Set-Cover approximation through Dual Fitting

K. Subramani¹

¹Lane Department of Computer Science and Electrical Engineering West Virginia University

March 25, 2014

Outline			

Outline

Outline	9		

Outline

1 Preliminaries

2 Greedy Algorithms

Outline

3 Dual-Fitting based Analysis of Greedy
Algorithm

The Set Cover Problem

Given,

The Set Cover Problem

Given,

The Set Cover Problem

Given,

• A ground set $U = \{e_1, e_2, ..., e_n\},\$

The Set Cover Problem

Given,

- A ground set $U = \{e_1, e_2, ..., e_n\},$
- 2 A collection of sets $S_P = \{S_1, S_2, \dots, S_m\}, S_i \subseteq U, i = 1, 2, \dots, m$

The Set Cover Problem

Given,

- A ground set $U = \{e_1, e_2, ..., e_n\},$
- 2 A collection of sets $S_P = \{S_1, S_2, \dots, S_m\}, S_i \subseteq U, i = 1, 2, \dots, m$
- **3** A weight function \mathbf{c} : $S_i \rightarrow Z_+$,

The Set Cover Problem

Given,

- A ground set $U = \{e_1, e_2, ..., e_n\},$
- 2 A collection of sets $S_P = \{S_1, S_2, \dots, S_m\}, S_i \subseteq U, i = 1, 2, \dots, m$
- **3** A weight function \mathbf{c} : $S_i \rightarrow Z_+$,

find a collection of subsets S_i , whose union covers the elements of U at minimum cost.

The Set Cover Problem

Given,

- A ground set $U = \{e_1, e_2, ..., e_n\},\$
- 3 A collection of sets $S_P = \{S_1, S_2, \dots, S_m\}, S_i \subseteq U, i = 1, 2, \dots, m$
- **3** A weight function \mathbf{c} : $S_i \rightarrow Z_+$,

find a collection of subsets S_i , whose union covers the elements of U at minimum cost.

Note

If all weights are unity (or the same),

The Set Cover Problem

Given,

- A ground set $U = \{e_1, e_2, ..., e_n\},\$
- 2 A collection of sets $S_P = \{S_1, S_2, \dots, S_m\}, S_i \subseteq U, i = 1, 2, \dots, m$
- **3** A weight function \mathbf{c} : $S_i \rightarrow Z_+$,

find a collection of subsets S_i , whose union covers the elements of U at minimum cost.

Note

If all weights are unity (or the same), the problem is called the Cardinality Set Cover problem.

The Greedy Algorithm (Cardinality)

Greedy Approach

• Cover $C = \emptyset$.

The Greedy Algorithm (Cardinality)

- Cover $C = \emptyset$.
- **While** (there exists an uncovered element in U)

The Greedy Algorithm (Cardinality)

- Cover $C = \emptyset$.
- **While** (there exists an uncovered element in U)
- Solution Find the set S_i with the largest number of uncovered elements.

The Greedy Algorithm (Cardinality)

- Cover $C = \emptyset$.
- **While** (there exists an uncovered element in U)
- Solution Find the set S_i with the largest number of uncovered elements.

The Greedy Algorithm (Cardinality)

- Cover $C = \emptyset$.
- **While** (there exists an uncovered element in U)
- Solution Find the set S_i with the largest number of uncovered elements.
- 5 Throw out all the covered elements from *U*.

The Greedy Algorithm (Cardinality)

- Cover $C = \emptyset$.
- **While** (there exists an uncovered element in U)
- Solution Find the set S_i with the largest number of uncovered elements.

- 5 Throw out all the covered elements from *U*.
- endwhile

Analysis of the greedy approach

Analysis

• Let OPT denote the size of the optimal set cover.

Analysis of the greedy approach

- Let OPT denote the size of the optimal set cover.
- **2** To begin with, there exists at least one set S_i with $\frac{n}{OPT}$ or more uncovered elements.

Analysis of the greedy approach

- Let OPT denote the size of the optimal set cover.
- To begin with, there exists at least one set S_i with <u>OPT</u> or more uncovered elements. (Why?)

Analysis of the greedy approach

- Let OPT denote the size of the optimal set cover.
- To begin with, there exists at least one set S_i with <u>OPT</u> or more uncovered elements. (Why?)
- The set picked by the greedy algorithm has at least $\frac{n}{OPT}$ uncovered elements.

Analysis of the greedy approach

- Let OPT denote the size of the optimal set cover.
- **②** To begin with, there exists at least one set S_i with $\frac{n}{OPT}$ or more uncovered elements. (Why?)
- The set picked by the greedy algorithm has at least $\frac{n}{OPT}$ uncovered elements. (Why?)

- Let *OPT* denote the size of the optimal set cover.
- **②** To begin with, there exists at least one set S_i with $\frac{n}{OPT}$ or more uncovered elements. (Why?)
- The set picked by the greedy algorithm has at least $\frac{n}{OPT}$ uncovered elements. (Why?)
- The number of elements uncovered after the first iteration is at most $n \frac{n}{OPT}$

- Let OPT denote the size of the optimal set cover.
- **9** To begin with, there exists at least one set S_i with $\frac{n}{OPT}$ or more uncovered elements. (Why?)
- The set picked by the greedy algorithm has at least $\frac{n}{OPT}$ uncovered elements. (Why?)
- The number of elements uncovered after the first iteration is at most $n \frac{n}{OPT} = n \cdot (1 \frac{1}{OPT}).$

- Let OPT denote the size of the optimal set cover.
- O To begin with, there exists at least one set S_i with <u>OPT</u> or more uncovered elements. (Why?)
- The set picked by the greedy algorithm has at least $\frac{n}{OPT}$ uncovered elements. (Why?)
- The number of elements uncovered after the first iteration is at most $n \frac{n}{OPT} = n \cdot (1 \frac{1}{OPT}).$
- What happens if greedy picked one of OPT's sets?

- Let OPT denote the size of the optimal set cover.
- **2** To begin with, there exists at least one set S_i with $\frac{n}{OPT}$ or more uncovered elements. (Why?)
- The set picked by the greedy algorithm has at least $\frac{n}{OPT}$ uncovered elements. (Why?)
- The number of elements uncovered after the first iteration is at most $n \frac{n}{OPT} = n \cdot (1 \frac{1}{OPT}).$
- What happens if greedy picked one of OPT's sets? The remaining uncovered elements will have to be covered by at most (OPT - 1) sets.

- Let OPT denote the size of the optimal set cover.
- O To begin with, there exists at least one set S_i with <u>OPT</u> or more uncovered elements. (Why?)
- The set picked by the greedy algorithm has at least $\frac{n}{OPT}$ uncovered elements. (Why?)
- The number of elements uncovered after the first iteration is at most $n \frac{n}{OPT} = n \cdot (1 \frac{1}{OPT}).$
- What happens if greedy picked one of OPT's sets? The remaining uncovered elements will have to be covered by at most (OPT - 1) sets.
- Hence there is at least one set with $\frac{n \cdot (1 \frac{1}{OPT})}{(OPT 1)}$ uncovered elements.

- Let OPT denote the size of the optimal set cover.
- O To begin with, there exists at least one set S_i with <u>OPT</u> or more uncovered elements. (Why?)
- The set picked by the greedy algorithm has at least <u>OPT</u> uncovered elements. (Why?)
- The number of elements uncovered after the first iteration is at most $n \frac{n}{OPT} = n \cdot (1 \frac{1}{OPT}).$
- What happens if greedy picked one of OPT's sets? The remaining uncovered elements will have to be covered by at most (OPT - 1) sets.
- Hence there is at least one set with $\frac{n \cdot (1 \frac{1}{OPT})}{(OPT 1)}$ uncovered elements.
- Ø But we don't know that we were that lucky.
- Let OPT denote the size of the optimal set cover.
- O To begin with, there exists at least one set S_i with <u>OPT</u> or more uncovered elements. (Why?)
- The set picked by the greedy algorithm has at least <u>OPT</u> uncovered elements. (Why?)
- The number of elements uncovered after the first iteration is at most $n \frac{n}{OPT} = n \cdot (1 \frac{1}{OPT}).$
- What happens if greedy picked one of OPT's sets? The remaining uncovered elements will have to be covered by at most (OPT - 1) sets.
- Hence there is at least one set with $\frac{n \cdot (1 \frac{1}{OPT})}{(OPT 1)}$ uncovered elements.
- But we don't know that we were that lucky. However, we can safely assume that there is at least one set with <u>n·(1-10PT)</u> uncovered elements!

- Let OPT denote the size of the optimal set cover.
- O To begin with, there exists at least one set S_i with <u>OPT</u> or more uncovered elements. (Why?)
- The set picked by the greedy algorithm has at least $\frac{n}{OPT}$ uncovered elements. (Why?)
- The number of elements uncovered after the first iteration is at most $n \frac{n}{OPT} = n \cdot (1 \frac{1}{OPT}).$
- What happens if greedy picked one of OPT's sets? The remaining uncovered elements will have to be covered by at most (OPT - 1) sets.
- Hence there is at least one set with $\frac{n \cdot (1 \frac{1}{OPT})}{(OPT 1)}$ uncovered elements.
- But we don't know that we were that lucky. However, we can safely assume that there is at least one set with <u>n·(1-10PT)</u> uncovered elements!
- O The number of uncovered elements after the second iteration is at most

- Let OPT denote the size of the optimal set cover.
- **2** To begin with, there exists at least one set S_i with $\frac{n}{OPT}$ or more uncovered elements. (Why?)
- The set picked by the greedy algorithm has at least $\frac{n}{OPT}$ uncovered elements. (Why?)
- The number of elements uncovered after the first iteration is at most $n \frac{n}{OPT} = n \cdot (1 \frac{1}{OPT}).$
- What happens if greedy picked one of OPT's sets? The remaining uncovered elements will have to be covered by at most (OPT - 1) sets.
- Hence there is at least one set with $\frac{n \cdot (1 \frac{1}{OPT})}{(OPT 1)}$ uncovered elements.
- O But we don't know that we were that lucky. However, we can safely assume that there is at least one set with $\frac{n \cdot (1 \frac{1}{OPT})}{OPT}$ uncovered elements!
- The number of uncovered elements after the second iteration is at most $n \cdot (1 \frac{1}{OPT}) \frac{n \cdot (1 \frac{1}{OPT})}{OPT}$

- Let OPT denote the size of the optimal set cover.
- O To begin with, there exists at least one set S_i with <u>OPT</u> or more uncovered elements. (Why?)
- The set picked by the greedy algorithm has at least $\frac{n}{OPT}$ uncovered elements. (Why?)
- The number of elements uncovered after the first iteration is at most $n \frac{n}{OPT} = n \cdot (1 \frac{1}{OPT}).$
- What happens if greedy picked one of OPT's sets? The remaining uncovered elements will have to be covered by at most (OPT - 1) sets.
- Hence there is at least one set with $\frac{n \cdot (1 \frac{1}{OPT})}{(OPT 1)}$ uncovered elements.
- But we don't know that we were that lucky. However, we can safely assume that there is at least one set with <u>n·(1-10PT)</u> uncovered elements!
- The number of uncovered elements after the second iteration is at most $n \cdot (1 \frac{1}{OPT}) \frac{n \cdot (1 \frac{1}{OPT})}{OPT} = n \cdot (1 \frac{1}{OPT})^2$.

Final steps

Final steps

Final steps

$$n \cdot (1 - \frac{1}{OPT})^{OPT \cdot \ln n}$$

Final steps

$$n \cdot (1 - \frac{1}{OPT})^{OPT \cdot \ln n} < n \cdot (\frac{1}{e})^{\ln n}$$

Final steps

$$n \cdot (1 - \frac{1}{OPT})^{OPT \cdot \ln n} < n \cdot (\frac{1}{e})^{\ln n}$$
$$= n \cdot e^{-\ln n}$$

Final steps

$$n \cdot \left(1 - \frac{1}{OPT}\right)^{OPT \cdot \ln n} < n \cdot \left(\frac{1}{e}\right)^{\ln n}$$
$$= n \cdot e^{-\ln n}$$
$$= n \cdot e^{\ln n^{-1}}$$

Final steps

$$n \cdot (1 - \frac{1}{OPT})^{OPT \cdot \ln n} < n \cdot (\frac{1}{e})^{\ln n}$$
$$= n \cdot e^{-\ln n}$$
$$= n \cdot e^{\ln n^{-1}}$$
$$= n \cdot n^{-1}$$

Final steps

$$n \cdot (1 - \frac{1}{OPT})^{OPT \cdot \ln n} < n \cdot (\frac{1}{e})^{\ln n}$$
$$= n \cdot e^{-\ln n}$$
$$= n \cdot e^{\ln n^{-1}}$$
$$= n \cdot n^{-1}$$

Final steps

• After $t = OPT \cdot \ln n$ iterations, the number of elements left is

$$n \cdot (1 - \frac{1}{OPT})^{OPT \cdot \ln n} < n \cdot (\frac{1}{e})^{\ln n}$$
$$= n \cdot e^{-\ln n}$$
$$= n \cdot e^{\ln n^{-1}}$$
$$= n \cdot n^{-1}$$

i.e., we are done.

Final steps

• After $t = OPT \cdot \ln n$ iterations, the number of elements left is

$$n \cdot \left(1 - \frac{1}{OPT}\right)^{OPT \cdot \ln n} < n \cdot \left(\frac{1}{e}\right)^{\ln n}$$
$$= n \cdot e^{-\ln n}$$
$$= n \cdot e^{\ln n^{-1}}$$
$$= n \cdot n^{-1}$$

i.e., we are done.

2 What we have shown is that the greedy strategy finds a solution in *OPT* · ln *n* iterations.

Final steps

• After $t = OPT \cdot \ln n$ iterations, the number of elements left is

$$n \cdot \left(1 - \frac{1}{OPT}\right)^{OPT \cdot \ln n} < n \cdot \left(\frac{1}{e}\right)^{\ln n}$$
$$= n \cdot e^{-\ln n}$$
$$= n \cdot e^{\ln n^{-1}}$$
$$= n \cdot n^{-1}$$
$$= 1$$

i.e., we are done.

2 What we have shown is that the greedy strategy finds a solution in $OPT \cdot \ln n$ iterations. Since exactly one set is picked in each iteration, the approximation factor of the greedy approach is $\ln n$.

The Greedy Algorithm (Weighted)

The Greedy Algorithm (Weighted)

The Greedy Algorithm (Weighted)

Weighted Greedy Algorithm

 $\bigcirc \quad C \to \emptyset.$

The Greedy Algorithm (Weighted)

- $\bigcirc \quad C \to \emptyset.$
- 2 Cost-effectiveness of a set is $\frac{c(S)}{|S-C|}$.

The Greedy Algorithm (Weighted)

- $\bigcirc \quad C \to \emptyset.$
- 2 Cost-effectiveness of a set is $\frac{c(S)}{|S-C|}$.
- price(e) is the average cost at which element e is covered.

The Greedy Algorithm (Weighted)

- $\bigcirc \quad C \to \emptyset.$
- 2 Cost-effectiveness of a set is $\frac{c(S)}{|S-C|}$.
- price(e) is the average cost at which element e is covered.
- while $(C \neq U)$ do

The Greedy Algorithm (Weighted)

- $\bigcirc \quad C \to \emptyset.$
- 2 Cost-effectiveness of a set is $\frac{c(S)}{|S-C|}$.
- price(e) is the average cost at which element e is covered.
- while $(C \neq U)$ do
- Since the most cost-effective set in the current iteration, say S.

The Greedy Algorithm (Weighted)

- $\bigcirc \quad C \to \emptyset.$
- Cost-effectiveness of a set is $\frac{c(S)}{|S-C|}$.
- price(e) is the average cost at which element e is covered.
- while $(C \neq U)$ do
- Since the most cost-effective set in the current iteration, say *S*.
- Let α_S denote the cost-effectiveness of *S*.

The Greedy Algorithm (Weighted)

- $\bigcirc \quad C \to \emptyset.$
- Cost-effectiveness of a set is $\frac{c(S)}{|S-C|}$.
- price(e) is the average cost at which element e is covered.
- while $(C \neq U)$ do
- Since the most cost-effective set in the current iteration, say S.
- Let α_S denote the cost-effectiveness of *S*.

Observe that
$$\alpha_S = \frac{c(S)}{|S-C|}$$

The Greedy Algorithm (Weighted)

- $\bigcirc \quad C \to \emptyset.$
- Cost-effectiveness of a set is $\frac{c(S)}{|S-C|}$.
- price(e) is the average cost at which element e is covered.
- while $(C \neq U)$ do
- Since the most cost-effective set in the current iteration, say S.
- Let α_S denote the cost-effectiveness of *S*.
- Observe that $\alpha_S = \frac{c(S)}{|S-C|}$.
- Pick *S* and for each $e \in S C$, set $price(e) = \alpha_S$.

The Greedy Algorithm (Weighted)

- $\bigcirc \quad C \to \emptyset.$
- Cost-effectiveness of a set is $\frac{c(S)}{|S-C|}$.
- price(e) is the average cost at which element e is covered.
- while $(C \neq U)$ do
- Since the most cost-effective set in the current iteration, say S.
- **i** Let α_S denote the cost-effectiveness of *S*.
- Observe that $\alpha_S = \frac{c(S)}{|S-C|}$.
- Pick *S* and for each $e \in S C$, set $price(e) = \alpha_S$.

$$O \to C \cup S.$$

The Greedy Algorithm (Weighted)

- $\bigcirc \quad C \to \emptyset.$
- Cost-effectiveness of a set is $\frac{c(S)}{|S-C|}$.
- *price(e)* is the average cost at which element *e* is covered.
- while $(C \neq U)$ do
- Since the most cost-effective set in the current iteration, say *S*.
- Let α_S denote the cost-effectiveness of *S*.
- Observe that $\alpha_S = \frac{c(S)}{|S-C|}$.
- Pick *S* and for each $e \in S C$, set $price(e) = \alpha_S$.
- $O \to C \cup S.$
- end while

The Greedy Algorithm (Weighted)

- $\bigcirc \quad C \to \emptyset.$
- **2** Cost-effectiveness of a set is $\frac{c(S)}{|S-C|}$.
- price(e) is the average cost at which element e is covered.
- while $(C \neq U)$ do
- Since the most cost-effective set in the current iteration, say S.
- **i** Let α_S denote the cost-effectiveness of *S*.
- Observe that $\alpha_S = \frac{c(S)}{|S-C|}$.
- 9 Pick *S* and for each $e \in S C$, set $price(e) = \alpha_S$.
- $\bigcirc \qquad C \to C \cup S.$
- end while
- Output the picked sets.

Lemma

Let $e_1, e_2, \ldots e_n$ denote the elements of U, in the order in which they were covered.

Lemma

Let $e_1, e_2, \dots e_n$ denote the elements of U, in the order in which they were covered. For each $k \in \{1, 2, \dots, n\}$,

Lemma

Let $e_1, e_2, \ldots e_n$ denote the elements of U, in the order in which they were covered. For each $k \in \{1, 2, \ldots, n\}$, price(e_k) $\leq \frac{OPT}{(n-k+1)}$.

Lemma

Let $e_1, e_2, \ldots e_n$ denote the elements of U, in the order in which they were covered. For each $k \in \{1, 2, \ldots, n\}$, price $(e_k) \leq \frac{OPT}{(n-k+1)}$.

Proof.

Lemma

Let $e_1, e_2, \ldots e_n$ denote the elements of U, in the order in which they were covered. For each $k \in \{1, 2, \ldots, n\}$, price $(e_k) \leq \frac{OPT}{(n-k+1)}$.

Proof.

In each iteration, the remaining elements can be covered by the "leftover" sets of the optimal set cover at a cost of at most OPT.

Lemma

Let $e_1, e_2, \dots e_n$ denote the elements of U, in the order in which they were covered. For each $k \in \{1, 2, \dots, n\}$, price $(e_k) \le \frac{OPT}{(n-k+1)}$.

Proof.

- In each iteration, the remaining elements can be covered by the "leftover" sets of the optimal set cover at a cost of at most OPT.
Lemma

Let $e_1, e_2, \ldots e_n$ denote the elements of U, in the order in which they were covered. For each $k \in \{1, 2, \ldots, n\}$, price $(e_k) \leq \frac{OPT}{(n-k+1)}$.

- In each iteration, the remaining elements can be covered by the "leftover" sets of the optimal set cover at a cost of at most OPT.
- It follows that there is at least one set among the leftover sets with a cost-effectiveness of at most ^{*OPT*}/_{*C*}, where *C* = *U* − *C*.
- When e_k was covered $|\bar{C}| \ge (n-k+1)$.

Lemma

Let $e_1, e_2, \ldots e_n$ denote the elements of U, in the order in which they were covered. For each $k \in \{1, 2, \ldots, n\}$, price $(e_k) \leq \frac{OPT}{(n-k+1)}$.

- In each iteration, the remaining elements can be covered by the "leftover" sets of the optimal set cover at a cost of at most OPT.
- It follows that there is at least one set among the leftover sets with a cost-effectiveness of at most ^{OPT}/_C, where C̄ = U − C.
- When e_k was covered $|\bar{C}| \ge (n-k+1)$.
- Since our covering algorithm is greedy, we have,

Lemma

Let $e_1, e_2, \ldots e_n$ denote the elements of U, in the order in which they were covered. For each $k \in \{1, 2, \ldots, n\}$, price $(e_k) \leq \frac{OPT}{(n-k+1)}$.

- In each iteration, the remaining elements can be covered by the "leftover" sets of the optimal set cover at a cost of at most OPT.
- It follows that there is at least one set among the leftover sets with a cost-effectiveness of at most ^{OPT}/_C, where C̄ = U − C.
- When e_k was covered $|\bar{C}| \ge (n-k+1)$.
- Since our covering algorithm is greedy, we have,

$$price(e_k) \leq$$

Lemma

Let $e_1, e_2, \ldots e_n$ denote the elements of U, in the order in which they were covered. For each $k \in \{1, 2, \ldots, n\}$, price $(e_k) \leq \frac{OPT}{(n-k+1)}$.

- In each iteration, the remaining elements can be covered by the "leftover" sets of the optimal set cover at a cost of at most OPT.
- It follows that there is at least one set among the leftover sets with a cost-effectiveness of at most ^{OPT}/_C, where C̄ = U − C.
- When e_k was covered $|\bar{C}| \ge (n-k+1)$.
- Since our covering algorithm is greedy, we have,

$$price(e_k) \leq rac{OPT}{ar{C}}$$

Lemma

Let $e_1, e_2, \ldots e_n$ denote the elements of U, in the order in which they were covered. For each $k \in \{1, 2, \ldots, n\}$, price $(e_k) \leq \frac{OPT}{(n-k+1)}$.

- In each iteration, the remaining elements can be covered by the "leftover" sets of the optimal set cover at a cost of at most OPT.
- It follows that there is at least one set among the leftover sets with a cost-effectiveness of at most ^{OPT}/_C, where C̄ = U − C.
- When e_k was covered $|\bar{C}| \ge (n-k+1)$.
- Since our covering algorithm is greedy, we have,

$$\begin{aligned} \operatorname{price}(e_k) &\leq \quad \frac{OPT}{\bar{\mathcal{C}}} \\ &= \quad \frac{OPT}{(n-k+1)}. \end{aligned}$$

Lemma

The greedy algorithm is an H_n factor approximation algorithm for set cover.

Lemma

The greedy algorithm is an H_n factor approximation algorithm for set cover.

Lemma

The greedy algorithm is an H_n factor approximation algorithm for set cover.

Proof.

The cost of each set is distributed among the new elements covered.

Lemma

The greedy algorithm is an H_n factor approximation algorithm for set cover.

- The cost of each set is distributed among the new elements covered.
- 2 It follows that the total cost of the set cover picked is equal to

Lemma

The greedy algorithm is an H_n factor approximation algorithm for set cover.

- The cost of each set is distributed among the new elements covered.
- 2 It follows that the total cost of the set cover picked is equal to $\sum_{k=1}^{n} price(e_k)$.

Lemma

The greedy algorithm is an H_n factor approximation algorithm for set cover.

- The cost of each set is distributed among the new elements covered.
- **2** It follows that the total cost of the set cover picked is equal to $\sum_{k=1}^{n} price(e_k)$. The lemma follows, since

Lemma

The greedy algorithm is an H_n factor approximation algorithm for set cover.

- The cost of each set is distributed among the new elements covered.
- **2** It follows that the total cost of the set cover picked is equal to $\sum_{k=1}^{n} price(e_k)$. The lemma follows, since

$$\sum_{k=1}^{n} price(e_k) \leq$$

Lemma

The greedy algorithm is an H_n factor approximation algorithm for set cover.

Proof.

The cost of each set is distributed among the new elements covered.

$$\sum_{k=1}^n price(e_k) \le \sum_{k=1}^n rac{OPT}{(n-k+1)}$$

Lemma

The greedy algorithm is an H_n factor approximation algorithm for set cover.

Proof.

The cost of each set is distributed among the new elements covered.

2 It follows that the total cost of the set cover picked is equal to $\sum_{k=1}^{n} price(e_k)$. The lemma follows, since

$$\sum_{k=1}^{n} price(e_k) \leq \sum_{k=1}^{n} \frac{OPT}{(n-k+1)}$$

=

Lemma

The greedy algorithm is an H_n factor approximation algorithm for set cover.

Proof.

The cost of each set is distributed among the new elements covered.

$$\sum_{k=1}^{n} \text{price}(e_k) \leq \sum_{k=1}^{n} \frac{OPT}{(n-k+1)}$$
$$= OPT \cdot (\frac{1}{1} + \frac{1}{2} + \dots + \frac{1}{n})$$

Lemma

The greedy algorithm is an H_n factor approximation algorithm for set cover.

Proof.

The cost of each set is distributed among the new elements covered.

$$\sum_{k=1}^{n} price(e_k) \leq \sum_{k=1}^{n} \frac{OPT}{(n-k+1)}$$
$$= OPT \cdot \left(\frac{1}{1} + \frac{1}{2} + \dots + \frac{1}{n}\right)$$

Lemma

The greedy algorithm is an H_n factor approximation algorithm for set cover.

Proof.

The cost of each set is distributed among the new elements covered.

$$\sum_{k=1}^{n} price(e_k) \leq \sum_{k=1}^{n} \frac{OPT}{(n-k+1)}$$
$$= OPT \cdot (\frac{1}{1} + \frac{1}{2} + \dots + \frac{1}{n})$$
$$= H_n \cdot OPT.$$

Formulating the Integer Program

IP formulation

Formulating the Integer Program

IP formulation

min $\sum_{S \in S_P} c(S) \cdot x_S$

Formulating the Integer Program

IP formulation

$\begin{array}{ll} & \min \sum_{S \in \mathcal{S}_{\mathcal{P}}} c(S) \cdot x_S \\ \text{subject to} & \sum_{S : e \in S} x_S \geq 1, \qquad e \in U \end{array}$

Formulating the Integer Program

IP formulation

	min $\sum_{\mathcal{S}\in\mathcal{S}_{\mathcal{P}}} c(\mathcal{S})\cdot x_{\mathcal{S}}$	
subject to	$\sum_{S:e\in S} x_S \ge 1$,	$e \in U$
	$x_{\mathcal{S}} \in \{0,1\},$	$\pmb{S} \in \pmb{S_P}$

The Linear Program relaxation

The Linear Program relaxation

Relaxation

The Linear Program relaxation

Relaxation

min $\sum_{S \in S_P} c(S) \cdot x_S$

The Linear Program relaxation

S

Relaxation

	min $\sum_{S \in S_P} c(S) \cdot x_S$	
ubject to	$\sum_{S:e\in S} x_S \ge 1$,	$e \in U$

The Linear Program relaxation

Relaxation

	min $\sum_{S\in S_P} c(S)\cdot x_S$	
subject to	$\sum_{\mathcal{S}: e \in \mathcal{S}} x_{\mathcal{S}} \ge 1$,	$e \in U$
	$x_{S} \ge 0,$	$m{S}\in m{S}_{P}$

The Linear Program relaxation

Relaxation

	min $\sum_{S \in S_P} c(S) \cdot x_S$	
subject to	$\sum_{\mathcal{S}: e \in \mathcal{S}} x_{\mathcal{S}} \ge 1$,	$e \in U$
	$x_{S} \geq 0,$	$m{S}\in m{S}_{P}$

Example

Let $U = \{e, f, g\}$ and the specified sets be $S_1 = \{e, f\}$, $S_2 = \{f, g\}$ and $S_3 = \{e, g\}$, each of unit cost.

The Linear Program relaxation

Relaxation

	min $\sum_{S \in \mathcal{S}_P} c(S) \cdot x_S$	
subject to	$\sum_{\mathcal{S}: e \in \mathcal{S}} x_{\mathcal{S}} \ge 1$,	$e \in U$
	$x_{S} \geq 0$,	$m{S}\in m{S}_{P}$

Example

Let $U = \{e, f, g\}$ and the specified sets be $S_1 = \{e, f\}$, $S_2 = \{f, g\}$ and $S_3 = \{e, g\}$, each of unit cost. Optimal integral cover is 2, whereas optimal fractional cover is $\frac{3}{2}$.

Dual		
	max $\sum_{e \in U} y_e$	
subject to	$\sum_{e:e\in S} y_e \leq c(S),$	$\mathcal{S}\in\mathcal{S}_{\mathcal{P}}$
	$y_e \ge 0,$	$e \in U$

Understanding the dual

Understanding the dual

Note
Understanding the dual

Note

• The primal LP is a covering LP; the dual is a packing LP.

Understanding the dual

- The primal LP is a covering LP; the dual is a packing LP.
- 2 In the dual, the goal is to assign weights to elements of sets, such that no set is overpacked.

Understanding the dual

- The primal LP is a covering LP; the dual is a packing LP.
- 2 In the dual, the goal is to assign weights to elements of sets, such that no set is overpacked.
- Observe that

Understanding the dual

- The primal LP is a covering LP; the dual is a packing LP.
- 2 In the dual, the goal is to assign weights to elements of sets, such that no set is overpacked.
- **3** Observe that $OPT_D = OPT_f \leq OPT$.

Understanding the dual

- The primal LP is a covering LP; the dual is a packing LP.
- 2 In the dual, the goal is to assign weights to elements of sets, such that no set is overpacked.
- **3** Observe that $OPT_D = OPT_f \leq OPT$.
- The cost of any dual feasible solution is a lower bound on OPT_f and hence on OPT.

Understanding the dual

- The primal LP is a covering LP; the dual is a packing LP.
- In the dual, the goal is to assign weights to elements of sets, such that no set is overpacked.
- **3** Observe that $OPT_D = OPT_f \leq OPT$.
- The cost of any dual feasible solution is a lower bound on OPT_f and hence on OPT.
- A good guess for dual values is

Understanding the dual

- The primal LP is a covering LP; the dual is a packing LP.
- In the dual, the goal is to assign weights to elements of sets, such that no set is overpacked.
- **3** Observe that $OPT_D = OPT_f \leq OPT$.
- The cost of any dual feasible solution is a lower bound on OPT_f and hence on OPT.
- **()** A good guess for dual values is $y_i = price(e_i)$.

Understanding the dual

- The primal LP is a covering LP; the dual is a packing LP.
- In the dual, the goal is to assign weights to elements of sets, such that no set is overpacked.
- **3** Observe that $OPT_D = OPT_f \leq OPT$.
- The cost of any dual feasible solution is a lower bound on OPT_f and hence on OPT.
- A good guess for dual values is y_i = price(e_i). Unfortunately, this solution is not dual feasible. (Homework!)

Understanding the dual

- The primal LP is a covering LP; the dual is a packing LP.
- In the dual, the goal is to assign weights to elements of sets, such that no set is overpacked.
- Observe that $OPT_D = OPT_f \leq OPT$.
- The cost of any dual feasible solution is a lower bound on OPT_f and hence on OPT.
- A good guess for dual values is y_i = price(e_i). Unfortunately, this solution is not dual feasible. (Homework!) A better guess is y_i = price(e_i)/H_n.

Analysis

Analysis

Lemma

Lemma

The vector **y** defined by $y_i = \frac{\text{price}(e_i)}{H_n}$ is dual feasible.

Lemma

The vector **y** defined by $y_i = \frac{\text{price}(e_i)}{H_0}$ is dual feasible.

Proof.

Lemma

The vector **y** defined by $y_i = \frac{\text{price}(e_i)}{H_0}$ is dual feasible.

Proof.

Lemma

The vector **y** defined by $y_i = \frac{\text{price}(e_i)}{H_n}$ is dual feasible.

Proof.

We will show that no set is overpacked by y.

• Pick an arbitrary set $S \in S_P$ with k elements.

Lemma

The vector **y** defined by $y_i = \frac{\text{price}(e_i)}{H_n}$ is dual feasible.

Proof.

- Pick an arbitrary set $S \in S_P$ with k elements.
- Our Number the elements of S as e₁, e₂,... e_k in the order that they were covered by the greedy algorithm.

Lemma

The vector **y** defined by $y_i = \frac{\text{price}(e_i)}{H_n}$ is dual feasible.

Proof.

- Pick an arbitrary set $S \in S_P$ with *k* elements.
- O Number the elements of S as e₁, e₂,... e_k in the order that they were covered by the greedy algorithm.
- 3 Consider the iteration in which *e_i* was covered.

Lemma

The vector **y** defined by $y_i = \frac{\text{price}(e_i)}{H_n}$ is dual feasible.

Proof.

- Pick an arbitrary set $S \in S_P$ with *k* elements.
- Our Number the elements of S as e₁, e₂,... e_k in the order that they were covered by the greedy algorithm.
- **O** Consider the iteration in which e_i was covered. At this juncture, *S* contains at least (k i + 1) elements.

Lemma

The vector **y** defined by $y_i = \frac{\text{price}(e_i)}{H_n}$ is dual feasible.

Proof.

- Pick an arbitrary set $S \in S_P$ with k elements.
- O Number the elements of S as e₁, e₂,... e_k in the order that they were covered by the greedy algorithm.
- **O** Consider the iteration in which e_i was covered. At this juncture, *S* contains at least (k i + 1) elements.
- Thus, in the current iteration, S itself can cover e_i at an average cost of

Lemma

The vector **y** defined by $y_i = \frac{\text{price}(e_i)}{H_n}$ is dual feasible.

Proof.

- Pick an arbitrary set $S \in S_P$ with *k* elements.
- O Number the elements of S as e₁, e₂,... e_k in the order that they were covered by the greedy algorithm.
- Consider the iteration in which e_i was covered. At this juncture, S contains at least (k i + 1) elements.
- Thus, in the current iteration, S itself can cover e_i at an average cost of $\frac{c(S)}{(k-i+1)}$.

Lemma

The vector **y** defined by $y_i = \frac{\text{price}(e_i)}{H_n}$ is dual feasible.

Proof.

- Pick an arbitrary set $S \in S_P$ with k elements.
- O Number the elements of S as e₁, e₂,... e_k in the order that they were covered by the greedy algorithm.
- Consider the iteration in which e_i was covered. At this juncture, S contains at least (k i + 1) elements.
- Thus, in the current iteration, S itself can cover e_i at an average cost of $\frac{c(S)}{(k-i+1)}$.
- Since our algorithm was greedy, $price(e_i) \leq \frac{c(S)}{(k-i+1)}$.

Lemma

The vector **y** defined by $y_i = \frac{\text{price}(e_i)}{H_n}$ is dual feasible.

Proof.

- Pick an arbitrary set $S \in S_P$ with k elements.
- Number the elements of S as e₁, e₂,... e_k in the order that they were covered by the greedy algorithm.
- **O** Consider the iteration in which e_i was covered. At this juncture, *S* contains at least (k i + 1) elements.
- Thus, in the current iteration, S itself can cover e_i at an average cost of $\frac{c(S)}{(k-i+1)}$.
- Since our algorithm was greedy, $price(e_i) \leq \frac{c(S)}{(k-i+1)}$.
- **3** Thus, $y_i \leq \frac{1}{H_n} \cdot \frac{c(S)}{(k-i+1)}$.

Analysis (contd.)

Proof (contd.)

Analysis (contd.)

Proof (contd.)

Analysis (contd.)

Proof (contd.)

$$\sum_{i=1}^{n} y_{e_i} \leq$$

Analysis (contd.)

Proof (contd.)

$$\sum_{i=1}^{k} y_{e_i} \leq \frac{c(S)}{H_0} \cdot (\frac{1}{k} + \frac{1}{k-1} + \dots + \frac{1}{1})$$

Analysis (contd.)

Proof (contd.)

It follows that:

$$\sum_{i=1}^{k} y_{e_i} \leq \frac{c(S)}{H_n} \cdot (\frac{1}{k} + \frac{1}{k-1} + \dots + \frac{1}{1})$$

=

Analysis (contd.)

Proof (contd.)

$$\sum_{i=1}^{k} y_{e_i} \leq \frac{c(S)}{H_n} \cdot \left(\frac{1}{k} + \frac{1}{k-1} + \dots + \frac{1}{1}\right)$$
$$= \frac{H_k}{H_n} \cdot c(S)$$

Analysis (contd.)

Proof (contd.)

$$\sum_{i=1}^{k} y_{e_i} \leq \frac{c(S)}{H_n} \cdot \left(\frac{1}{k} + \frac{1}{k-1} + \dots + \frac{1}{1}\right)$$
$$= \frac{H_k}{H_n} \cdot c(S)$$

Analysis (contd.)

Proof (contd.)

It follows that:

$$\sum_{i=1}^{k} y_{e_i} \leq \frac{c(S)}{H_n} \cdot \left(\frac{1}{k} + \frac{1}{k-1} + \dots \frac{1}{1}\right)$$
$$= \frac{H_k}{H_n} \cdot c(S)$$
$$\leq c(S).$$

Approximation Guarantee

Approximation Guarantee

Lemma

The approximation guarantee of the greedy set cover algorithm is H_n .

Approximation Guarantee

Lemma

The approximation guarantee of the greedy set cover algorithm is H_n .

Proof.

Approximation Guarantee

Lemma

The approximation guarantee of the greedy set cover algorithm is H_n .

Proof.

Approximation Guarantee

Lemma

The approximation guarantee of the greedy set cover algorithm is H_n .

Proof.

$$\sum_{e \in U} price(e) = H_n \cdot (\sum_{e \in U} y_e)$$

Approximation Guarantee

Lemma

The approximation guarantee of the greedy set cover algorithm is H_n .

Proof.

$$\sum_{e \in U} \text{price}(e) = H_n \cdot (\sum_{e \in U} y_e)$$

$$< H_n \cdot OPT_{\ell}$$
Approximation Guarantee

Lemma

The approximation guarantee of the greedy set cover algorithm is H_n .

Proof.

The cost of the set cover picked is:

$$\sum_{e \in U} \text{price}(e) = H_n \cdot (\sum_{e \in U} y_e)$$

< $H_n \cdot OPT_f$ (Why'

Approximation Guarantee

Lemma

The approximation guarantee of the greedy set cover algorithm is H_n .

Proof.

The cost of the set cover picked is:

$$\sum_{e \in U} price(e) = H_n \cdot (\sum_{e \in U} y_e)$$

 $\leq H_n \cdot OPT_f \text{ (Why?)}$
 $\leq H_n \cdot OPT$

Example

Example

The above approximation guarantee cannot be improved with this integer programming formulation.

Example

Example

The above approximation guarantee cannot be improved with this integer programming formulation. Consider the following instance:

• Let $n = 2^k - 1$, where k is a positive integer.

Example

- Let $n = 2^k 1$, where k is a positive integer.
- **2** Let $U = \{e_1, e_2, \dots, e_n\}$.

Example

- Let $n = 2^k 1$, where k is a positive integer.
- **2** Let $U = \{e_1, e_2, \dots, e_n\}$.
- For $1 \le i \le n$, consider *i* as a *k*-bit number. This number is a *k*-dimensional vector over GF[2].

Example

- Let $n = 2^k 1$, where k is a positive integer.
- **2** Let $U = \{e_1, e_2, \dots, e_n\}$.
- For $1 \le i \le n$, consider *i* as a *k*-bit number. This number is a *k*-dimensional vector over GF[2]. Let i denote this vector.

Example

- Let $n = 2^k 1$, where k is a positive integer.
- **2** Let $U = \{e_1, e_2, \dots, e_n\}$.
- For $1 \le i \le n$, consider *i* as a *k*-bit number. This number is a *k*-dimensional vector over GF[2]. Let i denote this vector.

• For
$$1 \le i \le n$$
, let $S_i = \{e_j | i \cdot j = 1\}$.

Example

The above approximation guarantee cannot be improved with this integer programming formulation. Consider the following instance:

- Let $n = 2^k 1$, where k is a positive integer.
- **2** Let $U = \{e_1, e_2, \dots, e_n\}$.
- For $1 \le i \le n$, consider *i* as a *k*-bit number. This number is a *k*-dimensional vector over GF[2]. Let i denote this vector.

• For
$$1 \leq i \leq n$$
, let $S_i = \{e_j | \mathbf{i} \cdot \mathbf{j} = \mathbf{1}\}$.

• Let $S_P = \{S_1, S_2, \dots S_n\}$ and let c(S) = 1, for all $S \in S_P$.

Example

The above approximation guarantee cannot be improved with this integer programming formulation. Consider the following instance:

- Let $n = 2^k 1$, where k is a positive integer.
- **2** Let $U = \{e_1, e_2, \dots, e_n\}$.
- For $1 \le i \le n$, consider *i* as a *k*-bit number. This number is a *k*-dimensional vector over GF[2]. Let i denote this vector.
- For $1 \leq i \leq n$, let $S_i = \{e_j | i \cdot j = 1\}$.
- Let $S_P = \{S_1, S_2, \dots S_n\}$ and let c(S) = 1, for all $S \in S_P$.

Example

The above approximation guarantee cannot be improved with this integer programming formulation. Consider the following instance:

- Let $n = 2^k 1$, where k is a positive integer.
- **2** Let $U = \{e_1, e_2, \dots, e_n\}$.
- For $1 \le i \le n$, consider *i* as a *k*-bit number. This number is a *k*-dimensional vector over GF[2]. Let i denote this vector.

• For
$$1 \le i \le n$$
, let $S_i = \{e_j | i \cdot j = 1\}$.

• Let $S_P = \{S_1, S_2, \dots S_n\}$ and let c(S) = 1, for all $S \in S_P$.

Observations

Each set contains

Example

The above approximation guarantee cannot be improved with this integer programming formulation. Consider the following instance:

- Let $n = 2^k 1$, where k is a positive integer.
- **2** Let $U = \{e_1, e_2, \dots, e_n\}$.
- For $1 \le i \le n$, consider *i* as a *k*-bit number. This number is a *k*-dimensional vector over GF[2]. Let i denote this vector.

• For
$$1 \le i \le n$$
, let $S_i = \{e_j | i \cdot j = 1\}$.

• Let $S_P = \{S_1, S_2, \dots S_n\}$ and let c(S) = 1, for all $S \in S_P$.

• Each set contains
$$\frac{n+1}{2} = 2^{k-1}$$
 elements.

Example

The above approximation guarantee cannot be improved with this integer programming formulation. Consider the following instance:

- Let $n = 2^k 1$, where k is a positive integer.
- **2** Let $U = \{e_1, e_2, \dots, e_n\}$.
- For $1 \le i \le n$, consider *i* as a *k*-bit number. This number is a *k*-dimensional vector over GF[2]. Let i denote this vector.

• For
$$1 \le i \le n$$
, let $S_i = \{e_j | i \cdot j = 1\}$.

• Let $S_P = \{S_1, S_2, \dots S_n\}$ and let c(S) = 1, for all $S \in S_P$.

- Each set contains $\frac{n+1}{2} = 2^{k-1}$ elements.
- 2 Each element is contained in $\frac{n+1}{2}$ sets.

Example

The above approximation guarantee cannot be improved with this integer programming formulation. Consider the following instance:

- Let $n = 2^k 1$, where k is a positive integer.
- **2** Let $U = \{e_1, e_2, \dots, e_n\}$.
- For $1 \le i \le n$, consider *i* as a *k*-bit number. This number is a *k*-dimensional vector over GF[2]. Let i denote this vector.

• For
$$1 \le i \le n$$
, let $S_i = \{e_j | i \cdot j = 1\}$.

• Let $S_P = \{S_1, S_2, \dots S_n\}$ and let c(S) = 1, for all $S \in S_P$.

- Each set contains $\frac{n+1}{2} = 2^{k-1}$ elements.
- 2 Each element is contained in $\frac{n+1}{2}$ sets.
- **3** Thus, $x_i = \frac{2}{n+1}$, $1 \le i \le n$ is a fractional set cover (optimal) of cost $\frac{2 \cdot n}{n+1}$.

Tightness Analysis (contd.)

Tightness Analysis (contd.)

Lemma

Any integral cover must pick at least k of the above n sets.

Tightness Analysis (contd.)

Lemma

Any integral cover must pick at least k of the above n sets.

Tightness Analysis (contd.)

Lemma

Any integral cover must pick at least k of the above n sets.

Proof.

Onsider the union of some p sets, where p < k. Let i₁, i₂... i_p denote the indices of these sets.

Tightness Analysis (contd.)

Lemma

Any integral cover must pick at least k of the above n sets.

- Onsider the union of some p sets, where p < k. Let i₁, i₂... i_p denote the indices of these sets.
- 2 Let A be a $p \times k$ matrix over GF[2], whose rows consist of $i_1, i_2, \dots i_p$ respectively.

Tightness Analysis (contd.)

Lemma

Any integral cover must pick at least k of the above n sets.

- Onsider the union of some p sets, where p < k. Let i₁, i₂... i_p denote the indices of these sets.
- 2 Let A be a $p \times k$ matrix over GF[2], whose rows consist of $i_1, i_2, \dots i_p$ respectively.
- The dimension of the null-space of A is at least 1.

Tightness Analysis (contd.)

Lemma

Any integral cover must pick at least k of the above n sets.

- Onsider the union of some p sets, where p < k. Let i₁, i₂... i_p denote the indices of these sets.
- 2 Let A be a $p \times k$ matrix over GF[2], whose rows consist of $i_1, i_2, ..., i_p$ respectively.
- The dimension of the null-space of A is at least 1. (Why?)

Tightness Analysis (contd.)

Lemma

Any integral cover must pick at least k of the above n sets.

- Onsider the union of some p sets, where p < k. Let i₁, i₂... i_p denote the indices of these sets.
- 2 Let **A** be a $p \times k$ matrix over GF[2], whose rows consist of $\mathbf{i_1}, \mathbf{i_2}, \dots \mathbf{i_p}$ respectively.
- The dimension of the null-space of A is at least 1. (Why?) Rank of A is less than k!

Tightness Analysis (contd.)

Lemma

Any integral cover must pick at least k of the above n sets.

- Onsider the union of some p sets, where p < k. Let i₁, i₂... i_p denote the indices of these sets.
- 2 Let **A** be a $p \times k$ matrix over GF[2], whose rows consist of $\mathbf{i_1}, \mathbf{i_2}, \dots \mathbf{i_p}$ respectively.
- The dimension of the null-space of A is at least 1. (Why?) Rank of A is less than k!
- O The null-space of A contains a vector j.

Tightness Analysis (contd.)

Lemma

Any integral cover must pick at least k of the above n sets.

- Onsider the union of some p sets, where p < k. Let i₁, i₂... i_p denote the indices of these sets.
- 2 Let A be a $p \times k$ matrix over GF[2], whose rows consist of $i_1, i_2, ..., i_p$ respectively.
- The dimension of the null-space of A is at least 1. (Why?) Rank of A is less than k!
- O The null-space of A contains a vector j.
- Since $\mathbf{A} \cdot \mathbf{j} = \mathbf{0}$, the element e_i is not in any of the *p* sets.

Tightness Analysis (contd.)

Lemma

Any integral cover must pick at least k of the above n sets.

- Onsider the union of some p sets, where p < k. Let i₁, i₂... i_p denote the indices of these sets.
- 2 Let A be a $p \times k$ matrix over GF[2], whose rows consist of $i_1, i_2, \dots i_p$ respectively.
- The dimension of the null-space of A is at least 1. (Why?) Rank of A is less than k!
- The null-space of A contains a vector j.
- Since $\mathbf{A} \cdot \mathbf{j} = \mathbf{0}$, the element e_i is not in any of the *p* sets.
- Hence, the p sets do not form a cover.

Conclusion of Analysis

Lemma

Conclusion of Analysis

Lemma

The integrality gap of the IP formulation of set cover discussed above is more than $\frac{\log_2 n}{2}$.

Conclusion of Analysis

Lemma

The integrality gap of the IP formulation of set cover discussed above is more than $\frac{\log_2 n}{2}$.

Conclusion of Analysis

Lemma

The integrality gap of the IP formulation of set cover discussed above is more than $\frac{\log_2 n}{2}$.

Proof.

The previous lemma established that any integral set cover has cost at least $k = \log_2(n+1)$.

Conclusion of Analysis

Lemma

The integrality gap of the IP formulation of set cover discussed above is more than $\frac{\log_2 n}{2}$.

Proof.

Conclusion of Analysis

Lemma

The integrality gap of the IP formulation of set cover discussed above is more than $\frac{\log_2 n}{2}$.

Proof.

Conclusion of Analysis

Lemma

The integrality gap of the IP formulation of set cover discussed above is more than $\frac{\log_2 n}{2}$.

Proof.

$$\frac{OPT_I}{OPT_f} = \frac{k}{\frac{2 \cdot n}{(n+1)}}$$

Conclusion of Analysis

Lemma

The integrality gap of the IP formulation of set cover discussed above is more than $\frac{\log_2 n}{2}$.

Proof.

$$\frac{OPT_{I}}{OPT_{f}} = \frac{k}{\frac{2 \cdot n}{(n+1)}}$$
$$= \frac{n+1}{2 \cdot n} \cdot \log_{2}(n+1)$$

Conclusion of Analysis

Lemma

The integrality gap of the IP formulation of set cover discussed above is more than $\frac{\log_2 n}{2}$.

Proof.

$$\frac{OPT_{f}}{OPT_{f}} = \frac{k}{\frac{2\cdot n}{(n+1)}}$$
$$= \frac{n+1}{2\cdot n} \cdot \log_{2}(n+1)$$
$$> \frac{\log_{2} n}{2}$$