
Bin-Packing

Asymptotic PTAS for Bin-Packing

Vahan Mkrtchyan1

1Lane Department of Computer Science and Electrical Engineering
West Virginia University

March 21, 2014



Bin-Packing

Outline

Outline

1 Preliminaries

2 Problem definition

3 Definitions of PTAS, FPTAS and

Asymptotic FPTAS

4 Polynomial algorithm for restricted

instances
5 Approximation algorithm for restricted

instances

6 Asymptotic PTAS for Bin Packing



Bin-Packing

Outline

Outline

1 Preliminaries

2 Problem definition

3 Definitions of PTAS, FPTAS and

Asymptotic FPTAS

4 Polynomial algorithm for restricted

instances
5 Approximation algorithm for restricted

instances

6 Asymptotic PTAS for Bin Packing



Bin-Packing

Outline

Outline

1 Preliminaries

2 Problem definition

3 Definitions of PTAS, FPTAS and

Asymptotic FPTAS

4 Polynomial algorithm for restricted

instances
5 Approximation algorithm for restricted

instances

6 Asymptotic PTAS for Bin Packing



Bin-Packing

Outline

Outline

1 Preliminaries

2 Problem definition

3 Definitions of PTAS, FPTAS and

Asymptotic FPTAS

4 Polynomial algorithm for restricted

instances

5 Approximation algorithm for restricted

instances

6 Asymptotic PTAS for Bin Packing



Bin-Packing

Outline

Outline

1 Preliminaries

2 Problem definition

3 Definitions of PTAS, FPTAS and

Asymptotic FPTAS

4 Polynomial algorithm for restricted

instances
5 Approximation algorithm for restricted

instances

6 Asymptotic PTAS for Bin Packing



Bin-Packing

Outline

Outline

1 Preliminaries

2 Problem definition

3 Definitions of PTAS, FPTAS and

Asymptotic FPTAS

4 Polynomial algorithm for restricted

instances
5 Approximation algorithm for restricted

instances

6 Asymptotic PTAS for Bin Packing



Bin-Packing

Preliminaries

Topics

Outline

1 Problem definition.

2 Definition of PTAS, FPTAS and Asymptotic PTAS.
3 Polynomial algorithm for restricted instances.

4 Approximation algorithm for restricted instances.
5 Asymptotic PTAS for Bin Packing.



Bin-Packing

Preliminaries

Topics

Outline

1 Problem definition.

2 Definition of PTAS, FPTAS and Asymptotic PTAS.
3 Polynomial algorithm for restricted instances.

4 Approximation algorithm for restricted instances.
5 Asymptotic PTAS for Bin Packing.



Bin-Packing

Preliminaries

Topics

Outline

1 Problem definition.

2 Definition of PTAS, FPTAS and Asymptotic PTAS.
3 Polynomial algorithm for restricted instances.

4 Approximation algorithm for restricted instances.
5 Asymptotic PTAS for Bin Packing.



Bin-Packing

Preliminaries

Topics

Outline

1 Problem definition.

2 Definition of PTAS, FPTAS and Asymptotic PTAS.

3 Polynomial algorithm for restricted instances.

4 Approximation algorithm for restricted instances.
5 Asymptotic PTAS for Bin Packing.



Bin-Packing

Preliminaries

Topics

Outline

1 Problem definition.

2 Definition of PTAS, FPTAS and Asymptotic PTAS.
3 Polynomial algorithm for restricted instances.

4 Approximation algorithm for restricted instances.
5 Asymptotic PTAS for Bin Packing.



Bin-Packing

Preliminaries

Topics

Outline

1 Problem definition.

2 Definition of PTAS, FPTAS and Asymptotic PTAS.
3 Polynomial algorithm for restricted instances.

4 Approximation algorithm for restricted instances.

5 Asymptotic PTAS for Bin Packing.



Bin-Packing

Preliminaries

Topics

Outline

1 Problem definition.

2 Definition of PTAS, FPTAS and Asymptotic PTAS.
3 Polynomial algorithm for restricted instances.

4 Approximation algorithm for restricted instances.
5 Asymptotic PTAS for Bin Packing.



Bin-Packing

Problem definition

Problem definition

Problem Statement

We are given n objects of sizes {s1,s2, . . .sn}, such that 0 < si ≤ 1 and an unlimited supply of
unit sized bins.

The goal is to pack the objects into bins, minimizing the number of bins used.



Bin-Packing

Problem definition

Problem definition

Problem Statement

We are given n objects of sizes {s1,s2, . . .sn}, such that 0 < si ≤ 1 and an unlimited supply of
unit sized bins. The goal is to pack the objects into bins, minimizing the number of bins used.



Bin-Packing

Definitions of PTAS, FPTAS and Asymptotic FPTAS

PTAS, FPTAS and Asymptotic PTAS

Definition

A PTAS for a minimization problem Π is an algorithm A, which on all instances I of Π and
error-parameter ε > 0, returns a solution of cost A(I), such that A(I)≤ (1 + ε) ·OPT .

The
running time of the algorithm must be polynomial for each fixed value of ε .

Definition

An FPTAS for a minimization problem Π is a PTAS that runs in time, that is polynomial from the
size of the input instance and 1

ε
.

Definition

An asymptotic PTAS for a minimization problem Π is an algorithm A, which on all instances I of
Π and error-parameter ε > 0, returns a solution of cost A(I), such that
A(I)≤ (1 + ε) ·OPT + C(ε). The running time of the algorithm must be polynomial for each
fixed value of ε .



Bin-Packing

Definitions of PTAS, FPTAS and Asymptotic FPTAS

PTAS, FPTAS and Asymptotic PTAS

Definition

A PTAS for a minimization problem Π is an algorithm A, which on all instances I of Π and
error-parameter ε > 0, returns a solution of cost A(I), such that A(I)≤ (1 + ε) ·OPT . The
running time of the algorithm must be polynomial for each fixed value of ε .

Definition

An FPTAS for a minimization problem Π is a PTAS that runs in time, that is polynomial from the
size of the input instance and 1

ε
.

Definition

An asymptotic PTAS for a minimization problem Π is an algorithm A, which on all instances I of
Π and error-parameter ε > 0, returns a solution of cost A(I), such that
A(I)≤ (1 + ε) ·OPT + C(ε). The running time of the algorithm must be polynomial for each
fixed value of ε .



Bin-Packing

Definitions of PTAS, FPTAS and Asymptotic FPTAS

PTAS, FPTAS and Asymptotic PTAS

Definition

A PTAS for a minimization problem Π is an algorithm A, which on all instances I of Π and
error-parameter ε > 0, returns a solution of cost A(I), such that A(I)≤ (1 + ε) ·OPT . The
running time of the algorithm must be polynomial for each fixed value of ε .

Definition

An FPTAS for a minimization problem Π is a PTAS that runs in time, that is polynomial from the
size of the input instance and 1

ε
.

Definition

An asymptotic PTAS for a minimization problem Π is an algorithm A, which on all instances I of
Π and error-parameter ε > 0, returns a solution of cost A(I), such that
A(I)≤ (1 + ε) ·OPT + C(ε). The running time of the algorithm must be polynomial for each
fixed value of ε .



Bin-Packing

Definitions of PTAS, FPTAS and Asymptotic FPTAS

PTAS, FPTAS and Asymptotic PTAS

Definition

A PTAS for a minimization problem Π is an algorithm A, which on all instances I of Π and
error-parameter ε > 0, returns a solution of cost A(I), such that A(I)≤ (1 + ε) ·OPT . The
running time of the algorithm must be polynomial for each fixed value of ε .

Definition

An FPTAS for a minimization problem Π is a PTAS that runs in time, that is polynomial from the
size of the input instance and 1

ε
.

Definition

An asymptotic PTAS for a minimization problem Π is an algorithm A, which on all instances I of
Π and error-parameter ε > 0, returns a solution of cost A(I), such that
A(I)≤ (1 + ε) ·OPT + C(ε).

The running time of the algorithm must be polynomial for each
fixed value of ε .



Bin-Packing

Definitions of PTAS, FPTAS and Asymptotic FPTAS

PTAS, FPTAS and Asymptotic PTAS

Definition

A PTAS for a minimization problem Π is an algorithm A, which on all instances I of Π and
error-parameter ε > 0, returns a solution of cost A(I), such that A(I)≤ (1 + ε) ·OPT . The
running time of the algorithm must be polynomial for each fixed value of ε .

Definition

An FPTAS for a minimization problem Π is a PTAS that runs in time, that is polynomial from the
size of the input instance and 1

ε
.

Definition

An asymptotic PTAS for a minimization problem Π is an algorithm A, which on all instances I of
Π and error-parameter ε > 0, returns a solution of cost A(I), such that
A(I)≤ (1 + ε) ·OPT + C(ε). The running time of the algorithm must be polynomial for each
fixed value of ε .



Bin-Packing

Polynomial algorithm for restricted instances

Restricted Instances

Theorem

Consider the instances of bin packing, in which the sizes of items are ≥ ε , and the number of
different item-sizes is K .

Then there is a polynomial algorithm for solving these instances.

Proof.

(Sketch). We will show that the number of feasible packings is at most polynomial.

(1) The number of items in a bin is at most M = b 1
ε
c.

(2) The number of different bin-types is at most R = ˜(K
M

)
=

(K +M−1
M

)
.

(3) No more than n bins are needed in a feasible solution of any instance.

(4) The number of feasible packings is at most ˜(R
n

)
=

(R+n−1
n

)
=

(R+n−1
R−1

)
= O(nR−1).

Clearly, we can go through all of them, and find the one that uses minimum number of bins.



Bin-Packing

Polynomial algorithm for restricted instances

Restricted Instances

Theorem

Consider the instances of bin packing, in which the sizes of items are ≥ ε , and the number of
different item-sizes is K . Then there is a polynomial algorithm for solving these instances.

Proof.

(Sketch). We will show that the number of feasible packings is at most polynomial.

(1) The number of items in a bin is at most M = b 1
ε
c.

(2) The number of different bin-types is at most R = ˜(K
M

)
=

(K +M−1
M

)
.

(3) No more than n bins are needed in a feasible solution of any instance.

(4) The number of feasible packings is at most ˜(R
n

)
=

(R+n−1
n

)
=

(R+n−1
R−1

)
= O(nR−1).

Clearly, we can go through all of them, and find the one that uses minimum number of bins.



Bin-Packing

Polynomial algorithm for restricted instances

Restricted Instances

Theorem

Consider the instances of bin packing, in which the sizes of items are ≥ ε , and the number of
different item-sizes is K . Then there is a polynomial algorithm for solving these instances.

Proof.

(Sketch). We will show that the number of feasible packings is at most polynomial.

(1) The number of items in a bin is at most M = b 1
ε
c.

(2) The number of different bin-types is at most R = ˜(K
M

)
=

(K +M−1
M

)
.

(3) No more than n bins are needed in a feasible solution of any instance.

(4) The number of feasible packings is at most ˜(R
n

)
=

(R+n−1
n

)
=

(R+n−1
R−1

)
= O(nR−1).

Clearly, we can go through all of them, and find the one that uses minimum number of bins.



Bin-Packing

Polynomial algorithm for restricted instances

Restricted Instances

Theorem

Consider the instances of bin packing, in which the sizes of items are ≥ ε , and the number of
different item-sizes is K . Then there is a polynomial algorithm for solving these instances.

Proof.

(Sketch). We will show that the number of feasible packings is at most polynomial.

(1) The number of items in a bin is at most M = b 1
ε
c.

(2) The number of different bin-types is at most R = ˜(K
M

)
=

(K +M−1
M

)
.

(3) No more than n bins are needed in a feasible solution of any instance.

(4) The number of feasible packings is at most ˜(R
n

)
=

(R+n−1
n

)
=

(R+n−1
R−1

)
= O(nR−1).

Clearly, we can go through all of them, and find the one that uses minimum number of bins.



Bin-Packing

Polynomial algorithm for restricted instances

Restricted Instances

Theorem

Consider the instances of bin packing, in which the sizes of items are ≥ ε , and the number of
different item-sizes is K . Then there is a polynomial algorithm for solving these instances.

Proof.

(Sketch). We will show that the number of feasible packings is at most polynomial.

(1) The number of items in a bin is at most M = b 1
ε
c.

(2) The number of different bin-types is at most R = ˜(K
M

)
=

(K +M−1
M

)
.

(3) No more than n bins are needed in a feasible solution of any instance.

(4) The number of feasible packings is at most ˜(R
n

)
=

(R+n−1
n

)
=

(R+n−1
R−1

)
= O(nR−1).

Clearly, we can go through all of them, and find the one that uses minimum number of bins.



Bin-Packing

Polynomial algorithm for restricted instances

Restricted Instances

Theorem

Consider the instances of bin packing, in which the sizes of items are ≥ ε , and the number of
different item-sizes is K . Then there is a polynomial algorithm for solving these instances.

Proof.

(Sketch). We will show that the number of feasible packings is at most polynomial.

(1) The number of items in a bin is at most M = b 1
ε
c.

(2) The number of different bin-types is at most R = ˜(K
M

)
=

(K +M−1
M

)
.

(3) No more than n bins are needed in a feasible solution of any instance.

(4) The number of feasible packings is at most ˜(R
n

)
=

(R+n−1
n

)
=

(R+n−1
R−1

)
= O(nR−1).

Clearly, we can go through all of them, and find the one that uses minimum number of bins.



Bin-Packing

Polynomial algorithm for restricted instances

Restricted Instances

Theorem

Consider the instances of bin packing, in which the sizes of items are ≥ ε , and the number of
different item-sizes is K . Then there is a polynomial algorithm for solving these instances.

Proof.

(Sketch). We will show that the number of feasible packings is at most polynomial.

(1) The number of items in a bin is at most M = b 1
ε
c.

(2) The number of different bin-types is at most R = ˜(K
M

)
=

(K +M−1
M

)
.

(3) No more than n bins are needed in a feasible solution of any instance.

(4) The number of feasible packings is at most ˜(R
n

)
=

(R+n−1
n

)
=

(R+n−1
R−1

)
= O(nR−1).

Clearly, we can go through all of them, and find the one that uses minimum number of bins.



Bin-Packing

Polynomial algorithm for restricted instances

Restricted Instances

Theorem

Consider the instances of bin packing, in which the sizes of items are ≥ ε , and the number of
different item-sizes is K . Then there is a polynomial algorithm for solving these instances.

Proof.

(Sketch). We will show that the number of feasible packings is at most polynomial.

(1) The number of items in a bin is at most M = b 1
ε
c.

(2) The number of different bin-types is at most R = ˜(K
M

)
=

(K +M−1
M

)
.

(3) No more than n bins are needed in a feasible solution of any instance.

(4) The number of feasible packings is at most ˜(R
n

)
=

(R+n−1
n

)
=

(R+n−1
R−1

)
= O(nR−1).

Clearly, we can go through all of them, and find the one that uses minimum number of bins.



Bin-Packing

Approximation algorithm for restricted instances

Restricted Instances

Theorem

Consider the instances of bin packing, in which the sizes of items are ≥ ε .

Then there is a
(1 + ε)-approximation algorithm for solving these instances.

The Algorithm

Let K = d 1
ε2 e and Q = bn · ε2c.

Sort the sizes of the items of the input instance I as follows: s1 ≤ s2 ≤ ...≤ sn.

Partition the items into K groups, each of which is of size Q (except may be the last one).

Consider the new instance J of bin packing obtained from I by rounding the size of each
element to the maximum size of its group.

Solve the instance J by previous algorithm.

Return the packing of J as a packing of I.

Remark

Observe that the packing returned by the algorithm is a feasible packing of I.



Bin-Packing

Approximation algorithm for restricted instances

Restricted Instances

Theorem

Consider the instances of bin packing, in which the sizes of items are ≥ ε . Then there is a
(1 + ε)-approximation algorithm for solving these instances.

The Algorithm

Let K = d 1
ε2 e and Q = bn · ε2c.

Sort the sizes of the items of the input instance I as follows: s1 ≤ s2 ≤ ...≤ sn.

Partition the items into K groups, each of which is of size Q (except may be the last one).

Consider the new instance J of bin packing obtained from I by rounding the size of each
element to the maximum size of its group.

Solve the instance J by previous algorithm.

Return the packing of J as a packing of I.

Remark

Observe that the packing returned by the algorithm is a feasible packing of I.



Bin-Packing

Approximation algorithm for restricted instances

Restricted Instances

Theorem

Consider the instances of bin packing, in which the sizes of items are ≥ ε . Then there is a
(1 + ε)-approximation algorithm for solving these instances.

The Algorithm

Let K = d 1
ε2 e and Q = bn · ε2c.

Sort the sizes of the items of the input instance I as follows: s1 ≤ s2 ≤ ...≤ sn.

Partition the items into K groups, each of which is of size Q (except may be the last one).

Consider the new instance J of bin packing obtained from I by rounding the size of each
element to the maximum size of its group.

Solve the instance J by previous algorithm.

Return the packing of J as a packing of I.

Remark

Observe that the packing returned by the algorithm is a feasible packing of I.



Bin-Packing

Approximation algorithm for restricted instances

Restricted Instances

Theorem

Consider the instances of bin packing, in which the sizes of items are ≥ ε . Then there is a
(1 + ε)-approximation algorithm for solving these instances.

The Algorithm

Let K = d 1
ε2 e and Q = bn · ε2c.

Sort the sizes of the items of the input instance I as follows: s1 ≤ s2 ≤ ...≤ sn.

Partition the items into K groups, each of which is of size Q (except may be the last one).

Consider the new instance J of bin packing obtained from I by rounding the size of each
element to the maximum size of its group.

Solve the instance J by previous algorithm.

Return the packing of J as a packing of I.

Remark

Observe that the packing returned by the algorithm is a feasible packing of I.



Bin-Packing

Approximation algorithm for restricted instances

Restricted Instances

Theorem

Consider the instances of bin packing, in which the sizes of items are ≥ ε . Then there is a
(1 + ε)-approximation algorithm for solving these instances.

The Algorithm

Let K = d 1
ε2 e and Q = bn · ε2c.

Sort the sizes of the items of the input instance I as follows: s1 ≤ s2 ≤ ...≤ sn.

Partition the items into K groups, each of which is of size Q (except may be the last one).

Consider the new instance J of bin packing obtained from I by rounding the size of each
element to the maximum size of its group.

Solve the instance J by previous algorithm.

Return the packing of J as a packing of I.

Remark

Observe that the packing returned by the algorithm is a feasible packing of I.



Bin-Packing

Approximation algorithm for restricted instances

Restricted Instances

Theorem

Consider the instances of bin packing, in which the sizes of items are ≥ ε . Then there is a
(1 + ε)-approximation algorithm for solving these instances.

The Algorithm

Let K = d 1
ε2 e and Q = bn · ε2c.

Sort the sizes of the items of the input instance I as follows: s1 ≤ s2 ≤ ...≤ sn.

Partition the items into K groups, each of which is of size Q (except may be the last one).

Consider the new instance J of bin packing obtained from I by rounding the size of each
element to the maximum size of its group.

Solve the instance J by previous algorithm.

Return the packing of J as a packing of I.

Remark

Observe that the packing returned by the algorithm is a feasible packing of I.



Bin-Packing

Approximation algorithm for restricted instances

Restricted Instances

Theorem

Consider the instances of bin packing, in which the sizes of items are ≥ ε . Then there is a
(1 + ε)-approximation algorithm for solving these instances.

The Algorithm

Let K = d 1
ε2 e and Q = bn · ε2c.

Sort the sizes of the items of the input instance I as follows: s1 ≤ s2 ≤ ...≤ sn.

Partition the items into K groups, each of which is of size Q (except may be the last one).

Consider the new instance J of bin packing obtained from I by rounding the size of each
element to the maximum size of its group.

Solve the instance J by previous algorithm.

Return the packing of J as a packing of I.

Remark

Observe that the packing returned by the algorithm is a feasible packing of I.



Bin-Packing

Approximation algorithm for restricted instances

Restricted Instances

Theorem

Consider the instances of bin packing, in which the sizes of items are ≥ ε . Then there is a
(1 + ε)-approximation algorithm for solving these instances.

The Algorithm

Let K = d 1
ε2 e and Q = bn · ε2c.

Sort the sizes of the items of the input instance I as follows: s1 ≤ s2 ≤ ...≤ sn.

Partition the items into K groups, each of which is of size Q (except may be the last one).

Consider the new instance J of bin packing obtained from I by rounding the size of each
element to the maximum size of its group.

Solve the instance J by previous algorithm.

Return the packing of J as a packing of I.

Remark

Observe that the packing returned by the algorithm is a feasible packing of I.



Bin-Packing

Approximation algorithm for restricted instances

Restricted Instances

Theorem

Consider the instances of bin packing, in which the sizes of items are ≥ ε . Then there is a
(1 + ε)-approximation algorithm for solving these instances.

The Algorithm

Let K = d 1
ε2 e and Q = bn · ε2c.

Sort the sizes of the items of the input instance I as follows: s1 ≤ s2 ≤ ...≤ sn.

Partition the items into K groups, each of which is of size Q (except may be the last one).

Consider the new instance J of bin packing obtained from I by rounding the size of each
element to the maximum size of its group.

Solve the instance J by previous algorithm.

Return the packing of J as a packing of I.

Remark

Observe that the packing returned by the algorithm is a feasible packing of I.



Bin-Packing

Approximation algorithm for restricted instances

Restricted Instances

Some Instances

I-the input instance.

J- the instance constructed by the algorithm.

J ′- the instance obtained from I by rounding the size of each element to the minimum size
of its group.

JQ - the instance obtained from J by removing the last Q items.

J ′Q - the instance obtained from J ′ by removing the first Q items.

The Analysis

OPT (J) ≤ OPT (JQ) + Q

≤ OPT (J ′Q) + Q

≤ OPT (J ′) + Q

≤ OPT (I) + Q.



Bin-Packing

Approximation algorithm for restricted instances

Restricted Instances

Some Instances

I-the input instance.

J- the instance constructed by the algorithm.

J ′- the instance obtained from I by rounding the size of each element to the minimum size
of its group.

JQ - the instance obtained from J by removing the last Q items.

J ′Q - the instance obtained from J ′ by removing the first Q items.

The Analysis

OPT (J) ≤ OPT (JQ) + Q

≤ OPT (J ′Q) + Q

≤ OPT (J ′) + Q

≤ OPT (I) + Q.



Bin-Packing

Approximation algorithm for restricted instances

Restricted Instances

Some Instances

I-the input instance.

J- the instance constructed by the algorithm.

J ′- the instance obtained from I by rounding the size of each element to the minimum size
of its group.

JQ - the instance obtained from J by removing the last Q items.

J ′Q - the instance obtained from J ′ by removing the first Q items.

The Analysis

OPT (J) ≤ OPT (JQ) + Q

≤ OPT (J ′Q) + Q

≤ OPT (J ′) + Q

≤ OPT (I) + Q.



Bin-Packing

Approximation algorithm for restricted instances

Restricted Instances

Some Instances

I-the input instance.

J- the instance constructed by the algorithm.

J ′- the instance obtained from I by rounding the size of each element to the minimum size
of its group.

JQ - the instance obtained from J by removing the last Q items.

J ′Q - the instance obtained from J ′ by removing the first Q items.

The Analysis

OPT (J) ≤ OPT (JQ) + Q

≤ OPT (J ′Q) + Q

≤ OPT (J ′) + Q

≤ OPT (I) + Q.



Bin-Packing

Approximation algorithm for restricted instances

Restricted Instances

Some Instances

I-the input instance.

J- the instance constructed by the algorithm.

J ′- the instance obtained from I by rounding the size of each element to the minimum size
of its group.

JQ - the instance obtained from J by removing the last Q items.

J ′Q - the instance obtained from J ′ by removing the first Q items.

The Analysis

OPT (J) ≤ OPT (JQ) + Q

≤ OPT (J ′Q) + Q

≤ OPT (J ′) + Q

≤ OPT (I) + Q.



Bin-Packing

Approximation algorithm for restricted instances

Restricted Instances

Some Instances

I-the input instance.

J- the instance constructed by the algorithm.

J ′- the instance obtained from I by rounding the size of each element to the minimum size
of its group.

JQ - the instance obtained from J by removing the last Q items.

J ′Q - the instance obtained from J ′ by removing the first Q items.

The Analysis

OPT (J) ≤ OPT (JQ) + Q

≤ OPT (J ′Q) + Q

≤ OPT (J ′) + Q

≤ OPT (I) + Q.



Bin-Packing

Approximation algorithm for restricted instances

Restricted Instances

Some Instances

I-the input instance.

J- the instance constructed by the algorithm.

J ′- the instance obtained from I by rounding the size of each element to the minimum size
of its group.

JQ - the instance obtained from J by removing the last Q items.

J ′Q - the instance obtained from J ′ by removing the first Q items.

The Analysis

OPT (J) ≤

OPT (JQ) + Q

≤ OPT (J ′Q) + Q

≤ OPT (J ′) + Q

≤ OPT (I) + Q.



Bin-Packing

Approximation algorithm for restricted instances

Restricted Instances

Some Instances

I-the input instance.

J- the instance constructed by the algorithm.

J ′- the instance obtained from I by rounding the size of each element to the minimum size
of its group.

JQ - the instance obtained from J by removing the last Q items.

J ′Q - the instance obtained from J ′ by removing the first Q items.

The Analysis

OPT (J) ≤ OPT (JQ) + Q

≤ OPT (J ′Q) + Q

≤ OPT (J ′) + Q

≤ OPT (I) + Q.



Bin-Packing

Approximation algorithm for restricted instances

Restricted Instances

Some Instances

I-the input instance.

J- the instance constructed by the algorithm.

J ′- the instance obtained from I by rounding the size of each element to the minimum size
of its group.

JQ - the instance obtained from J by removing the last Q items.

J ′Q - the instance obtained from J ′ by removing the first Q items.

The Analysis

OPT (J) ≤ OPT (JQ) + Q

≤

OPT (J ′Q) + Q

≤ OPT (J ′) + Q

≤ OPT (I) + Q.



Bin-Packing

Approximation algorithm for restricted instances

Restricted Instances

Some Instances

I-the input instance.

J- the instance constructed by the algorithm.

J ′- the instance obtained from I by rounding the size of each element to the minimum size
of its group.

JQ - the instance obtained from J by removing the last Q items.

J ′Q - the instance obtained from J ′ by removing the first Q items.

The Analysis

OPT (J) ≤ OPT (JQ) + Q

≤ OPT (J ′Q) + Q

≤ OPT (J ′) + Q

≤ OPT (I) + Q.



Bin-Packing

Approximation algorithm for restricted instances

Restricted Instances

Some Instances

I-the input instance.

J- the instance constructed by the algorithm.

J ′- the instance obtained from I by rounding the size of each element to the minimum size
of its group.

JQ - the instance obtained from J by removing the last Q items.

J ′Q - the instance obtained from J ′ by removing the first Q items.

The Analysis

OPT (J) ≤ OPT (JQ) + Q

≤ OPT (J ′Q) + Q

≤

OPT (J ′) + Q

≤ OPT (I) + Q.



Bin-Packing

Approximation algorithm for restricted instances

Restricted Instances

Some Instances

I-the input instance.

J- the instance constructed by the algorithm.

J ′- the instance obtained from I by rounding the size of each element to the minimum size
of its group.

JQ - the instance obtained from J by removing the last Q items.

J ′Q - the instance obtained from J ′ by removing the first Q items.

The Analysis

OPT (J) ≤ OPT (JQ) + Q

≤ OPT (J ′Q) + Q

≤ OPT (J ′) + Q

≤ OPT (I) + Q.



Bin-Packing

Approximation algorithm for restricted instances

Restricted Instances

Some Instances

I-the input instance.

J- the instance constructed by the algorithm.

J ′- the instance obtained from I by rounding the size of each element to the minimum size
of its group.

JQ - the instance obtained from J by removing the last Q items.

J ′Q - the instance obtained from J ′ by removing the first Q items.

The Analysis

OPT (J) ≤ OPT (JQ) + Q

≤ OPT (J ′Q) + Q

≤ OPT (J ′) + Q

≤

OPT (I) + Q.



Bin-Packing

Approximation algorithm for restricted instances

Restricted Instances

Some Instances

I-the input instance.

J- the instance constructed by the algorithm.

J ′- the instance obtained from I by rounding the size of each element to the minimum size
of its group.

JQ - the instance obtained from J by removing the last Q items.

J ′Q - the instance obtained from J ′ by removing the first Q items.

The Analysis

OPT (J) ≤ OPT (JQ) + Q

≤ OPT (J ′Q) + Q

≤ OPT (J ′) + Q

≤ OPT (I) + Q.



Bin-Packing

Approximation algorithm for restricted instances

Restricted Instances

Some Bounds

Q =

bn · ε2c
≤ n · ε2

≤ ε ·
n

∑
i=1

si

≤ ε ·OPT .

Therefore:

OPT (J) ≤ OPT (I) + Q

≤ OPT (I) + ε ·OPT

= (1 + ε) ·OPT .



Bin-Packing

Approximation algorithm for restricted instances

Restricted Instances

Some Bounds

Q = bn · ε2c

≤ n · ε2

≤ ε ·
n

∑
i=1

si

≤ ε ·OPT .

Therefore:

OPT (J) ≤ OPT (I) + Q

≤ OPT (I) + ε ·OPT

= (1 + ε) ·OPT .



Bin-Packing

Approximation algorithm for restricted instances

Restricted Instances

Some Bounds

Q = bn · ε2c
≤

n · ε2

≤ ε ·
n

∑
i=1

si

≤ ε ·OPT .

Therefore:

OPT (J) ≤ OPT (I) + Q

≤ OPT (I) + ε ·OPT

= (1 + ε) ·OPT .



Bin-Packing

Approximation algorithm for restricted instances

Restricted Instances

Some Bounds

Q = bn · ε2c
≤ n · ε2

≤ ε ·
n

∑
i=1

si

≤ ε ·OPT .

Therefore:

OPT (J) ≤ OPT (I) + Q

≤ OPT (I) + ε ·OPT

= (1 + ε) ·OPT .



Bin-Packing

Approximation algorithm for restricted instances

Restricted Instances

Some Bounds

Q = bn · ε2c
≤ n · ε2

≤

ε ·
n

∑
i=1

si

≤ ε ·OPT .

Therefore:

OPT (J) ≤ OPT (I) + Q

≤ OPT (I) + ε ·OPT

= (1 + ε) ·OPT .



Bin-Packing

Approximation algorithm for restricted instances

Restricted Instances

Some Bounds

Q = bn · ε2c
≤ n · ε2

≤ ε ·
n

∑
i=1

si

≤ ε ·OPT .

Therefore:

OPT (J) ≤ OPT (I) + Q

≤ OPT (I) + ε ·OPT

= (1 + ε) ·OPT .



Bin-Packing

Approximation algorithm for restricted instances

Restricted Instances

Some Bounds

Q = bn · ε2c
≤ n · ε2

≤ ε ·
n

∑
i=1

si

≤

ε ·OPT .

Therefore:

OPT (J) ≤ OPT (I) + Q

≤ OPT (I) + ε ·OPT

= (1 + ε) ·OPT .



Bin-Packing

Approximation algorithm for restricted instances

Restricted Instances

Some Bounds

Q = bn · ε2c
≤ n · ε2

≤ ε ·
n

∑
i=1

si

≤ ε ·OPT .

Therefore:

OPT (J) ≤ OPT (I) + Q

≤ OPT (I) + ε ·OPT

= (1 + ε) ·OPT .



Bin-Packing

Approximation algorithm for restricted instances

Restricted Instances

Some Bounds

Q = bn · ε2c
≤ n · ε2

≤ ε ·
n

∑
i=1

si

≤ ε ·OPT .

Therefore:

OPT (J) ≤

OPT (I) + Q

≤ OPT (I) + ε ·OPT

= (1 + ε) ·OPT .



Bin-Packing

Approximation algorithm for restricted instances

Restricted Instances

Some Bounds

Q = bn · ε2c
≤ n · ε2

≤ ε ·
n

∑
i=1

si

≤ ε ·OPT .

Therefore:

OPT (J) ≤ OPT (I) + Q

≤ OPT (I) + ε ·OPT

= (1 + ε) ·OPT .



Bin-Packing

Approximation algorithm for restricted instances

Restricted Instances

Some Bounds

Q = bn · ε2c
≤ n · ε2

≤ ε ·
n

∑
i=1

si

≤ ε ·OPT .

Therefore:

OPT (J) ≤ OPT (I) + Q

≤

OPT (I) + ε ·OPT

= (1 + ε) ·OPT .



Bin-Packing

Approximation algorithm for restricted instances

Restricted Instances

Some Bounds

Q = bn · ε2c
≤ n · ε2

≤ ε ·
n

∑
i=1

si

≤ ε ·OPT .

Therefore:

OPT (J) ≤ OPT (I) + Q

≤ OPT (I) + ε ·OPT

= (1 + ε) ·OPT .



Bin-Packing

Approximation algorithm for restricted instances

Restricted Instances

Some Bounds

Q = bn · ε2c
≤ n · ε2

≤ ε ·
n

∑
i=1

si

≤ ε ·OPT .

Therefore:

OPT (J) ≤ OPT (I) + Q

≤ OPT (I) + ε ·OPT

=

(1 + ε) ·OPT .



Bin-Packing

Approximation algorithm for restricted instances

Restricted Instances

Some Bounds

Q = bn · ε2c
≤ n · ε2

≤ ε ·
n

∑
i=1

si

≤ ε ·OPT .

Therefore:

OPT (J) ≤ OPT (I) + Q

≤ OPT (I) + ε ·OPT

= (1 + ε) ·OPT .



Bin-Packing

Asymptotic PTAS for Bin Packing

The General Case

Theorem

There exists a polynomial algorithm that for each ε ∈ (0, 1
2 ] finds a packing with the number of

bins at most (1 + 2 · ε) ·OPT + 1.

In other words, bin packing problem admits an asymptotic
PTAS.

The Algorithm

For the input instance I consider the instance I′ obtained from I by removing all items of
size less than ε .

Solve I′ by the previous (1 + ε)-approximation algorithm.

Apply First-Fit on the resulting packing using the items from I− I′.

Return the resulting packing.



Bin-Packing

Asymptotic PTAS for Bin Packing

The General Case

Theorem

There exists a polynomial algorithm that for each ε ∈ (0, 1
2 ] finds a packing with the number of

bins at most (1 + 2 · ε) ·OPT + 1. In other words, bin packing problem admits an asymptotic
PTAS.

The Algorithm

For the input instance I consider the instance I′ obtained from I by removing all items of
size less than ε .

Solve I′ by the previous (1 + ε)-approximation algorithm.

Apply First-Fit on the resulting packing using the items from I− I′.

Return the resulting packing.



Bin-Packing

Asymptotic PTAS for Bin Packing

The General Case

Theorem

There exists a polynomial algorithm that for each ε ∈ (0, 1
2 ] finds a packing with the number of

bins at most (1 + 2 · ε) ·OPT + 1. In other words, bin packing problem admits an asymptotic
PTAS.

The Algorithm

For the input instance I consider the instance I′ obtained from I by removing all items of
size less than ε .

Solve I′ by the previous (1 + ε)-approximation algorithm.

Apply First-Fit on the resulting packing using the items from I− I′.

Return the resulting packing.



Bin-Packing

Asymptotic PTAS for Bin Packing

The General Case

Theorem

There exists a polynomial algorithm that for each ε ∈ (0, 1
2 ] finds a packing with the number of

bins at most (1 + 2 · ε) ·OPT + 1. In other words, bin packing problem admits an asymptotic
PTAS.

The Algorithm

For the input instance I consider the instance I′ obtained from I by removing all items of
size less than ε .

Solve I′ by the previous (1 + ε)-approximation algorithm.

Apply First-Fit on the resulting packing using the items from I− I′.

Return the resulting packing.



Bin-Packing

Asymptotic PTAS for Bin Packing

The General Case

Theorem

There exists a polynomial algorithm that for each ε ∈ (0, 1
2 ] finds a packing with the number of

bins at most (1 + 2 · ε) ·OPT + 1. In other words, bin packing problem admits an asymptotic
PTAS.

The Algorithm

For the input instance I consider the instance I′ obtained from I by removing all items of
size less than ε .

Solve I′ by the previous (1 + ε)-approximation algorithm.

Apply First-Fit on the resulting packing using the items from I− I′.

Return the resulting packing.



Bin-Packing

Asymptotic PTAS for Bin Packing

The General Case

Theorem

There exists a polynomial algorithm that for each ε ∈ (0, 1
2 ] finds a packing with the number of

bins at most (1 + 2 · ε) ·OPT + 1. In other words, bin packing problem admits an asymptotic
PTAS.

The Algorithm

For the input instance I consider the instance I′ obtained from I by removing all items of
size less than ε .

Solve I′ by the previous (1 + ε)-approximation algorithm.

Apply First-Fit on the resulting packing using the items from I− I′.

Return the resulting packing.



Bin-Packing

Asymptotic PTAS for Bin Packing

The Analysis of the Algorithm

The Analysis

Let L be the number of bins returned by the algorithm.

If no extra bin was required for packing
the items from I− I′, then L≤ (1 + ε) ·OPT (I′)≤ (1 + ε) ·OPT (I), hence we can assume that
extra bins were required.

The Analysis: Extra Bins Were Required

The room in the first L−1 bins is less than ε . Then:

OPT ≥
n

∑
i=1

si

> (L−1) · (1− ε)

or

L <
OPT
1− ε

+ 1.



Bin-Packing

Asymptotic PTAS for Bin Packing

The Analysis of the Algorithm

The Analysis

Let L be the number of bins returned by the algorithm. If no extra bin was required for packing
the items from I− I′, then L≤ (1 + ε) ·OPT (I′)≤ (1 + ε) ·OPT (I),

hence we can assume that
extra bins were required.

The Analysis: Extra Bins Were Required

The room in the first L−1 bins is less than ε . Then:

OPT ≥
n

∑
i=1

si

> (L−1) · (1− ε)

or

L <
OPT
1− ε

+ 1.



Bin-Packing

Asymptotic PTAS for Bin Packing

The Analysis of the Algorithm

The Analysis

Let L be the number of bins returned by the algorithm. If no extra bin was required for packing
the items from I− I′, then L≤ (1 + ε) ·OPT (I′)≤ (1 + ε) ·OPT (I), hence we can assume that
extra bins were required.

The Analysis: Extra Bins Were Required

The room in the first L−1 bins is less than ε . Then:

OPT ≥
n

∑
i=1

si

> (L−1) · (1− ε)

or

L <
OPT
1− ε

+ 1.



Bin-Packing

Asymptotic PTAS for Bin Packing

The Analysis of the Algorithm

The Analysis

Let L be the number of bins returned by the algorithm. If no extra bin was required for packing
the items from I− I′, then L≤ (1 + ε) ·OPT (I′)≤ (1 + ε) ·OPT (I), hence we can assume that
extra bins were required.

The Analysis: Extra Bins Were Required

The room in the first L−1 bins is less than ε .

Then:

OPT ≥
n

∑
i=1

si

> (L−1) · (1− ε)

or

L <
OPT
1− ε

+ 1.



Bin-Packing

Asymptotic PTAS for Bin Packing

The Analysis of the Algorithm

The Analysis

Let L be the number of bins returned by the algorithm. If no extra bin was required for packing
the items from I− I′, then L≤ (1 + ε) ·OPT (I′)≤ (1 + ε) ·OPT (I), hence we can assume that
extra bins were required.

The Analysis: Extra Bins Were Required

The room in the first L−1 bins is less than ε . Then:

OPT ≥

n

∑
i=1

si

> (L−1) · (1− ε)

or

L <
OPT
1− ε

+ 1.



Bin-Packing

Asymptotic PTAS for Bin Packing

The Analysis of the Algorithm

The Analysis

Let L be the number of bins returned by the algorithm. If no extra bin was required for packing
the items from I− I′, then L≤ (1 + ε) ·OPT (I′)≤ (1 + ε) ·OPT (I), hence we can assume that
extra bins were required.

The Analysis: Extra Bins Were Required

The room in the first L−1 bins is less than ε . Then:

OPT ≥
n

∑
i=1

si

> (L−1) · (1− ε)

or

L <
OPT
1− ε

+ 1.



Bin-Packing

Asymptotic PTAS for Bin Packing

The Analysis of the Algorithm

The Analysis

Let L be the number of bins returned by the algorithm. If no extra bin was required for packing
the items from I− I′, then L≤ (1 + ε) ·OPT (I′)≤ (1 + ε) ·OPT (I), hence we can assume that
extra bins were required.

The Analysis: Extra Bins Were Required

The room in the first L−1 bins is less than ε . Then:

OPT ≥
n

∑
i=1

si

>

(L−1) · (1− ε)

or

L <
OPT
1− ε

+ 1.



Bin-Packing

Asymptotic PTAS for Bin Packing

The Analysis of the Algorithm

The Analysis

Let L be the number of bins returned by the algorithm. If no extra bin was required for packing
the items from I− I′, then L≤ (1 + ε) ·OPT (I′)≤ (1 + ε) ·OPT (I), hence we can assume that
extra bins were required.

The Analysis: Extra Bins Were Required

The room in the first L−1 bins is less than ε . Then:

OPT ≥
n

∑
i=1

si

> (L−1) · (1− ε)

or

L <
OPT
1− ε

+ 1.



Bin-Packing

Asymptotic PTAS for Bin Packing

The Analysis of the Algorithm

The Analysis

Let L be the number of bins returned by the algorithm. If no extra bin was required for packing
the items from I− I′, then L≤ (1 + ε) ·OPT (I′)≤ (1 + ε) ·OPT (I), hence we can assume that
extra bins were required.

The Analysis: Extra Bins Were Required

The room in the first L−1 bins is less than ε . Then:

OPT ≥
n

∑
i=1

si

> (L−1) · (1− ε)

or

L <
OPT
1− ε

+ 1.



Bin-Packing

Asymptotic PTAS for Bin Packing

The Analysis of the Algorithm

The Final Bound

We need to show that OPT
1−ε

+ 1≤ (1 + 2 · ε) ·OPT + 1.

1 + 2 · ε− 1
1− ε

=
1

1− ε
· ((1− ε)(1 + 2 · ε)−1)

=
1

1− ε
· (1 + ε−2 · ε2−1)

=
ε

1− ε
· (1−2 · ε)

≥ 0.



Bin-Packing

Asymptotic PTAS for Bin Packing

The Analysis of the Algorithm

The Final Bound

We need to show that OPT
1−ε

+ 1≤ (1 + 2 · ε) ·OPT + 1.

1 + 2 · ε− 1
1− ε

=

1
1− ε

· ((1− ε)(1 + 2 · ε)−1)

=
1

1− ε
· (1 + ε−2 · ε2−1)

=
ε

1− ε
· (1−2 · ε)

≥ 0.



Bin-Packing

Asymptotic PTAS for Bin Packing

The Analysis of the Algorithm

The Final Bound

We need to show that OPT
1−ε

+ 1≤ (1 + 2 · ε) ·OPT + 1.

1 + 2 · ε− 1
1− ε

=
1

1− ε
· ((1− ε)(1 + 2 · ε)−1)

=
1

1− ε
· (1 + ε−2 · ε2−1)

=
ε

1− ε
· (1−2 · ε)

≥ 0.



Bin-Packing

Asymptotic PTAS for Bin Packing

The Analysis of the Algorithm

The Final Bound

We need to show that OPT
1−ε

+ 1≤ (1 + 2 · ε) ·OPT + 1.

1 + 2 · ε− 1
1− ε

=
1

1− ε
· ((1− ε)(1 + 2 · ε)−1)

=

1
1− ε

· (1 + ε−2 · ε2−1)

=
ε

1− ε
· (1−2 · ε)

≥ 0.



Bin-Packing

Asymptotic PTAS for Bin Packing

The Analysis of the Algorithm

The Final Bound

We need to show that OPT
1−ε

+ 1≤ (1 + 2 · ε) ·OPT + 1.

1 + 2 · ε− 1
1− ε

=
1

1− ε
· ((1− ε)(1 + 2 · ε)−1)

=
1

1− ε
· (1 + ε−2 · ε2−1)

=
ε

1− ε
· (1−2 · ε)

≥ 0.



Bin-Packing

Asymptotic PTAS for Bin Packing

The Analysis of the Algorithm

The Final Bound

We need to show that OPT
1−ε

+ 1≤ (1 + 2 · ε) ·OPT + 1.

1 + 2 · ε− 1
1− ε

=
1

1− ε
· ((1− ε)(1 + 2 · ε)−1)

=
1

1− ε
· (1 + ε−2 · ε2−1)

=

ε

1− ε
· (1−2 · ε)

≥ 0.



Bin-Packing

Asymptotic PTAS for Bin Packing

The Analysis of the Algorithm

The Final Bound

We need to show that OPT
1−ε

+ 1≤ (1 + 2 · ε) ·OPT + 1.

1 + 2 · ε− 1
1− ε

=
1

1− ε
· ((1− ε)(1 + 2 · ε)−1)

=
1

1− ε
· (1 + ε−2 · ε2−1)

=
ε

1− ε
· (1−2 · ε)

≥ 0.



Bin-Packing

Asymptotic PTAS for Bin Packing

The Analysis of the Algorithm

The Final Bound

We need to show that OPT
1−ε

+ 1≤ (1 + 2 · ε) ·OPT + 1.

1 + 2 · ε− 1
1− ε

=
1

1− ε
· ((1− ε)(1 + 2 · ε)−1)

=
1

1− ε
· (1 + ε−2 · ε2−1)

=
ε

1− ε
· (1−2 · ε)

≥ 0.


	Outline
	Main Talk
	Preliminaries
	Problem definition
	Definitions of PTAS, FPTAS and Asymptotic FPTAS
	Polynomial algorithm for restricted instances
	Approximation algorithm for restricted instances
	Asymptotic PTAS for Bin Packing


