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Problem Statement

We are given n objects of sizes {s1, Sz, ...Sp}, such that 0 < s; < 1 and an unlimited supply of
unit sized bins. The goal is to pack the objects into bins, minimizing the number of bins used.
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An FPTAS for a minimization problem [T is a PTAS that runs in time, that is polynomial from the
size of the input instance and 15

Definition

| A

An asymptotic PTAS for a minimization problem I1 is an algorithm A, which on all instances / of
I and error-parameter € > 0, returns a solution of cost A(/), such that

A(l) < (14€)- OPT + C(¢). The running time of the algorithm must be polynomial for each
fixed value of €.
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Restricted Instances

Consider the instances of bin packing, in which the sizes of items are > €, and the number of
different item-sizes is K. Then there is a polynomial algorithm for solving these instances.

Proof.

| A\

(Sketch). We will show that the number of feasible packings is at most polynomial.
(1) The number of items in a bin is at most M= | 1 |.

(2) The number of different bin-types is at most R = (A'f,) = (K+,\”/’,1’1).

(3) No more than n bins are needed in a feasible solution of any instance.

(4) The number of feasible packings is at most (%) = (777=") = (F£"7") = o(nf").

Clearly, we can go through all of them, and find the one that uses minimum number of bins. [
W
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Consider the instances of bin packing, in which the sizes of items are > €. Then there is a
(1 + €)-approximation algorithm for solving these instances.

o
The Algorithm

o LetK=[%]and Q= [n-£?|.
@ Sort the sizes of the items of the input instance / as follows: s1 < s, < ... < sp.
@ Partition the items into K groups, each of which is of size Q (except may be the last one).

@ Consider the new instance J of bin packing obtained from / by rounding the size of each
element to the maximum size of its group.

Solve the instance J by previous algorithm.

@ Return the packing of J as a packing of /.
V.

Observe that the packing returned by the algorithm is a feasible packing of I.
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The General Case

Theorem

There exists a polynomial algorithm that for each € € (0, %] finds a packing with the number of
bins at most (1+2-€) - OPT + 1. In other words, bin packing problem admits an asymptotic
PTAS.

o
The Algorithm

@ For the input instance / consider the instance /' obtained from / by removing all items of
size less than €.

@ Solve I by the previous (1 + €)-approximation algorithm.
@ Apply First-Fit on the resulting packing using the items from /— /'.

@ Return the resulting packing.
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