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PTAS, FPTAS and Asymptotic PTAS

Definition

A PTAS for a minimization problem Π is an algorithm A, which on all instances I of Π and
error-parameter ε > 0, returns a solution of cost A(I), such that A(I)≤ (1 + ε) ·OPT .

The
running time of the algorithm must be polynomial for each fixed value of ε .

Definition

An FPTAS for a minimization problem Π is a PTAS that runs in time, that is polynomial from the
size of the input instance and 1

ε
.

Definition

An asymptotic PTAS for a minimization problem Π is an algorithm A, which on all instances I of
Π and error-parameter ε > 0, returns a solution of cost A(I), such that
A(I)≤ (1 + ε) ·OPT + C(ε). The running time of the algorithm must be polynomial for each
fixed value of ε .
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Polynomial algorithm for restricted instances

Restricted Instances

Theorem

Consider the instances of bin packing, in which the sizes of items are ≥ ε , and the number of
different item-sizes is K .

Then there is a polynomial algorithm for solving these instances.

Proof.

(Sketch). We will show that the number of feasible packings is at most polynomial.

(1) The number of items in a bin is at most M = b 1
ε
c.

(2) The number of different bin-types is at most R = ˜(K
M

)
=

(K +M−1
M

)
.

(3) No more than n bins are needed in a feasible solution of any instance.

(4) The number of feasible packings is at most ˜(R
n

)
=

(R+n−1
n

)
=

(R+n−1
R−1

)
= O(nR−1).

Clearly, we can go through all of them, and find the one that uses minimum number of bins.
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Approximation algorithm for restricted instances

Restricted Instances

Theorem

Consider the instances of bin packing, in which the sizes of items are ≥ ε .

Then there is a
(1 + ε)-approximation algorithm for solving these instances.

The Algorithm

Let K = d 1
ε2 e and Q = bn · ε2c.

Sort the sizes of the items of the input instance I as follows: s1 ≤ s2 ≤ ...≤ sn.

Partition the items into K groups, each of which is of size Q (except may be the last one).

Consider the new instance J of bin packing obtained from I by rounding the size of each
element to the maximum size of its group.

Solve the instance J by previous algorithm.

Return the packing of J as a packing of I.

Remark

Observe that the packing returned by the algorithm is a feasible packing of I.
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Approximation algorithm for restricted instances

Restricted Instances

Some Instances

I-the input instance.

J- the instance constructed by the algorithm.

J ′- the instance obtained from I by rounding the size of each element to the minimum size
of its group.

JQ - the instance obtained from J by removing the last Q items.

J ′Q - the instance obtained from J ′ by removing the first Q items.

The Analysis

OPT (J) ≤ OPT (JQ) + Q

≤ OPT (J ′Q) + Q

≤ OPT (J ′) + Q

≤ OPT (I) + Q.
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Asymptotic PTAS for Bin Packing

The General Case

Theorem

There exists a polynomial algorithm that for each ε ∈ (0, 1
2 ] finds a packing with the number of

bins at most (1 + 2 · ε) ·OPT + 1.

In other words, bin packing problem admits an asymptotic
PTAS.

The Algorithm

For the input instance I consider the instance I′ obtained from I by removing all items of
size less than ε .

Solve I′ by the previous (1 + ε)-approximation algorithm.

Apply First-Fit on the resulting packing using the items from I− I′.

Return the resulting packing.
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The Analysis of the Algorithm

The Analysis

Let L be the number of bins returned by the algorithm.

If no extra bin was required for packing
the items from I− I′, then L≤ (1 + ε) ·OPT (I′)≤ (1 + ε) ·OPT (I), hence we can assume that
extra bins were required.

The Analysis: Extra Bins Were Required

The room in the first L−1 bins is less than ε . Then:

OPT ≥
n

∑
i=1

si

> (L−1) · (1− ε)

or

L <
OPT
1− ε

+ 1.
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The Final Bound

We need to show that OPT
1−ε

+ 1≤ (1 + 2 · ε) ·OPT + 1.

1 + 2 · ε− 1
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=
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· ((1− ε)(1 + 2 · ε)−1)
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=
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· (1−2 · ε)

≥ 0.
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