
Outline

Computational Complexity

K. Subramani1

1Lane Department of Computer Science and Electrical Engineering
West Virginia University

16 January, 2014

Subramani Computational Complexity

Outline

Outline

1 The class NP

2 The class coNP

3 Randomized Complexity Classes

Subramani Computational Complexity

Outline

Outline

1 The class NP

2 The class coNP

3 Randomized Complexity Classes

Subramani Computational Complexity

Outline

Outline

1 The class NP

2 The class coNP

3 Randomized Complexity Classes

Subramani Computational Complexity

The class NP
The class coNP

Randomized Complexity Classes

Class NP

Recall

NP is the class of languages decided by nondeterministic Turing machines in polynomial time.

Definition

Let R ⊆Σ∗×Σ∗ be a binary relation on strings. R is called polynomially decidable if the
language {x;y : (x ,y) ∈ R} is decided by a deterministic Turing machine in polynomial time.

Definition

R is polynomial balanced if (x ,y) ∈ R implies |y | ≤ |x |k for some k ≥ 1.
That is, the length of the second component is always bounded by a polynomial in the length of
the first.

Subramani Computational Complexity

The class NP
The class coNP

Randomized Complexity Classes

Class NP

Recall

NP is the class of languages decided by nondeterministic Turing machines in polynomial time.

Definition

Let R ⊆Σ∗×Σ∗ be a binary relation on strings. R is called polynomially decidable if the
language {x;y : (x ,y) ∈ R} is decided by a deterministic Turing machine in polynomial time.

Definition

R is polynomial balanced if (x ,y) ∈ R implies |y | ≤ |x |k for some k ≥ 1.
That is, the length of the second component is always bounded by a polynomial in the length of
the first.

Subramani Computational Complexity

The class NP
The class coNP

Randomized Complexity Classes

Class NP

Recall

NP is the class of languages decided by nondeterministic Turing machines in polynomial time.

Definition

Let R ⊆Σ∗×Σ∗ be a binary relation on strings. R is called polynomially decidable if the
language {x;y : (x ,y) ∈ R} is decided by a deterministic Turing machine in polynomial time.

Definition

R is polynomial balanced if (x ,y) ∈ R implies |y | ≤ |x |k for some k ≥ 1.
That is, the length of the second component is always bounded by a polynomial in the length of
the first.

Subramani Computational Complexity

The class NP
The class coNP

Randomized Complexity Classes

Class NP (contd.)

Proposition

Let L⊆Σ∗ be a language. L ∈ NP if and only if there is a polynomial decidable and polynomial
balanced relation R, such that L = {x : ∃y ,(x ,y) ∈ R}.

Proof.

(i) “If” part: Suppose that such an R exists, we need to show L is decided by a
nondeterministic Turing machine M in polynomial time. We construct M as follows: On input
x , M guesses a y of length at most |x |k , and then verify whether (x ,y) ∈ R (This can be
done in polynomial time because R is polynomial decidable.). If (x ,y) ∈ R, M accepts,
otherwise it rejects.

(ii) “Only if” part: Suppose that L ∈ NP, that is, there is a nondeterministic Turing machine N
that decides L in time |x |k for some k . Define a relation R as follows: (x ,y) ∈ R if and only
if y encodes an accepting computation of N on input x . Clearly R is polynomial decidable
and polynomial bounded.
Now we show L = {x : ∃y ,(x ,y) ∈ R}. Since N decides L, ∀x ∈ L, there must be a y such
that (x ,y) ∈ R, and hence L⊆ {x : ∃y ,(x ,y) ∈ R}; Conversely, ∀x ∈ {x : ∃y ,(x ,y) ∈ R},
it must be the cast that N accepts x . It means x ∈ L, and hence {x : ∃y ,(x ,y) ∈ R} ⊆ L.
Thus L = {x : ∃y ,(x ,y) ∈ R}.

Subramani Computational Complexity

The class NP
The class coNP

Randomized Complexity Classes

Class NP (contd.)

Proposition

Let L⊆Σ∗ be a language. L ∈ NP if and only if there is a polynomial decidable and polynomial
balanced relation R, such that L = {x : ∃y ,(x ,y) ∈ R}.

Proof.

(i) “If” part: Suppose that such an R exists, we need to show L is decided by a
nondeterministic Turing machine M in polynomial time.

We construct M as follows: On input
x , M guesses a y of length at most |x |k , and then verify whether (x ,y) ∈ R (This can be
done in polynomial time because R is polynomial decidable.). If (x ,y) ∈ R, M accepts,
otherwise it rejects.

(ii) “Only if” part: Suppose that L ∈ NP, that is, there is a nondeterministic Turing machine N
that decides L in time |x |k for some k . Define a relation R as follows: (x ,y) ∈ R if and only
if y encodes an accepting computation of N on input x . Clearly R is polynomial decidable
and polynomial bounded.
Now we show L = {x : ∃y ,(x ,y) ∈ R}. Since N decides L, ∀x ∈ L, there must be a y such
that (x ,y) ∈ R, and hence L⊆ {x : ∃y ,(x ,y) ∈ R}; Conversely, ∀x ∈ {x : ∃y ,(x ,y) ∈ R},
it must be the cast that N accepts x . It means x ∈ L, and hence {x : ∃y ,(x ,y) ∈ R} ⊆ L.
Thus L = {x : ∃y ,(x ,y) ∈ R}.

Subramani Computational Complexity

The class NP
The class coNP

Randomized Complexity Classes

Class NP (contd.)

Proposition

Let L⊆Σ∗ be a language. L ∈ NP if and only if there is a polynomial decidable and polynomial
balanced relation R, such that L = {x : ∃y ,(x ,y) ∈ R}.

Proof.

(i) “If” part: Suppose that such an R exists, we need to show L is decided by a
nondeterministic Turing machine M in polynomial time. We construct M as follows: On input
x , M guesses a y of length at most |x |k , and then verify whether (x ,y) ∈ R (This can be
done in polynomial time because R is polynomial decidable.). If (x ,y) ∈ R, M accepts,
otherwise it rejects.

(ii) “Only if” part: Suppose that L ∈ NP, that is, there is a nondeterministic Turing machine N
that decides L in time |x |k for some k . Define a relation R as follows: (x ,y) ∈ R if and only
if y encodes an accepting computation of N on input x . Clearly R is polynomial decidable
and polynomial bounded.
Now we show L = {x : ∃y ,(x ,y) ∈ R}. Since N decides L, ∀x ∈ L, there must be a y such
that (x ,y) ∈ R, and hence L⊆ {x : ∃y ,(x ,y) ∈ R}; Conversely, ∀x ∈ {x : ∃y ,(x ,y) ∈ R},
it must be the cast that N accepts x . It means x ∈ L, and hence {x : ∃y ,(x ,y) ∈ R} ⊆ L.
Thus L = {x : ∃y ,(x ,y) ∈ R}.

Subramani Computational Complexity

The class NP
The class coNP

Randomized Complexity Classes

Class NP (contd.)

Proposition

Let L⊆Σ∗ be a language. L ∈ NP if and only if there is a polynomial decidable and polynomial
balanced relation R, such that L = {x : ∃y ,(x ,y) ∈ R}.

Proof.

(i) “If” part: Suppose that such an R exists, we need to show L is decided by a
nondeterministic Turing machine M in polynomial time. We construct M as follows: On input
x , M guesses a y of length at most |x |k , and then verify whether (x ,y) ∈ R (This can be
done in polynomial time because R is polynomial decidable.). If (x ,y) ∈ R, M accepts,
otherwise it rejects.

(ii) “Only if” part: Suppose that L ∈ NP, that is, there is a nondeterministic Turing machine N
that decides L in time |x |k for some k .

Define a relation R as follows: (x ,y) ∈ R if and only
if y encodes an accepting computation of N on input x . Clearly R is polynomial decidable
and polynomial bounded.
Now we show L = {x : ∃y ,(x ,y) ∈ R}. Since N decides L, ∀x ∈ L, there must be a y such
that (x ,y) ∈ R, and hence L⊆ {x : ∃y ,(x ,y) ∈ R}; Conversely, ∀x ∈ {x : ∃y ,(x ,y) ∈ R},
it must be the cast that N accepts x . It means x ∈ L, and hence {x : ∃y ,(x ,y) ∈ R} ⊆ L.
Thus L = {x : ∃y ,(x ,y) ∈ R}.

Subramani Computational Complexity

The class NP
The class coNP

Randomized Complexity Classes

Class NP (contd.)

Proposition

Let L⊆Σ∗ be a language. L ∈ NP if and only if there is a polynomial decidable and polynomial
balanced relation R, such that L = {x : ∃y ,(x ,y) ∈ R}.

Proof.

(i) “If” part: Suppose that such an R exists, we need to show L is decided by a
nondeterministic Turing machine M in polynomial time. We construct M as follows: On input
x , M guesses a y of length at most |x |k , and then verify whether (x ,y) ∈ R (This can be
done in polynomial time because R is polynomial decidable.). If (x ,y) ∈ R, M accepts,
otherwise it rejects.

(ii) “Only if” part: Suppose that L ∈ NP, that is, there is a nondeterministic Turing machine N
that decides L in time |x |k for some k . Define a relation R as follows: (x ,y) ∈ R if and only
if y encodes an accepting computation of N on input x . Clearly R is polynomial decidable
and polynomial bounded.

Now we show L = {x : ∃y ,(x ,y) ∈ R}. Since N decides L, ∀x ∈ L, there must be a y such
that (x ,y) ∈ R, and hence L⊆ {x : ∃y ,(x ,y) ∈ R}; Conversely, ∀x ∈ {x : ∃y ,(x ,y) ∈ R},
it must be the cast that N accepts x . It means x ∈ L, and hence {x : ∃y ,(x ,y) ∈ R} ⊆ L.
Thus L = {x : ∃y ,(x ,y) ∈ R}.

Subramani Computational Complexity

The class NP
The class coNP

Randomized Complexity Classes

Class NP (contd.)

Proposition

Let L⊆Σ∗ be a language. L ∈ NP if and only if there is a polynomial decidable and polynomial
balanced relation R, such that L = {x : ∃y ,(x ,y) ∈ R}.

Proof.

(i) “If” part: Suppose that such an R exists, we need to show L is decided by a
nondeterministic Turing machine M in polynomial time. We construct M as follows: On input
x , M guesses a y of length at most |x |k , and then verify whether (x ,y) ∈ R (This can be
done in polynomial time because R is polynomial decidable.). If (x ,y) ∈ R, M accepts,
otherwise it rejects.

(ii) “Only if” part: Suppose that L ∈ NP, that is, there is a nondeterministic Turing machine N
that decides L in time |x |k for some k . Define a relation R as follows: (x ,y) ∈ R if and only
if y encodes an accepting computation of N on input x . Clearly R is polynomial decidable
and polynomial bounded.
Now we show L = {x : ∃y ,(x ,y) ∈ R}.

Since N decides L, ∀x ∈ L, there must be a y such
that (x ,y) ∈ R, and hence L⊆ {x : ∃y ,(x ,y) ∈ R}; Conversely, ∀x ∈ {x : ∃y ,(x ,y) ∈ R},
it must be the cast that N accepts x . It means x ∈ L, and hence {x : ∃y ,(x ,y) ∈ R} ⊆ L.
Thus L = {x : ∃y ,(x ,y) ∈ R}.

Subramani Computational Complexity

The class NP
The class coNP

Randomized Complexity Classes

Class NP (contd.)

Proposition

Let L⊆Σ∗ be a language. L ∈ NP if and only if there is a polynomial decidable and polynomial
balanced relation R, such that L = {x : ∃y ,(x ,y) ∈ R}.

Proof.

(i) “If” part: Suppose that such an R exists, we need to show L is decided by a
nondeterministic Turing machine M in polynomial time. We construct M as follows: On input
x , M guesses a y of length at most |x |k , and then verify whether (x ,y) ∈ R (This can be
done in polynomial time because R is polynomial decidable.). If (x ,y) ∈ R, M accepts,
otherwise it rejects.

(ii) “Only if” part: Suppose that L ∈ NP, that is, there is a nondeterministic Turing machine N
that decides L in time |x |k for some k . Define a relation R as follows: (x ,y) ∈ R if and only
if y encodes an accepting computation of N on input x . Clearly R is polynomial decidable
and polynomial bounded.
Now we show L = {x : ∃y ,(x ,y) ∈ R}. Since N decides L, ∀x ∈ L, there must be a y such
that (x ,y) ∈ R, and hence L⊆ {x : ∃y ,(x ,y) ∈ R};

Conversely, ∀x ∈ {x : ∃y ,(x ,y) ∈ R},
it must be the cast that N accepts x . It means x ∈ L, and hence {x : ∃y ,(x ,y) ∈ R} ⊆ L.
Thus L = {x : ∃y ,(x ,y) ∈ R}.

Subramani Computational Complexity

The class NP
The class coNP

Randomized Complexity Classes

Class NP (contd.)

Proposition

Let L⊆Σ∗ be a language. L ∈ NP if and only if there is a polynomial decidable and polynomial
balanced relation R, such that L = {x : ∃y ,(x ,y) ∈ R}.

Proof.

(i) “If” part: Suppose that such an R exists, we need to show L is decided by a
nondeterministic Turing machine M in polynomial time. We construct M as follows: On input
x , M guesses a y of length at most |x |k , and then verify whether (x ,y) ∈ R (This can be
done in polynomial time because R is polynomial decidable.). If (x ,y) ∈ R, M accepts,
otherwise it rejects.

(ii) “Only if” part: Suppose that L ∈ NP, that is, there is a nondeterministic Turing machine N
that decides L in time |x |k for some k . Define a relation R as follows: (x ,y) ∈ R if and only
if y encodes an accepting computation of N on input x . Clearly R is polynomial decidable
and polynomial bounded.
Now we show L = {x : ∃y ,(x ,y) ∈ R}. Since N decides L, ∀x ∈ L, there must be a y such
that (x ,y) ∈ R, and hence L⊆ {x : ∃y ,(x ,y) ∈ R}; Conversely, ∀x ∈ {x : ∃y ,(x ,y) ∈ R},
it must be the cast that N accepts x . It means x ∈ L, and hence {x : ∃y ,(x ,y) ∈ R} ⊆ L.
Thus L = {x : ∃y ,(x ,y) ∈ R}.

Subramani Computational Complexity

The class NP
The class coNP

Randomized Complexity Classes

What does the proposition tell us?

Note

(i) Any “yes” instance x of the problem in NP has at least one polynomial certificate y of its
being a “yes” instance.

(ii) We may not know how to discover this certificate in polynomial time, but we are sure it
exists if the instance is a “yes” instance.

(iii) Naturally, “no” instances may not have such certificate.

Examples

SAT: The certificate is just an assignment that satisfies the Boolean expression.
HAMILTON PATH: The certificate is precisely a Hamilton path in the graph.

Subramani Computational Complexity

The class NP
The class coNP

Randomized Complexity Classes

What does the proposition tell us?

Note

(i) Any “yes” instance x of the problem in NP has at least one polynomial certificate y of its
being a “yes” instance.

(ii) We may not know how to discover this certificate in polynomial time, but we are sure it
exists if the instance is a “yes” instance.

(iii) Naturally, “no” instances may not have such certificate.

Examples

SAT: The certificate is just an assignment that satisfies the Boolean expression.
HAMILTON PATH: The certificate is precisely a Hamilton path in the graph.

Subramani Computational Complexity

The class NP
The class coNP

Randomized Complexity Classes

What does the proposition tell us?

Note

(i) Any “yes” instance x of the problem in NP has at least one polynomial certificate y of its
being a “yes” instance.

(ii) We may not know how to discover this certificate in polynomial time, but we are sure it
exists if the instance is a “yes” instance.

(iii) Naturally, “no” instances may not have such certificate.

Examples

SAT: The certificate is just an assignment that satisfies the Boolean expression.
HAMILTON PATH: The certificate is precisely a Hamilton path in the graph.

Subramani Computational Complexity

The class NP
The class coNP

Randomized Complexity Classes

What does the proposition tell us?

Note

(i) Any “yes” instance x of the problem in NP has at least one polynomial certificate y of its
being a “yes” instance.

(ii) We may not know how to discover this certificate in polynomial time, but we are sure it
exists if the instance is a “yes” instance.

(iii) Naturally, “no” instances may not have such certificate.

Examples

SAT: The certificate is just an assignment that satisfies the Boolean expression.
HAMILTON PATH: The certificate is precisely a Hamilton path in the graph.

Subramani Computational Complexity

The class NP
The class coNP

Randomized Complexity Classes

What does the proposition tell us?

Note

(i) Any “yes” instance x of the problem in NP has at least one polynomial certificate y of its
being a “yes” instance.

(ii) We may not know how to discover this certificate in polynomial time, but we are sure it
exists if the instance is a “yes” instance.

(iii) Naturally, “no” instances may not have such certificate.

Examples

SAT: The certificate is just an assignment that satisfies the Boolean expression.
HAMILTON PATH: The certificate is precisely a Hamilton path in the graph.

Subramani Computational Complexity

The class NP
The class coNP

Randomized Complexity Classes

SAT

Recall

(Cook’s Theorem) SAT is NP-complete.

Definition

kSAT, where k ≥ 1 is an integer, is the special case of SAT in which the formula is in CNF, and
all clauses have k literals.

Subramani Computational Complexity

The class NP
The class coNP

Randomized Complexity Classes

SAT

Recall

(Cook’s Theorem) SAT is NP-complete.

Definition

kSAT, where k ≥ 1 is an integer, is the special case of SAT in which the formula is in CNF, and
all clauses have k literals.

Subramani Computational Complexity

The class NP
The class coNP

Randomized Complexity Classes

coNP as related to NP

Definition (coNP)

coNP is the complexity class which contains the complements of problems found in NP.

Another way of looking at coNP

Just as NP can be considered to be the set of problems with succinct ”yes” certificates, coNP
can be considered to be the set of problems with succinct ”no” certificates. This means that a
”no” instance of a problem in coNP has a short proof of it being a ”no” instance.

Subramani Computational Complexity

The class NP
The class coNP

Randomized Complexity Classes

coNP as related to NP

Definition (coNP)

coNP is the complexity class which contains the complements of problems found in NP.

Another way of looking at coNP

Just as NP can be considered to be the set of problems with succinct ”yes” certificates, coNP
can be considered to be the set of problems with succinct ”no” certificates. This means that a
”no” instance of a problem in coNP has a short proof of it being a ”no” instance.

Subramani Computational Complexity

The class NP
The class coNP

Randomized Complexity Classes

A coNP problem

Examples

1 coSAT = {〈b〉 : b is a boolean expression with no satisfying assignments}

Subramani Computational Complexity

The class NP
The class coNP

Randomized Complexity Classes

The class NP ∩ coNP

Properties

Poblems in the class NP∩coNP have both succinct “yes” and succinct “no” certificates.

Subramani Computational Complexity

The class NP
The class coNP

Randomized Complexity Classes

Inclusion Relationships

Relation to P

Just as P⊆ NP, we have that P = coP⊆ coNP.

Thus P⊆ NP∩coNP.
It is unknown if P = NP∩coNP.

Subramani Computational Complexity

The class NP
The class coNP

Randomized Complexity Classes

Inclusion Relationships

Relation to P

Just as P⊆ NP, we have that P = coP⊆ coNP. Thus P⊆ NP∩coNP.

It is unknown if P = NP∩coNP.

Subramani Computational Complexity

The class NP
The class coNP

Randomized Complexity Classes

Inclusion Relationships

Relation to P

Just as P⊆ NP, we have that P = coP⊆ coNP. Thus P⊆ NP∩coNP.
It is unknown if P = NP∩coNP.

Subramani Computational Complexity

The class NP
The class coNP

Randomized Complexity Classes

The Complexity Picture

P

NP ∩ coNP

coNPNP

NP-complete coNP-complete

Subramani Computational Complexity

The class NP
The class coNP

Randomized Complexity Classes

A randomized algorithm for the 2SAT problem

Goal

Let φ = C1 ∧C2 ∧ . . .∧Cm denote a boolean formula in CNF over the boolean variables
{x1,x2, . . . ,xn}, such that each clause Ci has exactly two variables. Determine whether φ is
satisfiable.

Note

2SAT can be solved in O(m + n) time using Tarjan’s connected components algorithm.

Subramani Computational Complexity

The class NP
The class coNP

Randomized Complexity Classes

A randomized algorithm for the 2SAT problem

Goal

Let φ = C1 ∧C2 ∧ . . .∧Cm denote a boolean formula in CNF over the boolean variables
{x1,x2, . . . ,xn}, such that each clause Ci has exactly two variables. Determine whether φ is
satisfiable.

Note

2SAT can be solved in O(m + n) time using Tarjan’s connected components algorithm.

Subramani Computational Complexity

The class NP
The class coNP

Randomized Complexity Classes

The 2CNF Algorithm

Function SATISFIABILITY-TESTING(φ)
1: Start with an arbitrary assignment to the variables.

2: while (the current assignment is not satisfying) do
3: Pick an unsatisfied clause.
4: Uniformly and at random flip the value assigned to one of its two literals (variables).
5: end while

Algorithm 1: Papadimitrious’s randomized algorithm for 2CNF Satisfiability

Subramani Computational Complexity

The class NP
The class coNP

Randomized Complexity Classes

The 2CNF Algorithm

Function SATISFIABILITY-TESTING(φ)
1: Start with an arbitrary assignment to the variables.
2: while (the current assignment is not satisfying) do

3: Pick an unsatisfied clause.
4: Uniformly and at random flip the value assigned to one of its two literals (variables).
5: end while

Algorithm 2: Papadimitrious’s randomized algorithm for 2CNF Satisfiability

Subramani Computational Complexity

The class NP
The class coNP

Randomized Complexity Classes

The 2CNF Algorithm

Function SATISFIABILITY-TESTING(φ)
1: Start with an arbitrary assignment to the variables.
2: while (the current assignment is not satisfying) do
3: Pick an unsatisfied clause.

4: Uniformly and at random flip the value assigned to one of its two literals (variables).
5: end while

Algorithm 3: Papadimitrious’s randomized algorithm for 2CNF Satisfiability

Subramani Computational Complexity

The class NP
The class coNP

Randomized Complexity Classes

The 2CNF Algorithm

Function SATISFIABILITY-TESTING(φ)
1: Start with an arbitrary assignment to the variables.
2: while (the current assignment is not satisfying) do
3: Pick an unsatisfied clause.
4: Uniformly and at random flip the value assigned to one of its two literals (variables).

5: end while

Algorithm 4: Papadimitrious’s randomized algorithm for 2CNF Satisfiability

Subramani Computational Complexity

The class NP
The class coNP

Randomized Complexity Classes

The 2CNF Algorithm

Function SATISFIABILITY-TESTING(φ)
1: Start with an arbitrary assignment to the variables.
2: while (the current assignment is not satisfying) do
3: Pick an unsatisfied clause.
4: Uniformly and at random flip the value assigned to one of its two literals (variables).
5: end while

Algorithm 5: Papadimitrious’s randomized algorithm for 2CNF Satisfiability

Subramani Computational Complexity

The class NP
The class coNP

Randomized Complexity Classes

Mathematical Preliminaries

Theorem

Let X and Y be two random variables. Then E[X] = E[E[X |Y]].

Theorem (Markov)

Let X be a non-negative random variable and let c > 0 denote a constant. Then
Pr(X ≥ c ·E[X])≤ 1

c .

Subramani Computational Complexity

The class NP
The class coNP

Randomized Complexity Classes

Mathematical Preliminaries

Theorem

Let X and Y be two random variables. Then E[X] = E[E[X |Y]].

Theorem (Markov)

Let X be a non-negative random variable and let c > 0 denote a constant. Then
Pr(X ≥ c ·E[X])≤ 1

c .

Subramani Computational Complexity

The class NP
The class coNP

Randomized Complexity Classes

Analysis

Modeling as a random walk

Assume that φ is satisfiable and focus on a particular satisfying assignment T̂ .

Let T denote the
current assignment. We want to bound the expected number of steps before T is transformed
into T̂ .
Let t(i) denote the expected number of flips for T to become T̂ , assuming that T differs from T̂
in exactly i variables. It follows that,

t(0) = 0

t(n) = 1 + t(n−1)

t(i) ≤ 1
2

t(i−1) +
1
2

t(i + 1) + 1,0 < i < n

Observation

The above system can be solved to get t(n)≤ n2. From Markov’s inequality it follows that the
probability that T is not transformed into T̂ in at most 2 ·n2 flips is less than one-half. Running
time is O(n2 · (m + n)), which is hardly impressive.

Subramani Computational Complexity

The class NP
The class coNP

Randomized Complexity Classes

Analysis

Modeling as a random walk

Assume that φ is satisfiable and focus on a particular satisfying assignment T̂ . Let T denote the
current assignment. We want to bound the expected number of steps before T is transformed
into T̂ .

Let t(i) denote the expected number of flips for T to become T̂ , assuming that T differs from T̂
in exactly i variables. It follows that,

t(0) = 0

t(n) = 1 + t(n−1)

t(i) ≤ 1
2

t(i−1) +
1
2

t(i + 1) + 1,0 < i < n

Observation

The above system can be solved to get t(n)≤ n2. From Markov’s inequality it follows that the
probability that T is not transformed into T̂ in at most 2 ·n2 flips is less than one-half. Running
time is O(n2 · (m + n)), which is hardly impressive.

Subramani Computational Complexity

The class NP
The class coNP

Randomized Complexity Classes

Analysis

Modeling as a random walk

Assume that φ is satisfiable and focus on a particular satisfying assignment T̂ . Let T denote the
current assignment. We want to bound the expected number of steps before T is transformed
into T̂ .
Let t(i) denote the expected number of flips for T to become T̂ , assuming that T differs from T̂
in exactly i variables.

It follows that,

t(0) = 0

t(n) = 1 + t(n−1)

t(i) ≤ 1
2

t(i−1) +
1
2

t(i + 1) + 1,0 < i < n

Observation

The above system can be solved to get t(n)≤ n2. From Markov’s inequality it follows that the
probability that T is not transformed into T̂ in at most 2 ·n2 flips is less than one-half. Running
time is O(n2 · (m + n)), which is hardly impressive.

Subramani Computational Complexity

The class NP
The class coNP

Randomized Complexity Classes

Analysis

Modeling as a random walk

Assume that φ is satisfiable and focus on a particular satisfying assignment T̂ . Let T denote the
current assignment. We want to bound the expected number of steps before T is transformed
into T̂ .
Let t(i) denote the expected number of flips for T to become T̂ , assuming that T differs from T̂
in exactly i variables. It follows that,

t(0) =

0

t(n) = 1 + t(n−1)

t(i) ≤ 1
2

t(i−1) +
1
2

t(i + 1) + 1,0 < i < n

Observation

The above system can be solved to get t(n)≤ n2. From Markov’s inequality it follows that the
probability that T is not transformed into T̂ in at most 2 ·n2 flips is less than one-half. Running
time is O(n2 · (m + n)), which is hardly impressive.

Subramani Computational Complexity

The class NP
The class coNP

Randomized Complexity Classes

Analysis

Modeling as a random walk

Assume that φ is satisfiable and focus on a particular satisfying assignment T̂ . Let T denote the
current assignment. We want to bound the expected number of steps before T is transformed
into T̂ .
Let t(i) denote the expected number of flips for T to become T̂ , assuming that T differs from T̂
in exactly i variables. It follows that,

t(0) = 0

t(n) = 1 + t(n−1)

t(i) ≤ 1
2

t(i−1) +
1
2

t(i + 1) + 1,0 < i < n

Observation

The above system can be solved to get t(n)≤ n2. From Markov’s inequality it follows that the
probability that T is not transformed into T̂ in at most 2 ·n2 flips is less than one-half. Running
time is O(n2 · (m + n)), which is hardly impressive.

Subramani Computational Complexity

The class NP
The class coNP

Randomized Complexity Classes

Analysis

Modeling as a random walk

Assume that φ is satisfiable and focus on a particular satisfying assignment T̂ . Let T denote the
current assignment. We want to bound the expected number of steps before T is transformed
into T̂ .
Let t(i) denote the expected number of flips for T to become T̂ , assuming that T differs from T̂
in exactly i variables. It follows that,

t(0) = 0

t(n) =

1 + t(n−1)

t(i) ≤ 1
2

t(i−1) +
1
2

t(i + 1) + 1,0 < i < n

Observation

The above system can be solved to get t(n)≤ n2. From Markov’s inequality it follows that the
probability that T is not transformed into T̂ in at most 2 ·n2 flips is less than one-half. Running
time is O(n2 · (m + n)), which is hardly impressive.

Subramani Computational Complexity

The class NP
The class coNP

Randomized Complexity Classes

Analysis

Modeling as a random walk

Assume that φ is satisfiable and focus on a particular satisfying assignment T̂ . Let T denote the
current assignment. We want to bound the expected number of steps before T is transformed
into T̂ .
Let t(i) denote the expected number of flips for T to become T̂ , assuming that T differs from T̂
in exactly i variables. It follows that,

t(0) = 0

t(n) = 1 + t(n−1)

t(i) ≤ 1
2

t(i−1) +
1
2

t(i + 1) + 1,0 < i < n

Observation

The above system can be solved to get t(n)≤ n2. From Markov’s inequality it follows that the
probability that T is not transformed into T̂ in at most 2 ·n2 flips is less than one-half. Running
time is O(n2 · (m + n)), which is hardly impressive.

Subramani Computational Complexity

The class NP
The class coNP

Randomized Complexity Classes

Analysis

Modeling as a random walk

Assume that φ is satisfiable and focus on a particular satisfying assignment T̂ . Let T denote the
current assignment. We want to bound the expected number of steps before T is transformed
into T̂ .
Let t(i) denote the expected number of flips for T to become T̂ , assuming that T differs from T̂
in exactly i variables. It follows that,

t(0) = 0

t(n) = 1 + t(n−1)

t(i) ≤

1
2

t(i−1) +
1
2

t(i + 1) + 1,0 < i < n

Observation

The above system can be solved to get t(n)≤ n2. From Markov’s inequality it follows that the
probability that T is not transformed into T̂ in at most 2 ·n2 flips is less than one-half. Running
time is O(n2 · (m + n)), which is hardly impressive.

Subramani Computational Complexity

The class NP
The class coNP

Randomized Complexity Classes

Analysis

Modeling as a random walk

Assume that φ is satisfiable and focus on a particular satisfying assignment T̂ . Let T denote the
current assignment. We want to bound the expected number of steps before T is transformed
into T̂ .
Let t(i) denote the expected number of flips for T to become T̂ , assuming that T differs from T̂
in exactly i variables. It follows that,

t(0) = 0

t(n) = 1 + t(n−1)

t(i) ≤ 1
2

t(i−1) +
1
2

t(i + 1) + 1,0 < i < n

Observation

The above system can be solved to get t(n)≤ n2. From Markov’s inequality it follows that the
probability that T is not transformed into T̂ in at most 2 ·n2 flips is less than one-half. Running
time is O(n2 · (m + n)), which is hardly impressive.

Subramani Computational Complexity

The class NP
The class coNP

Randomized Complexity Classes

Analysis

Modeling as a random walk

Assume that φ is satisfiable and focus on a particular satisfying assignment T̂ . Let T denote the
current assignment. We want to bound the expected number of steps before T is transformed
into T̂ .
Let t(i) denote the expected number of flips for T to become T̂ , assuming that T differs from T̂
in exactly i variables. It follows that,

t(0) = 0

t(n) = 1 + t(n−1)

t(i) ≤ 1
2

t(i−1) +
1
2

t(i + 1) + 1,0 < i < n

Observation

The above system can be solved to get t(n)≤ n2. From Markov’s inequality it follows that the
probability that T is not transformed into T̂ in at most 2 ·n2 flips is less than one-half.

Running
time is O(n2 · (m + n)), which is hardly impressive.

Subramani Computational Complexity

The class NP
The class coNP

Randomized Complexity Classes

Analysis

Modeling as a random walk

Assume that φ is satisfiable and focus on a particular satisfying assignment T̂ . Let T denote the
current assignment. We want to bound the expected number of steps before T is transformed
into T̂ .
Let t(i) denote the expected number of flips for T to become T̂ , assuming that T differs from T̂
in exactly i variables. It follows that,

t(0) = 0

t(n) = 1 + t(n−1)

t(i) ≤ 1
2

t(i−1) +
1
2

t(i + 1) + 1,0 < i < n

Observation

The above system can be solved to get t(n)≤ n2. From Markov’s inequality it follows that the
probability that T is not transformed into T̂ in at most 2 ·n2 flips is less than one-half. Running
time is O(n2 · (m + n)), which is hardly impressive.

Subramani Computational Complexity

The class NP
The class coNP

Randomized Complexity Classes

Randomized Complexity Classes

Definition

The class RP consists of all languages L⊆Σ∗ that have a randomized algorithm A running in
worst-case polynomial time, such that for any input x ∈Σ∗,

x ∈ L⇒ Pr[A (x)] = “yes′′]≥ 1
2 .

x 6∈ L⇒ Pr[A (x)] = “yes′′] = 0.

Observations

(i) Rejection is unanimous, acceptance is by majority.

(ii) Only positive-sided error is allowed.

(iii) The number 1
2 can be any fixed constant between 0 and 1, without affecting the set of

languages in RP.

(iv) 2SAT is in RP.

Subramani Computational Complexity

The class NP
The class coNP

Randomized Complexity Classes

Randomized Complexity Classes

Definition

The class RP consists of all languages L⊆Σ∗ that have a randomized algorithm A running in
worst-case polynomial time, such that for any input x ∈Σ∗,

x ∈ L⇒ Pr[A (x)] = “yes′′]≥ 1
2 .

x 6∈ L⇒ Pr[A (x)] = “yes′′] = 0.

Observations

(i) Rejection is unanimous, acceptance is by majority.

(ii) Only positive-sided error is allowed.

(iii) The number 1
2 can be any fixed constant between 0 and 1, without affecting the set of

languages in RP.

(iv) 2SAT is in RP.

Subramani Computational Complexity

The class NP
The class coNP

Randomized Complexity Classes

Randomized Complexity Classes

Definition

The class RP consists of all languages L⊆Σ∗ that have a randomized algorithm A running in
worst-case polynomial time, such that for any input x ∈Σ∗,

x ∈ L⇒ Pr[A (x)] = “yes′′]≥ 1
2 .

x 6∈ L⇒ Pr[A (x)] = “yes′′] = 0.

Observations

(i) Rejection is unanimous, acceptance is by majority.

(ii) Only positive-sided error is allowed.

(iii) The number 1
2 can be any fixed constant between 0 and 1, without affecting the set of

languages in RP.

(iv) 2SAT is in RP.

Subramani Computational Complexity

The class NP
The class coNP

Randomized Complexity Classes

Randomized Complexity Classes

Definition

The class RP consists of all languages L⊆Σ∗ that have a randomized algorithm A running in
worst-case polynomial time, such that for any input x ∈Σ∗,

x ∈ L⇒ Pr[A (x)] = “yes′′]≥ 1
2 .

x 6∈ L⇒ Pr[A (x)] = “yes′′] = 0.

Observations

(i) Rejection is unanimous, acceptance is by majority.

(ii) Only positive-sided error is allowed.

(iii) The number 1
2 can be any fixed constant between 0 and 1, without affecting the set of

languages in RP.

(iv) 2SAT is in RP.

Subramani Computational Complexity

The class NP
The class coNP

Randomized Complexity Classes

Randomized Complexity Classes

Definition

The class RP consists of all languages L⊆Σ∗ that have a randomized algorithm A running in
worst-case polynomial time, such that for any input x ∈Σ∗,

x ∈ L⇒ Pr[A (x)] = “yes′′]≥ 1
2 .

x 6∈ L⇒ Pr[A (x)] = “yes′′] = 0.

Observations

(i) Rejection is unanimous, acceptance is by majority.

(ii) Only positive-sided error is allowed.

(iii) The number 1
2 can be any fixed constant between 0 and 1, without affecting the set of

languages in RP.

(iv) 2SAT is in RP.

Subramani Computational Complexity

The class NP
The class coNP

Randomized Complexity Classes

Randomized Complexity Classes (contd.)

Definition

A language L⊆Σ∗ is in coRP, if its complement is in RP.

Definition

A language L⊆Σ∗ is in ZPP is it is in RP∩coRP.

Subramani Computational Complexity

The class NP
The class coNP

Randomized Complexity Classes

Randomized Complexity Classes (contd.)

Definition

A language L⊆Σ∗ is in coRP, if its complement is in RP.

Definition

A language L⊆Σ∗ is in ZPP is it is in RP∩coRP.

Subramani Computational Complexity

The class NP
The class coNP

Randomized Complexity Classes

Randomized Complexity Classes (contd.)

Definition

A language L⊆Σ∗ is in BPP, if there exists a randomized algorithm A running in worst-case
polynomial time, such that for any input x ∈Σ∗,

x ∈ L⇒ Pr[A (x)] = “yes′′]≥ 3
4 .

x 6∈ L⇒ Pr[A (x)] = “yes′′]≤ 1
4 .

Alternative view of RP

RP denotes the set of languages L which can be decided by a polynomially bounded
non-deterministic Turing machine N in the following manner: For each input x , if x ∈ L, then at
least half the computations of N on x end in accepting leaves and if x 6∈ L, the all computations
of N on x end in rejecting leaves. WIthout loss of generality, we may assume that the degree of
non-determinism is exactly 2 at each node of the computation tree.

Subramani Computational Complexity

The class NP
The class coNP

Randomized Complexity Classes

Randomized Complexity Classes (contd.)

Definition

A language L⊆Σ∗ is in BPP, if there exists a randomized algorithm A running in worst-case
polynomial time, such that for any input x ∈Σ∗,

x ∈ L⇒ Pr[A (x)] = “yes′′]≥ 3
4 .

x 6∈ L⇒ Pr[A (x)] = “yes′′]≤ 1
4 .

Alternative view of RP

RP denotes the set of languages L which can be decided by a polynomially bounded
non-deterministic Turing machine N in the following manner: For each input x , if x ∈ L, then at
least half the computations of N on x end in accepting leaves and if x 6∈ L, the all computations
of N on x end in rejecting leaves. WIthout loss of generality, we may assume that the degree of
non-determinism is exactly 2 at each node of the computation tree.

Subramani Computational Complexity

The class NP
The class coNP

Randomized Complexity Classes

Randomized Complexity Classes (contd.)

Definition

A language L⊆Σ∗ is in BPP, if there exists a randomized algorithm A running in worst-case
polynomial time, such that for any input x ∈Σ∗,

x ∈ L⇒ Pr[A (x)] = “yes′′]≥ 3
4 .

x 6∈ L⇒ Pr[A (x)] = “yes′′]≤ 1
4 .

Alternative view of RP

RP denotes the set of languages L which can be decided by a polynomially bounded
non-deterministic Turing machine N in the following manner: For each input x , if x ∈ L, then at
least half the computations of N on x end in accepting leaves and if x 6∈ L, the all computations
of N on x end in rejecting leaves.

WIthout loss of generality, we may assume that the degree of
non-determinism is exactly 2 at each node of the computation tree.

Subramani Computational Complexity

The class NP
The class coNP

Randomized Complexity Classes

Randomized Complexity Classes (contd.)

Definition

A language L⊆Σ∗ is in BPP, if there exists a randomized algorithm A running in worst-case
polynomial time, such that for any input x ∈Σ∗,

x ∈ L⇒ Pr[A (x)] = “yes′′]≥ 3
4 .

x 6∈ L⇒ Pr[A (x)] = “yes′′]≤ 1
4 .

Alternative view of RP

RP denotes the set of languages L which can be decided by a polynomially bounded
non-deterministic Turing machine N in the following manner: For each input x , if x ∈ L, then at
least half the computations of N on x end in accepting leaves and if x 6∈ L, the all computations
of N on x end in rejecting leaves. WIthout loss of generality, we may assume that the degree of
non-determinism is exactly 2 at each node of the computation tree.

Subramani Computational Complexity

The class NP
The class coNP

Randomized Complexity Classes

Relations between complexity classes

Observations

(i) P⊆ RP⊆ NP.

(ii) P⊆ coRP⊆ coNP.

(iii) RP⊆ BPP.

Subramani Computational Complexity

The class NP
The class coNP

Randomized Complexity Classes

Relations between complexity classes

Observations

(i) P⊆ RP⊆ NP.

(ii) P⊆ coRP⊆ coNP.

(iii) RP⊆ BPP.

Subramani Computational Complexity

The class NP
The class coNP

Randomized Complexity Classes

Relations between complexity classes

Observations

(i) P⊆ RP⊆ NP.

(ii) P⊆ coRP⊆ coNP.

(iii) RP⊆ BPP.

Subramani Computational Complexity

The class NP
The class coNP

Randomized Complexity Classes

Relations between complexity classes

Observations

(i) P⊆ RP⊆ NP.

(ii) P⊆ coRP⊆ coNP.

(iii) RP⊆ BPP.

Subramani Computational Complexity

The class NP
The class coNP

Randomized Complexity Classes

The Complexity Picture

P

ZPP

RPcoRP BPP

NPcoNP

Subramani Computational Complexity

	Outline
	Main Talk
	The class NP
	The class coNP
	Randomized Complexity Classes

