Outline

Computational Complexity

K. Subramani¹

¹Lane Department of Computer Science and Electrical Engineering West Virginia University

16 January, 2014

Outline

Recall

NP is the class of languages decided by nondeterministic Turing machines in polynomial time.

Recall

NP is the class of languages decided by nondeterministic Turing machines in polynomial time.

Definition

Let $R \subseteq \Sigma^* \times \Sigma^*$ be a binary relation on strings. *R* is called **polynomially decidable** if the language $\{x; y : (x, y) \in R\}$ is decided by a deterministic Turing machine in polynomial time.

Class NP

Recall

NP is the class of languages decided by nondeterministic Turing machines in polynomial time.

Definition

Let $R \subseteq \Sigma^* \times \Sigma^*$ be a binary relation on strings. *R* is called **polynomially decidable** if the language $\{x; y : (x, y) \in R\}$ is decided by a deterministic Turing machine in polynomial time.

Definition

R is **polynomial balanced** if $(x, y) \in R$ implies $|y| \le |x|^k$ for some $k \ge 1$. That is, the length of the second component is always bounded by a polynomial in the length of the first.

The class NP The class coNP Randomized Complexity Classes

Class NP (contd.)

Proposition

Let $L \subseteq \Sigma^*$ be a language. $L \in NP$ if and only if there is a polynomial decidable and polynomial balanced relation R, such that $L = \{x : \exists y, (x, y) \in R\}$.

Proposition

Let $L \subseteq \Sigma^*$ be a language. $L \in NP$ if and only if there is a polynomial decidable and polynomial balanced relation R, such that $L = \{x : \exists y, (x, y) \in R\}$.

Proof.

(i) "If" part: Suppose that such an *R* exists, we need to show *L* is decided by a nondeterministic Turing machine *M* in polynomial time.

Proposition

Let $L \subseteq \Sigma^*$ be a language. $L \in NP$ if and only if there is a polynomial decidable and polynomial balanced relation R, such that $L = \{x : \exists y, (x, y) \in R\}$.

Proof.

(i) "If" part: Suppose that such an *R* exists, we need to show *L* is decided by a nondeterministic Turing machine *M* in polynomial time. We construct *M* as follows: On input *x*, *M* guesses a *y* of length at most |*x*|^k, and then verify whether (*x*, *y*) ∈ *R* (This can be done in polynomial time because *R* is polynomial decidable.). If (*x*, *y*) ∈ *R*, *M* accepts, otherwise it rejects.

Proposition

Let $L \subseteq \Sigma^*$ be a language. $L \in NP$ if and only if there is a polynomial decidable and polynomial balanced relation R, such that $L = \{x : \exists y, (x, y) \in R\}$.

Proof.

- (i) "If" part: Suppose that such an *R* exists, we need to show *L* is decided by a nondeterministic Turing machine *M* in polynomial time. We construct *M* as follows: On input *x*, *M* guesses a *y* of length at most |*x*|^k, and then verify whether (*x*, *y*) ∈ *R* (This can be done in polynomial time because *R* is polynomial decidable.). If (*x*, *y*) ∈ *R*, *M* accepts, otherwise it rejects.
- (ii) **"Only if**" part: Suppose that $L \in \mathbf{NP}$, that is, there is a nondeterministic Turing machine N that decides L in time $|x|^k$ for some k.

Proposition

Let $L \subseteq \Sigma^*$ be a language. $L \in NP$ if and only if there is a polynomial decidable and polynomial balanced relation R, such that $L = \{x : \exists y, (x, y) \in R\}$.

Proof.

- (i) "If" part: Suppose that such an *R* exists, we need to show *L* is decided by a nondeterministic Turing machine *M* in polynomial time. We construct *M* as follows: On input *x*, *M* guesses a *y* of length at most |*x*|^k, and then verify whether (*x*, *y*) ∈ *R* (This can be done in polynomial time because *R* is polynomial decidable.). If (*x*, *y*) ∈ *R*, *M* accepts, otherwise it rejects.
- (ii) **"Only if**" part: Suppose that $L \in \mathbf{NP}$, that is, there is a nondeterministic Turing machine *N* that decides *L* in time $|x|^k$ for some *k*. Define a relation *R* as follows: $(x, y) \in R$ if and only if y encodes an accepting computation of *N* on input *x*. Clearly *R* is polynomial decidable and polynomial bounded.

Proposition

Let $L \subseteq \Sigma^*$ be a language. $L \in NP$ if and only if there is a polynomial decidable and polynomial balanced relation R, such that $L = \{x : \exists y, (x, y) \in R\}$.

Proof.

- (i) "If" part: Suppose that such an *R* exists, we need to show *L* is decided by a nondeterministic Turing machine *M* in polynomial time. We construct *M* as follows: On input *x*, *M* guesses a *y* of length at most |*x*|^k, and then verify whether (*x*, *y*) ∈ *R* (This can be done in polynomial time because *R* is polynomial decidable.). If (*x*, *y*) ∈ *R*, *M* accepts, otherwise it rejects.
- (ii) **"Only if**" part: Suppose that $L \in \mathbf{NP}$, that is, there is a nondeterministic Turing machine *N* that decides *L* in time $|x|^k$ for some *k*. Define a relation *R* as follows: $(x, y) \in R$ if and only if y encodes an accepting computation of *N* on input *x*. Clearly *R* is polynomial decidable and polynomial bounded.

Now we show $L = \{x : \exists y, (x, y) \in R\}.$

Proposition

Let $L \subseteq \Sigma^*$ be a language. $L \in NP$ if and only if there is a polynomial decidable and polynomial balanced relation R, such that $L = \{x : \exists y, (x, y) \in R\}$.

Proof.

- (i) "If" part: Suppose that such an *R* exists, we need to show *L* is decided by a nondeterministic Turing machine *M* in polynomial time. We construct *M* as follows: On input *x*, *M* guesses a *y* of length at most |*x*|^k, and then verify whether (*x*, *y*) ∈ *R* (This can be done in polynomial time because *R* is polynomial decidable.). If (*x*, *y*) ∈ *R*, *M* accepts, otherwise it rejects.
- (ii) **"Only if**" part: Suppose that $L \in \mathbf{NP}$, that is, there is a nondeterministic Turing machine *N* that decides *L* in time $|x|^k$ for some *k*. Define a relation *R* as follows: $(x, y) \in R$ if and only if y encodes an accepting computation of *N* on input *x*. Clearly *R* is polynomial decidable and polynomial bounded.

Now we show $L = \{x : \exists y, (x, y) \in R\}$. Since *N* decides *L*, $\forall x \in L$, there must be a *y* such that $(x, y) \in R$, and hence $L \subseteq \{x : \exists y, (x, y) \in R\}$;

Proposition

Let $L \subseteq \Sigma^*$ be a language. $L \in NP$ if and only if there is a polynomial decidable and polynomial balanced relation R, such that $L = \{x : \exists y, (x, y) \in R\}$.

Proof.

- (i) "If" part: Suppose that such an *R* exists, we need to show *L* is decided by a nondeterministic Turing machine *M* in polynomial time. We construct *M* as follows: On input *x*, *M* guesses a *y* of length at most |*x*|^k, and then verify whether (*x*, *y*) ∈ *R* (This can be done in polynomial time because *R* is polynomial decidable.). If (*x*, *y*) ∈ *R*, *M* accepts, otherwise it rejects.
- (ii) "Only if" part: Suppose that L ∈ NP, that is, there is a nondeterministic Turing machine N that decides L in time |x|^k for some k. Define a relation R as follows: (x, y) ∈ R if and only if y encodes an accepting computation of N on input x. Clearly R is polynomial decidable and polynomial bounded.

Now we show $L = \{x : \exists y, (x, y) \in R\}$. Since *N* decides *L*, $\forall x \in L$, there must be a *y* such that $(x, y) \in R$, and hence $L \subseteq \{x : \exists y, (x, y) \in R\}$; Conversely, $\forall x \in \{x : \exists y, (x, y) \in R\}$, it must be the cast that *N* accepts *x*. It means $x \in L$, and hence $\{x : \exists y, (x, y) \in R\} \subseteq L$. Thus $L = \{x : \exists y, (x, y) \in R\}$.

The class NI

The class coNP Randomized Complexity Classes

What does the proposition tell us?

Note

 (i) Any "yes" instance x of the problem in NP has at least one polynomial certificate y of its being a "yes" instance.

Note

- (i) Any "yes" instance x of the problem in NP has at least one polynomial certificate y of its being a "yes" instance.
- We may not know how to discover this certificate in polynomial time, but we are sure it exists if the instance is a "yes" instance.

Note

- (i) Any "yes" instance x of the problem in NP has at least one polynomial certificate y of its being a "yes" instance.
- We may not know how to discover this certificate in polynomial time, but we are sure it exists if the instance is a "yes" instance.
- (iii) Naturally, "no" instances may not have such certificate.

Note

- (i) Any "yes" instance x of the problem in NP has at least one polynomial certificate y of its being a "yes" instance.
- We may not know how to discover this certificate in polynomial time, but we are sure it exists if the instance is a "yes" instance.
- (iii) Naturally, "no" instances may not have such certificate.

Examples

SAT: The certificate is just an assignment that satisfies the Boolean expression. HAMILTON PATH: The certificate is precisely a Hamilton path in the graph. The class NP The class coNP

The class coNP Randomized Complexity Classes

Recall

(Cook's Theorem) SAT is NP-complete.

Randomized Complexity Classes

Recall

(Cook's Theorem) SAT is NP-complete.

Definition

*k*SAT, where $k \ge 1$ is an integer, is the special case of SAT in which the formula is in CNF, and all clauses have *k* literals.

The class NP The class coNP Randomized Complexity Classes

coNP as related to NP

Definition (coNP)

coNP is the complexity class which contains the complements of problems found in NP.

coNP as related to NP

Definition (coNP)

coNP is the complexity class which contains the complements of problems found in NP.

Another way of looking at coNP

Just as **NP** can be considered to be the set of problems with succinct "yes" certificates, **coNP** can be considered to be the set of problems with succinct "no" certificates. This means that a "no" instance of a problem in **coNP** has a short proof of it being a "no" instance.

The class NP The class coNP Randomized Complexity Classes

A **coNP** problem

Examples

• coSAT = { $\langle b \rangle$: *b* is a boolean expression with no satisfying assignments}

The class $NP \cap coNP$

Properties

Poblems in the class $\textbf{NP} \cap \textbf{coNP}$ have both succinct "yes" and succinct "no" certificates.

Inclusion Relationships

Relation to P

Just as $P \subseteq NP$, we have that $P = coP \subseteq coNP$.

Inclusion Relationships

Relation to P

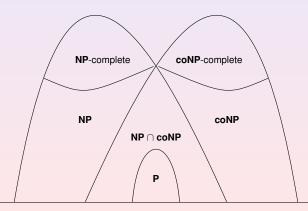
Just as $P \subseteq NP$, we have that $P = coP \subseteq coNP$. Thus $P \subseteq NP \cap coNP$.

Inclusion Relationships

Relation to P

Just as $P \subseteq NP$, we have that $P = coP \subseteq coNP$. Thus $P \subseteq NP \cap coNP$. It is unknown if $P = NP \cap coNP$. The class NP The class coNP Randomized Complexity Classes

The Complexity Picture



The class NP The class coNP

ndomized Complexity Class

A randomized algorithm for the 2SAT problem

Goal

Let $\phi = C_1 \wedge C_2 \wedge ... \wedge C_m$ denote a boolean formula in CNF over the boolean variables $\{x_1, x_2, ..., x_n\}$, such that each clause C_i has exactly two variables. Determine whether ϕ is satisfiable.

The class NP The class coNP

andomized Complexity Class

A randomized algorithm for the 2SAT problem

Goal

Let $\phi = C_1 \wedge C_2 \wedge ... \wedge C_m$ denote a boolean formula in CNF over the boolean variables $\{x_1, x_2, ..., x_n\}$, such that each clause C_i has exactly two variables. Determine whether ϕ is satisfiable.

Note

2SAT can be solved in O(m+n) time using Tarjan's connected components algorithm.

Function SATISFIABILITY-TESTING(ϕ)

1: Start with an arbitrary assignment to the variables.

Function SATISFIABILITY-TESTING(ϕ)

- 1: Start with an arbitrary assignment to the variables.
- 2: while (the current assignment is not satisfying) do

Function SATISFIABILITY-TESTING(ϕ)

- 1: Start with an arbitrary assignment to the variables.
- 2: while (the current assignment is not satisfying) do
- 3: Pick an unsatisfied clause.

Function SATISFIABILITY-TESTING(ϕ)

- 1: Start with an arbitrary assignment to the variables.
- 2: while (the current assignment is not satisfying) do
- 3: Pick an unsatisfied clause.
- 4: Uniformly and at random flip the value assigned to one of its two literals (variables).

The 2CNF Algorithm

Function SATISFIABILITY-TESTING(ϕ)

- 1: Start with an arbitrary assignment to the variables.
- 2: while (the current assignment is not satisfying) do
- 3: Pick an unsatisfied clause.
- 4: Uniformly and at random flip the value assigned to one of its two literals (variables).
- 5: end while

Algorithm 5: Papadimitrious's randomized algorithm for 2CNF Satisfiability

Mathematical Preliminaries

Theorem

Let X and Y be two random variables. Then E[X] = E[E[X|Y]].

Mathematical Preliminaries

Theorem

Let X and Y be two random variables. Then E[X] = E[E[X|Y]].

Theorem (Markov)

Let X be a non-negative random variable and let c > 0 denote a constant. Then $\Pr(X \ge c \cdot \mathbf{E}[X]) \le \frac{1}{c}$.

Analysis

Modeling as a random walk

Assume that ϕ is satisfiable and focus on a particular satisfying assignment \hat{T} .

Analysis

Modeling as a random walk

Assume that ϕ is satisfiable and focus on a particular satisfying assignment \hat{T} . Let T denote the current assignment. We want to bound the expected number of steps before T is transformed into \hat{T} .

Assume that ϕ is satisfiable and focus on a particular satisfying assignment \hat{T} . Let *T* denote the current assignment. We want to bound the expected number of steps before *T* is transformed into \hat{T} .

Assume that ϕ is satisfiable and focus on a particular satisfying assignment \hat{T} . Let *T* denote the current assignment. We want to bound the expected number of steps before *T* is transformed into \hat{T} .

$$t(0) =$$

Assume that ϕ is satisfiable and focus on a particular satisfying assignment \hat{T} . Let *T* denote the current assignment. We want to bound the expected number of steps before *T* is transformed into \hat{T} .

$$t(0) = 0$$

Assume that ϕ is satisfiable and focus on a particular satisfying assignment \hat{T} . Let *T* denote the current assignment. We want to bound the expected number of steps before *T* is transformed into \hat{T} .

$$\begin{array}{rcl}t(0) & = & 0\\t(n) & = & \end{array}$$

Assume that ϕ is satisfiable and focus on a particular satisfying assignment \hat{T} . Let *T* denote the current assignment. We want to bound the expected number of steps before *T* is transformed into \hat{T} .

$$t(0) = 0$$

 $t(n) = 1+t(n-1)$

Assume that ϕ is satisfiable and focus on a particular satisfying assignment \hat{T} . Let *T* denote the current assignment. We want to bound the expected number of steps before *T* is transformed into \hat{T} .

$$t(0) = 0$$

 $t(n) = 1 + t(n-1)$
 $t(i) \leq$

Assume that ϕ is satisfiable and focus on a particular satisfying assignment \hat{T} . Let *T* denote the current assignment. We want to bound the expected number of steps before *T* is transformed into \hat{T} .

$$t(0) = 0$$

$$t(n) = 1 + t(n-1)$$

$$t(i) \leq \frac{1}{2}t(i-1) + \frac{1}{2}t(i+1) + 1, 0 < i < n$$

Assume that ϕ is satisfiable and focus on a particular satisfying assignment \hat{T} . Let *T* denote the current assignment. We want to bound the expected number of steps before *T* is transformed into \hat{T} .

Let t(i) denote the expected number of flips for T to become \hat{T} , assuming that T differs from \hat{T} in exactly *i* variables. It follows that,

$$t(0) = 0$$

$$t(n) = 1 + t(n-1)$$

$$t(i) \leq \frac{1}{2}t(i-1) + \frac{1}{2}t(i+1) + 1, 0 < i < n$$

Observation

The above system can be solved to get $t(n) \le n^2$. From Markov's inequality it follows that the probability that T is not transformed into \hat{T} in at most $2 \cdot n^2$ flips is less than one-half.

Assume that ϕ is satisfiable and focus on a particular satisfying assignment \hat{T} . Let *T* denote the current assignment. We want to bound the expected number of steps before *T* is transformed into \hat{T} .

Let t(i) denote the expected number of flips for T to become \hat{T} , assuming that T differs from \hat{T} in exactly *i* variables. It follows that,

$$t(0) = 0$$

$$t(n) = 1 + t(n-1)$$

$$t(i) \leq \frac{1}{2}t(i-1) + \frac{1}{2}t(i+1) + 1, 0 < i < n$$

Observation

The above system can be solved to get $t(n) \le n^2$. From Markov's inequality it follows that the probability that T is not transformed into \hat{T} in at most $2 \cdot n^2$ flips is less than one-half. Running time is $O(n^2 \cdot (m+n))$, which is hardly impressive.

Randomized Complexity Classes

Definition

The class **RP** consists of all languages $L \subseteq \Sigma^*$ that have a randomized algorithm \mathscr{A} running in worst-case polynomial time, such that for any input $x \in \Sigma^*$,

•
$$x \in L \Rightarrow \Pr[\mathscr{A}(x)] = "yes"] \geq \frac{1}{2}$$
.

•
$$x \notin L \Rightarrow \Pr[\mathscr{A}(x)] = "yes"] = 0.$$

Observations

(i) Rejection is unanimous, acceptance is by majority.

Definition

The class **RP** consists of all languages $L \subseteq \Sigma^*$ that have a randomized algorithm \mathscr{A} running in worst-case polynomial time, such that for any input $x \in \Sigma^*$,

•
$$x \in L \Rightarrow \Pr[\mathscr{A}(x)] = "yes"] \geq \frac{1}{2}$$
.

•
$$x \notin L \Rightarrow \Pr[\mathscr{A}(x)] = "yes"] = 0.$$

- (i) Rejection is unanimous, acceptance is by majority.
- (ii) Only positive-sided error is allowed.

Definition

The class **RP** consists of all languages $L \subseteq \Sigma^*$ that have a randomized algorithm \mathscr{A} running in worst-case polynomial time, such that for any input $x \in \Sigma^*$,

•
$$x \in L \Rightarrow \Pr[\mathscr{A}(x)] = "yes"] \geq \frac{1}{2}$$
.

•
$$x \notin L \Rightarrow \Pr[\mathscr{A}(x)] = "yes"] = 0.$$

- (i) Rejection is unanimous, acceptance is by majority.
- (ii) Only positive-sided error is allowed.
- (iii) The number $\frac{1}{2}$ can be any fixed constant between 0 and 1, without affecting the set of languages in **RP**.

Definition

The class **RP** consists of all languages $L \subseteq \Sigma^*$ that have a randomized algorithm \mathscr{A} running in worst-case polynomial time, such that for any input $x \in \Sigma^*$,

•
$$x \in L \Rightarrow \Pr[\mathscr{A}(x)] = "yes"] \geq \frac{1}{2}$$
.

•
$$x \notin L \Rightarrow \Pr[\mathscr{A}(x)] = "yes"] = 0.$$

- (i) Rejection is unanimous, acceptance is by majority.
- (ii) Only positive-sided error is allowed.
- (iii) The number $\frac{1}{2}$ can be any fixed constant between 0 and 1, without affecting the set of languages in **RP**.
- (iv) 2SAT is in RP.

The class NP The class coNP

Randomized Complexity Classes (contd.)

Definition

A language $L \subseteq \Sigma^*$ is in **coRP**, if its complement is in **RP**.

The class NP The class coNP

Randomized Complexity Classes (contd.)

Definition

A language $L \subseteq \Sigma^*$ is in **coRP**, if its complement is in **RP**.

Definition

A language $L \subseteq \Sigma^*$ is in **ZPP** is it is in **RP** \cap **coRP**.

Randomized Complexity Classes (contd.)

Definition

A language $L \subseteq \Sigma^*$ is in **BPP**, if there exists a randomized algorithm \mathscr{A} running in worst-case polynomial time, such that for any input $x \in \Sigma^*$,

• $x \in L \Rightarrow \Pr[\mathscr{A}(x)] = "yes"] \geq \frac{3}{4}$.

Randomized Complexity Classes (contd.)

Definition

A language $L \subseteq \Sigma^*$ is in **BPP**, if there exists a randomized algorithm \mathscr{A} running in worst-case polynomial time, such that for any input $x \in \Sigma^*$,

•
$$x \in L \Rightarrow \Pr[\mathscr{A}(x)] = "yes"] \geq \frac{3}{4}$$
.

•
$$x \notin L \Rightarrow \Pr[\mathscr{A}(x)] = "yes"] \leq \frac{1}{4}$$
.

Randomized Complexity Classes (contd.)

Definition

A language $L \subseteq \Sigma^*$ is in **BPP**, if there exists a randomized algorithm \mathscr{A} running in worst-case polynomial time, such that for any input $x \in \Sigma^*$,

•
$$x \in L \Rightarrow \Pr[\mathscr{A}(x)] = "yes"] \geq \frac{3}{4}$$
.

•
$$x \notin L \Rightarrow \Pr[\mathscr{A}(x)] = "yes"] \leq \frac{1}{4}$$
.

Alternative view of RP

RP denotes the set of languages *L* which can be decided by a polynomially bounded non-deterministic Turing machine *N* in the following manner: For each input *x*, if $x \in L$, then at least half the computations of *N* on *x* end in accepting leaves and if $x \notin L$, the all computations of *N* on *x* end in rejecting leaves.

Randomized Complexity Classes (contd.)

Definition

A language $L \subseteq \Sigma^*$ is in **BPP**, if there exists a randomized algorithm \mathscr{A} running in worst-case polynomial time, such that for any input $x \in \Sigma^*$,

•
$$x \in L \Rightarrow \Pr[\mathscr{A}(x)] = "yes"] \geq \frac{3}{4}$$
.

•
$$x \notin L \Rightarrow \Pr[\mathscr{A}(x)] = "yes"] \leq \frac{1}{4}$$
.

Alternative view of RP

RP denotes the set of languages *L* which can be decided by a polynomially bounded non-deterministic Turing machine *N* in the following manner: For each input *x*, if $x \in L$, then at least half the computations of *N* on *x* end in accepting leaves and if $x \notin L$, the all computations of *N* on *x* end in rejecting leaves. Without loss of generality, we may assume that the degree of non-determinism is exactly 2 at each node of the computation tree.

Relations between complexity classes

Observations

Subramani Computational Complexity

Relations between complexity classes

Observations

(i) $\mathbf{P} \subseteq \mathbf{RP} \subseteq \mathbf{NP}$.

Relations between complexity classes

(i)
$$\mathbf{P} \subseteq \mathbf{RP} \subseteq \mathbf{NP}$$
.

(ii)
$$\mathbf{P} \subseteq \mathbf{coRP} \subseteq \mathbf{coNP}$$
.

Relations between complexity classes

The Complexity Picture

