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Sample Space and Events

Definition

A random experiment is an experiment whose outcome is not known in advance, but
belongs to a non-empty, non-singleton set called the sample space (usually denoted
by S).

Example

(i) Suppose that the experiment consists of tossing a coin. Then, S = {H, T}.
(ii) Suppose that the experiment consists of tossing a die. Then,

S = {1, 2, 3, 4, 5, 6}.
(iii) Suppose that the experiment consists of tossing two coins. Then,

S = {HH, HT , TH, TT}.
(iv) Suppose that the experiment consists of measuring the life of a battery. Then,

S = [0,∞).

Definition

Any subset of the sample space S is called an event.
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Combining Events

Definition

Given two events E and F , the event E ∪ F (union) is defined as the event whose
outcomes are in E or F ; e.g., in the die tossing experiment, the union of the events
E = {2, 4} and F = {1} is {1, 2, 4}

Definition

Given two events E and F , the event EF (intersection) is defined as the event whose
outcomes are in E and F ; e.g., in the die tossing experiment, the intersection of the
events E = {1, 2, 3} and F = {1} is {1}.

Definition

Given an event E , the event Ec (complement) denotes the event whose outcomes are
in S, but not in E ; e.g., in the die tossing experiment, the complement of the event
E = {1, 2, 3} is {4, 5, 6}.
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Defining Probabilities on Events

Assigning probabilities

Let S denote a sample space. We assume that the number P(E) is assigned to each
event E in S, such that:

(i) 0 ≤ P(E) ≤ 1.

(ii) P(S) = 1.

(iii) If E1, E2, . . . , En are mutually exclusive events, then,

P(E1 ∪ E2 . . .En) =
n∑

i=1

P(Ei )

P(E) is called the probability of event E . The 2-tuple (S,P) is called a probability
space.

Example

In the coin tossing experiment, if we assume that the coin is fair, then
P({H}) = P({T}) = 1

2 . If on the other hand, the coin is biased, then we could have,
P({H}) = 1

4 and P({T}) = 3
4 .

In the die tossing experiment, what is the probability of the event {2, 4, 6}?
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The 2-tuple (S,P) is called a probability
space.

Example

In the coin tossing experiment, if we assume that the coin is fair, then
P({H}) = P({T}) = 1

2 . If on the other hand, the coin is biased, then we could have,
P({H}) = 1

4 and P({T}) = 3
4 .

In the die tossing experiment, what is the probability of the event {2, 4, 6}?
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Two Identities

Note

(i) Let E be an arbitrary event on the sample space S. Then, P(E) + P(Ec) = 1.

(ii) Let E and F denote two arbitrary events on the sample space S. Then,
P(E ∪ F ) = P(E) + P(F )− P(EF ).
What is P(E ∪ F ), when E and F are mutually exclusive?
Let G be another event on S. What is P(E ∪ F ∪ G)?

Exercise

Consider the experiment of tossing two coins and assume that all 4 outcomes are
equally likely. Let E denote the event that the first coin turns up heads and F denote
the event that the second coin turns up heads. What is the probability that either the
first or the second coin turns up heads?
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Conditional Probability

Motivation

Consider the experiment of tossing two fair coins.

What is the probability that both
coins turn up heads? Now, assume that the first coin turns up heads. What is the
probability that both coins turn up heads?

Definition

Let E and F denote two events on a sample space S. The conditional probability of E ,
given that the event F has occurred is denoted by P(E | F ) and is equal to P(EF )

P(F )
,

assuming P(F ) > 0.

Example

In the previously discussed coin tossing example, let E denote the event that both
coins turn up heads and F denote the event that the first coin turns up heads.
Accordingly, we are interested in P(E | F ). Observe that P(F ) = 1

2 and P(EF ) = 1
4 .

Hence, P(E | F ) =
1
4
1
2
= 1

2 . Notice that P(E) = 1
4 6= P(E | F ).
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Some more examples

Example

A family has two children. What is the conditional probability that both are boys given
that at least one of them is a boy? Assume that the sample space is
S = {(b, g), (b, b), (g, b), (g, g)} and that all outcomes are equally likely.

Exercise

Assume that an urn contains 7 black balls and 5 white balls. Two balls are chosen from
this urn, one after the other, without replacement and at random. What is the
probability that both balls are black?

Solution

Let E denote the event that the first ball is black and F denote the event that the
second ball is black. Clearly, we are interested in P(EF ). Observe that P(E) = 7

12 and

P(F | E) = 6
11 . Now, P(F | E) = P(EF )

P(E)
, and hence,

P(EF ) = P(F | E) · P(E) = 6
11 ·

7
12 = 42

132 .
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Independent Events

Definition

Two events E and F on a sample space S are said to be independent, if the
occurrence of one does not affect the occurrence of the other.

Mathematically,

P(E | F ) = P(E).

Alternatively,

P(EF ) = P(E) · P(F )

Exercise

Consider the experiment of tossing two fair dice. Let F denote the event that the first
die turns up 4. Let E1 denote the event that the sum of the faces of the two dice is 6.
Let E2 denote the event that the sum of the faces of the two dice is 7. Are E1 and F
independent? How about E2 and F?
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Bayes’ Formula

Derivation

Let E and F denote two arbitrary events on a sample space S.

Clearly, E = EF ∪ EF c ,
where the events EF and EF c are mutually exclusive. Now, observe that,

P(E) = P(EF ) + P(EF c)

= P(E | F )P(F ) + P(E | F c)P(F c)

= P(E | F )P(F ) + P(E | F c)(1− P(F ))

Thus, the probability of an event E is the weighted average of the conditional
probability of E , given that event F has occurred and the conditional probability of E ,
given that event F has not occurred, each conditional probability being given as much
weight as the probability of the event that it is conditioned on, has of occurring.
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One Final Example

Example
Consider two urns.

Urn 1 has 2 white balls and 7 black balls. Urn 2 has 5 white balls and 6 black balls. A fair coin is tossed. If the coin turns

up heads, a ball is drawn from Urn 1, otherwise, a ball is drawn from Urn 2. Given that the ball drawn was white, what is the conditional

probability that it was drawn from Urn 1?

Solution
Let W denote the event that a white ball was drawn and let H denote the event that the coin turned up heads. (Note that H is precisely the
event that the ball was drawn from Urn 1.)

We are therefore interested in the quantity P(H |W ). From conditional probability, we know that, P(H |W ) =
P(HW )
P(W )

.

P(HW ) = P(W | H) · P(H) = 2
9 ·

1
2 = 1

9 . As per Bayes’ formula,

P(W ) = P(W | H) · P(H) + P(W | Hc )(1 − P(H))

=
2

9
·

1

2
+

5

11
·

1

2

=
67

198

Therefore, P(H |W ) =
1
9

67
198

= 22
67 , i.e., the conditional probability that the ball was drawn from Urn 1, given that it is white, is 22

67 .
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Random Variables

Motivation

In case of certain random experiments, we are not so much interested in the actual
outcome, but in some function of the outcome, e.g., in the experiment of tossing two
dice, we could be interested in knowing whether or not the the sum of the upturned
faces is 7. We may not care whether the actual outcome is (1, 6), (6, 1), or . . . .

Example

Let X denote the random variable that is defined as the sum of two fair dice. What are
the values that X can take?

P{X = 1} = 0

P{X = 2} =
1

36
...

P{X = 12} =
1

36
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Consider the experiment of tossing two fair coins; let Y denote the random variable that
counts the number of heads.

What values can Y take?

P{Y = 0} =
1
4

P{Y = 1} =
1
2

P{Y = 2} =
1
4

Definition

A random variable that can take on only a countable number of possible values is said
to be discrete. For a discrete random variable X , the probability mass function (pmf)
p(a) is defined as:

p(a) = P{X = a}.

Subramani Probability Theory



Preliminaries
Random Variables

Identities
Variance of some common random variables

Expectation
Expectation of a function of a random variable
Linearity of Expectation
Variance

Example

Example

Consider the experiment of tossing two fair coins; let Y denote the random variable that
counts the number of heads. What values can Y take?

P{Y = 0} =
1
4

P{Y = 1} =
1
2

P{Y = 2} =
1
4

Definition

A random variable that can take on only a countable number of possible values is said
to be discrete. For a discrete random variable X , the probability mass function (pmf)
p(a) is defined as:

p(a) = P{X = a}.

Subramani Probability Theory



Preliminaries
Random Variables

Identities
Variance of some common random variables

Expectation
Expectation of a function of a random variable
Linearity of Expectation
Variance

Example

Example

Consider the experiment of tossing two fair coins; let Y denote the random variable that
counts the number of heads. What values can Y take?

P{Y = 0} =

1
4

P{Y = 1} =
1
2

P{Y = 2} =
1
4

Definition

A random variable that can take on only a countable number of possible values is said
to be discrete. For a discrete random variable X , the probability mass function (pmf)
p(a) is defined as:

p(a) = P{X = a}.

Subramani Probability Theory



Preliminaries
Random Variables

Identities
Variance of some common random variables

Expectation
Expectation of a function of a random variable
Linearity of Expectation
Variance

Example

Example

Consider the experiment of tossing two fair coins; let Y denote the random variable that
counts the number of heads. What values can Y take?

P{Y = 0} =
1
4

P{Y = 1} =
1
2

P{Y = 2} =
1
4

Definition

A random variable that can take on only a countable number of possible values is said
to be discrete. For a discrete random variable X , the probability mass function (pmf)
p(a) is defined as:

p(a) = P{X = a}.

Subramani Probability Theory



Preliminaries
Random Variables

Identities
Variance of some common random variables

Expectation
Expectation of a function of a random variable
Linearity of Expectation
Variance

Example

Example

Consider the experiment of tossing two fair coins; let Y denote the random variable that
counts the number of heads. What values can Y take?

P{Y = 0} =
1
4

P{Y = 1} =

1
2

P{Y = 2} =
1
4

Definition

A random variable that can take on only a countable number of possible values is said
to be discrete. For a discrete random variable X , the probability mass function (pmf)
p(a) is defined as:

p(a) = P{X = a}.

Subramani Probability Theory



Preliminaries
Random Variables

Identities
Variance of some common random variables

Expectation
Expectation of a function of a random variable
Linearity of Expectation
Variance

Example

Example

Consider the experiment of tossing two fair coins; let Y denote the random variable that
counts the number of heads. What values can Y take?

P{Y = 0} =
1
4

P{Y = 1} =
1
2

P{Y = 2} =
1
4

Definition

A random variable that can take on only a countable number of possible values is said
to be discrete. For a discrete random variable X , the probability mass function (pmf)
p(a) is defined as:

p(a) = P{X = a}.

Subramani Probability Theory



Preliminaries
Random Variables

Identities
Variance of some common random variables

Expectation
Expectation of a function of a random variable
Linearity of Expectation
Variance

Example

Example

Consider the experiment of tossing two fair coins; let Y denote the random variable that
counts the number of heads. What values can Y take?

P{Y = 0} =
1
4

P{Y = 1} =
1
2

P{Y = 2} =

1
4

Definition

A random variable that can take on only a countable number of possible values is said
to be discrete. For a discrete random variable X , the probability mass function (pmf)
p(a) is defined as:

p(a) = P{X = a}.

Subramani Probability Theory



Preliminaries
Random Variables

Identities
Variance of some common random variables

Expectation
Expectation of a function of a random variable
Linearity of Expectation
Variance

Example

Example

Consider the experiment of tossing two fair coins; let Y denote the random variable that
counts the number of heads. What values can Y take?

P{Y = 0} =
1
4

P{Y = 1} =
1
2

P{Y = 2} =
1
4

Definition

A random variable that can take on only a countable number of possible values is said
to be discrete. For a discrete random variable X , the probability mass function (pmf)
p(a) is defined as:

p(a) = P{X = a}.

Subramani Probability Theory



Preliminaries
Random Variables

Identities
Variance of some common random variables

Expectation
Expectation of a function of a random variable
Linearity of Expectation
Variance

Example

Example

Consider the experiment of tossing two fair coins; let Y denote the random variable that
counts the number of heads. What values can Y take?

P{Y = 0} =
1
4

P{Y = 1} =
1
2

P{Y = 2} =
1
4

Definition

A random variable that can take on only a countable number of possible values is said
to be discrete.

For a discrete random variable X , the probability mass function (pmf)
p(a) is defined as:

p(a) = P{X = a}.

Subramani Probability Theory



Preliminaries
Random Variables

Identities
Variance of some common random variables

Expectation
Expectation of a function of a random variable
Linearity of Expectation
Variance

Example

Example

Consider the experiment of tossing two fair coins; let Y denote the random variable that
counts the number of heads. What values can Y take?

P{Y = 0} =
1
4

P{Y = 1} =
1
2

P{Y = 2} =
1
4

Definition

A random variable that can take on only a countable number of possible values is said
to be discrete. For a discrete random variable X , the probability mass function (pmf)
p(a) is defined as:

p(a) = P{X = a}.

Subramani Probability Theory



Preliminaries
Random Variables

Identities
Variance of some common random variables

Expectation
Expectation of a function of a random variable
Linearity of Expectation
Variance

The Bernoulli Random Variable

Main idea

Consider an experiment which has exactly two outcomes;

one is labeled a “success”
and the other a “failure”. If we let the random variable X assume the value 1, if the
experiment was a success and 0, if the experiment was a failure, then X is said to be a
Bernoulli random variable. The probability mass function of X is given by:

p(1) = P{X = 1} = p

p(0) = P{X = 0} = 1− p

where 0 ≤ p ≤ 1 is the probability that the experiment results in a success.
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The Binomial Random Variable

Motivation

Consider an experiment which consists of n independent Bernoulli trials, with the
probability of success in each trial being p. If X is the random variable that counts the
number of successes in the n trials, then X is said to be a Binomial Random Variable.

The probability mass function of X is given by:

p(i) = P{X = i} = C(n, i) · pi · (1− p)n−i , i = 0, 1, 2, . . . n

Example

Consider the experiment of tossing four fair coins. What is the probability that you will
get two heads and two tails?
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Example (contd.)

Solution

Let the event of heads turning up denote a “success.”

Accordingly, we are interested in
the probability of getting exactly two successes in four Bernoulli trials. As discussed
above,

p(2) = C(4, 2) · (
1
2
)2 · (1−

1
2
)2

=
3
8
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The Geometric Random Variable

Motivation

Suppose that independent Bernoulli trials, each with probability p of success are
performed until a success occurs.

If X is the random variable that counts the number of
trials until the first success, then X is said to be a geometric random variable. The
probability mass function of X is given by:

p(i) = P{X = i} = (1− p)i−1 · p, i = 1, 2, . . .
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Expectation

Definition

Let X denote a discrete random variable with probability mass function p(x). The
expected value of X , denoted by E [X ] is defined by:

E [X ] =
∑

x
x · p(x)

Note

E [X ] is the weighted average of the possible values that X can assume, each value
being weighted by the probability that X assumes that value.

Example

Let X denote the random variable that records the outcome of tossing a fair die. What
is E [X ]?
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Expectation of a Bernoulli Random Variable

Example

Let X denote a Bernoulli Random Variable with p denoting the probability of success.

What is E [X ]?
Solution:

E [X ] = 1 · p + 0 · (1− p)

= p
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Example
Let X denote a Binomial Random Variable with parameters n and p.

What is E [X ]?
Solution:

E [X ] =
n∑

i=0
i · p(i), by definition

=
n∑

i=0
i · C(n, i) · pi · (1 − p)n−i

=
n∑

i=0
i ·

n!

i!(n − i)!
· pi · (1 − p)n−i

=
n∑

i=1
i ·

n!

i!(n − i)!
· pi · (1 − p)n−i

=
n∑

i=1

n!

(i − 1)!(n − i)!
· pi · (1 − p)n−i

= n · p
n∑

i=1

(n − 1)!

(i − 1)!(n − i)!
· pi−1 · (1 − p)n−i
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Example
Substituting k = i − 1, we get,

E [X ] = n · p
n−1∑
k=0

(n − 1)!

k! · (n − k − 1)!
· pk · (1 − p)n−k−1

= n · p
n−1∑
k=0

(n − 1)!

k! · ((n − 1) − k)!
· pk · (1 − p)(n−1)−k

= n · p
n−1∑
k=0

C(n − 1, k) · pk · (1 − p)(n−1)−k

= n · p · [p + (1 − p)]n−1
, Binomial theorem

= n · p · 1

= n · p
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Expectation of a Geometric Random Variable

Example
Let X denote a Geometric Random Variable with parameters n and p.

What is E [X ]?
Solution:

E [X ] =
∞∑
i=1

i · p(i), by definition

=
∞∑
i=1

i · (1 − p)i−1 · p

=
∞∑
i=1

i · qi−1 · p, where q = 1 − p

= p ·
∞∑
i=1

i · qi−1

= p ·
∞∑
i=1

d

dq
[qi ]
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Example
Solution:

E [X ] = p ·
d

dq
[
∞∑
i=1

qi ]

= p ·
d

dq
[

q

1 − q
]

= p ·
(1 − q) · d

dq [q] − q · d
dq [1 − q]

(1 − q)2

= p ·
(1 − q) · 1 − q · (−1)

(1 − q)2

= p ·
1

(1 − q)2

= p ·
1

p2

=
1

p
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Expectation of a function of a random variable

Note

Often times, we are interested in a function of the random variable, rather than the
random variable itself. For instance, in the coin-tossing experiment, we could be
interested in the square of the number of successes. The question of interest then is
how to determine the expectation of a function of a random variable, given that we only
know the distribution of the random variable.

Example

Let X be a random variable, with the following pmf:

p(0) = 0.3, p(1) = 0.5, p(2) = 0.2

Compute E [X 2].
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Expectation of functions of random variables (contd.)

Solution

Let Y = X 2. Observe that Y is also a random variable. What are the values that Y can
take? 0, 1 and 4. Let us compute the pmf of Y . Note that,

P{Y = 0} = P{X 2 = 0} = P{X = 0} = 0.3

Similarly,

P{Y = 1} = P{X 2 = 1} = P{X = 1} = 0.5

P{Y = 4} = P{X 2 = 4} = P{X = 2} = 0.2

Accordingly,

E [Y ] = E [X 2] = 0 · 0.3 + 1 · 0.5 + 4 · 0.2 = 1.3
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Expectation of functions - The Direct Approach

Theorem

If X is a random variable with pmf p(), and g() is any real-valued function, then,

E [g(X)] =
∑

x : p(x)>0

g(x) · p(x)

Note

Applying the above theorem to the previous problem,

E [X 2] = 02 · 0.3 + 12 · 0.5 + 22 · 0.2 = 1.3
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Linearity of Expectation

Proposition

Let X1, X2, . . . , Xn denote n random variables, defined over some probability space.
Let a1, a2, . . . , an denote n constants. Then,

E [
n∑

i=1

ai · Xi ] =
n∑

i=1

ai · E [Xi ]

Note

Note that linearity of expectation holds even when the random variables are not
independent.

Example

What is the expected value of the sum of the upturned faces, when two fair dice are
tossed?
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Another Application

Example

Compute the expected value of the Binomial random variable.

Solution
Define

Xi = 1, if the ith trial is a success

= 0, otherwise

Accordingly, the Binomial random variable (say X ) can be expressed as:

X = X1 + X2 + . . . Xn

However, each Xi is Bernoulli random variable with probability of success p! Hence, using linearity of expectation,

E [X ] = E [X1 + X2 + . . . Xn ]

=
n∑

i=1
E [Xi ]

=
n∑

i=1
p

= n · p
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However, each Xi is Bernoulli random variable with probability of success p! Hence, using linearity of expectation,

E [X ] = E [X1 + X2 + . . . Xn ]

=
n∑

i=1
E [Xi ]

=
n∑

i=1
p

= n · p
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Variance

Note

The variance of a random variable measures the spread of its distribution.

In many
respects, it is the dual of its expectation, which is actually a clustering measure.

Definition

Let X denote a random variable. The variance of X , denoted by Var[X ] is defined as:
E [(X − E [X ])2].

Note

Var[X ] = E [X 2]− (E [X ])2.
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Partial linearity of Variance

1 Var(
∑n

i=1(Xi )) =
∑n

i=1 Var(Xi ), if X1,X2, . . .Xn are independent random
variables.
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Bernoulli Variable

Computation

For some p, 0 ≤ p ≤ 1,

p(0) = (1− p)

p(1) = p

E [X ] = 0 · (1− p) + 1 · p = p

E [X 2] = 12 · p + 02 · (1− p)

= p

Var[X ] = E [X 2]− (E [X ])2

= p − p2

= p · (1− p)
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Computation

Observe that if X is a binomially distributed random variable with parameters n and p,
then it can be expressed as a sum of n independent Bernoulli variables, i.e.,
X =

∑n
i=1 Xi , where each Xi is a Bernoulli random variable with parameter p.

Using the identity on the variance of a sum, we conclude that

Var(X) = n · p · (1− p).
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Geometric Variable

Statement

If X is a geometric random variable with parameter p,

Var(X) =
1− p

p2
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