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Example

Consider the following linear program:

z = min 7 · x1 + x2 + 5 · x3

subject to x1− x2 + 3 · x3 ≥ 10

5 · x1 + 2 · x2− x3 ≥ 6

x1,x2,x3 ≥ 0

Note

Forms of linear programs, standard, canonical, etc. Feasible solution, optimal solution (z∗),
unboundedness.
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Some questions

1 Is z∗ ≤ 30? “Yes” certificate, x = (2,1,3). We thus get an upper bound on z∗.

2 How do we get a lower bound on z∗?
3 Can you deduce that z∗ ≥ 10?

4 Can you deduce that z∗ ≥ 16?
5 Essentially we want to find non-negative multipliers for the constraints and take the sum of

these constraints, so that,
1 the coefficients of the sum constraint are dominated by the corresponding coefficients in the

objective function.
2 the RHS is maximized, since this gives the tightest bound.
3 However, this leads to:

w = max 10 · y1 + 6 · y2

subject to y1 + 5 · y2 ≤ 7

−y1 + 2 · y2 ≤ 1

3 · y1− y2 ≤ 5

y1,y2 ≥ 0
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Observations

Note

1 There is a systematic way of obtaining the dual from the primal.

2 The dual of the dual is the primal.
3 Any feasible solution to the dual is a lower bound on z∗.

4 Any feasible solution to the primal is an upper bound on w∗.
5 If there exist primal and dual solutions with matching objective function values, then both

must be optimal!
6 Consider x = ( 7

4 ,0,
11
4 ) and y = (2,1) for the example discussed above.
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Proof of Weak Duality Theorem

Proof.

Observe that,

n

∑
i=1

cj · xj ≥
n

∑
j=1

(
m

∑
i=1

aij · yi ) · xj (since y is dual feasible (y ·A≤ c) and x≥ 0) (1)

Likewise,

m

∑
i=1

(
n

∑
j=1

aij · xj ) · yi ≥
m

∑
i=1

bi · yi (since x is primal feasible (A ·x≥ b) and y≥ 0) (2)

But,

n

∑
j=1

(
m

∑
i=1

aij · yi ) · xj =
m

∑
i=1

(
n

∑
j=1

aij · xj ) · yi . (3)
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The Strong Duality Theorem

Theorem (Strong Duality)

The primal program has finite optimum if and only if its dual has finite optimum. Moreover, if
x∗ = (x∗1 ,x

∗
2 , . . .x

∗
n ) and y∗ = (y∗1 ,y

∗
2 , . . .y

∗
m) are the optimal primal and dual solutions

respectively, then,

n

∑
j=1

cj · x∗j =
m

∑
i=1

bi · y∗i

Proof.

Continuity of variables and the objective functions.
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Complementary Slackness

Theorem

Let x and y be primal and dual feasible solutions, respectively. Then, x and y are both optimal iff
all of the following conditions are satisfied:

1 Primal Complementary Slackness:

For each 1≤ j ≤ n : either xj = 0, or
m

∑
i=1

aij · yi = cj

2 Dual Complementary Slackness:

For each 1≤ i ≤m : either yi = 0, or
n

∑
j=1

aij · xj = bi .
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Proof.

(i) Recall that the primal is minA·x≥b,x≥0 c ·x and the dual is maxy·A≤c,y≥0 b ·y.

(ii) Let (x∗,y∗) denote an optimal primal-dual pair.

(iii) Define t∗ = A ·x∗−b and s∗ = c−y∗ ·A.
Clearly, t∗ ≥ 0 and s∗ ≥ 0.

(iv) We have,

c ·x∗ = (s∗+ y∗ ·A) ·x∗

= s∗x∗+ y∗ ·A ·x∗

= s∗x∗+ y∗ · (t∗+ b)

= s∗x∗+ y∗ · t∗+ y∗b

(v) But c ·x∗ = y∗ ·b.

(vi) It follows that, s∗x∗+ y∗ · t∗ = 0.

(vii) Hence, s∗ ·x∗ = 0 and y∗ · t∗ = 0, since x∗,y∗,s∗, t∗ ≥ 0.
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Interpretation

(1) If a primal variable x∗i > 0, then the corresponding dual constraint must be binding, i.e.,
s∗i = 0.

(2) If a dual constraint is not binding, i.e., s∗i > 0, then the corresponding primal variable (x∗i )
must be 0.

(3) If a dual variable y∗i > 0, then the corresponding primal constraint must be binding, i.e.,
t∗i = 0.

(4) If a primal constraint is non-binding, i.e., t∗i > 0, then the corresponding dual variable (y∗i )
must be zero.



Duality

Foundations of Duality

Complementary Slackness

Interpretation of complementary slackness

Interpretation

(1) If a primal variable x∗i > 0, then the corresponding dual constraint must be binding, i.e.,
s∗i = 0.

(2) If a dual constraint is not binding, i.e., s∗i > 0, then the corresponding primal variable (x∗i )
must be 0.

(3) If a dual variable y∗i > 0, then the corresponding primal constraint must be binding, i.e.,
t∗i = 0.

(4) If a primal constraint is non-binding, i.e., t∗i > 0, then the corresponding dual variable (y∗i )
must be zero.



Duality

Foundations of Duality

Complementary Slackness

Interpretation of complementary slackness

Interpretation

(1) If a primal variable x∗i > 0, then the corresponding dual constraint must be binding, i.e.,
s∗i = 0.

(2) If a dual constraint is not binding, i.e., s∗i > 0, then the corresponding primal variable (x∗i )
must be 0.

(3) If a dual variable y∗i > 0, then the corresponding primal constraint must be binding, i.e.,
t∗i = 0.

(4) If a primal constraint is non-binding, i.e., t∗i > 0, then the corresponding dual variable (y∗i )
must be zero.



Duality

Foundations of Duality

Complementary Slackness

Interpretation of complementary slackness

Interpretation

(1) If a primal variable x∗i > 0, then the corresponding dual constraint must be binding, i.e.,
s∗i = 0.

(2) If a dual constraint is not binding, i.e., s∗i > 0, then the corresponding primal variable (x∗i )
must be 0.

(3) If a dual variable y∗i > 0, then the corresponding primal constraint must be binding, i.e.,
t∗i = 0.

(4) If a primal constraint is non-binding, i.e., t∗i > 0, then the corresponding dual variable (y∗i )
must be zero.



Duality

Foundations of Duality

Complementary Slackness

Interpretation of complementary slackness

Interpretation

(1) If a primal variable x∗i > 0, then the corresponding dual constraint must be binding, i.e.,
s∗i = 0.

(2) If a dual constraint is not binding, i.e., s∗i > 0, then the corresponding primal variable (x∗i )
must be 0.

(3) If a dual variable y∗i > 0, then the corresponding primal constraint must be binding, i.e.,
t∗i = 0.

(4) If a primal constraint is non-binding, i.e., t∗i > 0, then the corresponding dual variable (y∗i )
must be zero.



Duality

Foundations of Duality

Complementary Slackness

Interpretation of complementary slackness

Interpretation

(1) If a primal variable x∗i > 0, then the corresponding dual constraint must be binding, i.e.,
s∗i = 0.

(2) If a dual constraint is not binding, i.e., s∗i > 0, then the corresponding primal variable (x∗i )
must be 0.

(3) If a dual variable y∗i > 0, then the corresponding primal constraint must be binding, i.e.,
t∗i = 0.

(4) If a primal constraint is non-binding, i.e., t∗i > 0, then the corresponding dual variable (y∗i )
must be zero.



Duality

Min-Max Relations and Maximum Flow

The Max-Flow Problem

Problem statement

Given,

1 a weighted, capacitated graph G = 〈V ,E , c〉, c : E → Z +,

2 two distinguished nodes s and t

find the maximum flow that can be sent from s to t , subject to:

1 The flow sent through arc e is bounded by its capacity ce ,

2 The total flow into a node is equal to the total flow out of the node, for all nodes other than s
and t .
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Min-Max Relations and Maximum Flow

Preliminaries

Important Notions

1 s− t cut.

2 Capacity of a cut.
3 Capacity of a cut is an upper bound on any flow.

4 Max-flow Min-cut theorem.

Linear Program for Max Flow

max ∑i∈V fsi

subject to fij ≤ cij , ∀eij = (i, j) ∈ E

∑j:(j,i)∈E fji −∑j:(i,j)∈E fij = 0 ∀i ∈ V −{s, t}
fij ≥ 0, ∀(i, j) ∈ E
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Min-Max Relations and Maximum Flow

Rewriting the Primal

Circulation based approach

Maximize the flow on a new arc from t to s with capacity ∞.

max fts

subject to fij ≤ cij , ∀eij = (i, j) ∈ E

∑j:(j,i)∈E fji −∑j:(i,j)∈E fij ≤ 0 ∀i ∈ V

fij ≥ 0, ∀(i, j) ∈ E

The Dual

min ∑(i,j)∈E cij ·dij

subject to dij −pi + pj ≥ 0, ∀(i, j) ∈ E

ps−pt ≥ 1

dij ≥ 0 ∀(i, j) ∈ E

pi ≥ 0 ∀i ∈ V .
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Min-Max Relations and Maximum Flow

Analyzing the integer version of the dual

Observations

1 Let (d∗,p∗) denote the optimal integral soluton.

2 We must have p∗s = 1 and p∗t = 0. (Why?)
3 A natural s− t cut (X , X̄) is defined with X denoting the set of nodes with potential

p = 1,and X̄ denoting the set of nodes with potential p = 0.

4 d∗ij = 1, for every arc (i, j) such that i ∈ X and j ∈ X̄ .

5 For all other arcs (i, j) ∈ E , dij = 0.
6 Thus the integer program solves the min-cut problem!
7 The dual of the max-flow problem is merely the LP-relaxation of the integer program for

min-cut. (Why?) The upper bound constraints on the dij and pi variables can be dispensed
with.

8 Consider an s− t cut C. Every path from s to t contains at least one edge of C.
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4 d∗ij = 1, for every arc (i, j) such that i ∈ X and j ∈ X̄ .

5 For all other arcs (i, j) ∈ E , dij = 0.
6 Thus the integer program solves the min-cut problem!
7 The dual of the max-flow problem is merely the LP-relaxation of the integer program for

min-cut. (Why?) The upper bound constraints on the dij and pi variables can be dispensed
with.

8 Consider an s− t cut C. Every path from s to t contains at least one edge of C.
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Duality

Min-Max Relations and Maximum Flow

Still more observations

Observations

1 The distance labels assigned in any fractional cut solution must satisfy the property that
sum of the distance labels on any s− t path is at least 1. (Why?)
∑

k−1
i=0 (pi −pi+1 = ps−pt for any (s = v0,v1, . . .vk = t) path.

2 Any feasible solution to the dual program is thus a fractional s− t cut.
3 The best fractional cut can have a lower capacity than the best integral cut, but will not!

(Total unimodularity).

4 The dual program will always have an integral optimal solution.
5 Thus maximum flow in G must equal the capacity of a minimum fractional cut. Max-Flow

Min-Cut theorem follows.
6 Let f ∗ and (d∗,p∗) denote an optimal primal and dual (integral) solution pair. Let (X , X̄)

denote the s− t cut defined by (d∗,p∗).
On any arc (i, j) with i ∈ X and j ∈ X̄ , f ∗ij = cij (d∗ij = 1 6= 0, dual complementary slackness
condition!)
On any arc (i, j) with i ∈ X̄ and j ∈ X , f ∗ij = 0. (p∗i −p∗j =−1, d∗ij ∈ {0,1}, and hence,
d∗ij −p∗i + p∗j > 0. primal complementary slackness condition!)
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LP Rounding

Approach

1 Formulate the integer program (IP).

2 Relax the integer program into a linear program (LP).
3 Solve the LP optimally (can be done in polynomial time).

4 If the optimal solution of the LP is integral, then you are done.
5 Take the fractional solution and round it to an integer solution.
6 Ensure that the cost does not increase too much in the rounding process (cannot always be

done).
7 Establish approximation factor by comparing the cost of the integer solution with the optimal

fractional solution.

Note

The primal Linear Program must be solved.
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Approach

1 Formulate the integer program (IP).

2 Relax the integer program into a linear program (LP).
3 Study the dual of this linear program.

4 Simultaneously construct an integral solution for the primal and a feasible solution for the
dual.

5 The above solutions are maintained iteratively.
6 Any feasible solution to the dual is a lower bound on OPT (Minimization).
7 Establish the approximation guarantee by comparing the cost of the integral solution with

the cost of the feasible dual solution.

Note

It may be possible to exploit the combinatorial structure of the dual program and design
algorithms that are faster than general purpose linear programs.
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Dual Fitting

Approach

1 Focus on an existing combinatorial approximation algorithm.

2 Use LP-duality theory to analyze bounds.
3 Useful for providing alternative analyses of greedy algorithms.

Note

All three methods provide more or less the same bound. The difference is primarily in the
running times of the algorithms.
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Integrality Gap

Notion of gap

Let Π denote a minimization problem. Let P denote an IP formulation for Π and let PL denote the
corresponding linear programming relaxation.
Let OPT (I) and OPTf (I) denote the optimal integral and fractional solutions respectively for
instance I. The integrality gap of this relaxation is defined to be:

sup
I

OPT (I)
OPTf (I)

Note

1 The integrality gap depends upon the formulation. Different formulations could have
different gaps.

2 If an approximation algorithm compares directly to the LP optimal solution, then the best
that you can hope to achieve as the approximation factor is the integrality gap.
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instance I. The integrality gap of this relaxation is defined to be:
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OPTf (I)
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