2 Online Algorithms

3 Offline Algorithms

4 Inapproximability

Bin-Packing

Outline

Outline

1 Preliminaries

2 Online Algorithms

3 Offline Algorithms

4 Inapproximability

Bin-Packing

Outline

Outline

1 Preliminaries

2 Online Algorithms

3 Offline Algorithms

4 Inapproximability

Bin-Packing

Preliminaries

Topics

Outline

1 Problem definition (Offline and Online versions).

2 Lower bounds on online performance.
3 The Next Fit (NF) algorithm and analysis.

4 The First Fit (FF) algorithm and analysis.
5 The Best Fit (FF) algorithm and analysis.
6 The First Fit Decreasing (FFD) algorithm and analysis.
7 An inapproximability result.

Bin-Packing

Preliminaries

Topics

Outline

1 Problem definition (Offline and Online versions).

2 Lower bounds on online performance.
3 The Next Fit (NF) algorithm and analysis.

4 The First Fit (FF) algorithm and analysis.
5 The Best Fit (FF) algorithm and analysis.
6 The First Fit Decreasing (FFD) algorithm and analysis.
7 An inapproximability result.

Bin-Packing

Preliminaries

Topics

Outline

1 Problem definition (Offline and Online versions).

2 Lower bounds on online performance.
3 The Next Fit (NF) algorithm and analysis.

4 The First Fit (FF) algorithm and analysis.
5 The Best Fit (FF) algorithm and analysis.
6 The First Fit Decreasing (FFD) algorithm and analysis.
7 An inapproximability result.

Bin-Packing

Preliminaries

Topics

Outline

1 Problem definition (Offline and Online versions).

2 Lower bounds on online performance.

3 The Next Fit (NF) algorithm and analysis.

4 The First Fit (FF) algorithm and analysis.
5 The Best Fit (FF) algorithm and analysis.
6 The First Fit Decreasing (FFD) algorithm and analysis.
7 An inapproximability result.

Bin-Packing

Preliminaries

Topics

Outline

1 Problem definition (Offline and Online versions).

2 Lower bounds on online performance.
3 The Next Fit (NF) algorithm and analysis.

4 The First Fit (FF) algorithm and analysis.
5 The Best Fit (FF) algorithm and analysis.
6 The First Fit Decreasing (FFD) algorithm and analysis.
7 An inapproximability result.

Bin-Packing

Preliminaries

Topics

Outline

1 Problem definition (Offline and Online versions).

2 Lower bounds on online performance.
3 The Next Fit (NF) algorithm and analysis.

4 The First Fit (FF) algorithm and analysis.

5 The Best Fit (FF) algorithm and analysis.
6 The First Fit Decreasing (FFD) algorithm and analysis.
7 An inapproximability result.

Bin-Packing

Preliminaries

Topics

Outline

1 Problem definition (Offline and Online versions).

2 Lower bounds on online performance.
3 The Next Fit (NF) algorithm and analysis.

4 The First Fit (FF) algorithm and analysis.
5 The Best Fit (FF) algorithm and analysis.

6 The First Fit Decreasing (FFD) algorithm and analysis.
7 An inapproximability result.

Bin-Packing

Preliminaries

Topics

Outline

1 Problem definition (Offline and Online versions).

2 Lower bounds on online performance.
3 The Next Fit (NF) algorithm and analysis.

4 The First Fit (FF) algorithm and analysis.
5 The Best Fit (FF) algorithm and analysis.
6 The First Fit Decreasing (FFD) algorithm and analysis.

7 An inapproximability result.

Bin-Packing

Preliminaries

Topics

Outline

1 Problem definition (Offline and Online versions).

2 Lower bounds on online performance.
3 The Next Fit (NF) algorithm and analysis.

4 The First Fit (FF) algorithm and analysis.
5 The Best Fit (FF) algorithm and analysis.
6 The First Fit Decreasing (FFD) algorithm and analysis.
7 An inapproximability result.

Bin-Packing

Preliminaries

Problem definition

Problem Statement

We are given n objects {s1,s2, . . .sn}, such that 0 < si ≤ 1 and an unlimited supply of unit sized
bins. The goal is to pack the objects into bins, minimizing the number of bins used.

Note

There are two versions of this problem, viz., offline and online. In the former, the complete input
is presented before the algorithm commences. In the latter, the input is presented one object at a
time.

Bin-Packing

Preliminaries

Problem definition

Problem Statement

We are given n objects {s1,s2, . . .sn}, such that 0 < si ≤ 1 and an unlimited supply of unit sized
bins. The goal is to pack the objects into bins, minimizing the number of bins used.

Note

There are two versions of this problem, viz., offline and online. In the former, the complete input
is presented before the algorithm commences. In the latter, the input is presented one object at a
time.

Bin-Packing

Preliminaries

Problem definition

Problem Statement

We are given n objects {s1,s2, . . .sn}, such that 0 < si ≤ 1 and an unlimited supply of unit sized
bins. The goal is to pack the objects into bins, minimizing the number of bins used.

Note

There are two versions of this problem, viz., offline and online.

In the former, the complete input
is presented before the algorithm commences. In the latter, the input is presented one object at a
time.

Bin-Packing

Preliminaries

Problem definition

Problem Statement

We are given n objects {s1,s2, . . .sn}, such that 0 < si ≤ 1 and an unlimited supply of unit sized
bins. The goal is to pack the objects into bins, minimizing the number of bins used.

Note

There are two versions of this problem, viz., offline and online. In the former, the complete input
is presented before the algorithm commences.

In the latter, the input is presented one object at a
time.

Bin-Packing

Preliminaries

Problem definition

Problem Statement

We are given n objects {s1,s2, . . .sn}, such that 0 < si ≤ 1 and an unlimited supply of unit sized
bins. The goal is to pack the objects into bins, minimizing the number of bins used.

Note

There are two versions of this problem, viz., offline and online. In the former, the complete input
is presented before the algorithm commences. In the latter, the input is presented one object at a
time.

Bin-Packing

Preliminaries

Performance bounds on the online version

Intuition

M “small” items of size 1
2 − ε , followed by M “large” items of size 1

2 + ε , where 0 < ε ≤ 0.001.

Theorem

There exist inputs that can force ANY online bin-packing algorithm to use at least 4
3 times the

optimal number of bins.

Observation

Since we (the adversary) can truncate the input whenever we like, the algorithm must maintain
its guaranteed ratio at all points during its course.

Bin-Packing

Preliminaries

Performance bounds on the online version

Intuition

M “small” items of size 1
2 − ε , followed by M “large” items of size 1

2 + ε , where 0 < ε ≤ 0.001.

Theorem

There exist inputs that can force ANY online bin-packing algorithm to use at least 4
3 times the

optimal number of bins.

Observation

Since we (the adversary) can truncate the input whenever we like, the algorithm must maintain
its guaranteed ratio at all points during its course.

Bin-Packing

Preliminaries

Performance bounds on the online version

Intuition

M “small” items of size 1
2 − ε , followed by M “large” items of size 1

2 + ε , where 0 < ε ≤ 0.001.

Theorem

There exist inputs that can force ANY online bin-packing algorithm to use at least 4
3 times the

optimal number of bins.

Observation

Since we (the adversary) can truncate the input whenever we like, the algorithm must maintain
its guaranteed ratio at all points during its course.

Bin-Packing

Preliminaries

Performance bounds on the online version

Intuition

M “small” items of size 1
2 − ε , followed by M “large” items of size 1

2 + ε , where 0 < ε ≤ 0.001.

Theorem

There exist inputs that can force ANY online bin-packing algorithm to use at least 4
3 times the

optimal number of bins.

Observation

Since we (the adversary) can truncate the input whenever we like, the algorithm must maintain
its guaranteed ratio at all points during its course.

Bin-Packing

Preliminaries

Performance bounds on the online version

Intuition

M “small” items of size 1
2 − ε , followed by M “large” items of size 1

2 + ε , where 0 < ε ≤ 0.001.

Theorem

There exist inputs that can force ANY online bin-packing algorithm to use at least 4
3 times the

optimal number of bins.

Observation

Since we (the adversary) can truncate the input whenever we like, the algorithm must maintain
its guaranteed ratio at all points during its course.

Bin-Packing

Preliminaries

Limits of online algorithms

Inapproximability in online algorithms

1 Consider the sequence discussed previously:
I1 : M “small” items of size 1

2 − ε , followed by I2 : M “large” items of size 1
2 + ε , where

0 < ε ≤ 0.001.

2 To handle I1, the optimal algorithm has used M
2 bins. Let the online algorithm have used b

bins.
3 In order to beat the 4

3 ratio, we must have b
M
2
< 4

3 ⇒
b
M < 2

3

4 Now consider the state of the online and optimal algorithms after processing I2. The
optimal uses M bins total.

5 Every new bin that the online algorithm opens after the first b bins, has at most 1 item in it.
6 Since only the first b bins can have 2 items and the remaining bins have 1 item each,

packing 2 ·M items will require at least (2 ·M−b) bins.
7 Therefore, we must have, 2 ·M−b < 4

3 ·M⇒
b
M > 2

3 . A contradiction.

Bin-Packing

Preliminaries

Limits of online algorithms

Inapproximability in online algorithms

1 Consider the sequence discussed previously:
I1 : M “small” items of size 1

2 − ε , followed by I2 : M “large” items of size 1
2 + ε , where

0 < ε ≤ 0.001.

2 To handle I1, the optimal algorithm has used M
2 bins. Let the online algorithm have used b

bins.
3 In order to beat the 4

3 ratio, we must have b
M
2
< 4

3 ⇒
b
M < 2

3

4 Now consider the state of the online and optimal algorithms after processing I2. The
optimal uses M bins total.

5 Every new bin that the online algorithm opens after the first b bins, has at most 1 item in it.
6 Since only the first b bins can have 2 items and the remaining bins have 1 item each,

packing 2 ·M items will require at least (2 ·M−b) bins.
7 Therefore, we must have, 2 ·M−b < 4

3 ·M⇒
b
M > 2

3 . A contradiction.

Bin-Packing

Preliminaries

Limits of online algorithms

Inapproximability in online algorithms

1 Consider the sequence discussed previously:

I1 : M “small” items of size 1
2 − ε , followed by I2 : M “large” items of size 1

2 + ε , where
0 < ε ≤ 0.001.

2 To handle I1, the optimal algorithm has used M
2 bins. Let the online algorithm have used b

bins.
3 In order to beat the 4

3 ratio, we must have b
M
2
< 4

3 ⇒
b
M < 2

3

4 Now consider the state of the online and optimal algorithms after processing I2. The
optimal uses M bins total.

5 Every new bin that the online algorithm opens after the first b bins, has at most 1 item in it.
6 Since only the first b bins can have 2 items and the remaining bins have 1 item each,

packing 2 ·M items will require at least (2 ·M−b) bins.
7 Therefore, we must have, 2 ·M−b < 4

3 ·M⇒
b
M > 2

3 . A contradiction.

Bin-Packing

Preliminaries

Limits of online algorithms

Inapproximability in online algorithms

1 Consider the sequence discussed previously:
I1 : M “small” items of size 1

2 − ε , followed by I2 : M “large” items of size 1
2 + ε , where

0 < ε ≤ 0.001.

2 To handle I1, the optimal algorithm has used M
2 bins. Let the online algorithm have used b

bins.
3 In order to beat the 4

3 ratio, we must have b
M
2
< 4

3 ⇒
b
M < 2

3

4 Now consider the state of the online and optimal algorithms after processing I2. The
optimal uses M bins total.

5 Every new bin that the online algorithm opens after the first b bins, has at most 1 item in it.
6 Since only the first b bins can have 2 items and the remaining bins have 1 item each,

packing 2 ·M items will require at least (2 ·M−b) bins.
7 Therefore, we must have, 2 ·M−b < 4

3 ·M⇒
b
M > 2

3 . A contradiction.

Bin-Packing

Preliminaries

Limits of online algorithms

Inapproximability in online algorithms

1 Consider the sequence discussed previously:
I1 : M “small” items of size 1

2 − ε , followed by I2 : M “large” items of size 1
2 + ε , where

0 < ε ≤ 0.001.

2 To handle I1, the optimal algorithm has used M
2 bins.

Let the online algorithm have used b
bins.

3 In order to beat the 4
3 ratio, we must have b

M
2
< 4

3 ⇒
b
M < 2

3

4 Now consider the state of the online and optimal algorithms after processing I2. The
optimal uses M bins total.

5 Every new bin that the online algorithm opens after the first b bins, has at most 1 item in it.
6 Since only the first b bins can have 2 items and the remaining bins have 1 item each,

packing 2 ·M items will require at least (2 ·M−b) bins.
7 Therefore, we must have, 2 ·M−b < 4

3 ·M⇒
b
M > 2

3 . A contradiction.

Bin-Packing

Preliminaries

Limits of online algorithms

Inapproximability in online algorithms

1 Consider the sequence discussed previously:
I1 : M “small” items of size 1

2 − ε , followed by I2 : M “large” items of size 1
2 + ε , where

0 < ε ≤ 0.001.

2 To handle I1, the optimal algorithm has used M
2 bins. Let the online algorithm have used b

bins.

3 In order to beat the 4
3 ratio, we must have b

M
2
< 4

3 ⇒
b
M < 2

3

4 Now consider the state of the online and optimal algorithms after processing I2. The
optimal uses M bins total.

5 Every new bin that the online algorithm opens after the first b bins, has at most 1 item in it.
6 Since only the first b bins can have 2 items and the remaining bins have 1 item each,

packing 2 ·M items will require at least (2 ·M−b) bins.
7 Therefore, we must have, 2 ·M−b < 4

3 ·M⇒
b
M > 2

3 . A contradiction.

Bin-Packing

Preliminaries

Limits of online algorithms

Inapproximability in online algorithms

1 Consider the sequence discussed previously:
I1 : M “small” items of size 1

2 − ε , followed by I2 : M “large” items of size 1
2 + ε , where

0 < ε ≤ 0.001.

2 To handle I1, the optimal algorithm has used M
2 bins. Let the online algorithm have used b

bins.
3 In order to beat the 4

3 ratio, we must have

b
M
2
< 4

3 ⇒
b
M < 2

3

4 Now consider the state of the online and optimal algorithms after processing I2. The
optimal uses M bins total.

5 Every new bin that the online algorithm opens after the first b bins, has at most 1 item in it.
6 Since only the first b bins can have 2 items and the remaining bins have 1 item each,

packing 2 ·M items will require at least (2 ·M−b) bins.
7 Therefore, we must have, 2 ·M−b < 4

3 ·M⇒
b
M > 2

3 . A contradiction.

Bin-Packing

Preliminaries

Limits of online algorithms

Inapproximability in online algorithms

1 Consider the sequence discussed previously:
I1 : M “small” items of size 1

2 − ε , followed by I2 : M “large” items of size 1
2 + ε , where

0 < ε ≤ 0.001.

2 To handle I1, the optimal algorithm has used M
2 bins. Let the online algorithm have used b

bins.
3 In order to beat the 4

3 ratio, we must have b
M
2
< 4

3

⇒ b
M < 2

3

4 Now consider the state of the online and optimal algorithms after processing I2. The
optimal uses M bins total.

5 Every new bin that the online algorithm opens after the first b bins, has at most 1 item in it.
6 Since only the first b bins can have 2 items and the remaining bins have 1 item each,

packing 2 ·M items will require at least (2 ·M−b) bins.
7 Therefore, we must have, 2 ·M−b < 4

3 ·M⇒
b
M > 2

3 . A contradiction.

Bin-Packing

Preliminaries

Limits of online algorithms

Inapproximability in online algorithms

1 Consider the sequence discussed previously:
I1 : M “small” items of size 1

2 − ε , followed by I2 : M “large” items of size 1
2 + ε , where

0 < ε ≤ 0.001.

2 To handle I1, the optimal algorithm has used M
2 bins. Let the online algorithm have used b

bins.
3 In order to beat the 4

3 ratio, we must have b
M
2
< 4

3 ⇒
b
M < 2

3

4 Now consider the state of the online and optimal algorithms after processing I2. The
optimal uses M bins total.

5 Every new bin that the online algorithm opens after the first b bins, has at most 1 item in it.
6 Since only the first b bins can have 2 items and the remaining bins have 1 item each,

packing 2 ·M items will require at least (2 ·M−b) bins.
7 Therefore, we must have, 2 ·M−b < 4

3 ·M⇒
b
M > 2

3 . A contradiction.

Bin-Packing

Preliminaries

Limits of online algorithms

Inapproximability in online algorithms

1 Consider the sequence discussed previously:
I1 : M “small” items of size 1

2 − ε , followed by I2 : M “large” items of size 1
2 + ε , where

0 < ε ≤ 0.001.

2 To handle I1, the optimal algorithm has used M
2 bins. Let the online algorithm have used b

bins.
3 In order to beat the 4

3 ratio, we must have b
M
2
< 4

3 ⇒
b
M < 2

3

4 Now consider the state of the online and optimal algorithms after processing I2.

The
optimal uses M bins total.

5 Every new bin that the online algorithm opens after the first b bins, has at most 1 item in it.
6 Since only the first b bins can have 2 items and the remaining bins have 1 item each,

packing 2 ·M items will require at least (2 ·M−b) bins.
7 Therefore, we must have, 2 ·M−b < 4

3 ·M⇒
b
M > 2

3 . A contradiction.

Bin-Packing

Preliminaries

Limits of online algorithms

Inapproximability in online algorithms

1 Consider the sequence discussed previously:
I1 : M “small” items of size 1

2 − ε , followed by I2 : M “large” items of size 1
2 + ε , where

0 < ε ≤ 0.001.

2 To handle I1, the optimal algorithm has used M
2 bins. Let the online algorithm have used b

bins.
3 In order to beat the 4

3 ratio, we must have b
M
2
< 4

3 ⇒
b
M < 2

3

4 Now consider the state of the online and optimal algorithms after processing I2. The
optimal uses M bins total.

5 Every new bin that the online algorithm opens after the first b bins, has at most 1 item in it.
6 Since only the first b bins can have 2 items and the remaining bins have 1 item each,

packing 2 ·M items will require at least (2 ·M−b) bins.
7 Therefore, we must have, 2 ·M−b < 4

3 ·M⇒
b
M > 2

3 . A contradiction.

Bin-Packing

Preliminaries

Limits of online algorithms

Inapproximability in online algorithms

1 Consider the sequence discussed previously:
I1 : M “small” items of size 1

2 − ε , followed by I2 : M “large” items of size 1
2 + ε , where

0 < ε ≤ 0.001.

2 To handle I1, the optimal algorithm has used M
2 bins. Let the online algorithm have used b

bins.
3 In order to beat the 4

3 ratio, we must have b
M
2
< 4

3 ⇒
b
M < 2

3

4 Now consider the state of the online and optimal algorithms after processing I2. The
optimal uses M bins total.

5 Every new bin that the online algorithm opens after the first b bins, has at most 1 item in it.

6 Since only the first b bins can have 2 items and the remaining bins have 1 item each,
packing 2 ·M items will require at least (2 ·M−b) bins.

7 Therefore, we must have, 2 ·M−b < 4
3 ·M⇒

b
M > 2

3 . A contradiction.

Bin-Packing

Preliminaries

Limits of online algorithms

Inapproximability in online algorithms

1 Consider the sequence discussed previously:
I1 : M “small” items of size 1

2 − ε , followed by I2 : M “large” items of size 1
2 + ε , where

0 < ε ≤ 0.001.

2 To handle I1, the optimal algorithm has used M
2 bins. Let the online algorithm have used b

bins.
3 In order to beat the 4

3 ratio, we must have b
M
2
< 4

3 ⇒
b
M < 2

3

4 Now consider the state of the online and optimal algorithms after processing I2. The
optimal uses M bins total.

5 Every new bin that the online algorithm opens after the first b bins, has at most 1 item in it.
6 Since only the first b bins can have 2 items and the remaining bins have 1 item each,

packing 2 ·M items will require at least (2 ·M−b) bins.

7 Therefore, we must have, 2 ·M−b < 4
3 ·M⇒

b
M > 2

3 . A contradiction.

Bin-Packing

Preliminaries

Limits of online algorithms

Inapproximability in online algorithms

1 Consider the sequence discussed previously:
I1 : M “small” items of size 1

2 − ε , followed by I2 : M “large” items of size 1
2 + ε , where

0 < ε ≤ 0.001.

2 To handle I1, the optimal algorithm has used M
2 bins. Let the online algorithm have used b

bins.
3 In order to beat the 4

3 ratio, we must have b
M
2
< 4

3 ⇒
b
M < 2

3

4 Now consider the state of the online and optimal algorithms after processing I2. The
optimal uses M bins total.

5 Every new bin that the online algorithm opens after the first b bins, has at most 1 item in it.
6 Since only the first b bins can have 2 items and the remaining bins have 1 item each,

packing 2 ·M items will require at least (2 ·M−b) bins.
7 Therefore, we must have, 2 ·M−b < 4

3 ·M

⇒ b
M > 2

3 . A contradiction.

Bin-Packing

Preliminaries

Limits of online algorithms

Inapproximability in online algorithms

1 Consider the sequence discussed previously:
I1 : M “small” items of size 1

2 − ε , followed by I2 : M “large” items of size 1
2 + ε , where

0 < ε ≤ 0.001.

2 To handle I1, the optimal algorithm has used M
2 bins. Let the online algorithm have used b

bins.
3 In order to beat the 4

3 ratio, we must have b
M
2
< 4

3 ⇒
b
M < 2

3

4 Now consider the state of the online and optimal algorithms after processing I2. The
optimal uses M bins total.

5 Every new bin that the online algorithm opens after the first b bins, has at most 1 item in it.
6 Since only the first b bins can have 2 items and the remaining bins have 1 item each,

packing 2 ·M items will require at least (2 ·M−b) bins.
7 Therefore, we must have, 2 ·M−b < 4

3 ·M⇒
b
M > 2

3 .

A contradiction.

Bin-Packing

Preliminaries

Limits of online algorithms

Inapproximability in online algorithms

1 Consider the sequence discussed previously:
I1 : M “small” items of size 1

2 − ε , followed by I2 : M “large” items of size 1
2 + ε , where

0 < ε ≤ 0.001.

2 To handle I1, the optimal algorithm has used M
2 bins. Let the online algorithm have used b

bins.
3 In order to beat the 4

3 ratio, we must have b
M
2
< 4

3 ⇒
b
M < 2

3

4 Now consider the state of the online and optimal algorithms after processing I2. The
optimal uses M bins total.

5 Every new bin that the online algorithm opens after the first b bins, has at most 1 item in it.
6 Since only the first b bins can have 2 items and the remaining bins have 1 item each,

packing 2 ·M items will require at least (2 ·M−b) bins.
7 Therefore, we must have, 2 ·M−b < 4

3 ·M⇒
b
M > 2

3 . A contradiction.

Bin-Packing

Online Algorithms

Next-Fit (NF)

Approach

1 Open a new bin. Set curr −bin to this bin.

2 for(i = 1 to n)
3 if (si fits in curr −bin.)

4 Assign it to curr −bin.
5 else
6 Open a new bin and assign si to it.
7 Update curr −bin to the newly opened bin.
8 endif
9 endfor

Note

You never go back in Next-Fit!

Bin-Packing

Online Algorithms

Next-Fit (NF)

Approach

1 Open a new bin. Set curr −bin to this bin.

2 for(i = 1 to n)
3 if (si fits in curr −bin.)

4 Assign it to curr −bin.
5 else
6 Open a new bin and assign si to it.
7 Update curr −bin to the newly opened bin.
8 endif
9 endfor

Note

You never go back in Next-Fit!

Bin-Packing

Online Algorithms

Next-Fit (NF)

Approach

1 Open a new bin. Set curr −bin to this bin.

2 for(i = 1 to n)
3 if (si fits in curr −bin.)

4 Assign it to curr −bin.
5 else
6 Open a new bin and assign si to it.
7 Update curr −bin to the newly opened bin.
8 endif
9 endfor

Note

You never go back in Next-Fit!

Bin-Packing

Online Algorithms

Next-Fit (NF)

Approach

1 Open a new bin. Set curr −bin to this bin.

2 for(i = 1 to n)

3 if (si fits in curr −bin.)

4 Assign it to curr −bin.
5 else
6 Open a new bin and assign si to it.
7 Update curr −bin to the newly opened bin.
8 endif
9 endfor

Note

You never go back in Next-Fit!

Bin-Packing

Online Algorithms

Next-Fit (NF)

Approach

1 Open a new bin. Set curr −bin to this bin.

2 for(i = 1 to n)
3 if (si fits in curr −bin.)

4 Assign it to curr −bin.
5 else
6 Open a new bin and assign si to it.
7 Update curr −bin to the newly opened bin.
8 endif
9 endfor

Note

You never go back in Next-Fit!

Bin-Packing

Online Algorithms

Next-Fit (NF)

Approach

1 Open a new bin. Set curr −bin to this bin.

2 for(i = 1 to n)
3 if (si fits in curr −bin.)

4 Assign it to curr −bin.

5 else
6 Open a new bin and assign si to it.
7 Update curr −bin to the newly opened bin.
8 endif
9 endfor

Note

You never go back in Next-Fit!

Bin-Packing

Online Algorithms

Next-Fit (NF)

Approach

1 Open a new bin. Set curr −bin to this bin.

2 for(i = 1 to n)
3 if (si fits in curr −bin.)

4 Assign it to curr −bin.
5 else

6 Open a new bin and assign si to it.
7 Update curr −bin to the newly opened bin.
8 endif
9 endfor

Note

You never go back in Next-Fit!

Bin-Packing

Online Algorithms

Next-Fit (NF)

Approach

1 Open a new bin. Set curr −bin to this bin.

2 for(i = 1 to n)
3 if (si fits in curr −bin.)

4 Assign it to curr −bin.
5 else
6 Open a new bin and assign si to it.

7 Update curr −bin to the newly opened bin.
8 endif
9 endfor

Note

You never go back in Next-Fit!

Bin-Packing

Online Algorithms

Next-Fit (NF)

Approach

1 Open a new bin. Set curr −bin to this bin.

2 for(i = 1 to n)
3 if (si fits in curr −bin.)

4 Assign it to curr −bin.
5 else
6 Open a new bin and assign si to it.
7 Update curr −bin to the newly opened bin.

8 endif
9 endfor

Note

You never go back in Next-Fit!

Bin-Packing

Online Algorithms

Next-Fit (NF)

Approach

1 Open a new bin. Set curr −bin to this bin.

2 for(i = 1 to n)
3 if (si fits in curr −bin.)

4 Assign it to curr −bin.
5 else
6 Open a new bin and assign si to it.
7 Update curr −bin to the newly opened bin.
8 endif

9 endfor

Note

You never go back in Next-Fit!

Bin-Packing

Online Algorithms

Next-Fit (NF)

Approach

1 Open a new bin. Set curr −bin to this bin.

2 for(i = 1 to n)
3 if (si fits in curr −bin.)

4 Assign it to curr −bin.
5 else
6 Open a new bin and assign si to it.
7 Update curr −bin to the newly opened bin.
8 endif
9 endfor

Note

You never go back in Next-Fit!

Bin-Packing

Online Algorithms

Next-Fit (NF)

Approach

1 Open a new bin. Set curr −bin to this bin.

2 for(i = 1 to n)
3 if (si fits in curr −bin.)

4 Assign it to curr −bin.
5 else
6 Open a new bin and assign si to it.
7 Update curr −bin to the newly opened bin.
8 endif
9 endfor

Note

You never go back in Next-Fit!

Bin-Packing

Online Algorithms

Analysis of Next-Fit

Theorem

If OPT is the number of bins in the optimal solution, then Next-Fit never uses more than 2 ·OPT
bins. There exist sequences that force Next-Fit to use (2 ·OPT −2) bins.

Proof.

Let the bins used by Next-Fit be denoted by B1,B2, . . . ,Bk . Let |Bi | denote the space used in bin
Bi . Observe that (|B2·i−1|+ |B2·i |)> 1, ∀i = 1,2, . . .b k

2 c. Adding up all the inequalities,

b k
2
c <

b k
2 c

∑
i=1

(|B2·i−1|+ |B2·i |)

<
n

∑
i=1

si

From the above relation, we can conclude that,

k−1
2
≤ b k

2
c ≤ d

n

∑
i=1

sie−1

Bin-Packing

Online Algorithms

Analysis of Next-Fit

Theorem

If OPT is the number of bins in the optimal solution, then Next-Fit never uses more than 2 ·OPT
bins. There exist sequences that force Next-Fit to use (2 ·OPT −2) bins.

Proof.

Let the bins used by Next-Fit be denoted by B1,B2, . . . ,Bk . Let |Bi | denote the space used in bin
Bi . Observe that (|B2·i−1|+ |B2·i |)> 1, ∀i = 1,2, . . .b k

2 c. Adding up all the inequalities,

b k
2
c <

b k
2 c

∑
i=1

(|B2·i−1|+ |B2·i |)

<
n

∑
i=1

si

From the above relation, we can conclude that,

k−1
2
≤ b k

2
c ≤ d

n

∑
i=1

sie−1

Bin-Packing

Online Algorithms

Analysis of Next-Fit

Theorem

If OPT is the number of bins in the optimal solution, then Next-Fit never uses more than 2 ·OPT
bins. There exist sequences that force Next-Fit to use (2 ·OPT −2) bins.

Proof.

Let the bins used by Next-Fit be denoted by B1,B2, . . . ,Bk . Let |Bi | denote the space used in bin
Bi . Observe that (|B2·i−1|+ |B2·i |)> 1, ∀i = 1,2, . . .b k

2 c. Adding up all the inequalities,

b k
2
c <

b k
2 c

∑
i=1

(|B2·i−1|+ |B2·i |)

<
n

∑
i=1

si

From the above relation, we can conclude that,

k−1
2
≤ b k

2
c ≤ d

n

∑
i=1

sie−1

Bin-Packing

Online Algorithms

Analysis of Next-Fit

Theorem

If OPT is the number of bins in the optimal solution, then Next-Fit never uses more than 2 ·OPT
bins. There exist sequences that force Next-Fit to use (2 ·OPT −2) bins.

Proof.

Let the bins used by Next-Fit be denoted by B1,B2, . . . ,Bk .

Let |Bi | denote the space used in bin
Bi . Observe that (|B2·i−1|+ |B2·i |)> 1, ∀i = 1,2, . . .b k

2 c. Adding up all the inequalities,

b k
2
c <

b k
2 c

∑
i=1

(|B2·i−1|+ |B2·i |)

<
n

∑
i=1

si

From the above relation, we can conclude that,

k−1
2
≤ b k

2
c ≤ d

n

∑
i=1

sie−1

Bin-Packing

Online Algorithms

Analysis of Next-Fit

Theorem

If OPT is the number of bins in the optimal solution, then Next-Fit never uses more than 2 ·OPT
bins. There exist sequences that force Next-Fit to use (2 ·OPT −2) bins.

Proof.

Let the bins used by Next-Fit be denoted by B1,B2, . . . ,Bk . Let |Bi | denote the space used in bin
Bi .

Observe that (|B2·i−1|+ |B2·i |)> 1, ∀i = 1,2, . . .b k
2 c. Adding up all the inequalities,

b k
2
c <

b k
2 c

∑
i=1

(|B2·i−1|+ |B2·i |)

<
n

∑
i=1

si

From the above relation, we can conclude that,

k−1
2
≤ b k

2
c ≤ d

n

∑
i=1

sie−1

Bin-Packing

Online Algorithms

Analysis of Next-Fit

Theorem

If OPT is the number of bins in the optimal solution, then Next-Fit never uses more than 2 ·OPT
bins. There exist sequences that force Next-Fit to use (2 ·OPT −2) bins.

Proof.

Let the bins used by Next-Fit be denoted by B1,B2, . . . ,Bk . Let |Bi | denote the space used in bin
Bi . Observe that (|B2·i−1|+ |B2·i |)> 1, ∀i = 1,2, . . .b k

2 c.

Adding up all the inequalities,

b k
2
c <

b k
2 c

∑
i=1

(|B2·i−1|+ |B2·i |)

<
n

∑
i=1

si

From the above relation, we can conclude that,

k−1
2
≤ b k

2
c ≤ d

n

∑
i=1

sie−1

Bin-Packing

Online Algorithms

Analysis of Next-Fit

Theorem

If OPT is the number of bins in the optimal solution, then Next-Fit never uses more than 2 ·OPT
bins. There exist sequences that force Next-Fit to use (2 ·OPT −2) bins.

Proof.

Let the bins used by Next-Fit be denoted by B1,B2, . . . ,Bk . Let |Bi | denote the space used in bin
Bi . Observe that (|B2·i−1|+ |B2·i |)> 1, ∀i = 1,2, . . .b k

2 c. Adding up all the inequalities,

b k
2
c <

b k
2 c

∑
i=1

(|B2·i−1|+ |B2·i |)

<
n

∑
i=1

si

From the above relation, we can conclude that,

k−1
2
≤ b k

2
c ≤ d

n

∑
i=1

sie−1

Bin-Packing

Online Algorithms

Analysis of Next-Fit

Theorem

If OPT is the number of bins in the optimal solution, then Next-Fit never uses more than 2 ·OPT
bins. There exist sequences that force Next-Fit to use (2 ·OPT −2) bins.

Proof.

Let the bins used by Next-Fit be denoted by B1,B2, . . . ,Bk . Let |Bi | denote the space used in bin
Bi . Observe that (|B2·i−1|+ |B2·i |)> 1, ∀i = 1,2, . . .b k

2 c. Adding up all the inequalities,

b k
2
c <

b k
2 c

∑
i=1

(|B2·i−1|+ |B2·i |)

<
n

∑
i=1

si

From the above relation, we can conclude that,

k−1
2
≤ b k

2
c ≤ d

n

∑
i=1

sie−1

Bin-Packing

Online Algorithms

Analysis of Next-Fit

Theorem

If OPT is the number of bins in the optimal solution, then Next-Fit never uses more than 2 ·OPT
bins. There exist sequences that force Next-Fit to use (2 ·OPT −2) bins.

Proof.

Let the bins used by Next-Fit be denoted by B1,B2, . . . ,Bk . Let |Bi | denote the space used in bin
Bi . Observe that (|B2·i−1|+ |B2·i |)> 1, ∀i = 1,2, . . .b k

2 c. Adding up all the inequalities,

b k
2
c <

b k
2 c

∑
i=1

(|B2·i−1|+ |B2·i |)

<
n

∑
i=1

si

From the above relation, we can conclude that,

k−1
2
≤ b k

2
c ≤ d

n

∑
i=1

sie−1

Bin-Packing

Online Algorithms

Analysis of Next-Fit

Theorem

If OPT is the number of bins in the optimal solution, then Next-Fit never uses more than 2 ·OPT
bins. There exist sequences that force Next-Fit to use (2 ·OPT −2) bins.

Proof.

Let the bins used by Next-Fit be denoted by B1,B2, . . . ,Bk . Let |Bi | denote the space used in bin
Bi . Observe that (|B2·i−1|+ |B2·i |)> 1, ∀i = 1,2, . . .b k

2 c. Adding up all the inequalities,

b k
2
c <

b k
2 c

∑
i=1

(|B2·i−1|+ |B2·i |)

<
n

∑
i=1

si

From the above relation, we can conclude that,

k−1
2
≤ b k

2
c ≤ d

n

∑
i=1

sie−1

Bin-Packing

Online Algorithms

Analysis of Next-Fit

Theorem

If OPT is the number of bins in the optimal solution, then Next-Fit never uses more than 2 ·OPT
bins. There exist sequences that force Next-Fit to use (2 ·OPT −2) bins.

Proof.

Let the bins used by Next-Fit be denoted by B1,B2, . . . ,Bk . Let |Bi | denote the space used in bin
Bi . Observe that (|B2·i−1|+ |B2·i |)> 1, ∀i = 1,2, . . .b k

2 c. Adding up all the inequalities,

b k
2
c <

b k
2 c

∑
i=1

(|B2·i−1|+ |B2·i |)

<
n

∑
i=1

si

From the above relation, we can conclude that,

k−1
2

≤ b k
2
c ≤ d

n

∑
i=1

sie−1

Bin-Packing

Online Algorithms

Analysis of Next-Fit

Theorem

If OPT is the number of bins in the optimal solution, then Next-Fit never uses more than 2 ·OPT
bins. There exist sequences that force Next-Fit to use (2 ·OPT −2) bins.

Proof.

Let the bins used by Next-Fit be denoted by B1,B2, . . . ,Bk . Let |Bi | denote the space used in bin
Bi . Observe that (|B2·i−1|+ |B2·i |)> 1, ∀i = 1,2, . . .b k

2 c. Adding up all the inequalities,

b k
2
c <

b k
2 c

∑
i=1

(|B2·i−1|+ |B2·i |)

<
n

∑
i=1

si

From the above relation, we can conclude that,

k−1
2
≤ b k

2
c

≤ d
n

∑
i=1

sie−1

Bin-Packing

Online Algorithms

Analysis of Next-Fit

Theorem

If OPT is the number of bins in the optimal solution, then Next-Fit never uses more than 2 ·OPT
bins. There exist sequences that force Next-Fit to use (2 ·OPT −2) bins.

Proof.

Let the bins used by Next-Fit be denoted by B1,B2, . . . ,Bk . Let |Bi | denote the space used in bin
Bi . Observe that (|B2·i−1|+ |B2·i |)> 1, ∀i = 1,2, . . .b k

2 c. Adding up all the inequalities,

b k
2
c <

b k
2 c

∑
i=1

(|B2·i−1|+ |B2·i |)

<
n

∑
i=1

si

From the above relation, we can conclude that,

k−1
2
≤ b k

2
c ≤ d

n

∑
i=1

sie−1

Bin-Packing

Online Algorithms

Analysis (contd.)

Proof.

Observe that OPT ≥ d∑n
i=1 sie. Hence,

k−1
2

≤ OPT −1

⇒ (k−1) ≤ 2 ·OPT −2

⇒ k ≤ 2 ·OPT −1

Bin-Packing

Online Algorithms

Analysis (contd.)

Proof.

Observe that OPT ≥ d∑n
i=1 sie.

Hence,

k−1
2

≤ OPT −1

⇒ (k−1) ≤ 2 ·OPT −2

⇒ k ≤ 2 ·OPT −1

Bin-Packing

Online Algorithms

Analysis (contd.)

Proof.

Observe that OPT ≥ d∑n
i=1 sie. Hence,

k−1
2

≤ OPT −1

⇒ (k−1) ≤ 2 ·OPT −2

⇒ k ≤ 2 ·OPT −1

Bin-Packing

Online Algorithms

Analysis (contd.)

Proof.

Observe that OPT ≥ d∑n
i=1 sie. Hence,

k−1
2

≤ OPT −1

⇒ (k−1) ≤ 2 ·OPT −2

⇒ k ≤ 2 ·OPT −1

Bin-Packing

Online Algorithms

Analysis (contd.)

Proof.

Observe that OPT ≥ d∑n
i=1 sie. Hence,

k−1
2

≤ OPT −1

⇒ (k−1) ≤ 2 ·OPT −2

⇒ k ≤ 2 ·OPT −1

Bin-Packing

Online Algorithms

Analysis (contd.)

Proof.

Observe that OPT ≥ d∑n
i=1 sie. Hence,

k−1
2

≤ OPT −1

⇒ (k−1) ≤ 2 ·OPT −2

⇒ k ≤ 2 ·OPT −1

Bin-Packing

Online Algorithms

First-Fit (FF)

Approach

1 Open a new bin.

2 for(i = 1 to n)
3 if (si can be assigned to any open bin)

4 Assign si to the first feasible bin.
5 else
6 Open a new bin and assign si to it.
7 endif
8 endfor

Bin-Packing

Online Algorithms

First-Fit (FF)

Approach

1 Open a new bin.

2 for(i = 1 to n)
3 if (si can be assigned to any open bin)

4 Assign si to the first feasible bin.
5 else
6 Open a new bin and assign si to it.
7 endif
8 endfor

Bin-Packing

Online Algorithms

First-Fit (FF)

Approach

1 Open a new bin.

2 for(i = 1 to n)
3 if (si can be assigned to any open bin)

4 Assign si to the first feasible bin.
5 else
6 Open a new bin and assign si to it.
7 endif
8 endfor

Bin-Packing

Online Algorithms

First-Fit (FF)

Approach

1 Open a new bin.

2 for(i = 1 to n)

3 if (si can be assigned to any open bin)

4 Assign si to the first feasible bin.
5 else
6 Open a new bin and assign si to it.
7 endif
8 endfor

Bin-Packing

Online Algorithms

First-Fit (FF)

Approach

1 Open a new bin.

2 for(i = 1 to n)
3 if (si can be assigned to any open bin)

4 Assign si to the first feasible bin.
5 else
6 Open a new bin and assign si to it.
7 endif
8 endfor

Bin-Packing

Online Algorithms

First-Fit (FF)

Approach

1 Open a new bin.

2 for(i = 1 to n)
3 if (si can be assigned to any open bin)

4 Assign si to the first feasible bin.

5 else
6 Open a new bin and assign si to it.
7 endif
8 endfor

Bin-Packing

Online Algorithms

First-Fit (FF)

Approach

1 Open a new bin.

2 for(i = 1 to n)
3 if (si can be assigned to any open bin)

4 Assign si to the first feasible bin.
5 else

6 Open a new bin and assign si to it.
7 endif
8 endfor

Bin-Packing

Online Algorithms

First-Fit (FF)

Approach

1 Open a new bin.

2 for(i = 1 to n)
3 if (si can be assigned to any open bin)

4 Assign si to the first feasible bin.
5 else
6 Open a new bin and assign si to it.

7 endif
8 endfor

Bin-Packing

Online Algorithms

First-Fit (FF)

Approach

1 Open a new bin.

2 for(i = 1 to n)
3 if (si can be assigned to any open bin)

4 Assign si to the first feasible bin.
5 else
6 Open a new bin and assign si to it.
7 endif

8 endfor

Bin-Packing

Online Algorithms

First-Fit (FF)

Approach

1 Open a new bin.

2 for(i = 1 to n)
3 if (si can be assigned to any open bin)

4 Assign si to the first feasible bin.
5 else
6 Open a new bin and assign si to it.
7 endif
8 endfor

Bin-Packing

Online Algorithms

Analysis of First-Fit

Theorem

First-Fit uses at most 2 ·OPT bins.

Proof.

Let k denote the number of bins used by Next-Fit. How many bins can be more than half-empty?
At most one! It follows that,

n

∑
i=1

si >
k−1

2

⇒ k < 2 ·
n

∑
i=1

si +1

⇒ k < 2 ·OPT +1

⇒ k ≤ 2 ·OPT

Bin-Packing

Online Algorithms

Analysis of First-Fit

Theorem

First-Fit uses at most 2 ·OPT bins.

Proof.

Let k denote the number of bins used by Next-Fit. How many bins can be more than half-empty?
At most one! It follows that,

n

∑
i=1

si >
k−1

2

⇒ k < 2 ·
n

∑
i=1

si +1

⇒ k < 2 ·OPT +1

⇒ k ≤ 2 ·OPT

Bin-Packing

Online Algorithms

Analysis of First-Fit

Theorem

First-Fit uses at most 2 ·OPT bins.

Proof.

Let k denote the number of bins used by Next-Fit. How many bins can be more than half-empty?
At most one! It follows that,

n

∑
i=1

si >
k−1

2

⇒ k < 2 ·
n

∑
i=1

si +1

⇒ k < 2 ·OPT +1

⇒ k ≤ 2 ·OPT

Bin-Packing

Online Algorithms

Analysis of First-Fit

Theorem

First-Fit uses at most 2 ·OPT bins.

Proof.

Let k denote the number of bins used by Next-Fit. How many bins can be more than half-empty?

At most one! It follows that,

n

∑
i=1

si >
k−1

2

⇒ k < 2 ·
n

∑
i=1

si +1

⇒ k < 2 ·OPT +1

⇒ k ≤ 2 ·OPT

Bin-Packing

Online Algorithms

Analysis of First-Fit

Theorem

First-Fit uses at most 2 ·OPT bins.

Proof.

Let k denote the number of bins used by Next-Fit. How many bins can be more than half-empty?
At most one!

It follows that,

n

∑
i=1

si >
k−1

2

⇒ k < 2 ·
n

∑
i=1

si +1

⇒ k < 2 ·OPT +1

⇒ k ≤ 2 ·OPT

Bin-Packing

Online Algorithms

Analysis of First-Fit

Theorem

First-Fit uses at most 2 ·OPT bins.

Proof.

Let k denote the number of bins used by Next-Fit. How many bins can be more than half-empty?
At most one! It follows that,

n

∑
i=1

si >
k−1

2

⇒ k < 2 ·
n

∑
i=1

si +1

⇒ k < 2 ·OPT +1

⇒ k ≤ 2 ·OPT

Bin-Packing

Online Algorithms

Analysis of First-Fit

Theorem

First-Fit uses at most 2 ·OPT bins.

Proof.

Let k denote the number of bins used by Next-Fit. How many bins can be more than half-empty?
At most one! It follows that,

n

∑
i=1

si >
k−1

2

⇒ k < 2 ·
n

∑
i=1

si +1

⇒ k < 2 ·OPT +1

⇒ k ≤ 2 ·OPT

Bin-Packing

Online Algorithms

Analysis of First-Fit

Theorem

First-Fit uses at most 2 ·OPT bins.

Proof.

Let k denote the number of bins used by Next-Fit. How many bins can be more than half-empty?
At most one! It follows that,

n

∑
i=1

si >
k−1

2

⇒ k < 2 ·
n

∑
i=1

si +1

⇒ k < 2 ·OPT +1

⇒ k ≤ 2 ·OPT

Bin-Packing

Online Algorithms

Analysis of First-Fit

Theorem

First-Fit uses at most 2 ·OPT bins.

Proof.

Let k denote the number of bins used by Next-Fit. How many bins can be more than half-empty?
At most one! It follows that,

n

∑
i=1

si >
k−1

2

⇒ k < 2 ·
n

∑
i=1

si +1

⇒ k < 2 ·OPT +1

⇒ k ≤ 2 ·OPT

Bin-Packing

Online Algorithms

Analysis of First-Fit

Theorem

First-Fit uses at most 2 ·OPT bins.

Proof.

Let k denote the number of bins used by Next-Fit. How many bins can be more than half-empty?
At most one! It follows that,

n

∑
i=1

si >
k−1

2

⇒ k < 2 ·
n

∑
i=1

si +1

⇒ k < 2 ·OPT +1

⇒ k ≤ 2 ·OPT

Bin-Packing

Online Algorithms

Tighter bounds

Theorem

If OPT is the optimal number of bins, then First-Fit never uses more than 1.7 ·OPT bins. On the
other hand, there are sequences that force it to use at least 17

10 · (OPT −1) bins.

Proof.

Homework.

Bin-Packing

Online Algorithms

Tighter bounds

Theorem

If OPT is the optimal number of bins, then First-Fit never uses more than 1.7 ·OPT bins. On the
other hand, there are sequences that force it to use at least 17

10 · (OPT −1) bins.

Proof.

Homework.

Bin-Packing

Online Algorithms

Tighter bounds

Theorem

If OPT is the optimal number of bins, then First-Fit never uses more than 1.7 ·OPT bins. On the
other hand, there are sequences that force it to use at least 17

10 · (OPT −1) bins.

Proof.

Homework.

Bin-Packing

Online Algorithms

Best-Fit (BF)

Approach

Place each item in the bin that provides the tightest fit, i.e., in the bin that results in the smallest
empty space.

Note

The generic positive and negative results of First-Fit apply.

Bin-Packing

Online Algorithms

Best-Fit (BF)

Approach

Place each item in the bin that provides the tightest fit, i.e., in the bin that results in the smallest
empty space.

Note

The generic positive and negative results of First-Fit apply.

Bin-Packing

Online Algorithms

Best-Fit (BF)

Approach

Place each item in the bin that provides the tightest fit, i.e., in the bin that results in the smallest
empty space.

Note

The generic positive and negative results of First-Fit apply.

Bin-Packing

Online Algorithms

Best-Fit (BF)

Approach

Place each item in the bin that provides the tightest fit, i.e., in the bin that results in the smallest
empty space.

Note

The generic positive and negative results of First-Fit apply.

Bin-Packing

Offline Algorithms

First-Fit Decreasing (FFD)

Approach

1 Sort the elements so that s1 ≥ s2 ≥ . . .≥ sn.

2 Use First-Fit.

Note

FFD is the offline analog of FF.

Bin-Packing

Offline Algorithms

First-Fit Decreasing (FFD)

Approach

1 Sort the elements so that s1 ≥ s2 ≥ . . .≥ sn.

2 Use First-Fit.

Note

FFD is the offline analog of FF.

Bin-Packing

Offline Algorithms

First-Fit Decreasing (FFD)

Approach

1 Sort the elements so that s1 ≥ s2 ≥ . . .≥ sn.

2 Use First-Fit.

Note

FFD is the offline analog of FF.

Bin-Packing

Offline Algorithms

First-Fit Decreasing (FFD)

Approach

1 Sort the elements so that s1 ≥ s2 ≥ . . .≥ sn.

2 Use First-Fit.

Note

FFD is the offline analog of FF.

Bin-Packing

Offline Algorithms

First-Fit Decreasing (FFD)

Approach

1 Sort the elements so that s1 ≥ s2 ≥ . . .≥ sn.

2 Use First-Fit.

Note

FFD is the offline analog of FF.

Bin-Packing

Offline Algorithms

First bound

Theorem

Let k denote the number of bins used by FFD. Then k ≤ 1.5 ·OPT +1.

Proof.

1 Let us partition the objects into 4 buckets:
A = {si : si >

2
3 }.

B = {si :
2
3 ≥ si >

1
2 }.

C = {si :
1
2 ≥ si >

1
3 }.

D = {si :
1
3 ≥ si}.

2 Consider the following two cases:
(a) There is at least one bin that contains only elements from D - In this case, for all but one bin (the

last one), the total occupancy is at least 2
3 . In other words ∑

n
i=1 si ≥ 2

3 · (k−1). It follows that the
theorem holds.

(b) There is no bin that contains only elements from D - In this case, we can focus on the solution
returned by FFD, assuming that all the elements of bucket D are thrown out. In this revised input
instance, elements of A are loners, every bin contains at most two elements, and at most one of
these two elements can be from bucket B. It is not hard to see that FFD gives an optimal packing!

Bin-Packing

Offline Algorithms

First bound

Theorem

Let k denote the number of bins used by FFD. Then k ≤ 1.5 ·OPT +1.

Proof.

1 Let us partition the objects into 4 buckets:
A = {si : si >

2
3 }.

B = {si :
2
3 ≥ si >

1
2 }.

C = {si :
1
2 ≥ si >

1
3 }.

D = {si :
1
3 ≥ si}.

2 Consider the following two cases:
(a) There is at least one bin that contains only elements from D - In this case, for all but one bin (the

last one), the total occupancy is at least 2
3 . In other words ∑

n
i=1 si ≥ 2

3 · (k−1). It follows that the
theorem holds.

(b) There is no bin that contains only elements from D - In this case, we can focus on the solution
returned by FFD, assuming that all the elements of bucket D are thrown out. In this revised input
instance, elements of A are loners, every bin contains at most two elements, and at most one of
these two elements can be from bucket B. It is not hard to see that FFD gives an optimal packing!

Bin-Packing

Offline Algorithms

First bound

Theorem

Let k denote the number of bins used by FFD. Then k ≤ 1.5 ·OPT +1.

Proof.

1 Let us partition the objects into 4 buckets:
A = {si : si >

2
3 }.

B = {si :
2
3 ≥ si >

1
2 }.

C = {si :
1
2 ≥ si >

1
3 }.

D = {si :
1
3 ≥ si}.

2 Consider the following two cases:
(a) There is at least one bin that contains only elements from D - In this case, for all but one bin (the

last one), the total occupancy is at least 2
3 . In other words ∑

n
i=1 si ≥ 2

3 · (k−1). It follows that the
theorem holds.

(b) There is no bin that contains only elements from D - In this case, we can focus on the solution
returned by FFD, assuming that all the elements of bucket D are thrown out. In this revised input
instance, elements of A are loners, every bin contains at most two elements, and at most one of
these two elements can be from bucket B. It is not hard to see that FFD gives an optimal packing!

Bin-Packing

Offline Algorithms

First bound

Theorem

Let k denote the number of bins used by FFD. Then k ≤ 1.5 ·OPT +1.

Proof.

1 Let us partition the objects into 4 buckets:

A = {si : si >
2
3 }.

B = {si :
2
3 ≥ si >

1
2 }.

C = {si :
1
2 ≥ si >

1
3 }.

D = {si :
1
3 ≥ si}.

2 Consider the following two cases:
(a) There is at least one bin that contains only elements from D - In this case, for all but one bin (the

last one), the total occupancy is at least 2
3 . In other words ∑

n
i=1 si ≥ 2

3 · (k−1). It follows that the
theorem holds.

(b) There is no bin that contains only elements from D - In this case, we can focus on the solution
returned by FFD, assuming that all the elements of bucket D are thrown out. In this revised input
instance, elements of A are loners, every bin contains at most two elements, and at most one of
these two elements can be from bucket B. It is not hard to see that FFD gives an optimal packing!

Bin-Packing

Offline Algorithms

First bound

Theorem

Let k denote the number of bins used by FFD. Then k ≤ 1.5 ·OPT +1.

Proof.

1 Let us partition the objects into 4 buckets:
A = {si : si >

2
3 }.

B = {si :
2
3 ≥ si >

1
2 }.

C = {si :
1
2 ≥ si >

1
3 }.

D = {si :
1
3 ≥ si}.

2 Consider the following two cases:
(a) There is at least one bin that contains only elements from D - In this case, for all but one bin (the

last one), the total occupancy is at least 2
3 . In other words ∑

n
i=1 si ≥ 2

3 · (k−1). It follows that the
theorem holds.

(b) There is no bin that contains only elements from D - In this case, we can focus on the solution
returned by FFD, assuming that all the elements of bucket D are thrown out. In this revised input
instance, elements of A are loners, every bin contains at most two elements, and at most one of
these two elements can be from bucket B. It is not hard to see that FFD gives an optimal packing!

Bin-Packing

Offline Algorithms

First bound

Theorem

Let k denote the number of bins used by FFD. Then k ≤ 1.5 ·OPT +1.

Proof.

1 Let us partition the objects into 4 buckets:
A = {si : si >

2
3 }.

B = {si :
2
3 ≥ si >

1
2 }.

C = {si :
1
2 ≥ si >

1
3 }.

D = {si :
1
3 ≥ si}.

2 Consider the following two cases:
(a) There is at least one bin that contains only elements from D - In this case, for all but one bin (the

last one), the total occupancy is at least 2
3 . In other words ∑

n
i=1 si ≥ 2

3 · (k−1). It follows that the
theorem holds.

(b) There is no bin that contains only elements from D - In this case, we can focus on the solution
returned by FFD, assuming that all the elements of bucket D are thrown out. In this revised input
instance, elements of A are loners, every bin contains at most two elements, and at most one of
these two elements can be from bucket B. It is not hard to see that FFD gives an optimal packing!

Bin-Packing

Offline Algorithms

First bound

Theorem

Let k denote the number of bins used by FFD. Then k ≤ 1.5 ·OPT +1.

Proof.

1 Let us partition the objects into 4 buckets:
A = {si : si >

2
3 }.

B = {si :
2
3 ≥ si >

1
2 }.

C = {si :
1
2 ≥ si >

1
3 }.

D = {si :
1
3 ≥ si}.

2 Consider the following two cases:
(a) There is at least one bin that contains only elements from D - In this case, for all but one bin (the

last one), the total occupancy is at least 2
3 . In other words ∑

n
i=1 si ≥ 2

3 · (k−1). It follows that the
theorem holds.

(b) There is no bin that contains only elements from D - In this case, we can focus on the solution
returned by FFD, assuming that all the elements of bucket D are thrown out. In this revised input
instance, elements of A are loners, every bin contains at most two elements, and at most one of
these two elements can be from bucket B. It is not hard to see that FFD gives an optimal packing!

Bin-Packing

Offline Algorithms

First bound

Theorem

Let k denote the number of bins used by FFD. Then k ≤ 1.5 ·OPT +1.

Proof.

1 Let us partition the objects into 4 buckets:
A = {si : si >

2
3 }.

B = {si :
2
3 ≥ si >

1
2 }.

C = {si :
1
2 ≥ si >

1
3 }.

D = {si :
1
3 ≥ si}.

2 Consider the following two cases:
(a) There is at least one bin that contains only elements from D - In this case, for all but one bin (the

last one), the total occupancy is at least 2
3 . In other words ∑

n
i=1 si ≥ 2

3 · (k−1). It follows that the
theorem holds.

(b) There is no bin that contains only elements from D - In this case, we can focus on the solution
returned by FFD, assuming that all the elements of bucket D are thrown out. In this revised input
instance, elements of A are loners, every bin contains at most two elements, and at most one of
these two elements can be from bucket B. It is not hard to see that FFD gives an optimal packing!

Bin-Packing

Offline Algorithms

First bound

Theorem

Let k denote the number of bins used by FFD. Then k ≤ 1.5 ·OPT +1.

Proof.

1 Let us partition the objects into 4 buckets:
A = {si : si >

2
3 }.

B = {si :
2
3 ≥ si >

1
2 }.

C = {si :
1
2 ≥ si >

1
3 }.

D = {si :
1
3 ≥ si}.

2 Consider the following two cases:

(a) There is at least one bin that contains only elements from D - In this case, for all but one bin (the
last one), the total occupancy is at least 2

3 . In other words ∑
n
i=1 si ≥ 2

3 · (k−1). It follows that the
theorem holds.

(b) There is no bin that contains only elements from D - In this case, we can focus on the solution
returned by FFD, assuming that all the elements of bucket D are thrown out. In this revised input
instance, elements of A are loners, every bin contains at most two elements, and at most one of
these two elements can be from bucket B. It is not hard to see that FFD gives an optimal packing!

Bin-Packing

Offline Algorithms

First bound

Theorem

Let k denote the number of bins used by FFD. Then k ≤ 1.5 ·OPT +1.

Proof.

1 Let us partition the objects into 4 buckets:
A = {si : si >

2
3 }.

B = {si :
2
3 ≥ si >

1
2 }.

C = {si :
1
2 ≥ si >

1
3 }.

D = {si :
1
3 ≥ si}.

2 Consider the following two cases:
(a) There is at least one bin that contains only elements from D -

In this case, for all but one bin (the
last one), the total occupancy is at least 2

3 . In other words ∑
n
i=1 si ≥ 2

3 · (k−1). It follows that the
theorem holds.

(b) There is no bin that contains only elements from D - In this case, we can focus on the solution
returned by FFD, assuming that all the elements of bucket D are thrown out. In this revised input
instance, elements of A are loners, every bin contains at most two elements, and at most one of
these two elements can be from bucket B. It is not hard to see that FFD gives an optimal packing!

Bin-Packing

Offline Algorithms

First bound

Theorem

Let k denote the number of bins used by FFD. Then k ≤ 1.5 ·OPT +1.

Proof.

1 Let us partition the objects into 4 buckets:
A = {si : si >

2
3 }.

B = {si :
2
3 ≥ si >

1
2 }.

C = {si :
1
2 ≥ si >

1
3 }.

D = {si :
1
3 ≥ si}.

2 Consider the following two cases:
(a) There is at least one bin that contains only elements from D - In this case, for all but one bin (the

last one), the total occupancy is at least 2
3 .

In other words ∑
n
i=1 si ≥ 2

3 · (k−1). It follows that the
theorem holds.

(b) There is no bin that contains only elements from D - In this case, we can focus on the solution
returned by FFD, assuming that all the elements of bucket D are thrown out. In this revised input
instance, elements of A are loners, every bin contains at most two elements, and at most one of
these two elements can be from bucket B. It is not hard to see that FFD gives an optimal packing!

Bin-Packing

Offline Algorithms

First bound

Theorem

Let k denote the number of bins used by FFD. Then k ≤ 1.5 ·OPT +1.

Proof.

1 Let us partition the objects into 4 buckets:
A = {si : si >

2
3 }.

B = {si :
2
3 ≥ si >

1
2 }.

C = {si :
1
2 ≥ si >

1
3 }.

D = {si :
1
3 ≥ si}.

2 Consider the following two cases:
(a) There is at least one bin that contains only elements from D - In this case, for all but one bin (the

last one), the total occupancy is at least 2
3 . In other words ∑

n
i=1 si ≥ 2

3 · (k−1).

It follows that the
theorem holds.

(b) There is no bin that contains only elements from D - In this case, we can focus on the solution
returned by FFD, assuming that all the elements of bucket D are thrown out. In this revised input
instance, elements of A are loners, every bin contains at most two elements, and at most one of
these two elements can be from bucket B. It is not hard to see that FFD gives an optimal packing!

Bin-Packing

Offline Algorithms

First bound

Theorem

Let k denote the number of bins used by FFD. Then k ≤ 1.5 ·OPT +1.

Proof.

1 Let us partition the objects into 4 buckets:
A = {si : si >

2
3 }.

B = {si :
2
3 ≥ si >

1
2 }.

C = {si :
1
2 ≥ si >

1
3 }.

D = {si :
1
3 ≥ si}.

2 Consider the following two cases:
(a) There is at least one bin that contains only elements from D - In this case, for all but one bin (the

last one), the total occupancy is at least 2
3 . In other words ∑

n
i=1 si ≥ 2

3 · (k−1). It follows that the
theorem holds.

(b) There is no bin that contains only elements from D - In this case, we can focus on the solution
returned by FFD, assuming that all the elements of bucket D are thrown out. In this revised input
instance, elements of A are loners, every bin contains at most two elements, and at most one of
these two elements can be from bucket B. It is not hard to see that FFD gives an optimal packing!

Bin-Packing

Offline Algorithms

First bound

Theorem

Let k denote the number of bins used by FFD. Then k ≤ 1.5 ·OPT +1.

Proof.

1 Let us partition the objects into 4 buckets:
A = {si : si >

2
3 }.

B = {si :
2
3 ≥ si >

1
2 }.

C = {si :
1
2 ≥ si >

1
3 }.

D = {si :
1
3 ≥ si}.

2 Consider the following two cases:
(a) There is at least one bin that contains only elements from D - In this case, for all but one bin (the

last one), the total occupancy is at least 2
3 . In other words ∑

n
i=1 si ≥ 2

3 · (k−1). It follows that the
theorem holds.

(b) There is no bin that contains only elements from D -

In this case, we can focus on the solution
returned by FFD, assuming that all the elements of bucket D are thrown out. In this revised input
instance, elements of A are loners, every bin contains at most two elements, and at most one of
these two elements can be from bucket B. It is not hard to see that FFD gives an optimal packing!

Bin-Packing

Offline Algorithms

First bound

Theorem

Let k denote the number of bins used by FFD. Then k ≤ 1.5 ·OPT +1.

Proof.

1 Let us partition the objects into 4 buckets:
A = {si : si >

2
3 }.

B = {si :
2
3 ≥ si >

1
2 }.

C = {si :
1
2 ≥ si >

1
3 }.

D = {si :
1
3 ≥ si}.

2 Consider the following two cases:
(a) There is at least one bin that contains only elements from D - In this case, for all but one bin (the

last one), the total occupancy is at least 2
3 . In other words ∑

n
i=1 si ≥ 2

3 · (k−1). It follows that the
theorem holds.

(b) There is no bin that contains only elements from D - In this case, we can focus on the solution
returned by FFD, assuming that all the elements of bucket D are thrown out.

In this revised input
instance, elements of A are loners, every bin contains at most two elements, and at most one of
these two elements can be from bucket B. It is not hard to see that FFD gives an optimal packing!

Bin-Packing

Offline Algorithms

First bound

Theorem

Let k denote the number of bins used by FFD. Then k ≤ 1.5 ·OPT +1.

Proof.

1 Let us partition the objects into 4 buckets:
A = {si : si >

2
3 }.

B = {si :
2
3 ≥ si >

1
2 }.

C = {si :
1
2 ≥ si >

1
3 }.

D = {si :
1
3 ≥ si}.

2 Consider the following two cases:
(a) There is at least one bin that contains only elements from D - In this case, for all but one bin (the

last one), the total occupancy is at least 2
3 . In other words ∑

n
i=1 si ≥ 2

3 · (k−1). It follows that the
theorem holds.

(b) There is no bin that contains only elements from D - In this case, we can focus on the solution
returned by FFD, assuming that all the elements of bucket D are thrown out. In this revised input
instance, elements of A are loners,

every bin contains at most two elements, and at most one of
these two elements can be from bucket B. It is not hard to see that FFD gives an optimal packing!

Bin-Packing

Offline Algorithms

First bound

Theorem

Let k denote the number of bins used by FFD. Then k ≤ 1.5 ·OPT +1.

Proof.

1 Let us partition the objects into 4 buckets:
A = {si : si >

2
3 }.

B = {si :
2
3 ≥ si >

1
2 }.

C = {si :
1
2 ≥ si >

1
3 }.

D = {si :
1
3 ≥ si}.

2 Consider the following two cases:
(a) There is at least one bin that contains only elements from D - In this case, for all but one bin (the

last one), the total occupancy is at least 2
3 . In other words ∑

n
i=1 si ≥ 2

3 · (k−1). It follows that the
theorem holds.

(b) There is no bin that contains only elements from D - In this case, we can focus on the solution
returned by FFD, assuming that all the elements of bucket D are thrown out. In this revised input
instance, elements of A are loners, every bin contains at most two elements,

and at most one of
these two elements can be from bucket B. It is not hard to see that FFD gives an optimal packing!

Bin-Packing

Offline Algorithms

First bound

Theorem

Let k denote the number of bins used by FFD. Then k ≤ 1.5 ·OPT +1.

Proof.

1 Let us partition the objects into 4 buckets:
A = {si : si >

2
3 }.

B = {si :
2
3 ≥ si >

1
2 }.

C = {si :
1
2 ≥ si >

1
3 }.

D = {si :
1
3 ≥ si}.

2 Consider the following two cases:
(a) There is at least one bin that contains only elements from D - In this case, for all but one bin (the

last one), the total occupancy is at least 2
3 . In other words ∑

n
i=1 si ≥ 2

3 · (k−1). It follows that the
theorem holds.

(b) There is no bin that contains only elements from D - In this case, we can focus on the solution
returned by FFD, assuming that all the elements of bucket D are thrown out. In this revised input
instance, elements of A are loners, every bin contains at most two elements, and at most one of
these two elements can be from bucket B.

It is not hard to see that FFD gives an optimal packing!

Bin-Packing

Offline Algorithms

First bound

Theorem

Let k denote the number of bins used by FFD. Then k ≤ 1.5 ·OPT +1.

Proof.

1 Let us partition the objects into 4 buckets:
A = {si : si >

2
3 }.

B = {si :
2
3 ≥ si >

1
2 }.

C = {si :
1
2 ≥ si >

1
3 }.

D = {si :
1
3 ≥ si}.

2 Consider the following two cases:
(a) There is at least one bin that contains only elements from D - In this case, for all but one bin (the

last one), the total occupancy is at least 2
3 . In other words ∑

n
i=1 si ≥ 2

3 · (k−1). It follows that the
theorem holds.

(b) There is no bin that contains only elements from D - In this case, we can focus on the solution
returned by FFD, assuming that all the elements of bucket D are thrown out. In this revised input
instance, elements of A are loners, every bin contains at most two elements, and at most one of
these two elements can be from bucket B. It is not hard to see that FFD gives an optimal packing!

Bin-Packing

Offline Algorithms

Tighter bounds

Theorem

Let the bins used by FFD be B1,B2, . . .BOPT ,BOPT+1, . . .Br . Then r ≤ (4·OPT+2
3).

Bin-Packing

Offline Algorithms

Tighter bounds

Theorem

Let the bins used by FFD be B1,B2, . . .BOPT ,BOPT+1, . . .Br . Then r ≤ (4·OPT+2
3).

Bin-Packing

Offline Algorithms

Analysis

Lemma (Lemsize)

In the FFD bin sequence, all items in the bins {BOPT+1, . . .Br} have size at most 1
3 .

Lemma (Lemnumber)

The number of items that FFD puts in the bins {BOPT+1, . . .Br} is at most (OPT −1).

Note

If the above two lemmas are proved, the theorem easily follows. To see this, observe that as per
the two lemmas above, there are (OPT −1) extra items, each having size at most 1

3 and hence
the number of extra bins required is at most dOPT−1

3 e. It follows that the total number of bins
required by FFD is at most :

OPT + dOPT −1
3

e ≤ OPT +
OPT −1

3
+1

=
4 ·OPT +2

3

Bin-Packing

Offline Algorithms

Analysis

Lemma (Lemsize)

In the FFD bin sequence, all items in the bins {BOPT+1, . . .Br} have size at most 1
3 .

Lemma (Lemnumber)

The number of items that FFD puts in the bins {BOPT+1, . . .Br} is at most (OPT −1).

Note

If the above two lemmas are proved, the theorem easily follows. To see this, observe that as per
the two lemmas above, there are (OPT −1) extra items, each having size at most 1

3 and hence
the number of extra bins required is at most dOPT−1

3 e. It follows that the total number of bins
required by FFD is at most :

OPT + dOPT −1
3

e ≤ OPT +
OPT −1

3
+1

=
4 ·OPT +2

3

Bin-Packing

Offline Algorithms

Analysis

Lemma (Lemsize)

In the FFD bin sequence, all items in the bins {BOPT+1, . . .Br} have size at most 1
3 .

Lemma (Lemnumber)

The number of items that FFD puts in the bins {BOPT+1, . . .Br} is at most (OPT −1).

Note

If the above two lemmas are proved, the theorem easily follows. To see this, observe that as per
the two lemmas above, there are (OPT −1) extra items, each having size at most 1

3 and hence
the number of extra bins required is at most dOPT−1

3 e. It follows that the total number of bins
required by FFD is at most :

OPT + dOPT −1
3

e ≤ OPT +
OPT −1

3
+1

=
4 ·OPT +2

3

Bin-Packing

Offline Algorithms

Analysis

Lemma (Lemsize)

In the FFD bin sequence, all items in the bins {BOPT+1, . . .Br} have size at most 1
3 .

Lemma (Lemnumber)

The number of items that FFD puts in the bins {BOPT+1, . . .Br} is at most (OPT −1).

Note

If the above two lemmas are proved, the theorem easily follows.

To see this, observe that as per
the two lemmas above, there are (OPT −1) extra items, each having size at most 1

3 and hence
the number of extra bins required is at most dOPT−1

3 e. It follows that the total number of bins
required by FFD is at most :

OPT + dOPT −1
3

e ≤ OPT +
OPT −1

3
+1

=
4 ·OPT +2

3

Bin-Packing

Offline Algorithms

Analysis

Lemma (Lemsize)

In the FFD bin sequence, all items in the bins {BOPT+1, . . .Br} have size at most 1
3 .

Lemma (Lemnumber)

The number of items that FFD puts in the bins {BOPT+1, . . .Br} is at most (OPT −1).

Note

If the above two lemmas are proved, the theorem easily follows. To see this, observe that as per
the two lemmas above, there are (OPT −1) extra items, each having size at most 1

3 and hence
the number of extra bins required is at most

dOPT−1
3 e. It follows that the total number of bins

required by FFD is at most :

OPT + dOPT −1
3

e ≤ OPT +
OPT −1

3
+1

=
4 ·OPT +2

3

Bin-Packing

Offline Algorithms

Analysis

Lemma (Lemsize)

In the FFD bin sequence, all items in the bins {BOPT+1, . . .Br} have size at most 1
3 .

Lemma (Lemnumber)

The number of items that FFD puts in the bins {BOPT+1, . . .Br} is at most (OPT −1).

Note

If the above two lemmas are proved, the theorem easily follows. To see this, observe that as per
the two lemmas above, there are (OPT −1) extra items, each having size at most 1

3 and hence
the number of extra bins required is at most dOPT−1

3 e.

It follows that the total number of bins
required by FFD is at most :

OPT + dOPT −1
3

e ≤ OPT +
OPT −1

3
+1

=
4 ·OPT +2

3

Bin-Packing

Offline Algorithms

Analysis

Lemma (Lemsize)

In the FFD bin sequence, all items in the bins {BOPT+1, . . .Br} have size at most 1
3 .

Lemma (Lemnumber)

The number of items that FFD puts in the bins {BOPT+1, . . .Br} is at most (OPT −1).

Note

If the above two lemmas are proved, the theorem easily follows. To see this, observe that as per
the two lemmas above, there are (OPT −1) extra items, each having size at most 1

3 and hence
the number of extra bins required is at most dOPT−1

3 e. It follows that the total number of bins
required by FFD is at most :

OPT + dOPT −1
3

e ≤ OPT +
OPT −1

3
+1

=
4 ·OPT +2

3

Bin-Packing

Offline Algorithms

Analysis

Lemma (Lemsize)

In the FFD bin sequence, all items in the bins {BOPT+1, . . .Br} have size at most 1
3 .

Lemma (Lemnumber)

The number of items that FFD puts in the bins {BOPT+1, . . .Br} is at most (OPT −1).

Note

If the above two lemmas are proved, the theorem easily follows. To see this, observe that as per
the two lemmas above, there are (OPT −1) extra items, each having size at most 1

3 and hence
the number of extra bins required is at most dOPT−1

3 e. It follows that the total number of bins
required by FFD is at most :

OPT + dOPT −1
3

e ≤ OPT +
OPT −1

3
+1

=
4 ·OPT +2

3

Bin-Packing

Offline Algorithms

Analysis

Lemma (Lemsize)

In the FFD bin sequence, all items in the bins {BOPT+1, . . .Br} have size at most 1
3 .

Lemma (Lemnumber)

The number of items that FFD puts in the bins {BOPT+1, . . .Br} is at most (OPT −1).

Note

If the above two lemmas are proved, the theorem easily follows. To see this, observe that as per
the two lemmas above, there are (OPT −1) extra items, each having size at most 1

3 and hence
the number of extra bins required is at most dOPT−1

3 e. It follows that the total number of bins
required by FFD is at most :

OPT + dOPT −1
3

e ≤ OPT +
OPT −1

3
+1

=
4 ·OPT +2

3

Bin-Packing

Offline Algorithms

Analysis (contd.)

Lemma (Lemsize)

In the FFD bin sequence, all items in the bins {BOPT+1, . . .Br} have size at most 1
3 .

Proof of Lemsize.

We proved it in the previous analysis!

As before, consider the partition of the four items into 4 buckets.

If we ignore the D bucket, FFD gives the optimal number of bins, say OPT1 for the
truncated instance.

Clearly, the optimal solution for the complete instance, OPT is at least as large as OPT1,
i.e, OPT ≥ OPT1.

What we know is that every bin opened after OPT1 and hence OPT must contain only
items from bucket D, i.e., each of those items will have size at most 1

3 .

Bin-Packing

Offline Algorithms

Analysis (contd.)

Lemma (Lemsize)

In the FFD bin sequence, all items in the bins {BOPT+1, . . .Br} have size at most 1
3 .

Proof of Lemsize.

We proved it in the previous analysis!

As before, consider the partition of the four items into 4 buckets.

If we ignore the D bucket, FFD gives the optimal number of bins, say OPT1 for the
truncated instance.

Clearly, the optimal solution for the complete instance, OPT is at least as large as OPT1,
i.e, OPT ≥ OPT1.

What we know is that every bin opened after OPT1 and hence OPT must contain only
items from bucket D, i.e., each of those items will have size at most 1

3 .

Bin-Packing

Offline Algorithms

Analysis (contd.)

Lemma (Lemsize)

In the FFD bin sequence, all items in the bins {BOPT+1, . . .Br} have size at most 1
3 .

Proof of Lemsize.

We proved it in the previous analysis!

As before, consider the partition of the four items into 4 buckets.

If we ignore the D bucket, FFD gives the optimal number of bins, say OPT1 for the
truncated instance.

Clearly, the optimal solution for the complete instance, OPT is at least as large as OPT1,
i.e, OPT ≥ OPT1.

What we know is that every bin opened after OPT1 and hence OPT must contain only
items from bucket D, i.e., each of those items will have size at most 1

3 .

Bin-Packing

Offline Algorithms

Analysis (contd.)

Lemma (Lemsize)

In the FFD bin sequence, all items in the bins {BOPT+1, . . .Br} have size at most 1
3 .

Proof of Lemsize.

We proved it in the previous analysis!

As before, consider the partition of the four items into 4 buckets.

If we ignore the D bucket, FFD gives the optimal number of bins, say OPT1 for the
truncated instance.

Clearly, the optimal solution for the complete instance, OPT is at least as large as OPT1,
i.e, OPT ≥ OPT1.

What we know is that every bin opened after OPT1 and hence OPT must contain only
items from bucket D, i.e., each of those items will have size at most 1

3 .

Bin-Packing

Offline Algorithms

Analysis (contd.)

Lemma (Lemsize)

In the FFD bin sequence, all items in the bins {BOPT+1, . . .Br} have size at most 1
3 .

Proof of Lemsize.

We proved it in the previous analysis!

As before, consider the partition of the four items into 4 buckets.

If we ignore the D bucket, FFD gives the optimal number of bins, say OPT1 for the
truncated instance.

Clearly, the optimal solution for the complete instance, OPT is at least as large as OPT1,
i.e, OPT ≥ OPT1.

What we know is that every bin opened after OPT1 and hence OPT must contain only
items from bucket D, i.e., each of those items will have size at most 1

3 .

Bin-Packing

Offline Algorithms

Analysis (contd.)

Lemma (Lemsize)

In the FFD bin sequence, all items in the bins {BOPT+1, . . .Br} have size at most 1
3 .

Proof of Lemsize.

We proved it in the previous analysis!

As before, consider the partition of the four items into 4 buckets.

If we ignore the D bucket, FFD gives the optimal number of bins, say OPT1 for the
truncated instance.

Clearly, the optimal solution for the complete instance, OPT is at least as large as OPT1,
i.e, OPT ≥ OPT1.

What we know is that every bin opened after OPT1 and hence OPT must contain only
items from bucket D, i.e., each of those items will have size at most 1

3 .

Bin-Packing

Offline Algorithms

Analysis (contd.)

Lemma (Lemsize)

In the FFD bin sequence, all items in the bins {BOPT+1, . . .Br} have size at most 1
3 .

Proof of Lemsize.

We proved it in the previous analysis!

As before, consider the partition of the four items into 4 buckets.

If we ignore the D bucket, FFD gives the optimal number of bins, say OPT1 for the
truncated instance.

Clearly, the optimal solution for the complete instance, OPT is at least as large as OPT1,
i.e, OPT ≥ OPT1.

What we know is that every bin opened after OPT1 and hence OPT must contain only
items from bucket D, i.e., each of those items will have size at most 1

3 .

Bin-Packing

Offline Algorithms

Analysis (contd.)

Lemma (Lemsize)

In the FFD bin sequence, all items in the bins {BOPT+1, . . .Br} have size at most 1
3 .

Proof of Lemsize.

We proved it in the previous analysis!

As before, consider the partition of the four items into 4 buckets.

If we ignore the D bucket, FFD gives the optimal number of bins, say OPT1 for the
truncated instance.

Clearly, the optimal solution for the complete instance, OPT is at least as large as OPT1,
i.e, OPT ≥ OPT1.

What we know is that every bin opened after OPT1 and hence OPT must contain only
items from bucket D, i.e., each of those items will have size at most 1

3 .

Bin-Packing

Offline Algorithms

Analysis (contd.)

Lemma (Lemsize)

In the FFD bin sequence, all items in the bins {BOPT+1, . . .Br} have size at most 1
3 .

Proof of Lemsize.

We proved it in the previous analysis!

As before, consider the partition of the four items into 4 buckets.

If we ignore the D bucket, FFD gives the optimal number of bins, say OPT1 for the
truncated instance.

Clearly, the optimal solution for the complete instance, OPT is at least as large as OPT1,
i.e, OPT ≥ OPT1.

What we know is that every bin opened after OPT1 and hence OPT must contain only
items from bucket D, i.e., each of those items will have size at most 1

3 .

Bin-Packing

Offline Algorithms

Analysis (contd.)

Lemma (Lemsize)

In the FFD bin sequence, all items in the bins {BOPT+1, . . .Br} have size at most 1
3 .

Proof of Lemsize.

We proved it in the previous analysis!

As before, consider the partition of the four items into 4 buckets.

If we ignore the D bucket, FFD gives the optimal number of bins, say OPT1 for the
truncated instance.

Clearly, the optimal solution for the complete instance, OPT is at least as large as OPT1,
i.e, OPT ≥ OPT1.

What we know is that every bin opened after OPT1 and hence OPT must contain only
items from bucket D, i.e., each of those items will have size at most 1

3 .

Bin-Packing

Offline Algorithms

Analysis (contd.)

Lemma (Lemnumber)

The number of items that FFD puts in the bins {BOPT+1, . . .Br} is at most (OPT −1).

Proof of Lemnumber.

1 Assume at least OPT objects were put in the bins after BOPT .

2 Recall that we must have ∑
n
i=1 si ≤ OPT .

3 Let weight associated with bin Bj be Wj and let x1,x2, . . .xOPT denote the weights of the
first OPT objects in the extra bins.

4 Clearly, we must have, ∑
n
i=1 si ≥ ∑

OPT
j=1 Wj +∑

OPT
j=1 xj , which implies that,

∑
n
i=1 si ≥ ∑

OPT
j=1 (Wj + xj).

5 However, (Wj + xj)> 1. (Why?) This means that ∑
n
i=1 si > OPT , which is a contradiction!

Bin-Packing

Offline Algorithms

Analysis (contd.)

Lemma (Lemnumber)

The number of items that FFD puts in the bins {BOPT+1, . . .Br} is at most (OPT −1).

Proof of Lemnumber.

1 Assume at least OPT objects were put in the bins after BOPT .

2 Recall that we must have ∑
n
i=1 si ≤ OPT .

3 Let weight associated with bin Bj be Wj and let x1,x2, . . .xOPT denote the weights of the
first OPT objects in the extra bins.

4 Clearly, we must have, ∑
n
i=1 si ≥ ∑

OPT
j=1 Wj +∑

OPT
j=1 xj , which implies that,

∑
n
i=1 si ≥ ∑

OPT
j=1 (Wj + xj).

5 However, (Wj + xj)> 1. (Why?) This means that ∑
n
i=1 si > OPT , which is a contradiction!

Bin-Packing

Offline Algorithms

Analysis (contd.)

Lemma (Lemnumber)

The number of items that FFD puts in the bins {BOPT+1, . . .Br} is at most (OPT −1).

Proof of Lemnumber.

1 Assume at least OPT objects were put in the bins after BOPT .

2 Recall that we must have ∑
n
i=1 si ≤ OPT .

3 Let weight associated with bin Bj be Wj and let x1,x2, . . .xOPT denote the weights of the
first OPT objects in the extra bins.

4 Clearly, we must have, ∑
n
i=1 si ≥ ∑

OPT
j=1 Wj +∑

OPT
j=1 xj , which implies that,

∑
n
i=1 si ≥ ∑

OPT
j=1 (Wj + xj).

5 However, (Wj + xj)> 1. (Why?) This means that ∑
n
i=1 si > OPT , which is a contradiction!

Bin-Packing

Offline Algorithms

Analysis (contd.)

Lemma (Lemnumber)

The number of items that FFD puts in the bins {BOPT+1, . . .Br} is at most (OPT −1).

Proof of Lemnumber.

1 Assume at least OPT objects were put in the bins after BOPT .

2 Recall that we must have ∑
n
i=1 si ≤ OPT .

3 Let weight associated with bin Bj be Wj and let x1,x2, . . .xOPT denote the weights of the
first OPT objects in the extra bins.

4 Clearly, we must have, ∑
n
i=1 si ≥ ∑

OPT
j=1 Wj +∑

OPT
j=1 xj , which implies that,

∑
n
i=1 si ≥ ∑

OPT
j=1 (Wj + xj).

5 However, (Wj + xj)> 1. (Why?) This means that ∑
n
i=1 si > OPT , which is a contradiction!

Bin-Packing

Offline Algorithms

Analysis (contd.)

Lemma (Lemnumber)

The number of items that FFD puts in the bins {BOPT+1, . . .Br} is at most (OPT −1).

Proof of Lemnumber.

1 Assume at least OPT objects were put in the bins after BOPT .

2 Recall that we must have ∑
n
i=1 si ≤ OPT .

3 Let weight associated with bin Bj be Wj and let x1,x2, . . .xOPT denote the weights of the
first OPT objects in the extra bins.

4 Clearly, we must have, ∑
n
i=1 si ≥ ∑

OPT
j=1 Wj +∑

OPT
j=1 xj , which implies that,

∑
n
i=1 si ≥ ∑

OPT
j=1 (Wj + xj).

5 However, (Wj + xj)> 1. (Why?) This means that ∑
n
i=1 si > OPT , which is a contradiction!

Bin-Packing

Offline Algorithms

Analysis (contd.)

Lemma (Lemnumber)

The number of items that FFD puts in the bins {BOPT+1, . . .Br} is at most (OPT −1).

Proof of Lemnumber.

1 Assume at least OPT objects were put in the bins after BOPT .

2 Recall that we must have ∑
n
i=1 si ≤ OPT .

3 Let weight associated with bin Bj be Wj and let x1,x2, . . .xOPT denote the weights of the
first OPT objects in the extra bins.

4 Clearly, we must have, ∑
n
i=1 si ≥ ∑

OPT
j=1 Wj +∑

OPT
j=1 xj , which implies that,

∑
n
i=1 si ≥ ∑

OPT
j=1 (Wj + xj).

5 However, (Wj + xj)> 1. (Why?) This means that ∑
n
i=1 si > OPT , which is a contradiction!

Bin-Packing

Offline Algorithms

Analysis (contd.)

Lemma (Lemnumber)

The number of items that FFD puts in the bins {BOPT+1, . . .Br} is at most (OPT −1).

Proof of Lemnumber.

1 Assume at least OPT objects were put in the bins after BOPT .

2 Recall that we must have ∑
n
i=1 si ≤ OPT .

3 Let weight associated with bin Bj be Wj and let x1,x2, . . .xOPT denote the weights of the
first OPT objects in the extra bins.

4 Clearly, we must have, ∑
n
i=1 si ≥ ∑

OPT
j=1 Wj +∑

OPT
j=1 xj , which implies that,

∑
n
i=1 si ≥ ∑

OPT
j=1 (Wj + xj).

5 However, (Wj + xj)> 1. (Why?) This means that ∑
n
i=1 si > OPT , which is a contradiction!

Bin-Packing

Offline Algorithms

Analysis (contd.)

Lemma (Lemnumber)

The number of items that FFD puts in the bins {BOPT+1, . . .Br} is at most (OPT −1).

Proof of Lemnumber.

1 Assume at least OPT objects were put in the bins after BOPT .

2 Recall that we must have ∑
n
i=1 si ≤ OPT .

3 Let weight associated with bin Bj be Wj and let x1,x2, . . .xOPT denote the weights of the
first OPT objects in the extra bins.

4 Clearly, we must have,

∑
n
i=1 si ≥ ∑

OPT
j=1 Wj +∑

OPT
j=1 xj , which implies that,

∑
n
i=1 si ≥ ∑

OPT
j=1 (Wj + xj).

5 However, (Wj + xj)> 1. (Why?) This means that ∑
n
i=1 si > OPT , which is a contradiction!

Bin-Packing

Offline Algorithms

Analysis (contd.)

Lemma (Lemnumber)

The number of items that FFD puts in the bins {BOPT+1, . . .Br} is at most (OPT −1).

Proof of Lemnumber.

1 Assume at least OPT objects were put in the bins after BOPT .

2 Recall that we must have ∑
n
i=1 si ≤ OPT .

3 Let weight associated with bin Bj be Wj and let x1,x2, . . .xOPT denote the weights of the
first OPT objects in the extra bins.

4 Clearly, we must have, ∑
n
i=1 si ≥ ∑

OPT
j=1 Wj +∑

OPT
j=1 xj , which implies that,

∑
n
i=1 si ≥ ∑

OPT
j=1 (Wj + xj).

5 However, (Wj + xj)> 1. (Why?) This means that ∑
n
i=1 si > OPT , which is a contradiction!

Bin-Packing

Offline Algorithms

Analysis (contd.)

Lemma (Lemnumber)

The number of items that FFD puts in the bins {BOPT+1, . . .Br} is at most (OPT −1).

Proof of Lemnumber.

1 Assume at least OPT objects were put in the bins after BOPT .

2 Recall that we must have ∑
n
i=1 si ≤ OPT .

3 Let weight associated with bin Bj be Wj and let x1,x2, . . .xOPT denote the weights of the
first OPT objects in the extra bins.

4 Clearly, we must have, ∑
n
i=1 si ≥ ∑

OPT
j=1 Wj +∑

OPT
j=1 xj , which implies that,

∑
n
i=1 si ≥ ∑

OPT
j=1 (Wj + xj).

5 However, (Wj + xj)> 1. (Why?) This means that ∑
n
i=1 si > OPT , which is a contradiction!

Bin-Packing

Offline Algorithms

Analysis (contd.)

Lemma (Lemnumber)

The number of items that FFD puts in the bins {BOPT+1, . . .Br} is at most (OPT −1).

Proof of Lemnumber.

1 Assume at least OPT objects were put in the bins after BOPT .

2 Recall that we must have ∑
n
i=1 si ≤ OPT .

3 Let weight associated with bin Bj be Wj and let x1,x2, . . .xOPT denote the weights of the
first OPT objects in the extra bins.

4 Clearly, we must have, ∑
n
i=1 si ≥ ∑

OPT
j=1 Wj +∑

OPT
j=1 xj , which implies that,

∑
n
i=1 si ≥ ∑

OPT
j=1 (Wj + xj).

5 However, (Wj + xj)> 1.

(Why?) This means that ∑
n
i=1 si > OPT , which is a contradiction!

Bin-Packing

Offline Algorithms

Analysis (contd.)

Lemma (Lemnumber)

The number of items that FFD puts in the bins {BOPT+1, . . .Br} is at most (OPT −1).

Proof of Lemnumber.

1 Assume at least OPT objects were put in the bins after BOPT .

2 Recall that we must have ∑
n
i=1 si ≤ OPT .

3 Let weight associated with bin Bj be Wj and let x1,x2, . . .xOPT denote the weights of the
first OPT objects in the extra bins.

4 Clearly, we must have, ∑
n
i=1 si ≥ ∑

OPT
j=1 Wj +∑

OPT
j=1 xj , which implies that,

∑
n
i=1 si ≥ ∑

OPT
j=1 (Wj + xj).

5 However, (Wj + xj)> 1. (Why?)

This means that ∑
n
i=1 si > OPT , which is a contradiction!

Bin-Packing

Offline Algorithms

Analysis (contd.)

Lemma (Lemnumber)

The number of items that FFD puts in the bins {BOPT+1, . . .Br} is at most (OPT −1).

Proof of Lemnumber.

1 Assume at least OPT objects were put in the bins after BOPT .

2 Recall that we must have ∑
n
i=1 si ≤ OPT .

3 Let weight associated with bin Bj be Wj and let x1,x2, . . .xOPT denote the weights of the
first OPT objects in the extra bins.

4 Clearly, we must have, ∑
n
i=1 si ≥ ∑

OPT
j=1 Wj +∑

OPT
j=1 xj , which implies that,

∑
n
i=1 si ≥ ∑

OPT
j=1 (Wj + xj).

5 However, (Wj + xj)> 1. (Why?) This means that ∑
n
i=1 si > OPT ,

which is a contradiction!

Bin-Packing

Offline Algorithms

Analysis (contd.)

Lemma (Lemnumber)

The number of items that FFD puts in the bins {BOPT+1, . . .Br} is at most (OPT −1).

Proof of Lemnumber.

1 Assume at least OPT objects were put in the bins after BOPT .

2 Recall that we must have ∑
n
i=1 si ≤ OPT .

3 Let weight associated with bin Bj be Wj and let x1,x2, . . .xOPT denote the weights of the
first OPT objects in the extra bins.

4 Clearly, we must have, ∑
n
i=1 si ≥ ∑

OPT
j=1 Wj +∑

OPT
j=1 xj , which implies that,

∑
n
i=1 si ≥ ∑

OPT
j=1 (Wj + xj).

5 However, (Wj + xj)> 1. (Why?) This means that ∑
n
i=1 si > OPT , which is a contradiction!

Bin-Packing

Offline Algorithms

Still tighter bounds

Theorem

FFD uses at most (11·OPT
9 +4) bins. There are sequences for which FFD uses 11·M

9 bins.

Bin-Packing

Offline Algorithms

Still tighter bounds

Theorem

FFD uses at most (11·OPT
9 +4) bins.

There are sequences for which FFD uses 11·M
9 bins.

Bin-Packing

Offline Algorithms

Still tighter bounds

Theorem

FFD uses at most (11·OPT
9 +4) bins. There are sequences for which FFD uses 11·M

9 bins.

Bin-Packing

Inapproximability

Inapproximability

Theorem

There does not exist a polynomial time algorithm for the Bin-Packing problem with approximation
factor (3

2 − ε), for any ε > 0, unless P=NP.

Proof.

1 Assume that there exists a (3
2 − ε) algorithm, A , for Bin-Packing, for some ε > 0.

2 Recall the 2-partition problem. In this problem, you are are given a set of numbers
{a1,a2, . . .an} and asked if they can be partitioned into two sets, each adding up to 1

2 ∑i ai .
3 Give the instance of 2-partition to algorithm A .

4 The answer to the instance is “yes”, if and only if the n items can be packed into two bins
having size 1

2 ∑i ai .
5 Observe that if the input is a “yes” instance, then A would have to return with an optimal

answer!

Bin-Packing

Inapproximability

Inapproximability

Theorem

There does not exist a polynomial time algorithm for the Bin-Packing problem with approximation
factor (3

2 − ε), for any ε > 0, unless P=NP.

Proof.

1 Assume that there exists a (3
2 − ε) algorithm, A , for Bin-Packing, for some ε > 0.

2 Recall the 2-partition problem. In this problem, you are are given a set of numbers
{a1,a2, . . .an} and asked if they can be partitioned into two sets, each adding up to 1

2 ∑i ai .
3 Give the instance of 2-partition to algorithm A .

4 The answer to the instance is “yes”, if and only if the n items can be packed into two bins
having size 1

2 ∑i ai .
5 Observe that if the input is a “yes” instance, then A would have to return with an optimal

answer!

Bin-Packing

Inapproximability

Inapproximability

Theorem

There does not exist a polynomial time algorithm for the Bin-Packing problem with approximation
factor (3

2 − ε), for any ε > 0, unless P=NP.

Proof.

1 Assume that there exists a (3
2 − ε) algorithm, A , for Bin-Packing, for some ε > 0.

2 Recall the 2-partition problem. In this problem, you are are given a set of numbers
{a1,a2, . . .an} and asked if they can be partitioned into two sets, each adding up to 1

2 ∑i ai .
3 Give the instance of 2-partition to algorithm A .

4 The answer to the instance is “yes”, if and only if the n items can be packed into two bins
having size 1

2 ∑i ai .
5 Observe that if the input is a “yes” instance, then A would have to return with an optimal

answer!

Bin-Packing

Inapproximability

Inapproximability

Theorem

There does not exist a polynomial time algorithm for the Bin-Packing problem with approximation
factor (3

2 − ε), for any ε > 0, unless P=NP.

Proof.

1 Assume that there exists a (3
2 − ε) algorithm, A , for Bin-Packing, for some ε > 0.

2 Recall the 2-partition problem. In this problem, you are are given a set of numbers
{a1,a2, . . .an} and asked if they can be partitioned into two sets, each adding up to 1

2 ∑i ai .
3 Give the instance of 2-partition to algorithm A .

4 The answer to the instance is “yes”, if and only if the n items can be packed into two bins
having size 1

2 ∑i ai .
5 Observe that if the input is a “yes” instance, then A would have to return with an optimal

answer!

Bin-Packing

Inapproximability

Inapproximability

Theorem

There does not exist a polynomial time algorithm for the Bin-Packing problem with approximation
factor (3

2 − ε), for any ε > 0, unless P=NP.

Proof.

1 Assume that there exists a (3
2 − ε) algorithm, A , for Bin-Packing, for some ε > 0.

2 Recall the 2-partition problem.

In this problem, you are are given a set of numbers
{a1,a2, . . .an} and asked if they can be partitioned into two sets, each adding up to 1

2 ∑i ai .
3 Give the instance of 2-partition to algorithm A .

4 The answer to the instance is “yes”, if and only if the n items can be packed into two bins
having size 1

2 ∑i ai .
5 Observe that if the input is a “yes” instance, then A would have to return with an optimal

answer!

Bin-Packing

Inapproximability

Inapproximability

Theorem

There does not exist a polynomial time algorithm for the Bin-Packing problem with approximation
factor (3

2 − ε), for any ε > 0, unless P=NP.

Proof.

1 Assume that there exists a (3
2 − ε) algorithm, A , for Bin-Packing, for some ε > 0.

2 Recall the 2-partition problem. In this problem, you are are given a set of numbers
{a1,a2, . . .an} and asked if they can be partitioned into two sets, each adding up to 1

2 ∑i ai .

3 Give the instance of 2-partition to algorithm A .

4 The answer to the instance is “yes”, if and only if the n items can be packed into two bins
having size 1

2 ∑i ai .
5 Observe that if the input is a “yes” instance, then A would have to return with an optimal

answer!

Bin-Packing

Inapproximability

Inapproximability

Theorem

There does not exist a polynomial time algorithm for the Bin-Packing problem with approximation
factor (3

2 − ε), for any ε > 0, unless P=NP.

Proof.

1 Assume that there exists a (3
2 − ε) algorithm, A , for Bin-Packing, for some ε > 0.

2 Recall the 2-partition problem. In this problem, you are are given a set of numbers
{a1,a2, . . .an} and asked if they can be partitioned into two sets, each adding up to 1

2 ∑i ai .
3 Give the instance of 2-partition to algorithm A .

4 The answer to the instance is “yes”, if and only if the n items can be packed into two bins
having size 1

2 ∑i ai .
5 Observe that if the input is a “yes” instance, then A would have to return with an optimal

answer!

Bin-Packing

Inapproximability

Inapproximability

Theorem

There does not exist a polynomial time algorithm for the Bin-Packing problem with approximation
factor (3

2 − ε), for any ε > 0, unless P=NP.

Proof.

1 Assume that there exists a (3
2 − ε) algorithm, A , for Bin-Packing, for some ε > 0.

2 Recall the 2-partition problem. In this problem, you are are given a set of numbers
{a1,a2, . . .an} and asked if they can be partitioned into two sets, each adding up to 1

2 ∑i ai .
3 Give the instance of 2-partition to algorithm A .

4 The answer to the instance is “yes”, if and only if the n items can be packed into two bins
having size 1

2 ∑i ai .

5 Observe that if the input is a “yes” instance, then A would have to return with an optimal
answer!

Bin-Packing

Inapproximability

Inapproximability

Theorem

There does not exist a polynomial time algorithm for the Bin-Packing problem with approximation
factor (3

2 − ε), for any ε > 0, unless P=NP.

Proof.

1 Assume that there exists a (3
2 − ε) algorithm, A , for Bin-Packing, for some ε > 0.

2 Recall the 2-partition problem. In this problem, you are are given a set of numbers
{a1,a2, . . .an} and asked if they can be partitioned into two sets, each adding up to 1

2 ∑i ai .
3 Give the instance of 2-partition to algorithm A .

4 The answer to the instance is “yes”, if and only if the n items can be packed into two bins
having size 1

2 ∑i ai .
5 Observe that if the input is a “yes” instance, then A would have to return with an optimal

answer!

	Outline
	Main Talk
	Preliminaries
	Online Algorithms
	Offline Algorithms
	Inapproximability

