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Preliminaries

Preliminaries

The Set Cover Problem

Given,

1 A ground set U = {e1,e2, . . . ,en},
2 A collection of sets SP = {S1,S2, . . .Sm}, Si ⊆ U, i = 1,2, . . . ,m
3 A weight function c : Si → Z+,

find a collection of subsets Si , whose union covers the elements of U at minimum cost.

Note

If all weights are unity (or the same), the problem is called the Cardinality Set Cover problem.
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The Greedy Algorithm (Cardinality)

Greedy Approach

1 Cover C = /0.

2 while (there exists an uncovered element in U)
3 Find the set Sj with the largest number of uncovered elements.

4 Set C = C∪Sj .
5 Throw out all the covered elements from U.
6 endwhile
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Analysis of the greedy approach

Analysis

1 Let OPT denote the size of the optimal set cover.

2 To begin with, there exists at least one set Si with n
OPT or more uncovered elements.

(Why?)
3 The set picked by the greedy algorithm has at least n

OPT uncovered elements. (Why?)

4 The number of elements uncovered after the first iteration is at most
n− n

OPT = n · (1− 1
OPT ).

5 What happens if greedy picked one of OPT’s sets? The remaining uncovered elements will
have to be covered by at most (OPT −1) sets.

6 Hence there is at least one set with
n·(1− 1

OPT )

(OPT−1) uncovered elements.

7 But we don’t know that we were that lucky. However, we can safely assume that there is at

least one set with
n·(1− 1

OPT )
OPT uncovered elements!

8 The number of uncovered elements after the second iteration is at most

n · (1− 1
OPT )− n·(1− 1

OPT )
OPT = n · (1− 1

OPT )2.
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Analysis (contd.)

Final steps

1 After t = OPT · lnn iterations, the number of elements left is

n · (1− 1
OPT

)OPT ·lnn < n · ( 1
e

)lnn

= n ·e− lnn

= n ·elnn−1

= n ·n−1

= 1

i.e., we are done.

2 What we have shown is that the greedy strategy finds a solution in OPT · lnn iterations.
Since exactly one set is picked in each iteration, the approximation factor of the greedy
approach is lnn.



Dual Fitting

Greedy Algorithms

Analysis (contd.)

Final steps

1 After t = OPT · lnn iterations, the number of elements left is

n · (1− 1
OPT

)OPT ·lnn < n · ( 1
e

)lnn

= n ·e− lnn

= n ·elnn−1

= n ·n−1

= 1

i.e., we are done.

2 What we have shown is that the greedy strategy finds a solution in OPT · lnn iterations.
Since exactly one set is picked in each iteration, the approximation factor of the greedy
approach is lnn.



Dual Fitting

Greedy Algorithms

Analysis (contd.)

Final steps

1 After t = OPT · lnn iterations, the number of elements left is

n · (1− 1
OPT

)OPT ·lnn < n · ( 1
e

)lnn

= n ·e− lnn

= n ·elnn−1

= n ·n−1

= 1

i.e., we are done.

2 What we have shown is that the greedy strategy finds a solution in OPT · lnn iterations.
Since exactly one set is picked in each iteration, the approximation factor of the greedy
approach is lnn.



Dual Fitting

Greedy Algorithms

Analysis (contd.)

Final steps

1 After t = OPT · lnn iterations, the number of elements left is

n · (1− 1
OPT

)OPT ·lnn

< n · ( 1
e

)lnn

= n ·e− lnn

= n ·elnn−1

= n ·n−1

= 1

i.e., we are done.

2 What we have shown is that the greedy strategy finds a solution in OPT · lnn iterations.
Since exactly one set is picked in each iteration, the approximation factor of the greedy
approach is lnn.



Dual Fitting

Greedy Algorithms

Analysis (contd.)

Final steps

1 After t = OPT · lnn iterations, the number of elements left is

n · (1− 1
OPT

)OPT ·lnn < n · ( 1
e

)lnn

= n ·e− lnn

= n ·elnn−1

= n ·n−1

= 1

i.e., we are done.

2 What we have shown is that the greedy strategy finds a solution in OPT · lnn iterations.
Since exactly one set is picked in each iteration, the approximation factor of the greedy
approach is lnn.



Dual Fitting

Greedy Algorithms

Analysis (contd.)

Final steps

1 After t = OPT · lnn iterations, the number of elements left is

n · (1− 1
OPT

)OPT ·lnn < n · ( 1
e

)lnn

= n ·e− lnn

= n ·elnn−1

= n ·n−1

= 1

i.e., we are done.

2 What we have shown is that the greedy strategy finds a solution in OPT · lnn iterations.
Since exactly one set is picked in each iteration, the approximation factor of the greedy
approach is lnn.



Dual Fitting

Greedy Algorithms

Analysis (contd.)

Final steps

1 After t = OPT · lnn iterations, the number of elements left is

n · (1− 1
OPT

)OPT ·lnn < n · ( 1
e

)lnn

= n ·e− lnn

= n ·elnn−1

= n ·n−1

= 1

i.e., we are done.

2 What we have shown is that the greedy strategy finds a solution in OPT · lnn iterations.
Since exactly one set is picked in each iteration, the approximation factor of the greedy
approach is lnn.



Dual Fitting

Greedy Algorithms

Analysis (contd.)

Final steps

1 After t = OPT · lnn iterations, the number of elements left is

n · (1− 1
OPT

)OPT ·lnn < n · ( 1
e

)lnn

= n ·e− lnn

= n ·elnn−1

= n ·n−1

= 1

i.e., we are done.

2 What we have shown is that the greedy strategy finds a solution in OPT · lnn iterations.
Since exactly one set is picked in each iteration, the approximation factor of the greedy
approach is lnn.



Dual Fitting

Greedy Algorithms

Analysis (contd.)

Final steps

1 After t = OPT · lnn iterations, the number of elements left is

n · (1− 1
OPT

)OPT ·lnn < n · ( 1
e

)lnn

= n ·e− lnn

= n ·elnn−1

= n ·n−1

= 1

i.e., we are done.

2 What we have shown is that the greedy strategy finds a solution in OPT · lnn iterations.
Since exactly one set is picked in each iteration, the approximation factor of the greedy
approach is lnn.



Dual Fitting

Greedy Algorithms

Analysis (contd.)

Final steps

1 After t = OPT · lnn iterations, the number of elements left is

n · (1− 1
OPT

)OPT ·lnn < n · ( 1
e

)lnn

= n ·e− lnn

= n ·elnn−1

= n ·n−1

= 1

i.e., we are done.

2 What we have shown is that the greedy strategy finds a solution in OPT · lnn iterations.
Since exactly one set is picked in each iteration, the approximation factor of the greedy
approach is lnn.



Dual Fitting

Greedy Algorithms

Analysis (contd.)

Final steps

1 After t = OPT · lnn iterations, the number of elements left is

n · (1− 1
OPT

)OPT ·lnn < n · ( 1
e

)lnn

= n ·e− lnn

= n ·elnn−1

= n ·n−1

= 1

i.e., we are done.

2 What we have shown is that the greedy strategy finds a solution in OPT · lnn iterations.

Since exactly one set is picked in each iteration, the approximation factor of the greedy
approach is lnn.



Dual Fitting

Greedy Algorithms

Analysis (contd.)

Final steps

1 After t = OPT · lnn iterations, the number of elements left is

n · (1− 1
OPT

)OPT ·lnn < n · ( 1
e

)lnn

= n ·e− lnn

= n ·elnn−1

= n ·n−1

= 1

i.e., we are done.

2 What we have shown is that the greedy strategy finds a solution in OPT · lnn iterations.
Since exactly one set is picked in each iteration, the approximation factor of the greedy
approach is lnn.



Dual Fitting

Greedy Algorithms

The Greedy Algorithm (Weighted)

Weighted Greedy Algorithm

1 C→ /0.

2 Cost-effectiveness of a set is c(S)
|S−C| .

3 price(e) is the average cost at which element e is covered.

4 while (C 6= U) do
5 Find the most cost-effective set in the current iteration, say S.
6 Let αS denote the cost-effectiveness of S.

7 Observe that αS = c(S)
|S−C| .

8 Pick S and for each e ∈ S−C, set price(e) = αS .
9 C→ C∪S.
10 end while
11 Output the picked sets.



Dual Fitting

Greedy Algorithms

The Greedy Algorithm (Weighted)

Weighted Greedy Algorithm

1 C→ /0.

2 Cost-effectiveness of a set is c(S)
|S−C| .

3 price(e) is the average cost at which element e is covered.

4 while (C 6= U) do
5 Find the most cost-effective set in the current iteration, say S.
6 Let αS denote the cost-effectiveness of S.

7 Observe that αS = c(S)
|S−C| .

8 Pick S and for each e ∈ S−C, set price(e) = αS .
9 C→ C∪S.
10 end while
11 Output the picked sets.



Dual Fitting

Greedy Algorithms

The Greedy Algorithm (Weighted)

Weighted Greedy Algorithm

1 C→ /0.

2 Cost-effectiveness of a set is c(S)
|S−C| .

3 price(e) is the average cost at which element e is covered.

4 while (C 6= U) do
5 Find the most cost-effective set in the current iteration, say S.
6 Let αS denote the cost-effectiveness of S.

7 Observe that αS = c(S)
|S−C| .

8 Pick S and for each e ∈ S−C, set price(e) = αS .
9 C→ C∪S.
10 end while
11 Output the picked sets.



Dual Fitting

Greedy Algorithms

The Greedy Algorithm (Weighted)

Weighted Greedy Algorithm

1 C→ /0.

2 Cost-effectiveness of a set is c(S)
|S−C| .

3 price(e) is the average cost at which element e is covered.

4 while (C 6= U) do
5 Find the most cost-effective set in the current iteration, say S.
6 Let αS denote the cost-effectiveness of S.

7 Observe that αS = c(S)
|S−C| .

8 Pick S and for each e ∈ S−C, set price(e) = αS .
9 C→ C∪S.
10 end while
11 Output the picked sets.



Dual Fitting

Greedy Algorithms

The Greedy Algorithm (Weighted)

Weighted Greedy Algorithm

1 C→ /0.

2 Cost-effectiveness of a set is c(S)
|S−C| .

3 price(e) is the average cost at which element e is covered.

4 while (C 6= U) do
5 Find the most cost-effective set in the current iteration, say S.
6 Let αS denote the cost-effectiveness of S.

7 Observe that αS = c(S)
|S−C| .

8 Pick S and for each e ∈ S−C, set price(e) = αS .
9 C→ C∪S.
10 end while
11 Output the picked sets.



Dual Fitting

Greedy Algorithms

The Greedy Algorithm (Weighted)

Weighted Greedy Algorithm

1 C→ /0.

2 Cost-effectiveness of a set is c(S)
|S−C| .

3 price(e) is the average cost at which element e is covered.

4 while (C 6= U) do

5 Find the most cost-effective set in the current iteration, say S.
6 Let αS denote the cost-effectiveness of S.

7 Observe that αS = c(S)
|S−C| .

8 Pick S and for each e ∈ S−C, set price(e) = αS .
9 C→ C∪S.
10 end while
11 Output the picked sets.



Dual Fitting

Greedy Algorithms

The Greedy Algorithm (Weighted)

Weighted Greedy Algorithm

1 C→ /0.

2 Cost-effectiveness of a set is c(S)
|S−C| .

3 price(e) is the average cost at which element e is covered.

4 while (C 6= U) do
5 Find the most cost-effective set in the current iteration, say S.

6 Let αS denote the cost-effectiveness of S.

7 Observe that αS = c(S)
|S−C| .

8 Pick S and for each e ∈ S−C, set price(e) = αS .
9 C→ C∪S.
10 end while
11 Output the picked sets.



Dual Fitting

Greedy Algorithms

The Greedy Algorithm (Weighted)

Weighted Greedy Algorithm

1 C→ /0.

2 Cost-effectiveness of a set is c(S)
|S−C| .

3 price(e) is the average cost at which element e is covered.

4 while (C 6= U) do
5 Find the most cost-effective set in the current iteration, say S.
6 Let αS denote the cost-effectiveness of S.

7 Observe that αS = c(S)
|S−C| .

8 Pick S and for each e ∈ S−C, set price(e) = αS .
9 C→ C∪S.
10 end while
11 Output the picked sets.



Dual Fitting

Greedy Algorithms

The Greedy Algorithm (Weighted)

Weighted Greedy Algorithm

1 C→ /0.

2 Cost-effectiveness of a set is c(S)
|S−C| .

3 price(e) is the average cost at which element e is covered.

4 while (C 6= U) do
5 Find the most cost-effective set in the current iteration, say S.
6 Let αS denote the cost-effectiveness of S.

7 Observe that αS = c(S)
|S−C| .

8 Pick S and for each e ∈ S−C, set price(e) = αS .
9 C→ C∪S.
10 end while
11 Output the picked sets.



Dual Fitting

Greedy Algorithms

The Greedy Algorithm (Weighted)

Weighted Greedy Algorithm

1 C→ /0.

2 Cost-effectiveness of a set is c(S)
|S−C| .

3 price(e) is the average cost at which element e is covered.

4 while (C 6= U) do
5 Find the most cost-effective set in the current iteration, say S.
6 Let αS denote the cost-effectiveness of S.

7 Observe that αS = c(S)
|S−C| .

8 Pick S and for each e ∈ S−C, set price(e) = αS .

9 C→ C∪S.
10 end while
11 Output the picked sets.



Dual Fitting

Greedy Algorithms

The Greedy Algorithm (Weighted)

Weighted Greedy Algorithm

1 C→ /0.

2 Cost-effectiveness of a set is c(S)
|S−C| .

3 price(e) is the average cost at which element e is covered.

4 while (C 6= U) do
5 Find the most cost-effective set in the current iteration, say S.
6 Let αS denote the cost-effectiveness of S.

7 Observe that αS = c(S)
|S−C| .

8 Pick S and for each e ∈ S−C, set price(e) = αS .
9 C→ C∪S.

10 end while
11 Output the picked sets.



Dual Fitting

Greedy Algorithms

The Greedy Algorithm (Weighted)

Weighted Greedy Algorithm

1 C→ /0.

2 Cost-effectiveness of a set is c(S)
|S−C| .

3 price(e) is the average cost at which element e is covered.

4 while (C 6= U) do
5 Find the most cost-effective set in the current iteration, say S.
6 Let αS denote the cost-effectiveness of S.

7 Observe that αS = c(S)
|S−C| .

8 Pick S and for each e ∈ S−C, set price(e) = αS .
9 C→ C∪S.
10 end while

11 Output the picked sets.



Dual Fitting

Greedy Algorithms

The Greedy Algorithm (Weighted)

Weighted Greedy Algorithm

1 C→ /0.

2 Cost-effectiveness of a set is c(S)
|S−C| .

3 price(e) is the average cost at which element e is covered.

4 while (C 6= U) do
5 Find the most cost-effective set in the current iteration, say S.
6 Let αS denote the cost-effectiveness of S.

7 Observe that αS = c(S)
|S−C| .

8 Pick S and for each e ∈ S−C, set price(e) = αS .
9 C→ C∪S.
10 end while
11 Output the picked sets.



Dual Fitting

Greedy Algorithms

Analysis

Lemma

Let e1,e2, . . .en denote the elements of U, in the order in which they were covered. For each
k ∈ {1,2, . . . ,n}, price(ek )≤ OPT

(n−k+1) .

Proof.

1 In each iteration, the remaining elements can be covered by the “leftover” sets of the
optimal set cover at a cost of at most OPT .

2 It follows that there is at least one set among the leftover sets with a cost-effectiveness of at
most OPT

C̄
, where C̄ = U−C.

3 When ek was covered |C̄| ≥ (n− k + 1).

4 Since our covering algorithm is greedy, we have,

price(ek ) ≤ OPT

C̄

=
OPT

(n− k + 1)
.



Dual Fitting

Greedy Algorithms

Analysis

Lemma

Let e1,e2, . . .en denote the elements of U, in the order in which they were covered.

For each
k ∈ {1,2, . . . ,n}, price(ek )≤ OPT

(n−k+1) .

Proof.

1 In each iteration, the remaining elements can be covered by the “leftover” sets of the
optimal set cover at a cost of at most OPT .

2 It follows that there is at least one set among the leftover sets with a cost-effectiveness of at
most OPT

C̄
, where C̄ = U−C.

3 When ek was covered |C̄| ≥ (n− k + 1).

4 Since our covering algorithm is greedy, we have,

price(ek ) ≤ OPT

C̄

=
OPT

(n− k + 1)
.



Dual Fitting

Greedy Algorithms

Analysis

Lemma

Let e1,e2, . . .en denote the elements of U, in the order in which they were covered. For each
k ∈ {1,2, . . . ,n},

price(ek )≤ OPT
(n−k+1) .

Proof.

1 In each iteration, the remaining elements can be covered by the “leftover” sets of the
optimal set cover at a cost of at most OPT .

2 It follows that there is at least one set among the leftover sets with a cost-effectiveness of at
most OPT

C̄
, where C̄ = U−C.

3 When ek was covered |C̄| ≥ (n− k + 1).

4 Since our covering algorithm is greedy, we have,

price(ek ) ≤ OPT

C̄

=
OPT

(n− k + 1)
.



Dual Fitting

Greedy Algorithms

Analysis

Lemma

Let e1,e2, . . .en denote the elements of U, in the order in which they were covered. For each
k ∈ {1,2, . . . ,n}, price(ek )≤ OPT

(n−k+1) .

Proof.

1 In each iteration, the remaining elements can be covered by the “leftover” sets of the
optimal set cover at a cost of at most OPT .

2 It follows that there is at least one set among the leftover sets with a cost-effectiveness of at
most OPT

C̄
, where C̄ = U−C.

3 When ek was covered |C̄| ≥ (n− k + 1).

4 Since our covering algorithm is greedy, we have,

price(ek ) ≤ OPT

C̄

=
OPT

(n− k + 1)
.



Dual Fitting

Greedy Algorithms

Analysis

Lemma

Let e1,e2, . . .en denote the elements of U, in the order in which they were covered. For each
k ∈ {1,2, . . . ,n}, price(ek )≤ OPT

(n−k+1) .

Proof.

1 In each iteration, the remaining elements can be covered by the “leftover” sets of the
optimal set cover at a cost of at most OPT .

2 It follows that there is at least one set among the leftover sets with a cost-effectiveness of at
most OPT

C̄
, where C̄ = U−C.

3 When ek was covered |C̄| ≥ (n− k + 1).

4 Since our covering algorithm is greedy, we have,

price(ek ) ≤ OPT

C̄

=
OPT

(n− k + 1)
.



Dual Fitting

Greedy Algorithms

Analysis

Lemma

Let e1,e2, . . .en denote the elements of U, in the order in which they were covered. For each
k ∈ {1,2, . . . ,n}, price(ek )≤ OPT

(n−k+1) .

Proof.

1 In each iteration, the remaining elements can be covered by the “leftover” sets of the
optimal set cover at a cost of at most OPT .

2 It follows that there is at least one set among the leftover sets with a cost-effectiveness of at
most OPT

C̄
, where C̄ = U−C.

3 When ek was covered |C̄| ≥ (n− k + 1).

4 Since our covering algorithm is greedy, we have,

price(ek ) ≤ OPT

C̄

=
OPT

(n− k + 1)
.



Dual Fitting

Greedy Algorithms

Analysis

Lemma

Let e1,e2, . . .en denote the elements of U, in the order in which they were covered. For each
k ∈ {1,2, . . . ,n}, price(ek )≤ OPT

(n−k+1) .

Proof.

1 In each iteration, the remaining elements can be covered by the “leftover” sets of the
optimal set cover at a cost of at most OPT .

2 It follows that there is at least one set among the leftover sets with a cost-effectiveness of at
most OPT

C̄
, where C̄ = U−C.

3 When ek was covered |C̄| ≥ (n− k + 1).

4 Since our covering algorithm is greedy, we have,

price(ek ) ≤ OPT

C̄

=
OPT

(n− k + 1)
.



Dual Fitting

Greedy Algorithms

Analysis

Lemma

Let e1,e2, . . .en denote the elements of U, in the order in which they were covered. For each
k ∈ {1,2, . . . ,n}, price(ek )≤ OPT

(n−k+1) .

Proof.

1 In each iteration, the remaining elements can be covered by the “leftover” sets of the
optimal set cover at a cost of at most OPT .

2 It follows that there is at least one set among the leftover sets with a cost-effectiveness of at
most OPT

C̄
, where C̄ = U−C.

3 When ek was covered |C̄| ≥ (n− k + 1).

4 Since our covering algorithm is greedy, we have,

price(ek ) ≤ OPT

C̄

=
OPT

(n− k + 1)
.



Dual Fitting

Greedy Algorithms

Analysis

Lemma

Let e1,e2, . . .en denote the elements of U, in the order in which they were covered. For each
k ∈ {1,2, . . . ,n}, price(ek )≤ OPT

(n−k+1) .

Proof.

1 In each iteration, the remaining elements can be covered by the “leftover” sets of the
optimal set cover at a cost of at most OPT .

2 It follows that there is at least one set among the leftover sets with a cost-effectiveness of at
most OPT

C̄
, where C̄ = U−C.

3 When ek was covered |C̄| ≥ (n− k + 1).

4 Since our covering algorithm is greedy, we have,

price(ek ) ≤ OPT

C̄

=
OPT

(n− k + 1)
.



Dual Fitting

Greedy Algorithms

Analysis

Lemma

Let e1,e2, . . .en denote the elements of U, in the order in which they were covered. For each
k ∈ {1,2, . . . ,n}, price(ek )≤ OPT

(n−k+1) .

Proof.

1 In each iteration, the remaining elements can be covered by the “leftover” sets of the
optimal set cover at a cost of at most OPT .

2 It follows that there is at least one set among the leftover sets with a cost-effectiveness of at
most OPT

C̄
, where C̄ = U−C.

3 When ek was covered |C̄| ≥ (n− k + 1).

4 Since our covering algorithm is greedy, we have,

price(ek ) ≤

OPT

C̄

=
OPT

(n− k + 1)
.



Dual Fitting

Greedy Algorithms

Analysis

Lemma

Let e1,e2, . . .en denote the elements of U, in the order in which they were covered. For each
k ∈ {1,2, . . . ,n}, price(ek )≤ OPT

(n−k+1) .

Proof.

1 In each iteration, the remaining elements can be covered by the “leftover” sets of the
optimal set cover at a cost of at most OPT .

2 It follows that there is at least one set among the leftover sets with a cost-effectiveness of at
most OPT

C̄
, where C̄ = U−C.

3 When ek was covered |C̄| ≥ (n− k + 1).

4 Since our covering algorithm is greedy, we have,

price(ek ) ≤ OPT

C̄

=
OPT

(n− k + 1)
.



Dual Fitting

Greedy Algorithms

Analysis

Lemma

Let e1,e2, . . .en denote the elements of U, in the order in which they were covered. For each
k ∈ {1,2, . . . ,n}, price(ek )≤ OPT

(n−k+1) .

Proof.

1 In each iteration, the remaining elements can be covered by the “leftover” sets of the
optimal set cover at a cost of at most OPT .

2 It follows that there is at least one set among the leftover sets with a cost-effectiveness of at
most OPT

C̄
, where C̄ = U−C.

3 When ek was covered |C̄| ≥ (n− k + 1).

4 Since our covering algorithm is greedy, we have,

price(ek ) ≤ OPT

C̄

=
OPT

(n− k + 1)
.



Dual Fitting

Greedy Algorithms

Analysis (contd.)

Lemma

The greedy algorithm is an Hn factor approximation algorithm for set cover.

Proof.

1 The cost of each set is distributed among the new elements covered.

2 It follows that the total cost of the set cover picked is equal to ∑
n
k=1 price(ek ).

The lemma follows, since

n

∑
k=1

price(ek ) ≤
n

∑
k=1

OPT
(n− k + 1)

= OPT · ( 1
1

+
1
2

+ . . .
1
n

)

= Hn ·OPT .
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c(S) · xS

subject to ∑S :e∈S xS ≥ 1, e ∈ U

xS ∈ {0,1}, S ∈ SP
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The Linear Program relaxation

Relaxation

min ∑S∈SP
c(S) · xS

subject to ∑S :e∈S xS ≥ 1, e ∈ U

xS ≥ 0, S ∈ SP

Example

Let U = {e, f ,g} and the specified sets be S1 = {e, f}, S2 = {f ,g} and S3 = {e,g}, each of
unit cost. Optimal integral cover is 2, whereas optimal fractional cover is 3
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Dual-Fitting based Analysis of Greedy Algorithm

Understanding the dual

Note

1 The primal LP is a covering LP; the dual is a packing LP.

2 In the dual, the goal is to assign weights to elements of sets, such that no set is overpacked.
3 Observe that OPTD = OPTf ≤ OPT.

4 The cost of any dual feasible solution is a lower bound on OPTf and hence on OPT .
5 A good guess for dual values is yi = price(ei ). Unfortunately, this solution is not dual

feasible. (Homework!) A better guess is yi = price(ei )
Hn

.
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Analysis

Lemma

The vector y defined by yi = price(ei )
Hn

is dual feasible.

Proof.

We will show that no set is overpacked by y.

1 Pick an arbitrary set S ∈ SP with k elements.

2 Number the elements of S as e1,e2, . . .ek in the order that they were covered by the
greedy algorithm.

3 Consider the iteration in which ei was covered. At this juncture, S contains at least
(k− i + 1) elements.

4 Thus, in the current iteration, S itself can cover ei at an average cost of c(S)
(k−i+1) .

5 Since our algorithm was greedy, price(ei )≤ c(S)
(k−i+1) .

6 Thus, yi ≤ 1
Hn
· c(S)

(k−i+1) .
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Analysis (contd.)

Proof (contd.)

It follows that:

k

∑
i=1

yei ≤ c(S)

Hn
· ( 1

k
+

1
k−1

+ . . .
1
1

)

=
Hk

Hn
· c(S)

≤ c(S).
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Approximation Guarantee

Lemma

The approximation guarantee of the greedy set cover algorithm is Hn.

Proof.
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e∈U

price(e) = Hn · ( ∑
e∈U

ye)
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≤ Hn ·OPT
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Tightness

Example

The above approximation guarantee cannot be improved with this integer programming
formulation. Consider the following instance:

1 Let n = 2k −1, where k is a positive integer.

2 Let U = {e1,e2, . . . ,en}.
3 For 1≤ i ≤ n, consider i as a k -bit number. This number is a k -dimensional vector over

GF [2]. Let i denote this vector.

4 For 1≤ i ≤ n, let Si = {ej | i · j = 1}.
5 Let SP = {S1,S2, . . .Sn} and let c(S) = 1, for all S ∈ SP .

Observations

1 Each set contains n+1
2 = 2k−1 elements.

2 Each element is contained in n+1
2 sets.

3 Thus, xi = 2
n+1 , 1≤ i ≤ n is a fractional set cover (optimal) of cost 2·n

n+1 .
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Tightness Analysis (contd.)

Lemma

Any integral cover must pick at least k of the above n sets.

Proof.

1 Consider the union of some p sets, where p < k . Let i1, i2 . . . ip denote the indices of these
sets.

2 Let A be a p× k matrix over GF [2], whose rows consist of i1, i2, . . . ip respectively.
3 The dimension of the null-space of A is at least 1. (Why?) Rank of A is less than k !

4 The null-space of A contains a vector j.
5 Since A · j = 0, the element ej is not in any of the p sets.
6 Hence, the p sets do not form a cover.
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Conclusion of Analysis

Lemma

The integrality gap of the IP formulation of set cover discussed above is more than log2 n
2 .

Proof.

The previous lemma established that any integral set cover has cost at least k = log2(n + 1).
It follows that the lower bound on the integrality gap established by this example is

OPTI

OPTf
=

k
2·n

(n+1)

=
n + 1
2 ·n

· log2(n + 1)

>
log2 n

2
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