Binary Knapsack

K. Subramani¹

¹Lane Department of Computer Science and Electrical Engineering West Virginia University

March 17, 2014

Outline			

Outline

Outline

2 The greedy algorithm revisited

Problem definition.

- Problem definition.
- 2 The binary and fractional cases.

- Problem definition.
- 2 The binary and fractional cases.
- The greedy algorithm for the fractional case.

- Problem definition.
- 2 The binary and fractional cases.
- The greedy algorithm for the fractional case.
- The failure of the greedy algorithm for the binary case.

- Problem definition.
- 2 The binary and fractional cases.
- The greedy algorithm for the fractional case.
- The failure of the greedy algorithm for the binary case.
- A weight-based, pseudo-polynomial dynamic programming algorithm for exact solution.

- Problem definition.
- 2 The binary and fractional cases.
- The greedy algorithm for the fractional case.
- The failure of the greedy algorithm for the binary case.
- A weight-based, pseudo-polynomial dynamic programming algorithm for exact solution.
- **()** A profit-based, pseudo-polynomial dynamic programming algorithm for exact solution.

- Problem definition.
- 2 The binary and fractional cases.
- The greedy algorithm for the fractional case.
- The failure of the greedy algorithm for the binary case.
- A weight-based, pseudo-polynomial dynamic programming algorithm for exact solution.
- **()** A profit-based, pseudo-polynomial dynamic programming algorithm for exact solution.
- Scaling the profit-based pseudo-polynomial algorithm to develop a (1 ε) factor approximation algorithm.

A greedy algorithm for binary knapsack

Greedy Algorithm

A greedy algorithm for binary knapsack

Greedy Algorithm

• Order the objects so that $\frac{p_1}{w_1} \ge \frac{p_2}{w_3} \ge \dots \frac{p_n}{w_n}$.

A greedy algorithm for binary knapsack

Greedy Algorithm

- Order the objects so that $\frac{p_1}{w_1} \ge \frac{p_2}{w_3} \ge \dots \frac{p_n}{w_n}$.
- Pack objects into knapsack, till you reach an object which cannot be packed without violating the weight constraint.

A greedy algorithm for binary knapsack

Greedy Algorithm

- Order the objects so that $\frac{p_1}{w_1} \ge \frac{p_2}{w_3} \ge \dots \frac{p_n}{w_n}$.
- Pack objects into knapsack, till you reach an object which cannot be packed without violating the weight constraint.

Note

A greedy algorithm for binary knapsack

Greedy Algorithm

- Order the objects so that $\frac{p_1}{w_1} \ge \frac{p_2}{w_3} \ge \dots \frac{p_n}{w_n}$.
- Pack objects into knapsack, till you reach an object which cannot be packed without violating the weight constraint.

Note

As explained previously, the greedy algorithm is not optimal.

A greedy algorithm for binary knapsack

Greedy Algorithm

- Order the objects so that $\frac{p_1}{w_1} \ge \frac{p_2}{w_3} \ge \dots \frac{p_n}{w_n}$.
- Pack objects into knapsack, till you reach an object which cannot be packed without violating the weight constraint.

Note

As explained previously, the greedy algorithm is not optimal. How bad is it?

A greedy algorithm for binary knapsack

Greedy Algorithm

- Order the objects so that $\frac{p_1}{w_1} \ge \frac{p_2}{w_3} \ge \dots \frac{p_n}{w_n}$.
- Pack objects into knapsack, till you reach an object which cannot be packed without violating the weight constraint.

Note

As explained previously, the greedy algorithm is not optimal. How bad is it? Knapsack of capacity B. $w_1 = 1$, $p_1 = (1 + \varepsilon)$, $w_2 = 1$, $p_2 = (1 + \varepsilon)$, ... $w_{n-1} = 1$, $p_{n-1} = (1 + \varepsilon)$, $w_n = p_n = W = k \cdot n$.

A greedy algorithm for binary knapsack

Greedy Algorithm

- Order the objects so that $\frac{p_1}{w_1} \ge \frac{p_2}{w_3} \ge \dots \frac{p_n}{w_n}$.
- Pack objects into knapsack, till you reach an object which cannot be packed without violating the weight constraint.

Note

As explained previously, the greedy algorithm is not optimal. How bad is it? Knapsack of capacity B. $w_1 = 1$, $p_1 = (1 + \varepsilon)$, $w_2 = 1$, $p_2 = (1 + \varepsilon)$, $\dots w_{n-1} = 1$, $p_{n-1} = (1 + \varepsilon)$, $w_n = p_n = W = k \cdot n$. Greedy solution will pack (n-1) objects of weight 1, for a total profit of $(n-1) \cdot (1 + \varepsilon)$.

A greedy algorithm for binary knapsack

Greedy Algorithm

- Order the objects so that $\frac{p_1}{w_1} \ge \frac{p_2}{w_3} \ge \dots \frac{p_n}{w_n}$.
- Pack objects into knapsack, till you reach an object which cannot be packed without violating the weight constraint.

Note

As explained previously, the greedy algorithm is not optimal. How bad is it? Knapsack of capacity B. $w_1 = 1$, $p_1 = (1 + \varepsilon)$, $w_2 = 1$, $p_2 = (1 + \varepsilon)$, $\dots w_{n-1} = 1$, $p_{n-1} = (1 + \varepsilon)$, $w_n = p_n = W = k \cdot n$. Greedy solution will pack (n - 1) objects of weight 1, for a total profit of $(n - 1) \cdot (1 + \varepsilon)$. Optimal solution is $k \cdot n$, obtained by picking the n^{th} object.

A greedy algorithm for binary knapsack

Greedy Algorithm

- Order the objects so that $\frac{p_1}{w_1} \ge \frac{p_2}{w_3} \ge \dots \frac{p_n}{w_n}$.
- Pack objects into knapsack, till you reach an object which cannot be packed without violating the weight constraint.

Note

As explained previously, the greedy algorithm is not optimal. How bad is it? Knapsack of capacity B. $w_1 = 1$, $p_1 = (1 + \varepsilon)$, $w_2 = 1$, $p_2 = (1 + \varepsilon)$, $\dots w_{n-1} = 1$, $p_{n-1} = (1 + \varepsilon)$, $w_n = p_n = W = k \cdot n$. Greedy solution will pack (n - 1) objects of weight 1, for a total profit of $(n - 1) \cdot (1 + \varepsilon)$. Optimal solution is $k \cdot n$, obtained by picking the n^{th} object. Competitive ratio is

A greedy algorithm for binary knapsack

Greedy Algorithm

- Order the objects so that $\frac{p_1}{w_1} \ge \frac{p_2}{w_3} \ge \dots \frac{p_n}{w_n}$.
- Pack objects into knapsack, till you reach an object which cannot be packed without violating the weight constraint.

Note

As explained previously, the greedy algorithm is not optimal. How bad is it? Knapsack of capacity B. $w_1 = 1$, $p_1 = (1 + \varepsilon)$, $w_2 = 1$, $p_2 = (1 + \varepsilon)$, ... $w_{n-1} = 1$, $p_{n-1} = (1 + \varepsilon)$, $w_n = p_n = W = k \cdot n$. Greedy solution will pack (n-1) objects of weight 1, for a total profit of $(n-1) \cdot (1 + \varepsilon)$. Optimal solution is $k \cdot n$, obtained by picking the n^{th} object. Competitive ratio is $\frac{k \cdot n}{(n-1) \cdot (1 + \varepsilon)}$

A greedy algorithm for binary knapsack

Greedy Algorithm

- Order the objects so that $\frac{p_1}{w_1} \ge \frac{p_2}{w_3} \ge \dots \frac{p_n}{w_n}$.
- Pack objects into knapsack, till you reach an object which cannot be packed without violating the weight constraint.

Note

As explained previously, the greedy algorithm is not optimal. How bad is it? Knapsack of capacity B. $w_1 = 1$, $p_1 = (1 + \varepsilon)$, $w_2 = 1$, $p_2 = (1 + \varepsilon)$, ... $w_{n-1} = 1$, $p_{n-1} = (1 + \varepsilon)$, $w_n = p_n = W = k \cdot n$. Greedy solution will pack (n-1) objects of weight 1, for a total profit of $(n-1) \cdot (1 + \varepsilon)$. Optimal solution is $k \cdot n$, obtained by picking the n^{th} object. Competitive ratio is $\frac{k \cdot n}{(n-1) \cdot (1 + \varepsilon)} \ge \frac{k}{1 + \varepsilon}$,

A greedy algorithm for binary knapsack

Greedy Algorithm

- Order the objects so that $\frac{p_1}{w_1} \ge \frac{p_2}{w_3} \ge \dots \frac{p_n}{w_n}$.
- Pack objects into knapsack, till you reach an object which cannot be packed without violating the weight constraint.

Note

As explained previously, the greedy algorithm is not optimal. How bad is it? Knapsack of capacity B. $w_1 = 1$, $p_1 = (1 + \varepsilon)$, $w_2 = 1$, $p_2 = (1 + \varepsilon)$, $\dots w_{n-1} = 1$, $p_{n-1} = (1 + \varepsilon)$, $w_n = p_n = W = k \cdot n$. Greedy solution will pack (n-1) objects of weight 1, for a total profit of $(n-1) \cdot (1 + \varepsilon)$. Optimal solution is $k \cdot n$, obtained by picking the n^{th} object. Competitive ratio is $\frac{k \cdot n}{(n-1) \cdot (1 + \varepsilon)} \ge \frac{k}{1 + \varepsilon}$, i.e., unbounded.

A $\frac{1}{2}$ -approximation algorithm

Bounded-error Algorithm

A $\frac{1}{2}$ -approximation algorithm

Bounded-error Algorithm

• Order the objects so that
$$\frac{p_1}{w_1} \ge \frac{p_2}{w_3} \ge \dots \frac{p_n}{w_n}$$

Bounded-error Algorithm

- Order the objects so that $\frac{p_1}{w_1} \ge \frac{p_2}{w_3} \ge \dots \frac{p_n}{w_n}$.
- **2** Pack objects into knapsack, till you reach an object which cannot be packed without violating the weight constraint. Let this object be o_i .

Bounded-error Algorithm

- Order the objects so that $\frac{p_1}{w_1} \ge \frac{p_2}{w_3} \ge \dots \frac{p_n}{w_n}$.
- Pack objects into knapsack, till you reach an object which cannot be packed without violating the weight constraint. Let this object be o_i.

• Pick the better of $\{o_1, o_2, \ldots, o_{i-1}\}$ and $\{o_i\}$.

Bounded-error Algorithm

- Order the objects so that $\frac{p_1}{w_1} \ge \frac{p_2}{w_3} \ge \dots \frac{p_n}{w_n}$.
- Pack objects into knapsack, till you reach an object which cannot be packed without violating the weight constraint. Let this object be o_i.

• Pick the better of $\{o_1, o_2, \ldots, o_{i-1}\}$ and $\{o_i\}$.

Theorem

The above algorithm is a $\frac{1}{2}$ -approximation algorithm.

Bounded-error Algorithm

- Order the objects so that $\frac{p_1}{w_1} \ge \frac{p_2}{w_3} \ge \dots \frac{p_n}{w_n}$.
- **2** Pack objects into knapsack, till you reach an object which cannot be packed without violating the weight constraint. Let this object be o_i .
- Pick the better of $\{o_1, o_2, \ldots, o_{i-1}\}$ and $\{o_i\}$.

Theorem

The above algorithm is a $\frac{1}{2}$ -approximation algorithm.

Proof.

Bounded-error Algorithm

- Order the objects so that $\frac{p_1}{w_1} \ge \frac{p_2}{w_3} \ge \dots \frac{p_n}{w_n}$.
- **2** Pack objects into knapsack, till you reach an object which cannot be packed without violating the weight constraint. Let this object be o_i .
- Pick the better of $\{o_1, o_2, \ldots, o_{i-1}\}$ and $\{o_i\}$.

Theorem

The above algorithm is a $\frac{1}{2}$ -approximation algorithm.

Proof.

Let $\sum_{j=1}^{i-1} w_j = S$.

Bounded-error Algorithm

- Order the objects so that $\frac{p_1}{w_1} \ge \frac{p_2}{w_3} \ge \dots \frac{p_n}{w_n}$.
- Pack objects into knapsack, till you reach an object which cannot be packed without violating the weight constraint. Let this object be o_i.
- Pick the better of $\{o_1, o_2, \ldots, o_{i-1}\}$ and $\{o_i\}$.

Theorem

The above algorithm is a $\frac{1}{2}$ -approximation algorithm.

Proof.

Let
$$\sum_{i=1}^{i-1} w_i = S$$
. We must have $S < W$.

Bounded-error Algorithm

- Order the objects so that $\frac{p_1}{w_1} \ge \frac{p_2}{w_3} \ge \dots \frac{p_n}{w_n}$.
- Pack objects into knapsack, till you reach an object which cannot be packed without violating the weight constraint. Let this object be o_i.
- Pick the better of $\{o_1, o_2, \ldots, o_{i-1}\}$ and $\{o_i\}$.

Theorem

The above algorithm is a $\frac{1}{2}$ -approximation algorithm.

Proof.

Let $\sum_{j=1}^{i-1} w_j = S$. We must have S < W. Note that $\sum_{j=1}^{i-1} p_j + \frac{W-S}{w_i} \cdot p_i \ge OPT$.

Bounded-error Algorithm

- Order the objects so that $\frac{p_1}{w_1} \ge \frac{p_2}{w_3} \ge \dots \frac{p_n}{w_n}$.
- Pack objects into knapsack, till you reach an object which cannot be packed without violating the weight constraint. Let this object be o_i.
- Pick the better of $\{o_1, o_2, \ldots, o_{i-1}\}$ and $\{o_i\}$.

Theorem

The above algorithm is a $\frac{1}{2}$ -approximation algorithm.

Proof.

Let $\sum_{j=1}^{i-1} w_j = S$. We must have S < W. Note that $\sum_{j=1}^{i-1} p_j + \frac{W-S}{w_i} \cdot p_i \ge OPT$. Hence, $\sum_{j=1}^{i-1} p_j + p_i \ge OPT$.

Bounded-error Algorithm

- Order the objects so that $\frac{p_1}{w_1} \ge \frac{p_2}{w_3} \ge \dots \frac{p_n}{w_n}$.
- Pack objects into knapsack, till you reach an object which cannot be packed without violating the weight constraint. Let this object be o_i.
- Pick the better of $\{o_1, o_2, \ldots, o_{i-1}\}$ and $\{o_i\}$.

Theorem

The above algorithm is a $\frac{1}{2}$ -approximation algorithm.

Proof.

Let $\sum_{j=1}^{i-1} w_j = S$. We must have S < W. Note that $\sum_{j=1}^{i-1} p_j + \frac{W-S}{w_i} \cdot p_i \ge OPT$. Hence, $\sum_{j=1}^{i-1} p_j + p_i \ge OPT$. It follows that $\max\{\sum_{j=1}^{i-1} p_j, p_i\} \ge \frac{OPT}{2}$.

Recalling the FPTAS for knapsack
Recalling the FPTAS for knapsack

Recalling the FPTAS for knapsack

() Given
$$\varepsilon$$
, compute $K = \frac{\varepsilon \cdot P}{p}$, where $P = \max_i p_i$.

- Given ε , compute $K = \frac{\varepsilon \cdot P}{p}$, where $P = \max_i p_i$.
- **2** For each object o_i , define $p'_i = \lfloor \frac{p_i}{K} \rfloor$.

- Given ε , compute $K = \frac{\varepsilon \cdot P}{n}$, where $P = \max_i p_i$.
- **2** For each object o_i , define $p'_i = \lfloor \frac{p_i}{K} \rfloor$.
- **③** Use dynamic programming to compute the optimal set S' of the truncated instance.

- Given ε , compute $K = \frac{\varepsilon \cdot P}{n}$, where $P = \max_i p_i$.
- **2** For each object o_i , define $p'_i = \lfloor \frac{p_i}{K} \rfloor$.
- **③** Use dynamic programming to compute the optimal set S' of the truncated instance.
- Output S'.

The scheme

- Given ε , compute $K = \frac{\varepsilon \cdot P}{n}$, where $P = \max_i p_i$.
- **2** For each object o_i , define $p'_i = \lfloor \frac{p_i}{K} \rfloor$.
- **③** Use dynamic programming to compute the optimal set S' of the truncated instance.
- Output S'.

The scheme

- Given ε , compute $K = \frac{\varepsilon \cdot P}{n}$, where $P = \max_i p_i$.
- **2** For each object o_i , define $p'_i = \lfloor \frac{p_i}{K} \rfloor$.
- **③** Use dynamic programming to compute the optimal set S' of the truncated instance.
- Output S'.

The scheme

- Given ε , compute $K = \frac{\varepsilon \cdot P}{p}$, where $P = \max_i p_i$.
- **2** For each object o_i , define $p'_i = \lfloor \frac{p_i}{K} \rfloor$.
- **③** Use dynamic programming to compute the optimal set S' of the truncated instance.
- Output S'.

Analysis

• Because of rounding down, $K \cdot p'_i \leq p_i$.

The scheme

- Given ε , compute $K = \frac{\varepsilon \cdot P}{p}$, where $P = \max_i p_i$.
- **2** For each object o_i , define $p'_i = \lfloor \frac{p_i}{K} \rfloor$.
- **③** Use dynamic programming to compute the optimal set S' of the truncated instance.
- Output S'.

Analysis

• Because of rounding down, $K \cdot p'_i \leq p_i$. However, $p_i \leq K \cdot p'_i + K$.

The scheme

- Given ε , compute $K = \frac{\varepsilon \cdot P}{n}$, where $P = \max_i p_i$.
- **2** For each object o_i , define $p'_i = \lfloor \frac{p_i}{K} \rfloor$.
- **(9)** Use dynamic programming to compute the optimal set S' of the truncated instance.
- Output S'.

- Because of rounding down, $K \cdot p'_i \leq p_i$. However, $p_i \leq K \cdot p'_i + K$.
- 2 Let O denote the optimal set.

The scheme

- Given ε , compute $K = \frac{\varepsilon \cdot P}{p}$, where $P = \max_i p_i$.
- **2** For each object o_i , define $p'_i = \lfloor \frac{p_i}{K} \rfloor$.
- **(9)** Use dynamic programming to compute the optimal set S' of the truncated instance.
- Output S'.

- Because of rounding down, $K \cdot p'_i \le p_i$. However, $p_i \le K \cdot p'_i + K$.
- **2** Let *O* denote the optimal set. It follows that $\sum_{o_i \in O} p_i K \cdot \sum_{o_i \in O} p'_i \le n \cdot K$.

The scheme

- Given ε , compute $K = \frac{\varepsilon \cdot P}{p}$, where $P = \max_i p_i$.
- 2 For each object o_i , define $p'_i = \lfloor \frac{p_i}{K} \rfloor$.
- **(9)** Use dynamic programming to compute the optimal set S' of the truncated instance.
- Output S'.

- Because of rounding down, $K \cdot p'_i \le p_i$. However, $p_i \le K \cdot p'_i + K$.
- ② Let *O* denote the optimal set. It follows that $\sum_{o_i \in O} p_i K \cdot \sum_{o_i \in O} p'_i \le n \cdot K$. Hence, $K \cdot \sum_{o_i \in O} p'_i \ge \sum_{o_i \in O} p_i - n \cdot K$.

The scheme

- Given ε , compute $K = \frac{\varepsilon \cdot P}{p}$, where $P = \max_i p_i$.
- **2** For each object o_i , define $p'_i = \lfloor \frac{p_i}{K} \rfloor$.
- **()** Use dynamic programming to compute the optimal set S' of the truncated instance.
- Output S'.

- Because of rounding down, $K \cdot p'_i \le p_i$. However, $p_i \le K \cdot p'_i + K$.
- **2** Let *O* denote the optimal set. It follows that $\sum_{o_i \in O} p_i K \cdot \sum_{o_i \in O} p'_i \le n \cdot K$. Hence, $K \cdot \sum_{o_i \in O} p'_i \ge \sum_{o_i \in O} p_i - n \cdot K$.
- However, S' is the optimal set under profit assignment p'.

The scheme

- Given ε , compute $K = \frac{\varepsilon \cdot P}{p}$, where $P = \max_i p_i$.
- **2** For each object o_i , define $p'_i = \lfloor \frac{p_i}{K} \rfloor$.
- **()** Use dynamic programming to compute the optimal set S' of the truncated instance.
- Output S'.

Analysis

- Because of rounding down, $K \cdot p'_i \le p_i$. However, $p_i \le K \cdot p'_i + K$.
- **2** Let *O* denote the optimal set. It follows that $\sum_{o_i \in O} p_i K \cdot \sum_{o_i \in O} p'_i \le n \cdot K$. Hence, $K \cdot \sum_{o_i \in O} p'_i \ge \sum_{o_i \in O} p_i - n \cdot K$.

3 However, S' is the optimal set under profit assignment p'. Therefore, $\sum_{o_i \in S'} p'_i \ge \sum_{o_i \in O} p'_i$.

The scheme

- Given ε , compute $K = \frac{\varepsilon \cdot P}{p}$, where $P = \max_i p_i$.
- **2** For each object o_i , define $p'_i = \lfloor \frac{p_i}{K} \rfloor$.
- **()** Use dynamic programming to compute the optimal set S' of the truncated instance.
- Output S'.

Analysis

- Because of rounding down, $K \cdot p'_i \le p_i$. However, $p_i \le K \cdot p'_i + K$.
- ② Let *O* denote the optimal set. It follows that $\sum_{o_i \in O} p_i K \cdot \sum_{o_i \in O} p'_i \le n \cdot K$. Hence, $K \cdot \sum_{o_i \in O} p'_i \ge \sum_{o_i \in O} p_i - n \cdot K$.

9 However, S' is the optimal set under profit assignment p'. Therefore, $\sum_{o_i \in S'} p'_i \ge \sum_{o_i \in O} p'_i$.

• It follows that,
$$K \cdot \sum_{o_i \in S'} p'_i \ge K \cdot \sum_{o_i \in O} p'_i$$
.

The scheme

- Given ε , compute $K = \frac{\varepsilon \cdot P}{p}$, where $P = \max_i p_i$.
- **2** For each object o_i , define $p'_i = \lfloor \frac{p_i}{K} \rfloor$.
- **()** Use dynamic programming to compute the optimal set S' of the truncated instance.
- Output S'.

- Because of rounding down, $K \cdot p'_i \le p_i$. However, $p_i \le K \cdot p'_i + K$.
- **2** Let *O* denote the optimal set. It follows that $\sum_{o_i \in O} p_i K \cdot \sum_{o_i \in O} p'_i \le n \cdot K$. Hence, $K \cdot \sum_{o_i \in O} p'_i \ge \sum_{o_i \in O} p_i - n \cdot K$.
- **3** However, S' is the optimal set under profit assignment p'. Therefore, $\sum_{o_i \in S'} p'_i \ge \sum_{o_i \in O} p'_i$.
- It follows that, $K \cdot \sum_{o_i \in S'} p'_i \ge K \cdot \sum_{o_i \in O} p'_i$.
- Observe that,

The scheme

- Given ε , compute $K = \frac{\varepsilon \cdot P}{p}$, where $P = \max_i p_i$.
- **2** For each object o_i , define $p'_i = \lfloor \frac{p_i}{K} \rfloor$.
- **()** Use dynamic programming to compute the optimal set S' of the truncated instance.
- Output S'.

Analysis

- Because of rounding down, $K \cdot p'_i \le p_i$. However, $p_i \le K \cdot p'_i + K$.
- ② Let *O* denote the optimal set. It follows that $\sum_{o_i \in O} p_i K \cdot \sum_{o_i \in O} p'_i \le n \cdot K$. Hence, $K \cdot \sum_{o_i \in O} p'_i \ge \sum_{o_i \in O} p_i - n \cdot K$.

9 However, S' is the optimal set under profit assignment p'. Therefore, $\sum_{o_i \in S'} p'_i \ge \sum_{o_i \in O} p'_i$.

- It follows that, $K \cdot \sum_{o_i \in S'} p'_i \ge K \cdot \sum_{o_i \in O} p'_i$.
- Observe that, $K \cdot \sum_{o_i \in S'} p'_i \leq \sum_{o_i \in S'} p_i$.

The scheme

- Given ε , compute $K = \frac{\varepsilon \cdot P}{p}$, where $P = \max_i p_i$.
- **2** For each object o_i , define $p'_i = \lfloor \frac{p_i}{K} \rfloor$.
- **(9)** Use dynamic programming to compute the optimal set S' of the truncated instance.
- Output S'.

Analysis

• Because of rounding down, $K \cdot p'_i \le p_i$. However, $p_i \le K \cdot p'_i + K$.

② Let *O* denote the optimal set. It follows that $\sum_{o_i \in O} p_i - K \cdot \sum_{o_i \in O} p'_i \le n \cdot K$. Hence, $K \cdot \sum_{o_i \in O} p'_i \ge \sum_{o_i \in O} p_i - n \cdot K$.

9 However, S' is the optimal set under profit assignment p'. Therefore, $\sum_{o_i \in S'} p'_i \ge \sum_{o_i \in O} p'_i$.

- It follows that, $K \cdot \sum_{o_i \in S'} p'_i \ge K \cdot \sum_{o_i \in O} p'_i$.
- $Observe that, K \cdot \sum_{o_i \in S'} p'_i \leq \sum_{o_i \in S'} p_i. Hence, \sum_{o_i \in S'} p_i \geq K \cdot \sum_{o_i \in O} p'_i.$

The scheme

- Given ε , compute $K = \frac{\varepsilon \cdot P}{p}$, where $P = \max_i p_i$.
- **2** For each object o_i , define $p'_i = \lfloor \frac{p_i}{K} \rfloor$.
- Use dynamic programming to compute the optimal set S' of the truncated instance.

Output S'.

Analysis

- Because of rounding down, $K \cdot p'_i \leq p_i$. However, $p_i \leq K \cdot p'_i + K$.
- ② Let *O* denote the optimal set. It follows that $\sum_{o_i \in O} p_i K \cdot \sum_{o_i \in O} p'_i \le n \cdot K$. Hence, $K \cdot \sum_{o_i \in O} p'_i \ge \sum_{o_i \in O} p_i - n \cdot K$.

() However, S' is the optimal set under profit assignment p'. Therefore, $\sum_{o_i \in S'} p'_i \ge \sum_{o_i \in O} p'_i$.

- It follows that, $K \cdot \sum_{o_i \in S'} p'_i \ge K \cdot \sum_{o_i \in O} p'_i$.
- **③** Observe that, $K \cdot \sum_{o_i \in S'} p'_i \leq \sum_{o_i \in S'} p_i$. Hence, $\sum_{o_i \in S'} p_i \geq K \cdot \sum_{o_i \in O} p'_i$. We conclude that, $\sum_{o_i \in S'} p_i \geq \sum_{o_i \in O} p_i n \cdot K$.

The scheme

- Given ε , compute $K = \frac{\varepsilon \cdot P}{p}$, where $P = \max_i p_i$.
- **2** For each object o_i , define $p'_i = \lfloor \frac{p_i}{K} \rfloor$.
- **()** Use dynamic programming to compute the optimal set S' of the truncated instance.

Output S'.

Analysis

- Because of rounding down, $K \cdot p'_i \leq p_i$. However, $p_i \leq K \cdot p'_i + K$.
- ② Let *O* denote the optimal set. It follows that $\sum_{o_i \in O} p_i K \cdot \sum_{o_i \in O} p'_i \le n \cdot K$. Hence, $K \cdot \sum_{o_i \in O} p'_i \ge \sum_{o_i \in O} p_i - n \cdot K$.

3 However, S' is the optimal set under profit assignment p'. Therefore, $\sum_{o_i \in S'} p'_i \ge \sum_{o_i \in O} p'_i$.

- It follows that, $K \cdot \sum_{o_i \in S'} p'_i \ge K \cdot \sum_{o_i \in O} p'_i$.
- **③** Observe that, $K \cdot \sum_{o_i \in S'} p'_i \leq \sum_{o_i \in S'} p_i$. Hence, $\sum_{o_i \in S'} p_i \geq K \cdot \sum_{o_i \in O} p'_i$. We conclude that, $\sum_{o_i \in S'} p_i \geq \sum_{o_i \in O} p_i n \cdot K$.

• Finally, observe that $\sum_{o_i \in O} p_i = OPT$ and that $n \cdot K = \varepsilon \cdot P \le \varepsilon \cdot OPT$, i.e.,

The scheme

- Given ε , compute $K = \frac{\varepsilon \cdot P}{p}$, where $P = \max_i p_i$.
- **2** For each object o_i , define $p'_i = \lfloor \frac{p_i}{K} \rfloor$.
- **()** Use dynamic programming to compute the optimal set S' of the truncated instance.

Output S'.

Analysis

- Because of rounding down, $K \cdot p'_i \le p_i$. However, $p_i \le K \cdot p'_i + K$.
- ② Let *O* denote the optimal set. It follows that $\sum_{o_i \in O} p_i K \cdot \sum_{o_i \in O} p'_i \le n \cdot K$. Hence, $K \cdot \sum_{o_i \in O} p'_i \ge \sum_{o_i \in O} p_i - n \cdot K$.

3 However, S' is the optimal set under profit assignment p'. Therefore, $\sum_{o_i \in S'} p'_i \ge \sum_{o_i \in O} p'_i$.

- It follows that, $K \cdot \sum_{o_i \in S'} p'_i \ge K \cdot \sum_{o_i \in O} p'_i$.
- **②** Observe that, $K \cdot \sum_{o_i \in S'} p'_i \leq \sum_{o_i \in S'} p_i$. Hence, $\sum_{o_i \in S'} p_i \geq K \cdot \sum_{o_i \in O} p'_i$. We conclude that, $\sum_{o_i \in S'} p_i \geq \sum_{o_i \in O} p_i n \cdot K$.

• Finally, observe that $\sum_{o_i \in O} p_i = OPT$ and that $n \cdot K = \varepsilon \cdot P \le \varepsilon \cdot OPT$, i.e., $\sum_{o_i \in S'} p_i \ge \varepsilon$

The scheme

- Given ε , compute $K = \frac{\varepsilon \cdot P}{p}$, where $P = \max_i p_i$.
- **2** For each object o_i , define $p'_i = \lfloor \frac{p_i}{K} \rfloor$.
- **()** Use dynamic programming to compute the optimal set S' of the truncated instance.

Output S'.

Analysis

- Because of rounding down, $K \cdot p'_i \leq p_i$. However, $p_i \leq K \cdot p'_i + K$.
- ② Let *O* denote the optimal set. It follows that $\sum_{o_i \in O} p_i K \cdot \sum_{o_i \in O} p'_i \le n \cdot K$. Hence, $K \cdot \sum_{o_i \in O} p'_i \ge \sum_{o_i \in O} p_i - n \cdot K$.

3 However, S' is the optimal set under profit assignment p'. Therefore, $\sum_{o_i \in S'} p'_i \ge \sum_{o_i \in O} p'_i$.

- It follows that, $K \cdot \sum_{o_i \in S'} p'_i \ge K \cdot \sum_{o_i \in O} p'_i$.
- **③** Observe that, $K \cdot \sum_{o_i \in S'} p'_i \leq \sum_{o_i \in S'} p_i$. Hence, $\sum_{o_i \in S'} p_i \geq K \cdot \sum_{o_i \in O} p'_i$. We conclude that, $\sum_{o_i \in S'} p_i \geq \sum_{o_i \in O} p_i n \cdot K$.

• Finally, observe that $\sum_{o_i \in O} p_i = OPT$ and that $n \cdot K = \varepsilon \cdot P \le \varepsilon \cdot OPT$, i.e., $\sum_{o_i \in S'} p_i \ge OPT - \varepsilon \cdot OPT$

The scheme

- Given ε , compute $K = \frac{\varepsilon \cdot P}{p}$, where $P = \max_i p_i$.
- **2** For each object o_i , define $p'_i = \lfloor \frac{p_i}{K} \rfloor$.
- **()** Use dynamic programming to compute the optimal set S' of the truncated instance.

Output S'.

Analysis

- Because of rounding down, $K \cdot p'_i \le p_i$. However, $p_i \le K \cdot p'_i + K$.
- ② Let *O* denote the optimal set. It follows that $\sum_{o_i \in O} p_i K \cdot \sum_{o_i \in O} p'_i \le n \cdot K$. Hence, $K \cdot \sum_{o_i \in O} p'_i \ge \sum_{o_i \in O} p_i - n \cdot K$.

3 However, S' is the optimal set under profit assignment p'. Therefore, $\sum_{o_i \in S'} p'_i \ge \sum_{o_i \in O} p'_i$.

- It follows that, $K \cdot \sum_{o_i \in S'} p'_i \ge K \cdot \sum_{o_i \in O} p'_i$.
- **③** Observe that, $K \cdot \sum_{o_i \in S'} p'_i \leq \sum_{o_i \in S'} p_i$. Hence, $\sum_{o_i \in S'} p_i \geq K \cdot \sum_{o_i \in O} p'_i$. We conclude that, $\sum_{o_i \in S'} p_i \geq \sum_{o_i \in O} p_i n \cdot K$.

• Finally, observe that $\sum_{o_i \in O} p_i = OPT$ and that $n \cdot K = \varepsilon \cdot P \le \varepsilon \cdot OPT$, i.e., $\sum_{o_i \in S'} p_i \ge OPT - \varepsilon \cdot OPT = (1 - \varepsilon) \cdot OPT!$

Strong NP-hardness and Approximation schemes

Chief points

The notion of size of input.

Strong NP-hardness and Approximation schemes

Chief points

• The notion of size of input. Objects (sets, graphs)

Strong NP-hardness and Approximation schemes

Chief points

The notion of size of input. Objects (sets, graphs) and

Strong NP-hardness and Approximation schemes

Chief points

The notion of size of input. Objects (sets, graphs) and numbers (cost, weight).

Strong NP-hardness and Approximation schemes

Chief points

The notion of size of input. Objects (sets, graphs) and numbers (cost, weight). Measuring input size in unary (|*I*_u|) and binary (|*I*|).

Strong NP-hardness and Approximation schemes

- The notion of size of input. Objects (sets, graphs) and numbers (cost, weight). Measuring input size in unary (|I_u|) and binary (|I|).
- Making an algorithm's performance better by measuring in unary.

Strong NP-hardness and Approximation schemes

- The notion of size of input. Objects (sets, graphs) and numbers (cost, weight). Measuring input size in unary (|I_u|) and binary (|I|).
- 2 Making an algorithm's performance better by measuring in unary.
- An algorithm for a problem Π . is *pseudo-polynomial*, if it runs in time polynomial in $|I_u|$, for all instances, *I* of the problem.

Strong NP-hardness and Approximation schemes

- The notion of size of input. Objects (sets, graphs) and numbers (cost, weight). Measuring input size in unary (|I_u|) and binary (|I|).
- 2 Making an algorithm's performance better by measuring in unary.
- An algorithm for a problem Π . is *pseudo-polynomial*, if it runs in time polynomial in $|I_u|$, for all instances, *I* of the problem.
- A problem is said to be strongly NP-hard, if it is NP-hard in the unary sense,

Strong NP-hardness and Approximation schemes

- The notion of size of input. Objects (sets, graphs) and numbers (cost, weight). Measuring input size in unary (|*I*_u|) and binary (|*I*|).
- Making an algorithm's performance better by measuring in unary.
- An algorithm for a problem Π . is *pseudo-polynomial*, if it runs in time polynomial in $|I_u|$, for all instances, *I* of the problem.
- A problem is said to be strongly NP-hard, if it is NP-hard in the unary sense, i.e., numbers do not matter.
Strong NP-hardness and Approximation schemes

Chief points

- The notion of size of input. Objects (sets, graphs) and numbers (cost, weight). Measuring input size in unary (|*I*_u|) and binary (|*I*|).
- 2 Making an algorithm's performance better by measuring in unary.
- **()** An algorithm for a problem Π . is *pseudo-polynomial*, if it runs in time polynomial in $|I_u|$, for all instances, *I* of the problem.
- A problem is said to be strongly NP-hard, if it is NP-hard in the unary sense, i.e., numbers do not matter.

Theorem

A strongly NP-hard problem cannot have a pseudo-polynomial algorithm, unless P=NP.

Strong NP-hardness and Approximation schemes

Chief points

- The notion of size of input. Objects (sets, graphs) and numbers (cost, weight). Measuring input size in unary (|*I*_u|) and binary (|*I*|).
- 2 Making an algorithm's performance better by measuring in unary.
- **()** An algorithm for a problem Π . is *pseudo-polynomial*, if it runs in time polynomial in $|I_u|$, for all instances, *I* of the problem.
- A problem is said to be strongly NP-hard, if it is NP-hard in the unary sense, i.e., numbers do not matter.

Theorem

A strongly NP-hard problem cannot have a pseudo-polynomial algorithm, unless P=NP.

Theorem

Let Π denote an **NP-hard** minimization problem. Assume, for all instances I, OPT(I) < $p(|I_u|)$.

Strong NP-hardness and Approximation schemes

Chief points

- The notion of size of input. Objects (sets, graphs) and numbers (cost, weight). Measuring input size in unary (|*I*_u|) and binary (|*I*|).
- 2 Making an algorithm's performance better by measuring in unary.
- **()** An algorithm for a problem Π . is *pseudo-polynomial*, if it runs in time polynomial in $|I_u|$, for all instances, *I* of the problem.
- A problem is said to be strongly NP-hard, if it is NP-hard in the unary sense, i.e., numbers do not matter.

Theorem

A strongly NP-hard problem cannot have a pseudo-polynomial algorithm, unless P=NP.

Theorem

Let Π denote an **NP-hard** minimization problem. Assume, for all instances *I*, $OPT(I) < p(|I_u|)$. If Π admits an FPTAS, then it also admits a pseudo-polynomial time algorithm. L The greedy algorithm revisited

Strong NP-hardness

- The greedy algorithm revisited

Strong NP-hardness

- The greedy algorithm revisited

Strong NP-hardness

Proof.

• Assume that Π admits an FPTAS running in time $q(|l|, \frac{1}{\varepsilon})$, in inputs *l* and ε , where *q* is some polynomial.

- Assume that Π admits an FPTAS running in time $q(|l|, \frac{1}{\varepsilon})$, in inputs *l* and ε , where *q* is some polynomial.
- **2** Set $\varepsilon = \frac{1}{\rho(|I_u|)}$ and run the FPTAS.

- Assume that Π admits an FPTAS running in time $q(|l|, \frac{1}{\varepsilon})$, in inputs *l* and ε , where *q* is some polynomial.
- **2** Set $\varepsilon = \frac{1}{p(|I_u|)}$ and run the FPTAS.
- Observe that,

- Assume that Π admits an FPTAS running in time $q(|l|, \frac{1}{\varepsilon})$, in inputs *l* and ε , where *q* is some polynomial.
- **2** Set $\varepsilon = \frac{1}{p(|I_u|)}$ and run the FPTAS.
- Observe that,

$$A(I) \leq$$

Proof.

- Assume that Π admits an FPTAS running in time $q(|l|, \frac{1}{\varepsilon})$, in inputs *l* and ε , where *q* is some polynomial.
- **2** Set $\varepsilon = \frac{1}{p(|I_u|)}$ and run the FPTAS.
- Observe that,

 $A(I) \leq (1+\varepsilon)OPT(I)$

Proof.

- Assume that Π admits an FPTAS running in time $q(|l|, \frac{1}{\varepsilon})$, in inputs *l* and ε , where *q* is some polynomial.
- **2** Set $\varepsilon = \frac{1}{p(|I_u|)}$ and run the FPTAS.
- Observe that,

 $A(I) \leq (1+\varepsilon)OPT(I) \leq$

Proof.

- Assume that Π admits an FPTAS running in time $q(|l|, \frac{1}{\varepsilon})$, in inputs *l* and ε , where *q* is some polynomial.
- **2** Set $\varepsilon = \frac{1}{p(|I_u|)}$ and run the FPTAS.
- Observe that,

 $\begin{array}{ll} A(I) & \leq & (1+\varepsilon)OPT(I) \\ & \leq & OPT(I) + \varepsilon \cdot OPT(I) \end{array}$

- Assume that Π admits an FPTAS running in time $q(|l|, \frac{1}{\varepsilon})$, in inputs *l* and ε , where *q* is some polynomial.
- **2** Set $\varepsilon = \frac{1}{p(|I_u|)}$ and run the FPTAS.
- Observe that,

$$\begin{array}{ll} A(l) &\leq & (1+\varepsilon)OPT(l) \\ &\leq & OPT(l) + \varepsilon \cdot OPT(l) \\ &< & \end{array}$$

- Assume that Π admits an FPTAS running in time $q(|l|, \frac{1}{\varepsilon})$, in inputs *l* and ε , where *q* is some polynomial.
- **2** Set $\varepsilon = \frac{1}{p(|I_u|)}$ and run the FPTAS.
- Observe that,

$$\begin{array}{lll} A(l) & \leq & (1+\varepsilon)OPT(l) \\ & \leq & OPT(l) + \varepsilon \cdot OPT(l) \\ & < & OPT(l) + \varepsilon \cdot p(|I_{l_l}|) \end{array}$$

Proof.

- Assume that Π admits an FPTAS running in time $q(|l|, \frac{1}{\varepsilon})$, in inputs *l* and ε , where *q* is some polynomial.
- **2** Set $\varepsilon = \frac{1}{p(|I_u|)}$ and run the FPTAS.
- Observe that,

$$\begin{array}{lll} A(l) & \leq & (1+\varepsilon) OPT(l) \\ & \leq & OPT(l) + \varepsilon \cdot OPT(l) \\ & < & OPT(l) + \varepsilon \cdot p(|l_u|) \end{array}$$

=

- Assume that Π admits an FPTAS running in time $q(|l|, \frac{1}{\varepsilon})$, in inputs *l* and ε , where *q* is some polynomial.
- **2** Set $\varepsilon = \frac{1}{p(|I_u|)}$ and run the FPTAS.
- Observe that,

$$\begin{array}{rcl} A(l) & \leq & (1+\varepsilon)OPT(l) \\ & \leq & OPT(l)+\varepsilon \cdot OPT(l) \\ & < & OPT(l)+\varepsilon \cdot p(|l_u|) \\ & = & OPT(l)+1 \end{array}$$

Proof.

- Assume that Π admits an FPTAS running in time $q(|l|, \frac{1}{\varepsilon})$, in inputs *l* and ε , where *q* is some polynomial.
- **2** Set $\varepsilon = \frac{1}{p(|I_u|)}$ and run the FPTAS.

Observe that,

$$\begin{array}{rcl} \mathsf{A}(I) & \leq & (1+\varepsilon)\mathsf{OPT}(I) \\ & \leq & \mathsf{OPT}(I) + \varepsilon \cdot \mathsf{OPT}(I) \\ & < & \mathsf{OPT}(I) + \varepsilon \cdot \mathsf{p}(|I_u|) \\ & = & \mathsf{OPT}(I) + 1 \end{array}$$

The FPTAS is now forced to produce the optimal answer!

Proof.

- Assume that Π admits an FPTAS running in time $q(|l|, \frac{1}{\varepsilon})$, in inputs *l* and ε , where *q* is some polynomial.
- 2 Set $\varepsilon = \frac{1}{\rho(|I_u|)}$ and run the FPTAS.

Observe that,

$$\begin{array}{rcl} \mathsf{A}(I) &\leq & (1+\varepsilon)\mathsf{OPT}(I) \\ &\leq & \mathsf{OPT}(I) + \varepsilon \cdot \mathsf{OPT}(I) \\ &< & \mathsf{OPT}(I) + \varepsilon \cdot \wp(|I_U|) \\ &= & \mathsf{OPT}(I) + 1 \end{array}$$

The FPTAS is now forced to produce the optimal answer! Running time is $q(|I|, p(|I_u|))$, which is polynomial in $|I_u|$,

Proof.

- Assume that Π admits an FPTAS running in time $q(|l|, \frac{1}{\varepsilon})$, in inputs *l* and ε , where *q* is some polynomial.
- 2 Set $\varepsilon = \frac{1}{\rho(|I_u|)}$ and run the FPTAS.

Observe that,

$$\begin{array}{rcl} \mathsf{A}(I) &\leq & (1+\varepsilon)\mathsf{OPT}(I) \\ &\leq & \mathsf{OPT}(I) + \varepsilon \cdot \mathsf{OPT}(I) \\ &< & \mathsf{OPT}(I) + \varepsilon \cdot \mathsf{p}(|I_u|) \\ &= & \mathsf{OPT}(I) + 1 \end{array}$$

The FPTAS is now forced to produce the optimal answer! Running time is $q(|I|, p(|I_u|))$, which is polynomial in $|I_u|$, i.e., we now have a pseudo-polynomial time algorithm for Π .

Corollary

If Π is an **NP-hard** minimization problem, as constrained above, then Π does not admit an FPTAS, assuming **P** \neq **NP**.