Set-Cover approximation through Primal Dual Schema

K. Subramani¹

¹Lane Department of Computer Science and Electrical Engineering West Virginia University

April 4, 2014

Pr
I-D
Sc

Outline

1 Preliminaries

2 Primal-Dual schema for Set Cover

1 Preliminaries

3 The Primal Dual Algorithm

1 Preliminaries

2 Primal-Dual schema for Set Cover

- 3 The Primal Dual Algorithm
- 4 Tightness

Algorithm design for problems in P

The primal-dual approach was used in algorithm design for problems such as matching, network flows, shortest paths in digraphs, etc., in which the LP-relaxations have integral optimal solutions.

- The primal-dual approach was used in algorithm design for problems such as matching, network flows, shortest paths in digraphs, etc., in which the LP-relaxations have integral optimal solutions.
- For LP optimal solutions, we know that the primal and dual complementary slackness conditions have to be satisfied.

- The primal-dual approach was used in algorithm design for problems such as matching, network flows, shortest paths in digraphs, etc., in which the LP-relaxations have integral optimal solutions.
- For LP optimal solutions, we know that the primal and dual complementary slackness conditions have to be satisfied.
- O The approach starts with feasible primal and dual solutions and iteratively attempts to satisfy complementary slackness conditions.

- The primal-dual approach was used in algorithm design for problems such as matching, network flows, shortest paths in digraphs, etc., in which the LP-relaxations have integral optimal solutions.
- For LP optimal solutions, we know that the primal and dual complementary slackness conditions have to be satisfied.
- O The approach starts with feasible primal and dual solutions and iteratively attempts to satisfy complementary slackness conditions.
- When they are all satisfied, both primal and dual solutions must be optimal.

- The primal-dual approach was used in algorithm design for problems such as matching, network flows, shortest paths in digraphs, etc., in which the LP-relaxations have integral optimal solutions.
- For LP optimal solutions, we know that the primal and dual complementary slackness conditions have to be satisfied.
- The approach starts with feasible primal and dual solutions and iteratively attempts to satisfy complementary slackness conditions.
- When they are all satisfied, both primal and dual solutions must be optimal.
- Ocannot work directly for NP-hard problems, since the LP relaxations need not have integral optimal solutions.

- The primal-dual approach was used in algorithm design for problems such as matching, network flows, shortest paths in digraphs, etc., in which the LP-relaxations have integral optimal solutions.
- For LP optimal solutions, we know that the primal and dual complementary slackness conditions have to be satisfied.
- The approach starts with feasible primal and dual solutions and iteratively attempts to satisfy complementary slackness conditions.
- When they are all satisfied, both primal and dual solutions must be optimal.
- Ocannot work directly for NP-hard problems, since the LP relaxations need not have integral optimal solutions.
- However, a relaxation of the complementary slackness conditions helps in the derivation of approximation algorithms.

Forms

Primal (P):

 $z = \min \sum_{j=1}^{n} c_j \cdot x_j$

Forms

Primal (P):

$$z = \min \sum_{j=1}^{n} c_j \cdot x_j$$

s.t.
$$\sum_{j=1}^{n} a_{ij} \cdot x_j \ge b_i, \ i = 1, 2, \dots m$$

Forms

Primal (P):

$$z = \min \sum_{j=1}^{n} c_j \cdot x_j$$

s.t.
$$\sum_{j=1}^{n} a_{ij} \cdot x_j \ge b_i, i = 1, 2, \dots m$$
$$x_j \ge 0, j = 1, 2, \dots n$$

Forms

Primal (P):

$$z = \min \sum_{j=1}^{n} c_j \cdot x_j$$

s.t.
$$\sum_{j=1}^{n} a_{ij} \cdot x_j \ge b_i, i = 1, 2, \dots m$$
$$x_j \ge 0, j = 1, 2, \dots n$$

Forms

Primal (P):

$$z = \min \sum_{j=1}^{n} c_j \cdot x_j$$

s.t.
$$\sum_{j=1}^{n} a_{ij} \cdot x_j \ge b_i, i = 1, 2, \dots m$$
$$x_j \ge 0, j = 1, 2, \dots n$$

 $z = \min \mathbf{c} \cdot \mathbf{x}$

Forms

Primal (P):

$$z = \min \sum_{j=1}^{n} c_j \cdot x_j$$

s.t.
$$\sum_{j=1}^{n} a_{ij} \cdot x_j \ge b_i, i = 1, 2, \dots m$$
$$x_j \ge 0, j = 1, 2, \dots n$$

 $z = \min \mathbf{c} \cdot \mathbf{x}$ s.t. $\mathbf{A} \cdot \mathbf{x} \ge \mathbf{b}$

Forms

Primal (P):

$$z = \min \sum_{j=1}^{n} c_j \cdot x_j$$

s.t.
$$\sum_{j=1}^{n} a_{ij} \cdot x_j \ge b_i, i = 1, 2, \dots m$$
$$x_j \ge 0, j = 1, 2, \dots n$$

 $z = \min \mathbf{c} \cdot \mathbf{x}$
s.t. $\mathbf{A} \cdot \mathbf{x} \ge \mathbf{b}$
 $\mathbf{x} \ge \mathbf{0}$

Forms

Primal (P):

$$z = \min \sum_{j=1}^{n} c_j \cdot x_j$$

s.t.
$$\sum_{j=1}^{n} a_{ij} \cdot x_j \ge b_i, \ i = 1, 2, \dots m$$
$$x_j \ge 0, \ j = 1, 2, \dots n$$

 $z = \min \mathbf{c} \cdot \mathbf{x}$
s.t. $\mathbf{A} \cdot \mathbf{x} \ge \mathbf{b}$
 $\mathbf{x} \ge \mathbf{0}$

$$w = \max \sum_{i=1}^{m} b_i \cdot y_i$$

Forms

Primal (P):

$$z = \min \sum_{j=1}^{n} c_j \cdot x_j$$
s.t.
$$\sum_{j=1}^{n} a_{ij} \cdot x_j \ge b_i, i = 1, 2, \dots m$$

$$x_j \ge 0, j = 1, 2, \dots n$$

$$z = \min \mathbf{c} \cdot \mathbf{c}$$
s.t.
$$\mathbf{A} \cdot \mathbf{x} \ge \mathbf{b}$$

$$\mathbf{x} > \mathbf{0}$$

$$w = \max \sum_{i=1}^{m} b_i \cdot y_i$$
subject to $\sum_{i=1}^{m} a_{ij} \cdot y_i \le c_j, j = 1, 2, \dots n$

Forms

Primal (P):

$$z = \min \sum_{j=1}^{n} c_j \cdot x_j$$
s.t.
$$\sum_{j=1}^{n} a_{ij} \cdot x_j \ge b_i, i = 1, 2, \dots m$$

$$x_j \ge 0, j = 1, 2, \dots n$$

$$z = \min \mathbf{c} \cdot \mathbf{x}$$

$$s.t. \quad \mathbf{A} \cdot \mathbf{x} \ge \mathbf{b}$$

$$\mathbf{x} > \mathbf{0}$$

$$w = \max \sum_{i=1}^{m} b_i \cdot y_i$$
subject to $\sum_{i=1}^{m} a_{ij} \cdot y_i \le c_j, j = 1, 2, \dots n$ $y_i \ge 0, i = 1, 2, \dots m$

Forms

Primal (P):

$$z = \min \sum_{j=1}^{n} c_j \cdot x_j$$
s.t.
$$\sum_{j=1}^{n} a_{ij} \cdot x_j \ge b_i, i = 1, 2, \dots m$$

$$x_j \ge 0, j = 1, 2, \dots n$$

$$z = \min \mathbf{c} \cdot \mathbf{x}$$
s.t.
$$\mathbf{A} \cdot \mathbf{x} \ge \mathbf{b}$$

$$\mathbf{x} > \mathbf{0}$$

$$w = \max \sum_{i=1}^{m} b_i \cdot y_i \qquad w = \max \mathbf{b} \cdot \mathbf{y}$$

subject to
$$\sum_{i=1}^{m} a_{ij} \cdot y_i \le c_j, \ j = 1, 2, \dots n$$
$$y_i \ge 0, \ i = 1, 2, \dots m$$

Forms

Primal (P):

$$z = \min \sum_{j=1}^{n} c_j \cdot x_j$$
s.t.
$$\sum_{j=1}^{n} a_{ij} \cdot x_j \ge b_i, i = 1, 2, \dots m$$

$$x_j \ge 0, j = 1, 2, \dots n$$

$$z = \min \mathbf{c} \cdot \mathbf{x}$$
s.t.
$$\mathbf{A} \cdot \mathbf{x} \ge \mathbf{b}$$

$$\mathbf{x} > \mathbf{0}$$

$$w = \max \sum_{i=1}^{m} b_i \cdot y_i \qquad w = \max \mathbf{b} \cdot \mathbf{y}$$

subject to
$$\sum_{i=1}^{m} a_{ij} \cdot y_i \le c_j, j = 1, 2, \dots n \qquad s.t. \qquad \mathbf{y} \cdot \mathbf{A} \le \mathbf{c}$$
$$y_i \ge 0, i = 1, 2, \dots m$$

Forms

Primal (P):

$$z = \min \sum_{j=1}^{n} c_j \cdot x_j$$
s.t.
$$\sum_{j=1}^{n} a_{ij} \cdot x_j \ge b_i, i = 1, 2, \dots m$$

$$x_j \ge 0, j = 1, 2, \dots n$$

$$z = \min \mathbf{c} \cdot \mathbf{x}$$
s.t.
$$\mathbf{A} \cdot \mathbf{x} \ge \mathbf{b}$$

$$\mathbf{x} > \mathbf{0}$$

$$w = \max \sum_{i=1}^{m} b_i \cdot y_i \qquad w = \max \mathbf{b} \cdot \mathbf{y}$$

subject to
$$\sum_{i=1}^{m} a_{ij} \cdot y_i \le c_j, j = 1, 2, \dots n \qquad \mathbf{s.t.} \qquad \mathbf{y} \cdot \mathbf{A} \le \mathbf{c}$$
$$y_i \ge \mathbf{0}, i = 1, 2, \dots m \qquad \mathbf{y} \ge \mathbf{0}$$

Preliminaries

Complementary Slackness

Theorem

Let x and y be primal and dual feasible solutions, respectively.

Theorem

Let \mathbf{x} and \mathbf{y} be primal and dual feasible solutions, respectively. Then, \mathbf{x} and \mathbf{y} are both optimal iff all of the following conditions are satisfied:

Theorem

Let \mathbf{x} and \mathbf{y} be primal and dual feasible solutions, respectively. Then, \mathbf{x} and \mathbf{y} are both optimal iff all of the following conditions are satisfied:

Theorem

Let x and y be primal and dual feasible solutions, respectively. Then, x and y are both optimal iff all of the following conditions are satisfied:

Primal Complementary Slackness:

Theorem

Let \mathbf{x} and \mathbf{y} be primal and dual feasible solutions, respectively. Then, \mathbf{x} and \mathbf{y} are both optimal iff all of the following conditions are satisfied:

O Primal Complementary Slackness:

For each $1 \leq j \leq n$:

Theorem

Let \mathbf{x} and \mathbf{y} be primal and dual feasible solutions, respectively. Then, \mathbf{x} and \mathbf{y} are both optimal iff all of the following conditions are satisfied:

O Primal Complementary Slackness:

For each $1 \leq j \leq n$: either $x_j = 0$,

Theorem

Let x and y be primal and dual feasible solutions, respectively. Then, x and y are both optimal iff all of the following conditions are satisfied:

O Primal Complementary Slackness:

For each
$$1 \le j \le n$$
: either $x_j = 0$, or $\sum_{i=1}^m a_{ij} \cdot y_i = c_j$

Theorem

Let \mathbf{x} and \mathbf{y} be primal and dual feasible solutions, respectively. Then, \mathbf{x} and \mathbf{y} are both optimal iff all of the following conditions are satisfied:

O Primal Complementary Slackness:

For each
$$1 \le j \le n$$
: either $x_j = 0$, or $\sum_{i=1}^m a_{ij} \cdot y_i = c_j$

2 Dual Complementary Slackness:

For each $1 \leq i \leq m$:
Complementary Slackness

Theorem

Let \mathbf{x} and \mathbf{y} be primal and dual feasible solutions, respectively. Then, \mathbf{x} and \mathbf{y} are both optimal iff all of the following conditions are satisfied:

O Primal Complementary Slackness:

For each
$$1 \le j \le n$$
: either $x_j = 0$, or $\sum_{i=1}^m a_{ij} \cdot y_i = c_j$

2 Dual Complementary Slackness:

For each $1 \leq i \leq m$: either $y_i = 0$,

Complementary Slackness

Theorem

Let \mathbf{x} and \mathbf{y} be primal and dual feasible solutions, respectively. Then, \mathbf{x} and \mathbf{y} are both optimal iff all of the following conditions are satisfied:

O Primal Complementary Slackness:

For each
$$1 \le j \le n$$
: either $x_j = 0$, or $\sum_{i=1}^m a_{ij} \cdot y_i = c_j$

2 Dual Complementary Slackness:

For each
$$1 \leq i \leq m$$
: either $y_i = 0$, or $\sum_{j=1}^n a_{ij} \cdot x_j = b_i$.

Proof of Complementary Slackness

Proof of Complementary Slackness

Proof of Complementary Slackness

Proof.

(i) Recall that the primal is $\min_{A \cdot x \ge b, x \ge 0} c \cdot x$

Proof of Complementary Slackness

Proof.

(i) Recall that the primal is $\min_{A \cdot x \ge b, x \ge 0} c \cdot x$ and the dual is $\max_{y \cdot A \le c, y \ge 0} b \cdot y$.

Proof of Complementary Slackness

- (i) Recall that the primal is $\min_{A \cdot x \ge b, x \ge 0} c \cdot x$ and the dual is $\max_{y \cdot A \le c, y \ge 0} b \cdot y$.
- (ii) Let $(\mathbf{x}^*, \mathbf{y}^*)$ denote an optimal primal-dual pair.

Proof of Complementary Slackness

- (i) Recall that the primal is $\min_{A \cdot x \ge b, x \ge 0} c \cdot x$ and the dual is $\max_{y \cdot A \le c, y \ge 0} b \cdot y$.
- (ii) Let $(\mathbf{x}^*, \mathbf{y}^*)$ denote an optimal primal-dual pair.
- (iii) Define $\mathbf{t}^* = \mathbf{A} \cdot \mathbf{x}^* \mathbf{b}$ (surplus) and $\mathbf{s}^* = \mathbf{c} \mathbf{y}^* \cdot \mathbf{A}$ (slack).

Proof of Complementary Slackness

- (i) Recall that the primal is $\min_{A \cdot x \ge b, x \ge 0} c \cdot x$ and the dual is $\max_{y \cdot A \le c, y \ge 0} b \cdot y$.
- (ii) Let $(\mathbf{x}^*, \mathbf{y}^*)$ denote an optimal primal-dual pair.
- (iii) Define $t^* = \mathbf{A} \cdot \mathbf{x}^* \mathbf{b}$ (surplus) and $\mathbf{s}^* = \mathbf{c} \mathbf{y}^* \cdot \mathbf{A}$ (slack). Clearly, $t^* \ge \mathbf{0}$ and $\mathbf{s}^* \ge \mathbf{0}$.

Proof of Complementary Slackness

- (i) Recall that the primal is $\min_{A \cdot x \ge b, x \ge 0} c \cdot x$ and the dual is $\max_{y \cdot A \le c, y \ge 0} b \cdot y$.
- (ii) Let $(\mathbf{x}^*, \mathbf{y}^*)$ denote an optimal primal-dual pair.
- (iii) Define $\mathbf{t}^* = \mathbf{A} \cdot \mathbf{x}^* \mathbf{b}$ (surplus) and $\mathbf{s}^* = \mathbf{c} \mathbf{y}^* \cdot \mathbf{A}$ (slack). Clearly, $\mathbf{t}^* \ge \mathbf{0}$ and $\mathbf{s}^* \ge \mathbf{0}$.
- (iv) The complementary slackness conditions can be rewritten as:

Proof of Complementary Slackness

- (i) Recall that the primal is $\min_{A \cdot x \ge b, x \ge 0} c \cdot x$ and the dual is $\max_{y \cdot A \le c, y \ge 0} b \cdot y$.
- (ii) Let $(\mathbf{x}^*, \mathbf{y}^*)$ denote an optimal primal-dual pair.
- (iii) Define $t^* = \mathbf{A} \cdot \mathbf{x}^* \mathbf{b}$ (surplus) and $\mathbf{s}^* = \mathbf{c} \mathbf{y}^* \cdot \mathbf{A}$ (slack). Clearly, $t^* \ge \mathbf{0}$ and $\mathbf{s}^* \ge \mathbf{0}$.
- (iv) The complementary slackness conditions can be rewritten as:
 Primal: ∀i, 1 ≤ i ≤ n, either x_i = 0 or s_i = 0,

Proof of Complementary Slackness

- (i) Recall that the primal is $\min_{A \cdot x \ge b, x \ge 0} c \cdot x$ and the dual is $\max_{y \cdot A \le c, y \ge 0} b \cdot y$.
- (ii) Let $(\mathbf{x}^*, \mathbf{y}^*)$ denote an optimal primal-dual pair.
- (iii) Define $t^* = \mathbf{A} \cdot \mathbf{x}^* \mathbf{b}$ (surplus) and $\mathbf{s}^* = \mathbf{c} \mathbf{y}^* \cdot \mathbf{A}$ (slack). Clearly, $t^* \ge 0$ and $\mathbf{s}^* \ge 0$.
- (iv) The complementary slackness conditions can be rewritten as:
 Primal: ∀i, 1 ≤ i ≤ n, either x_i = 0 or s_i = 0, and

Proof of Complementary Slackness

- (i) Recall that the primal is $\min_{A \cdot x \ge b, x \ge 0} c \cdot x$ and the dual is $\max_{y \cdot A \le c, y \ge 0} b \cdot y$.
- (ii) Let $(\mathbf{x}^*, \mathbf{y}^*)$ denote an optimal primal-dual pair.
- (iii) Define $t^* = \mathbf{A} \cdot \mathbf{x}^* \mathbf{b}$ (surplus) and $\mathbf{s}^* = \mathbf{c} \mathbf{y}^* \cdot \mathbf{A}$ (slack). Clearly, $t^* \ge \mathbf{0}$ and $\mathbf{s}^* \ge \mathbf{0}$.
- (iv) The complementary slackness conditions can be rewritten as:
 Primal: ∀i, 1 ≤ i ≤ n, either x_i = 0 or s_i = 0, and
 Dual: ∀j, 1 ≤ j ≤ m, either y_j = 0 or t_i = 0.

Proof of Complementary Slackness

- (i) Recall that the primal is $\min_{A \cdot x \ge b, x \ge 0} c \cdot x$ and the dual is $\max_{y \cdot A \le c, y \ge 0} b \cdot y$.
- (ii) Let $(\mathbf{x}^*, \mathbf{y}^*)$ denote an optimal primal-dual pair.
- (iii) Define $t^* = \mathbf{A} \cdot \mathbf{x}^* \mathbf{b}$ (surplus) and $\mathbf{s}^* = \mathbf{c} \mathbf{y}^* \cdot \mathbf{A}$ (slack). Clearly, $t^* \ge \mathbf{0}$ and $\mathbf{s}^* \ge \mathbf{0}$.
- (iv) The complementary slackness conditions can be rewritten as:
 Primal: ∀i, 1 ≤ i ≤ n, either x_i = 0 or s_i = 0, and
 Dual: ∀j, 1 ≤ j ≤ m, either y_j = 0 or t_j = 0.

```
(v) We have,
```

Proof of Complementary Slackness

Proof.

- (i) Recall that the primal is $\min_{A \cdot x \ge b, x \ge 0} c \cdot x$ and the dual is $\max_{y \cdot A \le c, y \ge 0} b \cdot y$.
- (ii) Let $(\mathbf{x}^*, \mathbf{y}^*)$ denote an optimal primal-dual pair.
- (iii) Define $t^* = \mathbf{A} \cdot \mathbf{x}^* \mathbf{b}$ (surplus) and $\mathbf{s}^* = \mathbf{c} \mathbf{y}^* \cdot \mathbf{A}$ (slack). Clearly, $t^* \ge \mathbf{0}$ and $\mathbf{s}^* \ge \mathbf{0}$.
- (iv) The complementary slackness conditions can be rewritten as:
 Primal: ∀i, 1 ≤ i ≤ n, either x_i = 0 or s_i = 0, and
 Dual: ∀j, 1 ≤ j ≤ m, either y_j = 0 or t_j = 0.

Proof of Complementary Slackness

Proof.

- (i) Recall that the primal is $\min_{A \cdot x \ge b, x \ge 0} c \cdot x$ and the dual is $\max_{y \cdot A \le c, y \ge 0} b \cdot y$.
- (ii) Let $(\mathbf{x}^*, \mathbf{y}^*)$ denote an optimal primal-dual pair.
- (iii) Define $t^* = \mathbf{A} \cdot \mathbf{x}^* \mathbf{b}$ (surplus) and $\mathbf{s}^* = \mathbf{c} \mathbf{y}^* \cdot \mathbf{A}$ (slack). Clearly, $t^* \ge \mathbf{0}$ and $\mathbf{s}^* \ge \mathbf{0}$.
- (iv) The complementary slackness conditions can be rewritten as:
 Primal: ∀i, 1 ≤ i ≤ n, either x_i = 0 or s_i = 0, and
 Dual: ∀j, 1 ≤ j ≤ m, either y_j = 0 or t_j = 0.

$$\mathbf{c} \cdot \mathbf{x}^* = (\mathbf{s}^* + \mathbf{y}^* \cdot \mathbf{A}) \cdot \mathbf{x}^*$$

Proof of Complementary Slackness

Proof.

- (i) Recall that the primal is $\min_{A \cdot x \ge b, x \ge 0} c \cdot x$ and the dual is $\max_{y \cdot A \le c, y \ge 0} b \cdot y$.
- (ii) Let $(\mathbf{x}^*, \mathbf{y}^*)$ denote an optimal primal-dual pair.
- (iii) Define $t^* = \mathbf{A} \cdot \mathbf{x}^* \mathbf{b}$ (surplus) and $\mathbf{s}^* = \mathbf{c} \mathbf{y}^* \cdot \mathbf{A}$ (slack). Clearly, $t^* \ge \mathbf{0}$ and $\mathbf{s}^* \ge \mathbf{0}$.
- (iv) The complementary slackness conditions can be rewritten as:
 Primal: ∀i, 1 ≤ i ≤ n, either x_i = 0 or s_i = 0, and
 Dual: ∀j, 1 ≤ j ≤ m, either y_j = 0 or t_i = 0.

$$\begin{array}{rcl} \mathbf{c} \cdot \mathbf{x}^* & = & (\mathbf{s}^* + \mathbf{y}^* \cdot \mathbf{A}) \cdot \mathbf{x}^* \\ & = & \mathbf{s}^* \mathbf{x}^* + \mathbf{y}^* \cdot \mathbf{A} \cdot \mathbf{x}^* \end{array}$$

Proof of Complementary Slackness

Proof.

- (i) Recall that the primal is $\min_{A \cdot x \ge b, x \ge 0} c \cdot x$ and the dual is $\max_{y \cdot A \le c, y \ge 0} b \cdot y$.
- (ii) Let $(\mathbf{x}^*, \mathbf{y}^*)$ denote an optimal primal-dual pair.
- (iii) Define $t^* = \mathbf{A} \cdot \mathbf{x}^* \mathbf{b}$ (surplus) and $\mathbf{s}^* = \mathbf{c} \mathbf{y}^* \cdot \mathbf{A}$ (slack). Clearly, $t^* \ge \mathbf{0}$ and $\mathbf{s}^* \ge \mathbf{0}$.
- (iv) The complementary slackness conditions can be rewritten as:
 Primal: ∀i, 1 ≤ i ≤ n, either x_i = 0 or s_i = 0, and
 Dual: ∀j, 1 ≤ j ≤ m, either y_j = 0 or t_j = 0.

$$\begin{aligned} \mathbf{c} \cdot \mathbf{x}^* &= (\mathbf{s}^* + \mathbf{y}^* \cdot \mathbf{A}) \cdot \mathbf{x}^* \\ &= \mathbf{s}^* \mathbf{x}^* + \mathbf{y}^* \cdot \mathbf{A} \cdot \mathbf{x}^* \\ &= \mathbf{s}^* \mathbf{x}^* + \mathbf{y}^* \cdot (\mathbf{t}^* + \mathbf{b}) \end{aligned}$$

Proof of Complementary Slackness

Proof.

- (i) Recall that the primal is $\min_{A \cdot x \ge b, x \ge 0} c \cdot x$ and the dual is $\max_{y \cdot A \le c, y \ge 0} b \cdot y$.
- (ii) Let $(\mathbf{x}^*, \mathbf{y}^*)$ denote an optimal primal-dual pair.
- (iii) Define $t^* = \mathbf{A} \cdot \mathbf{x}^* \mathbf{b}$ (surplus) and $\mathbf{s}^* = \mathbf{c} \mathbf{y}^* \cdot \mathbf{A}$ (slack). Clearly, $t^* \ge \mathbf{0}$ and $\mathbf{s}^* \ge \mathbf{0}$.
- (iv) The complementary slackness conditions can be rewritten as:
 Primal: ∀i, 1 ≤ i ≤ n, either x_i = 0 or s_i = 0, and
 Dual: ∀j, 1 ≤ j ≤ m, either y_j = 0 or t_j = 0.

$$c \cdot x^{*} = (s^{*} + y^{*} \cdot A) \cdot x^{*}$$

= $s^{*}x^{*} + y^{*} \cdot A \cdot x^{*}$
= $s^{*}x^{*} + y^{*} \cdot (t^{*} + b)$
= $s^{*}x^{*} + y^{*} \cdot t^{*} + y^{*}b^{*}$

Proof of Complementary Slackness

Proof.

- (i) Recall that the primal is $\min_{A \cdot x \ge b, x \ge 0} c \cdot x$ and the dual is $\max_{y \cdot A \le c, y \ge 0} b \cdot y$.
- (ii) Let $(\mathbf{x}^*, \mathbf{y}^*)$ denote an optimal primal-dual pair.
- (iii) Define $t^* = \mathbf{A} \cdot \mathbf{x}^* \mathbf{b}$ (surplus) and $\mathbf{s}^* = \mathbf{c} \mathbf{y}^* \cdot \mathbf{A}$ (slack). Clearly, $t^* \ge \mathbf{0}$ and $\mathbf{s}^* \ge \mathbf{0}$.
- (iv) The complementary slackness conditions can be rewritten as:
 Primal: ∀i, 1 ≤ i ≤ n, either x_i = 0 or s_i = 0, and
 Dual: ∀j, 1 ≤ j ≤ m, either y_j = 0 or t_j = 0.

$$c \cdot x^* = (s^* + y^* \cdot A) \cdot x^*$$

= $s^* x^* + y^* \cdot A \cdot x^*$
= $s^* x^* + y^* \cdot (t^* + b)$
= $s^* x^* + y^* \cdot t^* + y^* b$

Proof of complementary slackness

Proof.

1 But $\mathbf{c} \cdot \mathbf{x}^* = \mathbf{y}^* \cdot \mathbf{b}$.

Proof of complementary slackness

Proof of complementary slackness

- **1** But $\mathbf{c} \cdot \mathbf{x}^* = \mathbf{y}^* \cdot \mathbf{b}$.
- 2 It follows that, $\mathbf{s}^*\mathbf{x}^* + \mathbf{y}^* \cdot \mathbf{t}^* = \mathbf{0}$.

Proof of complementary slackness

- **1** But $\mathbf{c} \cdot \mathbf{x}^* = \mathbf{y}^* \cdot \mathbf{b}$.
- 2 It follows that, $\mathbf{s}^*\mathbf{x}^* + \mathbf{y}^* \cdot \mathbf{t}^* = \mathbf{0}$.
- Hence,

Proof of complementary slackness

- **O** But $\mathbf{c} \cdot \mathbf{x}^* = \mathbf{y}^* \cdot \mathbf{b}$.
- 2 It follows that, $\mathbf{s}^*\mathbf{x}^* + \mathbf{y}^* \cdot \mathbf{t}^* = \mathbf{0}$.
- $\bigcirc \text{Hence, } \mathbf{s}^* \cdot \mathbf{x}^* = \mathbf{0}$

Proof of complementary slackness

- **1** But $\mathbf{c} \cdot \mathbf{x}^* = \mathbf{y}^* \cdot \mathbf{b}$.
- 2 It follows that, $\mathbf{s}^* \mathbf{x}^* + \mathbf{y}^* \cdot \mathbf{t}^* = \mathbf{0}$.
- 3 Hence, $\mathbf{s}^* \cdot \mathbf{x}^* = \mathbf{0}$ and $\mathbf{y}^* \cdot \mathbf{t}^* = \mathbf{0}$,

Proof of complementary slackness

- **1** But $\mathbf{c} \cdot \mathbf{x}^* = \mathbf{y}^* \cdot \mathbf{b}$.
- 2 It follows that, $\mathbf{s}^* \mathbf{x}^* + \mathbf{y}^* \cdot \mathbf{t}^* = \mathbf{0}$.
- 3 Hence, $\mathbf{s}^* \cdot \mathbf{x}^* = \mathbf{0}$ and $\mathbf{y}^* \cdot \mathbf{t}^* = \mathbf{0}$, since $\mathbf{x}^*, \mathbf{y}^*, \mathbf{s}^*, \mathbf{t}^* \ge \mathbf{0}$.

Proof of complementary slackness

Proof.

1 But $\mathbf{c} \cdot \mathbf{x}^* = \mathbf{y}^* \cdot \mathbf{b}$.

- 2 It follows that, $\mathbf{s}^* \mathbf{x}^* + \mathbf{y}^* \cdot \mathbf{t}^* = \mathbf{0}$.
- $\textbf{ ince, } \mathbf{s}^* \cdot \mathbf{x}^* = \mathbf{0} \text{ and } \mathbf{y}^* \cdot \mathbf{t}^* = \mathbf{0}, \text{ since } \mathbf{x}^*, \mathbf{y}^*, \mathbf{s}^*, \mathbf{t}^* \geq \mathbf{0}.$
- Hence for $1 \le i \le n$, $x_i \cdot s_i = 0$, i.e., either $x_i = 0$ or $s_i = 0$.

Proof of complementary slackness

Proof.

1 But $\mathbf{c} \cdot \mathbf{x}^* = \mathbf{y}^* \cdot \mathbf{b}$.

- 2 It follows that, $\mathbf{s}^* \mathbf{x}^* + \mathbf{y}^* \cdot \mathbf{t}^* = \mathbf{0}$.
- If the ence, $\mathbf{s}^* \cdot \mathbf{x}^* = \mathbf{0}$ and $\mathbf{y}^* \cdot \mathbf{t}^* = \mathbf{0}$, since $\mathbf{x}^*, \mathbf{y}^*, \mathbf{s}^*, \mathbf{t}^* \ge \mathbf{0}$.
- Hence for $1 \le i \le n$, $x_i \cdot s_i = 0$, i.e., either $x_i = 0$ or $s_i = 0$.
- **()** Likewise, for $1 \le j \le n$, either $y_j = 0$ or $t_j = 0$.

Interpretation of complementary slackness

Interpretation of complementary slackness

Interpretation

Interpretation of complementary slackness

Interpretation (1) If a primal variable $x_i^* > 0$, then the corresponding dual constraint must be **binding**, i.e., $s_i^* = 0$.

Interpretation of complementary slackness

Interpretation

- (1) If a primal variable $x_i^* > 0$, then the corresponding dual constraint must be **binding**, i.e., $s_i^* = 0$.
- (2) If a dual constraint is not binding, i.e., $s_i^* > 0$, then the corresponding primal variable (x_i^*) must be 0.
Interpretation of complementary slackness

Interpretation

- (1) If a primal variable $x_i^* > 0$, then the corresponding dual constraint must be **binding**, i.e., $s_i^* = 0$.
- (2) If a dual constraint is not binding, i.e., $s_i^* > 0$, then the corresponding primal variable (x_i^*) must be 0.
- (3) If a dual variable $y_i^* > 0$, then the corresponding primal constraint must be **binding**, i.e., $t_i^* = 0$.

Interpretation of complementary slackness

Interpretation

- (1) If a primal variable $x_i^* > 0$, then the corresponding dual constraint must be **binding**, i.e., $s_i^* = 0$.
- (2) If a dual constraint is not binding, i.e., $s_i^* > 0$, then the corresponding primal variable (x_i^*) must be 0.
- (3) If a dual variable y_i* > 0, then the corresponding primal constraint must be **binding**, i.e., t_i* = 0.
- (4) If a primal constraint is non-binding, i.e., t_i^{*} > 0, then the corresponding dual variable (y_i^{*}) must be zero.

Relaxed complementary slackness conditions

Relaxed complementary slackness conditions

Relaxed primal conditions

Relaxed complementary slackness conditions

Relaxed primal conditions

Let $\alpha \ge 1$.

Relaxed complementary slackness conditions

Relaxed primal conditions

Let $\alpha \ge 1$.

 $\forall j \ 1 \leq j \leq n$: either $x_j = 0$ or

Relaxed complementary slackness conditions

Relaxed primal conditions

Let $\alpha \ge 1$.

$$\forall j \ 1 \leq j \leq n : \text{ either } x_j = 0 \text{ or } \frac{c_j}{\alpha} \leq \sum_{i=1}^m a_{ij} \cdot y_i \leq c_j.$$

Relaxed complementary slackness conditions

Relaxed primal conditions

Let $\alpha \ge 1$.

$$\forall j \ 1 \leq j \leq n : \text{ either } x_j = 0 \text{ or } \frac{c_j}{\alpha} \leq \sum_{i=1}^m a_{ij} \cdot y_i \leq c_j.$$

Relaxed dual conditions

Relaxed complementary slackness conditions

Relaxed primal conditions

Let $\alpha \ge 1$.

$$\forall j \ 1 \leq j \leq n : \text{ either } x_j = 0 \text{ or } \frac{c_j}{\alpha} \leq \sum_{i=1}^m a_{ij} \cdot y_i \leq c_j.$$

Relaxed dual conditions

Let $\beta \ge 1$.

Relaxed complementary slackness conditions

Relaxed primal conditions

Let $\alpha \ge 1$.

$$\forall j \ 1 \leq j \leq n : \text{ either } x_j = 0 \text{ or } \frac{c_j}{\alpha} \leq \sum_{i=1}^m a_{ij} \cdot y_i \leq c_j.$$

Relaxed dual conditions

Let $\beta \ge 1$.

 $\forall i \ 1 \leq i \leq m$: either $y_i = 0$ or

Relaxed complementary slackness conditions

Relaxed primal conditions

Let $\alpha \ge 1$.

$$\forall j \ 1 \leq j \leq n : \text{ either } x_j = 0 \text{ or } \frac{c_j}{\alpha} \leq \sum_{i=1}^m a_{ij} \cdot y_i \leq c_j.$$

Relaxed dual conditions

Let $\beta \ge 1$.

$$\forall i \ 1 \leq i \leq m: \ \text{ either } y_i = 0 \ \text{ or } \ b_i \leq \sum_{j=1}^n a_{ij} \cdot x_j \leq \beta \cdot b_i.$$

Application to approximation algorithms

Application to approximation algorithms

Lemma (Main Lemma)

If **x** and **y** are primal and dual feasible solutions satisfying the relaxed complementary slackness conditions, then

Application to approximation algorithms

Lemma (Main Lemma)

If **x** and **y** are primal and dual feasible solutions satisfying the relaxed complementary slackness conditions, then

$$\sum_{i=1}^n c_j \cdot x_j \leq \alpha \cdot \beta \cdot \sum_{i=1}^m b_i \cdot y_i.$$

Proof.		

Proof.		

Proof.

Proof of Main Lemma

$\sum_{j=1}^n c_j \cdot x_j \leq \sum_{j=1}^n (\alpha \cdot (\sum_{i=1}^m a_{ij} \cdot y_i)) \cdot x_j$

Proof.

$$\sum_{i=1}^{n} c_{j} \cdot x_{j} \leq \sum_{j=1}^{n} (\alpha \cdot (\sum_{i=1}^{m} a_{ij} \cdot y_{i})) \cdot x_{j}$$
$$= \alpha \cdot (\sum_{j=1}^{n} (\sum_{i=1}^{m} a_{ij} \cdot y_{i})) \cdot x_{j}$$

Proof.

$$\sum_{j=1}^{n} c_j \cdot x_j \leq \sum_{j=1}^{n} \left(\alpha \cdot \left(\sum_{i=1}^{m} a_{ij} \cdot y_i \right) \right) \cdot x_j$$
$$= \alpha \cdot \left(\sum_{j=1}^{n} \left(\sum_{i=1}^{m} a_{ij} \cdot y_i \right) \right) \cdot x_j$$
$$= \alpha \cdot \left(\sum_{i=1}^{m} \left(\sum_{i=1}^{n} a_{ij} \cdot x_j \right) \right) \cdot y_i$$

Proof.

$$\begin{split} \sum_{j=1}^{n} c_j \cdot x_j &\leq \sum_{j=1}^{n} \left(\alpha \cdot \left(\sum_{i=1}^{m} a_{ij} \cdot y_i \right) \right) \cdot x_j \\ &= \alpha \cdot \left(\sum_{j=1}^{n} \left(\sum_{i=1}^{m} a_{ij} \cdot y_i \right) \right) \cdot x_j \\ &= \alpha \cdot \left(\sum_{i=1}^{m} \left(\sum_{j=1}^{n} a_{ij} \cdot x_j \right) \right) \cdot y_i \\ &\leq \alpha \cdot \left(\sum_{i=1}^{m} (\beta \cdot b_i) \right) \cdot y_i \end{split}$$

Proof.

$$c_{j} \cdot x_{j} \leq \sum_{j=1}^{n} \left(\alpha \cdot \left(\sum_{i=1}^{m} a_{ij} \cdot y_{i} \right) \right) \cdot x_{j}$$

$$= \alpha \cdot \left(\sum_{j=1}^{n} \left(\sum_{i=1}^{m} a_{ij} \cdot y_{i} \right) \right) \cdot x_{j}$$

$$= \alpha \cdot \left(\sum_{i=1}^{m} \left(\sum_{j=1}^{n} a_{ij} \cdot x_{j} \right) \right) \cdot y_{i}$$

$$\leq \alpha \cdot \left(\sum_{i=1}^{m} (\beta \cdot b_{i}) \right) \cdot y_{i}$$

$$= \alpha \cdot \beta \cdot \sum_{i=1}^{m} b_{i} \cdot y_{i}.$$

 $\sum_{j=1}^{n}$

The primal-dual approach

Algorithmic procedure

• We start with a primal infeasible and dual feasible solution.

The primal-dual approach

Algorithmic procedure

() We start with a primal infeasible and dual feasible solution. Usually, $\mathbf{x} = 0$ and $\mathbf{y} = \mathbf{0}$.

- **()** We start with a primal infeasible and dual feasible solution. Usually, $\mathbf{x} = 0$ and $\mathbf{y} = \mathbf{0}$.
- Output is a set of the set of

- **()** We start with a primal infeasible and dual feasible solution. Usually, $\mathbf{x} = 0$ and $\mathbf{y} = \mathbf{0}$.
- Obth solutions are improved iteratively. The feasibility of primal is improved and the optimality of the dual is improved.

- **()** We start with a primal infeasible and dual feasible solution. Usually, $\mathbf{x} = 0$ and $\mathbf{y} = \mathbf{0}$.
- Obth solutions are improved iteratively. The feasibility of primal is improved and the optimality of the dual is improved.
- **(**) The primal solution is **always** extended integrally, so the final primal solution is integral.

- **()** We start with a primal infeasible and dual feasible solution. Usually, $\mathbf{x} = 0$ and $\mathbf{y} = \mathbf{0}$.
- Obth solutions are improved iteratively. The feasibility of primal is improved and the optimality of the dual is improved.
- **(**) The primal solution is **always** extended integrally, so the final primal solution is integral.
- In the end, we want to ensure that a primal feasible solution is obtained, and all relaxed complementarity slackness conditions are met for a suitable choice of α and β.

- **()** We start with a primal infeasible and dual feasible solution. Usually, $\mathbf{x} = 0$ and $\mathbf{y} = \mathbf{0}$.
- Obth solutions are improved iteratively. The feasibility of primal is improved and the optimality of the dual is improved.
- **O** The primal solution is **always** extended integrally, so the final primal solution is integral.
- In the end, we want to ensure that a primal feasible solution is obtained, and all relaxed complementarity slackness conditions are met for a suitable choice of α and β.
- An approximation algorithm ensures one set of complementary slackness conditions and relaxes the other.

- **()** We start with a primal infeasible and dual feasible solution. Usually, $\mathbf{x} = 0$ and $\mathbf{y} = \mathbf{0}$.
- Obth solutions are improved iteratively. The feasibility of primal is improved and the optimality of the dual is improved.
- On the primal solution is always extended integrally, so the final primal solution is integral.
- In the end, we want to ensure that a primal feasible solution is obtained, and all relaxed complementarity slackness conditions are met for a suitable choice of α and β.
- An approximation algorithm ensures one set of complementary slackness conditions and relaxes the other.
- If the goal is to ensure that primal conditions are ensured, then we set $\alpha = 1$.

- **()** We start with a primal infeasible and dual feasible solution. Usually, $\mathbf{x} = 0$ and $\mathbf{y} = \mathbf{0}$.
- Obth solutions are improved iteratively. The feasibility of primal is improved and the optimality of the dual is improved.
- On the primal solution is always extended integrally, so the final primal solution is integral.
- In the end, we want to ensure that a primal feasible solution is obtained, and all relaxed complementarity slackness conditions are met for a suitable choice of α and β.
- An approximation algorithm ensures one set of complementary slackness conditions and relaxes the other.
- If the goal is to ensure that primal conditions are ensured, then we set $\alpha = 1$. If the goal is to ensure that the dual conditions are ensured then β is set to 1.

- **()** We start with a primal infeasible and dual feasible solution. Usually, $\mathbf{x} = 0$ and $\mathbf{y} = \mathbf{0}$.
- Obth solutions are improved iteratively. The feasibility of primal is improved and the optimality of the dual is improved.
- On the primal solution is always extended integrally, so the final primal solution is integral.
- In the end, we want to ensure that a primal feasible solution is obtained, and all relaxed complementarity slackness conditions are met for a suitable choice of α and β.
- An approximation algorithm ensures one set of complementary slackness conditions and relaxes the other.
- If the goal is to ensure that primal conditions are ensured, then we set $\alpha = 1$. If the goal is to ensure that the dual conditions are ensured then β is set to 1.
- The current primal solution is used to determine the improvement to the dual and vice versa.

- **()** We start with a primal infeasible and dual feasible solution. Usually, $\mathbf{x} = 0$ and $\mathbf{y} = \mathbf{0}$.
- Obth solutions are improved iteratively. The feasibility of primal is improved and the optimality of the dual is improved.
- On the primal solution is always extended integrally, so the final primal solution is integral.
- In the end, we want to ensure that a primal feasible solution is obtained, and all relaxed complementarity slackness conditions are met for a suitable choice of α and β.
- An approximation algorithm ensures one set of complementary slackness conditions and relaxes the other.
- If the goal is to ensure that primal conditions are ensured, then we set $\alpha = 1$. If the goal is to ensure that the dual conditions are ensured then β is set to 1.
- The current primal solution is used to determine the improvement to the dual and vice versa.
- Finally, the cost of the dual solution is used as a lower bound on *OPT* and the approximation guarantee of $\alpha \cdot \beta$ is obtained.
Preliminaries

Preliminaries

The Set Cover Problem

Given,

Preliminaries

The Set Cover Problem

Given,

Preliminaries

The Set Cover Problem

Given,

• A ground set $U = \{e_1, e_2, ..., e_n\},\$

The Set Cover Problem

Given,

- A ground set $U = \{e_1, e_2, ..., e_n\},$
- 2 A collection of sets $S_P = \{S_1, S_2, \dots, S_m\}, S_i \subseteq U, i = 1, 2, \dots, m$

The Set Cover Problem

Given,

- A ground set $U = \{e_1, e_2, ..., e_n\},$
- 2 A collection of sets $S_P = \{S_1, S_2, \dots, S_m\}, S_i \subseteq U, i = 1, 2, \dots, m$
- **3** A weight function \mathbf{c} : $S_i \rightarrow Z_+$,

The Set Cover Problem

Given,

- A ground set $U = \{e_1, e_2, ..., e_n\},$
- 2 A collection of sets $S_P = \{S_1, S_2, \dots, S_m\}, S_i \subseteq U, i = 1, 2, \dots, m$
- **3** A weight function \mathbf{c} : $S_i \rightarrow Z_+$,

find a collection of subsets S_i , whose union covers the elements of U at minimum cost.

The Set Cover Problem

Given,

- A ground set $U = \{e_1, e_2, ..., e_n\},\$
- 2 A collection of sets $S_P = \{S_1, S_2, \dots, S_m\}, S_i \subseteq U, i = 1, 2, \dots, m$
- **3** A weight function \mathbf{c} : $S_i \rightarrow Z_+$,

find a collection of subsets S_i , whose union covers the elements of U at minimum cost.

Note

If all weights are unity (or the same),

The Set Cover Problem

Given,

- A ground set $U = \{e_1, e_2, ..., e_n\},$
- 2 A collection of sets $S_P = \{S_1, S_2, \dots, S_m\}, S_i \subseteq U, i = 1, 2, \dots, m$
- **3** A weight function \mathbf{c} : $S_i \rightarrow Z_+$,

find a collection of subsets S_i , whose union covers the elements of U at minimum cost.

Note

If all weights are unity (or the same), the problem is called the Cardinality Set Cover problem.

Formulating the Integer Program

IP formulation

Formulating the Integer Program

IP formulation

min $\sum_{S \in S_P} c(S) \cdot x_S$

Formulating the Integer Program

IP formulation

$\begin{array}{ll} & \min \sum_{S \in \mathcal{S}_{\mathcal{P}}} c(S) \cdot x_S \\ \text{subject to} & \sum_{S : e \in S} x_S \geq 1, \qquad e \in U \end{array}$

Formulating the Integer Program

IP formulation

	min $\sum_{S \in S_P} c(S) \cdot x_S$	
subject to	$\sum_{S:e\in S} x_S \ge 1$,	$e \in U$
	$x_{\mathcal{S}} \in \{0,1\},$	$m{S}\in m{S}_{P}$

The Linear Program relaxation

The Linear Program relaxation

Relaxation

The Linear Program relaxation

Relaxation

min $\sum_{S \in S_P} c(S) \cdot x_S$

The Linear Program relaxation

Relaxation

	min $\sum_{S \in S_P} c(S) \cdot x_S$	
subject to	$\sum_{S:e\in S} x_S \ge 1$,	$e \in U$

The Linear Program relaxation

Relaxation

	min $\sum_{S \in S_P} c(S) \cdot x_S$	
subject to	$\sum_{S:e\in S} x_S \ge 1$,	$e \in U$
	$x_{S} \geq 0,$	$\mathcal{S}\in\mathcal{S}_{\mathcal{P}}$

The Linear Program relaxation

Relaxation

	min $\sum_{S \in S_P} c(S) \cdot x_S$	
subject to	$\sum_{S:e\in S} x_S \ge 1$,	$e \in U$
	$x_S \ge 0$,	$\pmb{S} \in \pmb{S_P}$

Note

The Linear Program relaxation

Relaxation

	min $\sum_{S \in S_P} c(S) \cdot x_S$	
subject to	$\sum_{S:e\in S} x_S \ge 1$,	$e \in U$
	$x_{S} \geq 0$,	$m{S}\in m{S}_{P}$

Note

For our scheme, we choose $\alpha = 1$ and $\beta = f$, where f is the frequency of the most frequent element.

Relaxed complementary slackness conditions

Primal Conditions

Relaxed complementary slackness conditions

Primal Conditions

Relaxed complementary slackness conditions

Primal Conditions

 $\forall S \in S_P$:

Relaxed complementary slackness conditions

Primal Conditions

$$\forall S \in S_P : x_S \neq 0 \Rightarrow \sum_{e:e \in S} y_e = c(S).$$

Relaxed complementary slackness conditions

Primal Conditions

$$\forall S \in S_P : x_S \neq 0 \Rightarrow \sum_{e:e \in S} y_e = c(S).$$

Note

Relaxed complementary slackness conditions

Primal Conditions

$$\forall S \in S_P : x_S \neq 0 \Rightarrow \sum_{e:e \in S} y_e = c(S).$$

Note • A set *S* is tight under the current assignment to **y**, if $\sum_{e \in S} y_e = c(S)$.

Relaxed complementary slackness conditions

Primal Conditions

$$\forall S \in S_P : x_S \neq 0 \Rightarrow \sum_{e:e \in S} y_e = c(S).$$

Note

- A set *S* is tight under the current assignment to **y**, if $\sum_{e \in S} y_e = c(S)$.
- 2 Since primal variables are incremented integrally, the primal condition can be restated as:

Relaxed complementary slackness conditions

Primal Conditions

$$\forall S \in S_P : x_S \neq 0 \Rightarrow \sum_{e:e \in S} y_e = c(S).$$

Note

• A set *S* is tight under the current assignment to **y**, if $\sum_{e \in S} y_e = c(S)$.

• Since primal variables are incremented integrally, the primal condition can be restated as: Pick only tight sets in the cover.

Relaxed complementary slackness conditions

Primal Conditions

$$\forall S \in S_P : x_S \neq 0 \Rightarrow \sum_{e:e \in S} y_e = c(S).$$

Note

- A set *S* is tight under the current assignment to **y**, if $\sum_{e \in S} y_e = c(S)$.
- Since primal variables are incremented integrally, the primal condition can be restated as: Pick only tight sets in the cover.
- Olearly no set can be overpacked, if dual feasibility is to be maintained.

Relaxed complementary slackness conditions

Relaxed complementary slackness conditions

Dual Conditions

Relaxed complementary slackness conditions

Dual Conditions

Relaxed complementary slackness conditions

Dual Conditions

 $\forall e : y_e \neq 0 \Rightarrow$

Relaxed complementary slackness conditions

Dual Conditions

$$\forall \ e \ : \ y_e \neq 0 \Rightarrow \sum_{S: e \in S} x_S \le$$

Relaxed complementary slackness conditions

Dual Conditions

$$\forall e : y_e \neq 0 \Rightarrow \sum_{S:e \in S} x_S \leq f.$$

Relaxed complementary slackness conditions

Dual Conditions

$$\forall e : y_e \neq 0 \Rightarrow \sum_{S:e \in S} x_S \leq f.$$

Note
Primal-Dual schema for Set Cover

Relaxed complementary slackness conditions

Dual Conditions

$$\forall e : y_e \neq 0 \Rightarrow \sum_{S:e \in S} x_S \leq f.$$

Note

The above conditions can be interpreted as follows:

Primal-Dual schema for Set Cover

Relaxed complementary slackness conditions

Dual Conditions

$$\forall e : y_e \neq 0 \Rightarrow \sum_{S:e \in S} x_S \leq f.$$

Note

The above conditions can be interpreted as follows: Each element having a non-zero dual can be covered at most f times.

Primal-Dual schema for Set Cover

Relaxed complementary slackness conditions

Dual Conditions

$$\forall e : y_e \neq 0 \Rightarrow \sum_{S:e \in S} x_S \leq f.$$

Note

The above conditions can be interpreted as follows: Each element having a non-zero dual can be covered at most f times. But this condition is trivially satisfied by all elements $e \in U$!

The Primal Dual Algorithm for Set Cover

The Primal Dual Algorithm for Set Cover

The Primal Dual Algorithm for Set Cover

The Primal Dual Algorithm for Set Cover

- Set $\mathbf{x} \leftarrow \mathbf{0}$ and $\mathbf{y} \leftarrow \mathbf{0}$.
- 2 Until (all elements are covered) do:

- Set $\mathbf{x} \leftarrow \mathbf{0}$ and $\mathbf{y} \leftarrow \mathbf{0}$.
- 2 Until (all elements are covered) do:
- Solution Pick an uncovered element, say e and raise y_e , until some set goes tight.

- Set $\mathbf{x} \leftarrow \mathbf{0}$ and $\mathbf{y} \leftarrow \mathbf{0}$.
- 2 Until (all elements are covered) do:
- Solution Pick an uncovered element, say e and raise y_e , until some set goes tight.
- Pick all tight sets in the cover and update x.

- Set $\mathbf{x} \leftarrow \mathbf{0}$ and $\mathbf{y} \leftarrow \mathbf{0}$.
- 2 Until (all elements are covered) do:
- Solution Pick an uncovered element, say e and raise y_e , until some set goes tight.
- Pick all tight sets in the cover and update x.
- Declare all elements occurring in these sets as "covered."

- Set $\mathbf{x} \leftarrow \mathbf{0}$ and $\mathbf{y} \leftarrow \mathbf{0}$.
- 2 Until (all elements are covered) do:
- Solution Pick an uncovered element, say e and raise y_e , until some set goes tight.
- Pick all tight sets in the cover and update x.
- Declare all elements occurring in these sets as "covered."
- Output the set cover **x**.

Primal-Dual Schema

Analysis

Theorem

The above algorithm achieves an approximation factor of f.

Theorem

The above algorithm achieves an approximation factor of f.

Theorem

The above algorithm achieves an approximation factor of f.

Theorem

The above algorithm achieves an approximation factor of f.

Proof.

Is x a primal feasible solution, i.e., are all elements covered?

Theorem

The above algorithm achieves an approximation factor of f.

Proof.

() Is **x** a primal feasible solution, i.e., are all elements covered? Yes.

Theorem

The above algorithm achieves an approximation factor of f.

- **()** Is **x** a primal feasible solution, i.e., are all elements covered? Yes.
- Is y a dual feasible solution, i.e., is any set overpacked?

Theorem

The above algorithm achieves an approximation factor of f.

- **()** Is **x** a primal feasible solution, i.e., are all elements covered? Yes.
- Is y a dual feasible solution, i.e., is any set overpacked? No set is overpacked and hence y is indeed dual feasible.

Theorem

The above algorithm achieves an approximation factor of f.

- **()** Is **x** a primal feasible solution, i.e., are all elements covered? Yes.
- Is y a dual feasible solution, i.e., is any set overpacked? No set is overpacked and hence y is indeed dual feasible.
- **()** Note that **x** and **y** satisfy the relaxed complementary slackness conditions, with $\alpha = 1$ and $\beta = f$.

Theorem

The above algorithm achieves an approximation factor of f.

- Is x a primal feasible solution, i.e., are all elements covered? Yes.
- Is y a dual feasible solution, i.e., is any set overpacked? No set is overpacked and hence y is indeed dual feasible.
- **(9)** Note that **x** and **y** satisfy the relaxed complementary slackness conditions, with $\alpha = 1$ and $\beta = f$.
- **9** By the Main Lemma, it follows that the approximation factor is *f*.

Example

• Let S_P consist of the following: (n-1) sets of cost 1, viz., $\{e_1, e_n\}, \{e_2, e_n\}, \dots, \{e_{n-1}, e_n\}$ and one set $\{e_1, e_2, \dots, e_n, e_{n+1}\}$ of cost $(1 + \varepsilon)$, where $\varepsilon > 0$ is a small constant.

- Let S_P consist of the following: (n-1) sets of cost 1, viz., $\{e_1, e_n\}, \{e_2, e_n\}, \dots, \{e_{n-1}, e_n\}$ and one set $\{e_1, e_2, \dots, e_n, e_{n+1}\}$ of cost $(1 + \varepsilon)$, where $\varepsilon > 0$ is a small constant.
- **2** Observe that f = n.

- Let S_P consist of the following: (n-1) sets of cost 1, viz., $\{e_1, e_n\}, \{e_2, e_n\}, \dots, \{e_{n-1}, e_n\}$ and one set $\{e_1, e_2, \dots, e_n, e_{n+1}\}$ of cost $(1 + \varepsilon)$, where $\varepsilon > 0$ is a small constant.
- **2** Observe that f = n.
- Suppose that the algorithm picks y_{e_n} in the first iteration.

- Let S_P consist of the following: (n-1) sets of cost 1, viz., $\{e_1, e_n\}$, $\{e_2, e_n\}$, ..., $\{e_{n-1}, e_n\}$ and one set $\{e_1, e_2, \ldots, e_n, e_{n+1}\}$ of cost $(1 + \varepsilon)$, where $\varepsilon > 0$ is a small constant.
- **2** Observe that f = n.
- Suppose that the algorithm picks y_{e_n} in the first iteration.
- When y_{e_n} is raised to 1, all sets $\{e_i, e_n\}, i = 1, 2, \dots (n-1)$, go tight.

- Let S_P consist of the following: (n-1) sets of cost 1, viz., $\{e_1, e_n\}$, $\{e_2, e_n\}$, ..., $\{e_{n-1}, e_n\}$ and one set $\{e_1, e_2, \ldots, e_n, e_{n+1}\}$ of cost $(1 + \varepsilon)$, where $\varepsilon > 0$ is a small constant.
- **2** Observe that f = n.
- Suppose that the algorithm picks y_{e_n} in the first iteration.
- When y_{e_n} is raised to 1, all sets $\{e_i, e_n\}, i = 1, 2, \dots (n-1)$, go tight.
- Thus they are all picked, covering the elements in $\{e_1, e_2, \ldots, e_n\}$.

- Let S_P consist of the following: (n-1) sets of cost 1, viz., $\{e_1, e_n\}, \{e_2, e_n\}, \dots, \{e_{n-1}, e_n\}$ and one set $\{e_1, e_2, \dots, e_n, e_{n+1}\}$ of cost $(1 + \varepsilon)$, where $\varepsilon > 0$ is a small constant.
- **2** Observe that f = n.
- Suppose that the algorithm picks y_{e_n} in the first iteration.
- When y_{e_n} is raised to 1, all sets $\{e_i, e_n\}, i = 1, 2, ..., (n-1)$, go tight.
- Thus they are all picked, covering the elements in $\{e_1, e_2, \ldots, e_n\}$.
- In the second iteration, $y_{e_{n+1}}$ is raised to ε and the set $\{e_1, e_2, \dots, e_n, e_{n+1}\}$ becomes tight and is picked.

- Let S_P consist of the following: (n-1) sets of cost 1, viz., $\{e_1, e_n\}, \{e_2, e_n\}, \dots, \{e_{n-1}, e_n\}$ and one set $\{e_1, e_2, \dots, e_n, e_{n+1}\}$ of cost $(1 + \varepsilon)$, where $\varepsilon > 0$ is a small constant.
- **2** Observe that f = n.
- **③** Suppose that the algorithm picks y_{e_n} in the first iteration.
- When y_{e_n} is raised to 1, all sets $\{e_i, e_n\}, i = 1, 2, \dots (n-1)$, go tight.
- Thus they are all picked, covering the elements in $\{e_1, e_2, \ldots, e_n\}$.
- In the second iteration, $y_{e_{n+1}}$ is raised to ε and the set $\{e_1, e_2, \dots, e_n, e_{n+1}\}$ becomes tight and is picked.
- The total cost of the picked cover is $(n + \varepsilon)$.

- Let S_P consist of the following: (n-1) sets of cost 1, viz., $\{e_1, e_n\}, \{e_2, e_n\}, \dots, \{e_{n-1}, e_n\}$ and one set $\{e_1, e_2, \dots, e_n, e_{n+1}\}$ of cost $(1 + \varepsilon)$, where $\varepsilon > 0$ is a small constant.
- **2** Observe that f = n.
- **③** Suppose that the algorithm picks y_{e_n} in the first iteration.
- When y_{e_n} is raised to 1, all sets $\{e_i, e_n\}, i = 1, 2, \dots (n-1)$, go tight.
- Thus they are all picked, covering the elements in $\{e_1, e_2, \ldots, e_n\}$.
- In the second iteration, $y_{e_{n+1}}$ is raised to ε and the set $\{e_1, e_2, \dots, e_n, e_{n+1}\}$ becomes tight and is picked.
- The total cost of the picked cover is $(n + \varepsilon)$.
- The optimal cover has cost $(1 + \varepsilon)$.

- Let S_P consist of the following: (n-1) sets of cost 1, viz., $\{e_1, e_n\}, \{e_2, e_n\}, \dots, \{e_{n-1}, e_n\}$ and one set $\{e_1, e_2, \dots, e_n, e_{n+1}\}$ of cost $(1 + \varepsilon)$, where $\varepsilon > 0$ is a small constant.
- **2** Observe that f = n.
- **③** Suppose that the algorithm picks y_{e_n} in the first iteration.
- When y_{e_n} is raised to 1, all sets $\{e_i, e_n\}$, i = 1, 2, ..., (n-1), go tight.
- Thus they are all picked, covering the elements in $\{e_1, e_2, \ldots, e_n\}$.
- In the second iteration, $y_{e_{n+1}}$ is raised to ε and the set $\{e_1, e_2, \dots, e_n, e_{n+1}\}$ becomes tight and is picked.
- The total cost of the picked cover is $(n + \varepsilon)$.
- The optimal cover has cost $(1 + \varepsilon)$.
- This example achieves the bound of f = n.