Asymptotic PTAS for Bin-Packing

Vahan Mkrtchyan'

Lane Department of Computer Science and Electrical Engineering
West Virginia University

March 21, 2014

LOutIine

Outline

Kl Preliminaries

LOutIine

Outline

Kl Preliminaries

E Problem definition

LOutIine

Outline

Kl Preliminaries

B Problem definition
E Definitions of PTAS, FPTAS and

Asymptotic FPTAS

LOutIine

Outline

B Polynomial algorithm for restricted

Kl Preliminaries
instances

B Problem definition
E Definitions of PTAS, FPTAS and

Asymptotic FPTAS

LOutIine

Outline

B Polynomial algorithm for restricted

Kl Preliminaries
instances

B Problem definit I Approximation algorithm for restricted

roblem definition

H Definitions of PTAS, FPTAS and instances

Asymptotic FPTAS

LOutIine

Outline

Kl Preliminaries

E Problem definition
E Definitions of PTAS, FPTAS and

Asymptotic FPTAS

B Polynomial algorithm for restricted

instances
I Approximation algorithm for restricted

instances

A Asymptotic PTAS for Bin Packing

[Preliminaries

Topics

[Preliminaries

Topics

[Preliminaries

Topics

@ Problem definition.

[Preliminaries

Topics

© Problem definition.
@ Definition of PTAS, FPTAS and Asymptotic PTAS.

[Preliminaries

Topics

@ Problem definition.
@ Definition of PTAS, FPTAS and Asymptotic PTAS.
© Polynomial algorithm for restricted instances.

[Preliminaries

Topics

@ Problem definition.

@ Definition of PTAS, FPTAS and Asymptotic PTAS.
© Polynomial algorithm for restricted instances.

© Approximation algorithm for restricted instances.

[Preliminaries

Topics

@ Problem definition.

@ Definition of PTAS, FPTAS and Asymptotic PTAS.
© Polynomial algorithm for restricted instances.

© Approximation algorithm for restricted instances.
©@ Asymptotic PTAS for Bin Packing.

[Problem definition

Problem definition

Problem Statement

We are given n objects of sizes {s1, Sz, ...Sp}, such that 0 < s; < 1 and an unlimited supply of
unit sized bins.

[Problem definition

Problem definition

Problem Statement

We are given n objects of sizes {s1, Sz, ...Sp}, such that 0 < s; < 1 and an unlimited supply of
unit sized bins. The goal is to pack the objects into bins, minimizing the number of bins used.

L Definitions of PTAS, FPTAS and Asymptotic FPTAS

PTAS, FPTAS and Asymptotic PTAS

Definition

A PTAS for a minimization problem I1 is an algorithm A, which on all instances / of 'l and
error-parameter € > 0, returns a solution of cost A(/), such that A(/) < (1+¢€)- OPT.

L Definitions of PTAS, FPTAS and Asymptotic FPTAS

PTAS, FPTAS and Asymptotic PTAS

Definition

A PTAS for a minimization problem I1 is an algorithm A, which on all instances / of 'l and
error-parameter € > 0, returns a solution of cost A(/), such that A(/) < (1+¢€)- OPT. The
running time of the algorithm must be polynomial for each fixed value of €.

L Definitions of PTAS, FPTAS and Asymptotic FPTAS

PTAS, FPTAS and Asymptotic PTAS

Definition
A PTAS for a minimization problem I1 is an algorithm A, which on all instances / of 'l and

error-parameter € > 0, returns a solution of cost A(/), such that A(/) < (1+¢€)- OPT. The
running time of the algorithm must be polynomial for each fixed value of €.

Definition
An FPTAS for a minimization problem [T is a PTAS that runs in time, that is polynomial from the
size of the input instance and 15

| A\

N

L Definitions of PTAS, FPTAS and Asymptotic FPTAS

PTAS, FPTAS and Asymptotic PTAS

Definition

A PTAS for a minimization problem I1 is an algorithm A, which on all instances / of 'l and
error-parameter € > 0, returns a solution of cost A(/), such that A(/) < (1+¢€)- OPT. The
running time of the algorithm must be polynomial for each fixed value of €.

Definition

| A\

An FPTAS for a minimization problem [T is a PTAS that runs in time, that is polynomial from the
size of the input instance and 15

Definition

| A

An asymptotic PTAS for a minimization problem I1 is an algorithm A, which on all instances / of
I and error-parameter € > 0, returns a solution of cost A(/), such that
A(l) < (1+¢€)- OPT + C(¢).

A

L Definitions of PTAS, FPTAS and Asymptotic FPTAS

PTAS, FPTAS and Asymptotic PTAS

Definition

A PTAS for a minimization problem I1 is an algorithm A, which on all instances / of 'l and
error-parameter € > 0, returns a solution of cost A(/), such that A(/) < (1+¢€)- OPT. The
running time of the algorithm must be polynomial for each fixed value of €.

Definition

| A\

An FPTAS for a minimization problem [T is a PTAS that runs in time, that is polynomial from the
size of the input instance and 15

Definition

| A

An asymptotic PTAS for a minimization problem I1 is an algorithm A, which on all instances / of
I and error-parameter € > 0, returns a solution of cost A(/), such that

A(l) < (14€)- OPT + C(¢). The running time of the algorithm must be polynomial for each
fixed value of €.

A

L Polynomial algorithm for restricted instances

Restricted Instances

Consider the instances of bin packing, in which the sizes of items are > €, and the number of
different item-sizes is K.

L Polynomial algorithm for restricted instances

Restricted Instances

Consider the instances of bin packing, in which the sizes of items are > €, and the number of
different item-sizes is K. Then there is a polynomial algorithm for solving these instances.

L Polynomial algorithm for restricted instances

Restricted Instances

Consider the instances of bin packing, in which the sizes of items are > €, and the number of
different item-sizes is K. Then there is a polynomial algorithm for solving these instances.

v

(Sketch). We will show that the number of feasible packings is at most polynomial.

L Polynomial algorithm for restricted instances

Restricted Instances

Consider the instances of bin packing, in which the sizes of items are > €, and the number of
different item-sizes is K. Then there is a polynomial algorithm for solving these instances.

v

(Sketch). We will show that the number of feasible packings is at most polynomial.
(1) The number of items in a bin is at most M = L%J.

L Polynomial algorithm for restricted instances

Restricted Instances

Consider the instances of bin packing, in which the sizes of items are > €, and the number of
different item-sizes is K. Then there is a polynomial algorithm for solving these instances.

v

(Sketch). We will show that the number of feasible packings is at most polynomial.
(1) The number of items in a bin is at most M = L%J.

(2) The number of different bin-types is at most R = (A'f,) = (K+,\”/’,1’1).

L Polynomial algorithm for restricted instances

Restricted Instances

Consider the instances of bin packing, in which the sizes of items are > €, and the number of
different item-sizes is K. Then there is a polynomial algorithm for solving these instances.

v

(Sketch). We will show that the number of feasible packings is at most polynomial.
(1) The number of items in a bin is at most M= | 1 |.

(2) The number of different bin-types is at most R = (A'f,) = (K+,\”/’,1’1).

(3) No more than n bins are needed in a feasible solution of any instance.

L Polynomial algorithm for restricted instances

Restricted Instances

Consider the instances of bin packing, in which the sizes of items are > €, and the number of
different item-sizes is K. Then there is a polynomial algorithm for solving these instances.

v

(Sketch). We will show that the number of feasible packings is at most polynomial.
(1) The number of items in a bin is at most M= | 1 |.

(2) The number of different bin-types is at most R = (A'f,) = (K+,\”/’,1’1).

(3) No more than n bins are needed in a feasible solution of any instance.

(4) The number of feasible packings is at most (%) = (777=") = (F£"7") = o(nf").

L Polynomial algorithm for restricted instances

Restricted Instances

Consider the instances of bin packing, in which the sizes of items are > €, and the number of
different item-sizes is K. Then there is a polynomial algorithm for solving these instances.

Proof.

| A\

(Sketch). We will show that the number of feasible packings is at most polynomial.
(1) The number of items in a bin is at most M= | 1 |.

(2) The number of different bin-types is at most R = (A'f,) = (K+,\”/’,1’1).

(3) No more than n bins are needed in a feasible solution of any instance.

(4) The number of feasible packings is at most (%) = (777=") = (F£"7") = o(nf").

Clearly, we can go through all of them, and find the one that uses minimum number of bins. [
W

LApproximation algorithm for restricted instances

Restricted Instances

Consider the instances of bin packing, in which the sizes of items are > €.

LApproximation algorithm for restricted instances

Restricted Instances

Consider the instances of bin packing, in which the sizes of items are > €. Then there is a
(1 + €)-approximation algorithm for solving these instances.

LApproximation algorithm for restricted instances

Restricted Instances

Consider the instances of bin packing, in which the sizes of items are > €. Then there is a
(1 + €)-approximation algorithm for solving these instances.

o
The Algorithm

o LetK=[%]and Q= [n-£?|.

N

LApproximation algorithm for restricted instances

Restricted Instances

Consider the instances of bin packing, in which the sizes of items are > €. Then there is a
(1 + €)-approximation algorithm for solving these instances.

v
The Algorithm
o LetK=[%]and Q= [n-£?|.
@ Sort the sizes of the items of the input instance / as follows: s; < sp < ... < sp.

N

LApproximation algorithm for restricted instances

Restricted Instances

Consider the instances of bin packing, in which the sizes of items are > €. Then there is a
(1 + €)-approximation algorithm for solving these instances.

v
The Algorithm
o LetK=[%]and Q= [n-£?|.
@ Sort the sizes of the items of the input instance / as follows: s; < sp < ... < sp.
@ Partition the items into K groups, each of which is of size Q (except may be the last one).

N

LApproximation algorithm for restricted instances

Restricted Instances

Consider the instances of bin packing, in which the sizes of items are > €. Then there is a
(1 + €)-approximation algorithm for solving these instances.

o
The Algorithm

o LetK=[%]and Q= [n-£?|.
@ Sort the sizes of the items of the input instance / as follows: s1 < s, < ... < sp.
@ Partition the items into K groups, each of which is of size Q (except may be the last one).

@ Consider the new instance J of bin packing obtained from / by rounding the size of each
element to the maximum size of its group.

N

LApproximation algorithm for restricted instances

Restricted Instances

Consider the instances of bin packing, in which the sizes of items are > €. Then there is a
(1 + €)-approximation algorithm for solving these instances.

o
The Algorithm

o LetK=[%]and Q= [n-£?|.
@ Sort the sizes of the items of the input instance / as follows: s1 < s, < ... < sp.
@ Partition the items into K groups, each of which is of size Q (except may be the last one).

@ Consider the new instance J of bin packing obtained from / by rounding the size of each
element to the maximum size of its group.

@ Solve the instance J by previous algorithm.

N

LApproximation algorithm for restricted instances

Restricted Instances

Consider the instances of bin packing, in which the sizes of items are > €. Then there is a
(1 + €)-approximation algorithm for solving these instances.

o
The Algorithm

o LetK=[%]and Q= [n-£?|.
@ Sort the sizes of the items of the input instance / as follows: s1 < s, < ... < sp.
@ Partition the items into K groups, each of which is of size Q (except may be the last one).

@ Consider the new instance J of bin packing obtained from / by rounding the size of each
element to the maximum size of its group.

Solve the instance J by previous algorithm.

@ Return the packing of J as a packing of /.

N

LApproximation algorithm for restricted instances

Restricted Instances

Consider the instances of bin packing, in which the sizes of items are > €. Then there is a
(1 + €)-approximation algorithm for solving these instances.

o
The Algorithm

o LetK=[%]and Q= [n-£?|.
@ Sort the sizes of the items of the input instance / as follows: s1 < s, < ... < sp.
@ Partition the items into K groups, each of which is of size Q (except may be the last one).

@ Consider the new instance J of bin packing obtained from / by rounding the size of each
element to the maximum size of its group.

Solve the instance J by previous algorithm.

@ Return the packing of J as a packing of /.
V.

Observe that the packing returned by the algorithm is a feasible packing of I.

LApproximation algorithm for restricted instances

Restricted Instances

Some Instances

@ /-the input instance.

LApproximation algorithm for restricted instances

Restricted Instances

Some Instances

@ /-the input instance.

@ J- the instance constructed by the algorithm.

LApproximation algorithm for restricted instances

Restricted Instances

Some Instances

@ /-the input instance.

@ J- the instance constructed by the algorithm.

@ J'- the instance obtained from / by rounding the size of each element to the minimum size
of its group.

LApproximation algorithm for restricted instances

Restricted Instances

Some Instances

@ /-the input instance.

@ J- the instance constructed by the algorithm.

@ J'- the instance obtained from / by rounding the size of each element to the minimum size
of its group.

@ Jgp- the instance obtained from J by removing the last Q items.

LApproximation algorithm for restricted instances

Restricted Instances

Some Instances

@ /-the input instance.

@ J- the instance constructed by the algorithm.

@ J'- the instance obtained from / by rounding the size of each element to the minimum size
of its group.

@ Jgp- the instance obtained from J by removing the last Q items.

6— the instance obtained from J' by removing the first Q items.

LApproximation algorithm for restricted instances

Restricted Instances

Some Instances

@ /-the input instance.

@ J- the instance constructed by the algorithm.

@ J'- the instance obtained from / by rounding the size of each element to the minimum size
of its group.

Ja- the instance obtained from J by removing the last Q items.

Jp- the instance obtained from J' by removing the first Q items.
V.

The Analysis

LApproximation algorithm for restricted instances

Restricted Instances

Some Instances

@ /-the input instance.

@ J- the instance constructed by the algorithm.

@ J'- the instance obtained from / by rounding the size of each element to the minimum size
of its group.

Ja- the instance obtained from J by removing the last Q items.

Jp- the instance obtained from J' by removing the first Q items.
V.

The Analysis

OPT(J) <

LApproximation algorithm for restricted instances

Restricted Instances

Some Instances

@ /-the input instance.

@ J- the instance constructed by the algorithm.

@ J'- the instance obtained from / by rounding the size of each element to the minimum size
of its group.

Ja- the instance obtained from J by removing the last Q items.

Jp- the instance obtained from J' by removing the first Q items.
V.

The Analysis

OPT(J) < OPT(Jg)+Q

LApproximation algorithm for restricted instances

Restricted Instances

Some Instances

@ /-the input instance.

@ J- the instance constructed by the algorithm.

@ J'- the instance obtained from / by rounding the size of each element to the minimum size
of its group.

Ja- the instance obtained from J by removing the last Q items.

Jp- the instance obtained from J' by removing the first Q items.
V.

The Analysis

OPT(J)

< OPT(Jg)+Q
<

LApproximation algorithm for restricted instances

Restricted Instances

Some Instances

@ /-the input instance.

@ J- the instance constructed by the algorithm.

@ J'- the instance obtained from / by rounding the size of each element to the minimum size
of its group.

Ja- the instance obtained from J by removing the last Q items.

Jp- the instance obtained from J' by removing the first Q items.
V.

The Analysis

OPT(J)

OPT(Jg)+Q

<
< OPT(Jg)+Q

LApproximation algorithm for restricted instances

Restricted Instances

Some Instances

@ /-the input instance.

@ J- the instance constructed by the algorithm.

@ J'- the instance obtained from / by rounding the size of each element to the minimum size
of its group.

Ja- the instance obtained from J by removing the last Q items.

Jp- the instance obtained from J' by removing the first Q items.
V.

The Analysis

OPT(J)

< OPT(J)+Q
< OPT(Jg)+Q
<

LApproximation algorithm for restricted instances

Restricted Instances

Some Instances

@ /-the input instance.

@ J- the instance constructed by the algorithm.

@ J'- the instance obtained from / by rounding the size of each element to the minimum size
of its group.

Ja- the instance obtained from J by removing the last Q items.

Jp- the instance obtained from J' by removing the first Q items.
V.

The Analysis

OPT(J)

< OPT(J)+Q
< OPT(Jg)+Q
< OPT(J)+Q

LApproximation algorithm for restricted instances

Restricted Instances

Some Instances

@ /-the input instance.

@ J- the instance constructed by the algorithm.

@ J'- the instance obtained from / by rounding the size of each element to the minimum size
of its group.

Ja- the instance obtained from J by removing the last Q items.

Jp- the instance obtained from J' by removing the first Q items.
V.

The Analysis

OPT(J)

OPT(Ja)+Q
OPT(Jg) +Q
OPT(J)+Q

<
<
<
<

LApproximation algorithm for restricted instances

Restricted Instances

Some Instances

@ /-the input instance.

@ J- the instance constructed by the algorithm.

@ J'- the instance obtained from / by rounding the size of each element to the minimum size
of its group.

Ja- the instance obtained from J by removing the last Q items.

Jp- the instance obtained from J' by removing the first Q items.
V.

The Analysis

OPT(J)

IAIAIACIA
Q
3

= =l A
<
+
Q

LApproximation algorithm for restricted instances

Restricted Instances

Q =

LApproximation algorithm for restricted instances

Restricted Instances

LApproximation algorithm for restricted instances

Restricted Instances

n-€2]

Q

IN

LApproximation algorithm for restricted instances

Restricted Instances

Q

ANl
SE)

mm
n
i

LApproximation algorithm for restricted instances

Restricted Instances

Q

ANl
SE)

mm
n
i

IN

LApproximation algorithm for restricted instances

Restricted Instances

Q

ANl
SE)

mm
n
i

In
°
™
©

LApproximation algorithm for restricted instances

Restricted Instances

Q

ANl
SE)

mm
n
i

In
°
™
©

IN

LApproximation algorithm for restricted instances

Restricted Instances

Q

ANl
SE)

mm
n
i

In
°
™
©

IA
®
o)
o
~

LApproximation algorithm for restricted instances

Restricted Instances

8}
IA I
SE)
G 3

™

n

N

In
°
™
©

IN

€-OPT.

v

OPT(J) <

A

LApproximation algorithm for restricted instances

Restricted Instances

8}
IA I
SE)
G 3

™

n

N

In
°
™
©

IN

€-OPT.

v

OPT(J) < OPT()+Q

A

LApproximation algorithm for restricted instances

Restricted Instances

8}
IA I
SE)
G 3

™

n

N

In
°
™
©

< €-OPT.
v
OPT(J) OPT(I)+Q

IN A

A

LApproximation algorithm for restricted instances

Restricted Instances

8}
IA I
SE)
G 3

™

n

N

In
°
™
©

< €-OPT.
v
OPT(J) < OPT(N+Q
< OPT(l)+e€-OPT

A

LApproximation algorithm for restricted instances

Restricted Instances

8}
IA I
SE)
G 3

™

n

N

In
°
™
©

< €-OPT.
v
OPT(J) < OPT(N+Q
< OPT(l)+e€-OPT

A

LApproximation algorithm for restricted instances

Restricted Instances

8}
IA I
SE)
G 3

™

n

N

In
°
™
©

< €-OPT.
v
OPT(J) < OPT(N+Q
< OPT(l)+e€-OPT

(1+¢€)-OPT.

A

LAsymplotic PTAS for Bin Packing

The General Case

There exists a polynomial algorithm that for each € € (0, %] finds a packing with the number of
bins at most (1+2-€)- OPT +1.

LAsymplotic PTAS for Bin Packing

The General Case

There exists a polynomial algorithm that for each € € (0, %] finds a packing with the number of
bins at most (1+2-€) - OPT + 1. In other words, bin packing problem admits an asymptotic
PTAS.

LAsymplotic PTAS for Bin Packing

The General Case

Theorem

There exists a polynomial algorithm that for each € € (0, %] finds a packing with the number of
bins at most (1+2-€) - OPT + 1. In other words, bin packing problem admits an asymptotic

PTAS.)

@ For the input instance / consider the instance /' obtained from / by removing all items of
size less than €.

N

LAsymplotic PTAS for Bin Packing

The General Case

Theorem

There exists a polynomial algorithm that for each € € (0, %] finds a packing with the number of
bins at most (1+2-€) - OPT + 1. In other words, bin packing problem admits an asymptotic

PTAS.)

@ For the input instance / consider the instance /' obtained from / by removing all items of
size less than €.

@ Solve I by the previous (1 + €)-approximation algorithm.

N

LAsymplotic PTAS for Bin Packing

The General Case

Theorem

There exists a polynomial algorithm that for each € € (0, %] finds a packing with the number of
bins at most (1+2-€) - OPT + 1. In other words, bin packing problem admits an asymptotic

PTAS.)

@ For the input instance / consider the instance /' obtained from / by removing all items of
size less than €.

@ Solve I by the previous (1 + €)-approximation algorithm.
@ Apply First-Fit on the resulting packing using the items from /— /'.

N

LAsymplotic PTAS for Bin Packing

The General Case

Theorem

There exists a polynomial algorithm that for each € € (0, %] finds a packing with the number of
bins at most (1+2-€) - OPT + 1. In other words, bin packing problem admits an asymptotic
PTAS.

o
The Algorithm

@ For the input instance / consider the instance /' obtained from / by removing all items of
size less than €.

@ Solve I by the previous (1 + €)-approximation algorithm.
@ Apply First-Fit on the resulting packing using the items from /— /'.

@ Return the resulting packing.

N

LAsymplotic PTAS for Bin Packing

The Analysis of the Algorithm

Let L be the number of bins returned by the algorithm.

LAsymplotic PTAS for Bin Packing

The Analysis of the Algorithm

Let L be the number of bins returned by the algorithm. If no extra bin was required for packing
the items from /— /', then L < (1+€)- OPT(/') < (1+¢)- OPT(/),

LAsymplotic PTAS for Bin Packing

The Analysis of the Algorithm

Let L be the number of bins returned by the algorithm. If no extra bin was required for packing
the items from /— /', then L < (1 +€) - OPT(/') < (1 +€) - OPT(!), hence we can assume that
extra bins were required.

LAsymplotic PTAS for Bin Packing

The Analysis of the Algorithm

The Analysis

Let L be the number of bins returned by the algorithm. If no extra bin was required for packing
the items from /— /', then L < (1 +€) - OPT(/') < (1 +€) - OPT(!), hence we can assume that
extra bins were required.

| N

The Analysis: Extra Bins Were Required

The room in the first L — 1 bins is less than €.

LAsymplotic PTAS for Bin Packing

The Analysis of the Algorithm

The Analysis

Let L be the number of bins returned by the algorithm. If no extra bin was required for packing
the items from /— /', then L < (1 +€) - OPT(/') < (1 +€) - OPT(!), hence we can assume that
extra bins were required.

| N

The Analysis: Extra Bins Were Required

The room in the first L — 1 bins is less than €. Then:

OPT >

LAsymplotic PTAS for Bin Packing

The Analysis of the Algorithm

The Analysis

Let L be the number of bins returned by the algorithm. If no extra bin was required for packing
the items from /— /', then L < (1 +€) - OPT(/') < (1 +€) - OPT(!), hence we can assume that
extra bins were required.

| N

The Analysis: Extra Bins Were Required

The room in the first L — 1 bins is less than €. Then:

n
OPT > Y
i=1

LAsymplotic PTAS for Bin Packing

The Analysis of the Algorithm

The Analysis

Let L be the number of bins returned by the algorithm. If no extra bin was required for packing
the items from /— /', then L < (1 +€) - OPT(/') < (1 +€) - OPT(!), hence we can assume that
extra bins were required.

| N

The Analysis: Extra Bins Were Required

The room in the first L — 1 bins is less than €. Then:
n

OPT > Y
i=1

>

LAsymplotic PTAS for Bin Packing

The Analysis of the Algorithm

The Analysis

Let L be the number of bins returned by the algorithm. If no extra bin was required for packing
the items from /— /', then L < (1 +€) - OPT(/') < (1 +€) - OPT(!), hence we can assume that
extra bins were required.

| N

The Analysis: Extra Bins Were Required

The room in the first L — 1 bins is less than €. Then:
n

OPT > Y
i=1

> (L—-1)-(1—¢)

LAsymplotic PTAS for Bin Packing

The Analysis of the Algorithm

The Analysis

Let L be the number of bins returned by the algorithm. If no extra bin was required for packing
the items from /— /', then L < (1 +€) - OPT(/') < (1 +€) - OPT(!), hence we can assume that
extra bins were required.

| N

The Analysis: Extra Bins Were Required

The room in the first L — 1 bins is less than €. Then:
n

OPT > Y
i=1

> (L—-1)-(1—¢)

LAsymplotic PTAS for Bin Packing

The Analysis of the Algorithm

The Final Bound

We need to show that %Jﬂ <(1+2-€)-OPT +1.

LAsymplotic PTAS for Bin Packing

The Analysis of the Algorithm

The Final Bound

We need to show that %Jﬂ <(1+2-€)-OPT +1.

1
14ole—— —
1—¢

LAsymplotic PTAS for Bin Packing

The Analysis of the Algorithm

The Final Bound

We need to show that %Jﬂ <(1+2-€)-OPT +1.

142e- = o ((1-e)(1+2:8)-1)

LAsymplotic PTAS for Bin Packing

The Analysis of the Algorithm

The Final Bound

We need to show that %Jﬂ <(1+2-€)-OPT +1.

1
142.6— ——
€

— (o2 -1)

LAsymplotic PTAS for Bin Packing

The Analysis of the Algorithm

The Final Bound

We need to show that %Jﬂ <(1+2-€)-OPT +1.

142e- = o ((1-e)(1+2:8)-1)

1 2
= — (1+e—2-62—1
e O+)

LAsymplotic PTAS for Bin Packing

The Analysis of the Algorithm

The Final Bound

We need to show that %Jﬂ <(1+2-€)-OPT +1.

142e- = o ((1-e)(1+2:8)-1)

1 2
= — (1+e—2-62—1
e O+)

LAsymplotic PTAS for Bin Packing

The Analysis of the Algorithm

The Final Bound
We need to show that % +1<(1+2-€)-OPT+1.

1
1+2~£—§ = 1_€~((1—8)(1+2~8)—1)
—_ . p— . 27
= c (1+e—2-£2—1)

= 8~(1—2‘s)

LAsymplotic PTAS for Bin Packing

The Analysis of the Algorithm

The Final Bound
We need to show that % +1<(1+2-€)-OPT+1.

1
1+2~£—§ = 1_€~((1—8)(1+2~8)—1)
—_ . p— . 27
= c (1+e—2-£2—1)

= 8~(1—2‘s)

	Outline
	Main Talk
	Preliminaries
	Problem definition
	Definitions of PTAS, FPTAS and Asymptotic FPTAS
	Polynomial algorithm for restricted instances
	Approximation algorithm for restricted instances
	Asymptotic PTAS for Bin Packing

