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Review

Topics covered previously

1 Problem definition.

2 The binary and fractional cases.
3 The greedy algorithm for the fractional case.

4 The failure of the greedy algorithm for the binary case.
5 A weight-based, pseudo-polynomial dynamic programming algorithm for exact solution.
6 A profit-based, pseudo-polynomial dynamic programming algorithm for exact solution.
7 Scaling the profit-based pseudo-polynomial algorithm to develop a (1− ε) factor

approximation algorithm.
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Knapsack

The greedy algorithm revisited

A greedy algorithm for binary knapsack

Greedy Algorithm

1 Order the objects so that p1
w1
≥ p2

w3
≥ . . . pn

wn
.

2 Pack objects into knapsack, till you reach an object which cannot be packed without
violating the weight constraint.

Note

As explained previously, the greedy algorithm is not optimal. How bad is it? Knapsack of
capacity B. w1 = 1, p1 = (1 + ε), w2 = 1, p2 = (1 + ε), . . . wn−1 = 1, pn−1 = (1 + ε),
wn = pn = W = k ·n.
Greedy solution will pack (n−1) objects of weight 1, for a total profit of (n−1) · (1 + ε). Optimal
solution is k ·n, obtained by picking the nth object. Competitive ratio is k ·n

(n−1)·(1+ε) ≥
k

1+ε
, i.e.,

unbounded.
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The greedy algorithm revisited

A 1
2 -approximation algorithm

Bounded-error Algorithm

1 Order the objects so that p1
w1
≥ p2

w3
≥ . . . pn

wn
.

2 Pack objects into knapsack, till you reach an object which cannot be packed without
violating the weight constraint. Let this object be oi .

3 Pick the better of {o1,o2, . . . ,oi−1} and {oi}.

Theorem

The above algorithm is a 1
2 -approximation algorithm.

Proof.

Let ∑
i−1
j=1 wj = S. We must have S < W .

Note that ∑
i−1
j=1 pj + W−S

wi
·pi ≥ OPT .

Hence, ∑
i−1
j=1 pj + pi ≥ OPT . It follows that max{∑i−1

j=1 pj ,pi} ≥ OPT
2 .
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Knapsack

The greedy algorithm revisited

Recalling the FPTAS for knapsack

The scheme

1 Given ε , compute K = ε·P
n , where P = maxi pi .

2 For each object oi , define p′i = b pi
K c.

3 Use dynamic programming to compute the optimal set S′ of the truncated instance.

4 Output S′.

Analysis

1 Because of rounding down, K ·p′i ≤ pi . However, pi ≤ K ·p′i + K .

2 Let O denote the optimal set. It follows that ∑oi∈O pi −K ·∑oi∈O p′i ≤ n ·K .
Hence, K ·∑oi∈O p′i ≥ ∑oi∈O pi −n ·K .

3 However, S′ is the optimal set under profit assignment p′. Therefore, ∑oi∈S′ p
′
i ≥ ∑oi∈O p′i .

4 It follows that, K ·∑oi∈S′ p
′
i ≥ K ·∑oi∈O p′i .

5 Observe that, K ·∑oi∈S′ p
′
i ≤ ∑oi∈S′ pi . Hence, ∑oi∈S′ pi ≥ K ·∑oi∈O p′i . We conclude that,

∑oi∈S′ pi ≥ ∑oi∈O pi −n ·K .
6 Finally, observe that ∑oi∈O pi = OPT and that n ·K = ε ·P ≤ ε ·OPT ,

i.e.,∑oi∈S′ pi ≥ OPT − ε ·OPT = (1− ε) ·OPT !
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The greedy algorithm revisited

Strong NP-hardness and Approximation schemes

Chief points

1 The notion of size of input. Objects (sets, graphs) and numbers (cost, weight). Measuring
input size in unary (|Iu |) and binary (|I|).

2 Making an algorithm’s performance better by measuring in unary.
3 An algorithm for a problem Π. is pseudo-polynomial, if it runs in time polynomial in |Iu |, for

all instances, I of the problem.

4 A problem is said to be strongly NP-hard, if it is NP-hard in the unary sense, i.e., numbers
do not matter.

Theorem

A strongly NP-hard problem cannot have a pseudo-polynomial algorithm, unless P=NP.

Theorem

Let Π denote an NP-hard minimization problem. Assume, for all instances I, OPT (I) < p(|Iu |).
If Π admits an FPTAS, then it also admits a pseudo-polynomial time algorithm.
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Strong NP-hardness

Proof.

1 Assume that Π admits an FPTAS running in time q(|I|, 1
ε

), in inputs I and ε , where q is
some polynomial.

2 Set ε = 1
p(|Iu |) and run the FPTAS.

3 Observe that,

A(I) ≤ (1 + ε)OPT (I)

≤ OPT (I) + ε ·OPT (I)

< OPT (I) + ε ·p(|Iu |)
= OPT (I) + 1

The FPTAS is now forced to produce the optimal answer! Running time is q(|I|,p(|Iu |), which is
polynomial in |Iu |, i.e., we now have a pseudo-polynomial time algorithm for Π.

Corollary

If Π is an NP-hard minimization problem, as constrained above, then Π does not admit an
FPTAS, assuming P 6= NP.
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