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However, a relaxation of the complementary slackness conditions helps in the derivation of
approximation algorithms.
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Q It follows that, s*x* +y* - t* = 0.

© Hence, s*-x* =0and y*-t* =0, since x*,y*,s*,t* > 0.
© Hencefor1<i<n,xi-s;=0,i.e., eitherx; =0ors; =0.
© Likewise, for 1 <j < n, either y; =0 or tj = 0.




[ Preliminaries

Interpretation of complementary slackness




[ Preliminaries

Interpretation of complementary slackness

Interpretation




[ Preliminaries

Interpretation of complementary slackness

Interpretation

(1) If a primal variable x; > 0, then the corresponding dual constraint must be binding, i.e.,
si =0.




[ Preliminaries

Interpretation of complementary slackness

Interpretation

(1) If a primal variable x; > 0, then the corresponding dual constraint must be binding, i.e.,
si =0.

(2) If a dual constraint is not binding, i.e., s; > 0, then the corresponding primal variable (x;")
must be 0.




[ Preliminaries

Interpretation of complementary slackness

Interpretation

(1) If a primal variable x; > 0, then the corresponding dual constraint must be binding, i.e.,
si =0.

(2) If a dual constraint is not binding, i.e., s; > 0, then the corresponding primal variable (x;")
must be 0.

(3) If a dual variable y;* > 0, then the corresponding primal constraint must be binding, i.e.,
t* =0.




[ Preliminaries

Interpretation of complementary slackness

Interpretation

(1) If a primal variable x; > 0, then the corresponding dual constraint must be binding, i.e.,
si =0.

(2) If a dual constraint is not binding, i.e., s; > 0, then the corresponding primal variable (x;")
must be 0.

(3) If a dual variable y;* > 0, then the corresponding primal constraint must be binding, i.e.,
t* =0.

(4) If a primal constraint is non-binding, i.e., t* > 0, then the corresponding dual variable (y;*)
must be zero.




[ Preliminaries

Relaxed complementary slackness conditions




[ Preliminaries

Relaxed complementary slackness conditions

Relaxed primal conditions




[ Preliminaries

Relaxed complementary slackness conditions

Relaxed primal conditions
Let o > 1.




[ Preliminaries

Relaxed complementary slackness conditions

Relaxed primal conditions
Let o > 1.

Vj1<j<n: eitherx;=0 or




[ Preliminaries

Relaxed complementary slackness conditions

Relaxed primal conditions
Let o > 1.

ci m
Vi1<j<n: eitherx; =0 or 2 <Y gy <c.
J1=/= G a_; i Vi < G




[ Preliminaries

Relaxed complementary slackness conditions

Relaxed primal conditions

Let o > 1.

@ _ &
Vi1<j<n: eitherx; =0 or 2 <Y gy <c.
J1=/= G a_; i Vi < G

V.

Relaxed dual conditions

\




[ Preliminaries

Relaxed complementary slackness conditions

Relaxed primal conditions

Let o > 1.

@ _ &
Vi1<j<n: eitherx; =0 or 2 <Y gy <c.
J1=/= G a_; i Vi < G

V.

Relaxed dual conditions

Let B >1.

\




[ Preliminaries

Relaxed complementary slackness conditions

Relaxed primal conditions

Let o > 1.

@ _ &
Vi1<j<n: eitherx; =0 or 2 <Y gy <c.
J1=/= G a_; i Vi < G

V.

Relaxed dual conditions

Let B >1.

Vi1<i<m: eithery;=0 or

\




[ Preliminaries

Relaxed complementary slackness conditions

Relaxed primal conditions

Let o > 1.

@ _ &
Vi1<j<n: eitherx; =0 or 2 <Y gy <c.
J1=/= G a_; i Vi < G

V.

Relaxed dual conditions

Let B >1.

Jj=1

n
Vi1<i<m: eithery;=0 or b,v§2a,v,~x,-§ﬁ-b,v.

\




[ Preliminaries

Application to approximation algorithms




[ Preliminaries

Application to approximation algorithms

Lemma (Main Lemma)

Ifx and'y are primal and dual feasible solutions satisfying the relaxed complementary slackness
conditions, then




[ Preliminaries

Application to approximation algorithms

Lemma (Main Lemma)

Ifx and'y are primal and dual feasible solutions satisfying the relaxed complementary slackness
conditions, then

n m
Yo x<aB-Y by
i=1 i=1




[ Preliminaries

Proof of Main Lemma




[ Preliminaries

Proof of Main Lemma




[ Preliminaries

Proof of Main Lemma




[ Preliminaries

Proof of Main Lemma

Yo <
=




[ Preliminaries

Proof of Main Lemma

n

Yo < Z(a-(iaw,v))-x;
=1 i=

=




[ Preliminaries

Proof of Main Lemma

Xn‘,"i‘xi < Xn‘,(a'(iaij‘}’/))'xj
= J=1 i=1
= a'(i(iaij'}’i))"(/
j=1 i=




[ Preliminaries

Proof of Main Lemma

IA

i(a-()rfafryf))-xj

Jj=1 i=1

Zall ¥i)) %

n

Zf/X/)Yr

j=1

n
Y6
j=1

Ms T M:




[ Preliminaries

Proof of Main Lemma

iclxl < 2(“ (Zalj ¥i)) - X
J=1 = i=
= @B E ey
j=1 i=
= o (i ) ajj - Xj ) Yi
i=1 j=1
< @3B0y




[ Preliminaries

Proof of Main Lemma

Proof.
n
Y 6%
j=1

IA

Z(“ (Zau ¥i)) - X

j=1 i=

O‘(ZZaUYI)X/

j=1 i=

>

n

:OC( a,,)(])y,
9

Ms

J

(B-bi))-yi

IN

a-(

J"JS

a-B»Zb,--y,-‘
i=




[ Preliminaries

The primal-dual approach




[ Preliminaries

The primal-dual approach

Algorithmic procedure




[ Preliminaries

The primal-dual approach

Algorithmic procedure

@ We start with a primal infeasible and dual feasible solution.




[ Preliminaries

The primal-dual approach

Algorithmic procedure

@ We start with a primal infeasible and dual feasible solution. Usually, x =0 and y = 0.




[ Preliminaries

The primal-dual approach

Algorithmic procedure

@ We start with a primal infeasible and dual feasible solution. Usually, x =0 and y = 0.

@ Both solutions are improved iteratively.




[ Preliminaries

The primal-dual approach

Algorithmic procedure

@ We start with a primal infeasible and dual feasible solution. Usually, x =0 and y = 0.

@ Both solutions are improved iteratively. The feasibility of primal is improved and the
optimality of the dual is improved.




[ Preliminaries

The primal-dual approach

Algorithmic procedure

@ We start with a primal infeasible and dual feasible solution. Usually, x =0 and y = 0.

@ Both solutions are improved iteratively. The feasibility of primal is improved and the
optimality of the dual is improved.

© The primal solution is always extended integrally, so the final primal solution is integral.




[ Preliminaries

The primal-dual approach

Algorithmic procedure

@ We start with a primal infeasible and dual feasible solution. Usually, x =0 and y = 0.

Both solutions are improved iteratively. The feasibility of primal is improved and the
optimality of the dual is improved.

(2
© The primal solution is always extended integrally, so the final primal solution is integral.
Q

In the end, we want to ensure that a primal feasible solution is obtained, and all relaxed
complementarity slackness conditions are met for a suitable choice of o and 3.




[ Preliminaries

The primal-dual approach

Algorithmic procedure

We start with a primal infeasible and dual feasible solution. Usually, x =0 and y = 0.

Both solutions are improved iteratively. The feasibility of primal is improved and the
optimality of the dual is improved.

The primal solution is always extended integrally, so the final primal solution is integral.

In the end, we want to ensure that a primal feasible solution is obtained, and all relaxed
complementarity slackness conditions are met for a suitable choice of o and 3.

© 060 O©OO

An approximation algorithm ensures one set of complementary slackness conditions and
relaxes the other.




[ Preliminaries

The primal-dual approach

Algorithmic procedure

We start with a primal infeasible and dual feasible solution. Usually, x =0 and y = 0.

Both solutions are improved iteratively. The feasibility of primal is improved and the
optimality of the dual is improved.

The primal solution is always extended integrally, so the final primal solution is integral.

In the end, we want to ensure that a primal feasible solution is obtained, and all relaxed
complementarity slackness conditions are met for a suitable choice of o and 3.

An approximation algorithm ensures one set of complementary slackness conditions and
relaxes the other.

© 06 00 O©6O

If the goal is to ensure that primal conditions are ensured, then we set o = 1.




[ Preliminaries

The primal-dual approach

Algorithmic procedure

We start with a primal infeasible and dual feasible solution. Usually, x =0 and y = 0.

Both solutions are improved iteratively. The feasibility of primal is improved and the
optimality of the dual is improved.

The primal solution is always extended integrally, so the final primal solution is integral.

In the end, we want to ensure that a primal feasible solution is obtained, and all relaxed
complementarity slackness conditions are met for a suitable choice of o and 3.

An approximation algorithm ensures one set of complementary slackness conditions and
relaxes the other.

© 06 00 O©6O

If the goal is to ensure that primal conditions are ensured, then we set o = 1. If the goal is
to ensure that the dual conditions are ensured then 3 is set to 1.




[ Preliminaries

The primal-dual approach

Algorithmic procedure

We start with a primal infeasible and dual feasible solution. Usually, x =0 and y = 0.

Both solutions are improved iteratively. The feasibility of primal is improved and the
optimality of the dual is improved.

The primal solution is always extended integrally, so the final primal solution is integral.

In the end, we want to ensure that a primal feasible solution is obtained, and all relaxed
complementarity slackness conditions are met for a suitable choice of o and 3.

An approximation algorithm ensures one set of complementary slackness conditions and
relaxes the other.

If the goal is to ensure that primal conditions are ensured, then we set o = 1. If the goal is
to ensure that the dual conditions are ensured then 3 is set to 1.

© 06 0 060 ©60

The current primal solution is used to determine the improvement to the dual and vice
versa.
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We start with a primal infeasible and dual feasible solution. Usually, x =0 and y = 0.

Both solutions are improved iteratively. The feasibility of primal is improved and the
optimality of the dual is improved.

The primal solution is always extended integrally, so the final primal solution is integral.

In the end, we want to ensure that a primal feasible solution is obtained, and all relaxed
complementarity slackness conditions are met for a suitable choice of o and 3.

An approximation algorithm ensures one set of complementary slackness conditions and
relaxes the other.

If the goal is to ensure that primal conditions are ensured, then we set o = 1. If the goal is
to ensure that the dual conditions are ensured then 3 is set to 1.

The current primal solution is used to determine the improvement to the dual and vice
versa.
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Finally, the cost of the dual solution is used as a lower bound on OPT and the
approximation guarantee of o - 3 is obtained.
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The Set Cover Problem

Given,
@ Aground set U={ei,ez,...,en},
@ A collection of sets Sp = {S1,S,,...Sm}, SiC U, i=1,2,....m
© A weight functionc : S; — Zy,
find a collection of subsets S;, whose union covers the elements of U at minimum cost.

If all weights are unity (or the same), the problem is called the Cardinality Set Cover problem.
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min Yses, ¢(S) - Xs
subject to Y s ecsXs > 1, ecU
Xs€{0,1}, SeSp
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Relaxation

min Y ses, ¢(S) - Xs
subject to Y s ecsXs > 1, ecU
xs >0, SeSp

v

For our scheme, we choose . = 1 and 3 = f, where f is the frequency of the most frequent
element.

N,
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Primal Conditions

VSESp i xs#£0= Y ye=c(S).

e:ecS

v
@ A set S is tight under the current assignment to'y, if Y ocs Ye = ¢(S).

@ Since primal variables are incremented integrally, the primal condition can be restated as:
Pick only tight sets in the cover.

@ Clearly no set can be overpacked, if dual feasibility is to be maintained.
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Relaxed complementary slackness conditions

Dual Conditions

Ve: Yye#0=> Z xs < f.
S:ecS

v

The above conditions can be interpreted as follows: Each element having a non-zero dual can
be covered at most f times. But this condition is trivially satisfied by all elements e € U!

N




LThe Primal Dual Algorithm

The Primal Dual Algorithm for Set Cover




LThe Primal Dual Algorithm

The Primal Dual Algorithm for Set Cover

The Algorithm




LThe Primal Dual Algorithm

The Primal Dual Algorithm for Set Cover

The Algorithm

@ Setx«+0andy<« 0.




LThe Primal Dual Algorithm

The Primal Dual Algorithm for Set Cover

The Algorithm

@ Setx«+0andy<« 0.
@ Until (all elements are covered) do:




LThe Primal Dual Algorithm

The Primal Dual Algorithm for Set Cover

The Algorithm

@ Setx«+0andy<« 0.
@ Until (all elements are covered) do:
Q Pick an uncovered element, say e and raise y,, until some set goes tight.




LThe Primal Dual Algorithm

The Primal Dual Algorithm for Set Cover

The Algorithm

@ Setx«+0andy<« 0.

@ Until (all elements are covered) do:

Q Pick an uncovered element, say e and raise ye, until some set goes tight.
Q Pick all tight sets in the cover and update x.




LThe Primal Dual Algorithm

The Primal Dual Algorithm for Set Cover

The Algorithm

@ Setx«+0andy<« 0.

@ Until (all elements are covered) do:

Q Pick an uncovered element, say e and raise ye, until some set goes tight.
Q Pick all tight sets in the cover and update x.

Q Declare all elements occurring in these sets as “covered.”




LThe Primal Dual Algorithm

The Primal Dual Algorithm for Set Cover

The Algorithm

@ Setx«+0andy<« 0.
@ Until (all elements are covered) do:

Q Pick an uncovered element, say e and raise y,, until some set goes tight.
Q Pick all tight sets in the cover and update x.
Q Declare all elements occurring in these sets as “covered.”

Q@ Output the set cover x.
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Analysis

The above algorithm achieves an approximation factor of f.

@ Is x a primal feasible solution, i.e., are all elements covered? Yes.

@ Isy adual feasible solution, i.e., is any set overpacked? No set is overpacked and hence y
is indeed dual feasible.

© Note that x and y satisfy the relaxed complementary slackness conditions, with & = 1 and
B=f.

©Q By the Main Lemma, it follows that the approximation factor is f.
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Suppose that the algorithm picks ye, in the first iteration.

When ye, is raised to 1, all sets {ej, e}, i =1,2,...(n—1), go tight.
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This example achieves the bound of f = n.
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