Set-Cover approximation through Primal Dual Schema

K. Subramani’

Lane Department of Computer Science and Electrical Engineering
West Virginia University

April 4, 2014

LOutIine

Outline

Kl Preliminaries

LOutIine

Outline

Kl Preliminaries

B Primal-Dual schema for Set Cover

LOutIine

Outline

El Preliminaries E The Primal Dual Algorithm

B Primal-Dual schema for Set Cover

LOutIine

Outline

El Preliminaries E The Primal Dual Algorithm

B Primal-Dual schema for Set Cover B Tightness

[Preliminaries

Main Ideas

[Preliminaries

Main Ideas

Algorithm design for problems in P

[Preliminaries

Main Ideas

Algorithm design for problems in P

@ The primal-dual approach was used in algorithm design for problems such as matching,
network flows, shortest paths in digraphs, etc., in which the LP-relaxations have integral
optimal solutions.

[Preliminaries

Main Ideas

Algorithm design for problems in P

@ The primal-dual approach was used in algorithm design for problems such as matching,
network flows, shortest paths in digraphs, etc., in which the LP-relaxations have integral
optimal solutions.

@ For LP optimal solutions, we know that the primal and dual complementary slackness
conditions have to be satisfied.

[Preliminaries

Main Ideas

Algorithm design for problems in P

@ The primal-dual approach was used in algorithm design for problems such as matching,
network flows, shortest paths in digraphs, etc., in which the LP-relaxations have integral
optimal solutions.

@ For LP optimal solutions, we know that the primal and dual complementary slackness
conditions have to be satisfied.

© The approach starts with feasible primal and dual solutions and iteratively attempts to
satisfy complementary slackness conditions.

[Preliminaries

Main Ideas

Algorithm design for problems in P

@ The primal-dual approach was used in algorithm design for problems such as matching,
network flows, shortest paths in digraphs, etc., in which the LP-relaxations have integral
optimal solutions.

@ For LP optimal solutions, we know that the primal and dual complementary slackness
conditions have to be satisfied.

© The approach starts with feasible primal and dual solutions and iteratively attempts to
satisfy complementary slackness conditions.

©Q When they are all satisfied, both primal and dual solutions must be optimal.

[Preliminaries

Main Ideas

Algorithm design for problems in P

@ The primal-dual approach was used in algorithm design for problems such as matching,
network flows, shortest paths in digraphs, etc., in which the LP-relaxations have integral
optimal solutions.

For LP optimal solutions, we know that the primal and dual complementary slackness
conditions have to be satisfied.

The approach starts with feasible primal and dual solutions and iteratively attempts to
satisfy complementary slackness conditions.

When they are all satisfied, both primal and dual solutions must be optimal.

00 o0 ©

Cannot work directly for NP-hard problems, since the LP relaxations need not have integral
optimal solutions.

[Preliminaries

Main Ideas

Algorithm design for problems in P

@ The primal-dual approach was used in algorithm design for problems such as matching,
network flows, shortest paths in digraphs, etc., in which the LP-relaxations have integral
optimal solutions.

For LP optimal solutions, we know that the primal and dual complementary slackness
conditions have to be satisfied.

The approach starts with feasible primal and dual solutions and iteratively attempts to
satisfy complementary slackness conditions.

When they are all satisfied, both primal and dual solutions must be optimal.

Cannot work directly for NP-hard problems, since the LP relaxations need not have integral
optimal solutions.

© 00 © ©

However, a relaxation of the complementary slackness conditions helps in the derivation of
approximation algorithms.

[Preliminaries

Primal and Dual forms

[Preliminaries

Primal and Dual forms

Forms

Primal (P):

z=min Y1 ¢-X

[Preliminaries

Primal and Dual forms

Forms

Primal (P):

z=min Y1 ¢-X
st Ylia-x>bj,i=12..m

[Preliminaries

Primal and Dual forms

Forms

Primal (P):

— H n
z=min YL ¢ X
s.t.):;7:1a,-j~x/-2b,-,i:1,2,...m
x>0,j=12..n

[Preliminaries

Primal and Dual forms

Forms

Primal (P):

— H n
z=min YL ¢ X
s.t.):;7:1a,-j~x/-2b,-,i:1,2,...m
x>0,j=12..n

[Preliminaries

Primal and Dual forms

Forms

Primal (P):

— H n
z=min YL ¢ X
s.t.):;7:1a,-j~x/-2b,-,i:1,2,...m
x>0,j=12..n

Z= minc-X

[Preliminaries

Primal and Dual forms

Forms

Primal (P):

— H n
z=min YL ¢ X
s.t.):;7:1a,-j~x/-2b,-,i:1,2,...m
x>0,j=12..n

Z= minc-X
s.t. A-x>b

[Preliminaries

Primal and Dual forms

Forms

Primal (P):

— H n
z=min YL ¢ X
s.t.):;7:1a,-j~x/-2b,-,i:1,2,...m
x>0,j=12..n

Z= minc-X
s.t. A-x>b
x>0

[Preliminaries

Primal and Dual forms

Forms

Primal (P):

— H n
z=min YL ¢ X
s.t.):;7:1a,-j~x/-2b,-,i:1,2,...m
x>0,j=12..n

Z= minc-X
s.t. A-x>b
x>0

Dual (D):

w= max Y, by

[Preliminaries

Primal and Dual forms

Forms

Primal (P):

— H n
z=min YL ¢ X
s.t.):;7:1a,-j~x/-2b,-,i:1,2,...m
x>0,j=12..n

Z= minc-X
s.t. A-x>b
x>0
Dual (D):

w= max Y, by

subjectto Y@ -y <c,j=1,2,...n

[Preliminaries

Primal and Dual forms

Forms

Primal (P):

— H n
z=min YL ¢ X
s.t.):;7:1a,-j~x/-2b,-,i:1,2,...m
x>0,j=12..n

Z= minc-X
s.t. A-x>b
x>0

Dual (D):

w= max Y, by
subjectto Y@ -y <c,j=1,2,...n
yi>0,i=1,2,...m

[Preliminaries

Primal and Dual forms

Forms

Primal (P):

— H n
z=min YL ¢ X
s.t.):;7:1a,-j~x/-2b,-,i:1,2,...m
x>0,j=12..n

Z= minc-X
s.t. A-x>b
x>0

Dual (D):

w= max Y77 bj-y; w= max b-y
subjectto Y@ -y <c,j=1,2,...n
yi>0,i=1,2,...m

[Preliminaries

Primal and Dual forms

Forms

Primal (P):

— H n
z=min YL ¢ X
s.t.):;7:1a,-j~x/-2b,-,i:1,2,...m
x>0,j=12..n

Z= minc-X
s.t. A-x>b

x>0
Dual (D):
w= max Y, by w= maxb-y
subjectto Y a;-yi<¢,j=1,2,...n s.t. y-A<c

yi>0,i=1,2,...m

[Preliminaries

Primal and Dual forms

Forms

Primal (P):

— H n
z=min YL ¢ X
s.t.):;7:1a,-j~x/-2b,-,i:1,2,...m
x>0,j=12..n

Z= minc-X
s.t. A-x>b

x>0
Dual (D):
w= max Y, by w= maxb-y
subjectto Y a;-yi<¢,j=1,2,...n s.t. y-A<c

yi>0,i=12,...m y=0

[Preliminaries

Complementary Slackness

[Preliminaries

Complementary Slackness

Letx andy be primal and dual feasible solutions, respectively.

[Preliminaries

Complementary Slackness

Letx andy be primal and dual feasible solutions, respectively. Then, x andy are both optimal iff
all of the following conditions are satisfied:

[Preliminaries

Complementary Slackness

Letx andy be primal and dual feasible solutions, respectively. Then, x andy are both optimal iff
all of the following conditions are satisfied:

[Preliminaries

Complementary Slackness

Letx andy be primal and dual feasible solutions, respectively. Then, x andy are both optimal iff
all of the following conditions are satisfied:

@ Primal Complementary Slackness:

[Preliminaries

Complementary Slackness

Letx andy be primal and dual feasible solutions, respectively. Then, x andy are both optimal iff
all of the following conditions are satisfied:

@ Primal Complementary Slackness:

Foreach1 <j<n:

[Preliminaries

Complementary Slackness

Letx andy be primal and dual feasible solutions, respectively. Then, x andy are both optimal iff
all of the following conditions are satisfied:

@ Primal Complementary Slackness:

Foreach1 <j<n: eitherx; =0,

[Preliminaries

Complementary Slackness

Letx andy be primal and dual feasible solutions, respectively. Then, x andy are both optimal iff
all of the following conditions are satisfied:

@ Primal Complementary Slackness:

m
Foreach1<j<n: eitherx; =0, or Y aj-yi =g
=

[Preliminaries

Complementary Slackness

Letx andy be primal and dual feasible solutions, respectively. Then, x andy are both optimal iff
all of the following conditions are satisfied:

@ Primal Complementary Slackness:

m
Foreach1<j<n: eitherx; =0, or Y aj-yi =g
i=

© Dual Complementary Slackness:

Foreach1<i<m:

[Preliminaries

Complementary Slackness

Letx andy be primal and dual feasible solutions, respectively. Then, x andy are both optimal iff
all of the following conditions are satisfied:

@ Primal Complementary Slackness:

m
Foreach1<j<n: eitherx; =0, or Y aj-yi =g
i=

© Dual Complementary Slackness:

Foreach1 <i<m: eithery; =0,

[Preliminaries

Complementary Slackness

Letx andy be primal and dual feasible solutions, respectively. Then, x andy are both optimal iff
all of the following conditions are satisfied:

@ Primal Complementary Slackness:

m
Foreach1<j<n: eitherx; =0, or Y aj-yi =g
i=

© Dual Complementary Slackness:

n
Foreach1<i<m: eithery; =0, or Y a;-X = b;.
=

[Preliminaries

Proof of Complementary Slackness

[Preliminaries

Proof of Complementary Slackness

[Preliminaries

Proof of Complementary Slackness

(i) Recall that the primal is mina.x>p x>0 € X

[Preliminaries

Proof of Complementary Slackness

(i) Recall that the primal is mina.x>p, x>0 €-X and the dual is maxy.a<c,y>o0 b-y.

[Preliminaries

Proof of Complementary Slackness

(i) Recall that the primal is mina.x>p, x>0 €-X and the dual is maxy.a<c,y>o0 b-y.

(i) Let (x*,y*) denote an optimal primal-dual pair.

[Preliminaries

Proof of Complementary Slackness

(i) Recall that the primal is mina.x>p, x>0 €-X and the dual is maxy.a<c,y>o0 b-y.
(i) Let (x*,y*) denote an optimal primal-dual pair.
(i) Define t* = A-x* —b (surplus) and s* = ¢ —y* - A (slack).

[Preliminaries

Proof of Complementary Slackness

(i) Recall that the primal is mina.x>p, x>0 €-X and the dual is maxy.a<c,y>o0 b-y.
(i) Let (x*,y*) denote an optimal primal-dual pair.

(i) Define t* = A-x* —b (surplus) and s* = ¢ —y* - A (slack).
Clearly, t* > 0 and s* > 0.

[Preliminaries

Proof of Complementary Slackness

(i) Recall that the primal is mina.x>p, x>0 €-X and the dual is maxy.a<c,y>o0 b-y.
(i) Let (x*,y*) denote an optimal primal-dual pair.
(i) Define t* = A-x* —b (surplus) and s* = ¢ —y* - A (slack).
Clearly, t* > 0 and s* > 0.
(iv) The complementary slackness conditions can be rewritten as:

[Preliminaries

Proof of Complementary Slackness

(i) Recall that the primal is mina.x>p, x>0 €-X and the dual is maxy.a<c,y>o0 b-y.
(i) Let (x*,y*) denote an optimal primal-dual pair.
(i) Define t* = A-x* —b (surplus) and s* = ¢ —y* - A (slack).
Clearly, t* > 0 and s* > 0.

(iv) The complementary slackness conditions can be rewritten as:
Primal: Vi, 1 << n, either x; =0 or s; = 0,

[Preliminaries

Proof of Complementary Slackness

(i) Recall that the primal is mina.x>p, x>0 €-X and the dual is maxy.a<c,y>o0 b-y.
(i) Let (x*,y*) denote an optimal primal-dual pair.
(i) Define t* = A-x* —b (surplus) and s* = ¢ —y* - A (slack).
Clearly, t* > 0 and s* > 0.

(iv) The complementary slackness conditions can be rewritten as:
Primal: Vi, 1 </ < n, either x; = 0 or s; = 0, and

[Preliminaries

Proof of Complementary Slackness

(i) Recall that the primal is mina.x>p, x>0 €-X and the dual is maxy.a<c,y>o0 b-y.
(i) Let (x*,y*) denote an optimal primal-dual pair.
(i) Define t* = A-x* —b (surplus) and s* = ¢ —y* - A (slack).
Clearly, t* > 0 and s* > 0.
(iv) The complementary slackness conditions can be rewritten as:
Primal: Vi, 1 </ < n, either x; = 0 or s; = 0, and
Dual: Vj, 1 <j<m,eithery;=0o0rt =0.

[Preliminaries

Proof of Complementary Slackness

(i) Recall that the primal is mina.x>p, x>0 €-X and the dual is maxy.a<c,y>o0 b-y.
(i) Let (x*,y*) denote an optimal primal-dual pair.
(i) Define t* = A-x* —b (surplus) and s* = ¢ —y* - A (slack).
Clearly, t* > 0 and s* > 0.

(iv) The complementary slackness conditions can be rewritten as:
Primal: Vi, 1 </ < n, either x; = 0 or s; = 0, and
Dual: Vj, 1 <j<m,eithery;=0o0rt =0.

(v) We have,

[Preliminaries

Proof of Complementary Slackness

(i) Recall that the primal is mina.x>p, x>0 €-X and the dual is maxy.a<c,y>o0 b-y.
(i) Let (x*,y*) denote an optimal primal-dual pair.
(i) Define t* = A-x* —b (surplus) and s* = ¢ —y* - A (slack).
Clearly, t* > 0 and s* > 0.

(iv) The complementary slackness conditions can be rewritten as:
Primal: Vi, 1 </ < n, either x; = 0 or s; = 0, and
Dual: Vj, 1 <j<m,eithery;=0o0rt =0.

(v) We have,

[Preliminaries

Proof of Complementary Slackness

(i) Recall that the primal is mina.x>p, x>0 €-X and the dual is maxy.a<c,y>o0 b-y.
(i) Let (x*,y*) denote an optimal primal-dual pair.
(i) Define t* = A-x* —b (surplus) and s* = ¢ —y* - A (slack).
Clearly, t* > 0 and s* > 0.

(iv) The complementary slackness conditions can be rewritten as:
Primal: Vi, 1 </ < n, either x; = 0 or s; = 0, and
Dual: Vj, 1 <j<m,eithery;=0o0rt =0.

(v) We have,

c-x* = (s"+y-A)-x*

[Preliminaries

Proof of Complementary Slackness

(i) Recall that the primal is mina.x>p, x>0 €-X and the dual is maxy.a<c,y>o0 b-y.
(i) Let (x*,y*) denote an optimal primal-dual pair.
(i) Define t* = A-x* —b (surplus) and s* = ¢ —y* - A (slack).
Clearly, t* > 0 and s* > 0.

(iv) The complementary slackness conditions can be rewritten as:
Primal: Vi, 1 </ < n, either x; = 0 or s; = 0, and
Dual: Vj, 1 <j<m,eithery;=0o0rt =0.

(v) We have,

c-x* (s*+y*-A)-x*
= S*X*-i-y*'A'X*

[Preliminaries

Proof of Complementary Slackness

(i) Recall that the primal is mina.x>p, x>0 €-X and the dual is maxy.a<c,y>o0 b-y.
(i) Let (x*,y*) denote an optimal primal-dual pair.

(i) Define t* = A-x* —b (surplus) and s* = ¢ —y* - A (slack).
Clearly, t* > 0 and s* > 0.

(iv) The complementary slackness conditions can be rewritten as:
Primal: Vi, 1 </ < n, either x; = 0 or s; = 0, and
Dual: Vj, 1 <j<m,eithery;=0o0rt =0.

(v) We have,

c-x* (s*+y*-A)-x*
s*x*+y*~A~x*
= s*x* +y*'(t*+b)

[Preliminaries

Proof of Complementary Slackness

(i) Recall that the primal is mina.x>p, x>0 €-X and the dual is maxy.a<c,y>o0 b-y.
(i) Let (x*,y*) denote an optimal primal-dual pair.

(i) Define t* = A-x* —b (surplus) and s* = ¢ —y* - A (slack).
Clearly, t* > 0 and s* > 0.

(iv) The complementary slackness conditions can be rewritten as:
Primal: Vi, 1 </ < n, either x; = 0 or s; = 0, and
Dual: Vj, 1 <j<m,eithery;=0o0rt =0.

(v) We have,

c-x* = (s"+y-A)-x*
s*x*+y*~A~x*
s*X* +y*- (t"+b)
— S*X* +y*~t*+y*b

[Preliminaries

Proof of Complementary Slackness

(i) Recall that the primal is mina.x>p, x>0 €-X and the dual is maxy.a<c,y>o0 b-y.
(i) Let (x*,y*) denote an optimal primal-dual pair.

(i) Define t* = A-x* —b (surplus) and s* = ¢ —y* - A (slack).
Clearly, t* > 0 and s* > 0.

(iv) The complementary slackness conditions can be rewritten as:
Primal: Vi, 1 </ < n, either x; = 0 or s; = 0, and
Dual: Vj, 1 <j<m,eithery;=0o0rt =0.

(v) We have,

c-x* = (s"+y-A)-x*
s*x*+y*~A~x*
s*X* +y*- (t"+b)
— S*X* +y*~t*+y*b

[Preliminaries

Proof of complementary slackness

[Preliminaries

Proof of complementary slackness

[Preliminaries

Proof of complementary slackness

[Preliminaries

Proof of complementary slackness

@ Butc-x*=y*-b.

[Preliminaries

Proof of complementary slackness

@ Butc-x*=y*-b.
Q It follows that,

[Preliminaries

Proof of complementary slackness

@ Butc-x*=y*-b.
Q It follows that, s*x* +y* - t* = 0.

[Preliminaries

Proof of complementary slackness

@ Butc-x*=y*-b.
Q It follows that, s*x* +y* - t* = 0.
© Hence,

[Preliminaries

Proof of complementary slackness

@ Butc-x*=y*-b.
Q It follows that, s*x* +y* - t* = 0.
© Hence, s*-x* =0

[Preliminaries

Proof of complementary slackness

@ Butc-x*=y*-b.
Q It follows that, s*x* +y* - t* = 0.
© Hence, s*-x*=0andy*-t* =0,

[Preliminaries

Proof of complementary slackness

@ Butc-x*=y*-b.
Q It follows that, s*x* +y* - t* = 0.
© Hence, s*-x* =0and y*-t* =0, since x*,y*,s*,t* > 0.

[Preliminaries

Proof of complementary slackness

@ Butc-x*=y*-b.

Q It follows that, s*x* +y* - t* = 0.

© Hence, s*-x* =0and y*-t* =0, since x*,y*,s*,t* > 0.
© Hencefor1<i<n,xi-s;=0,i.e., eitherx; =0ors; =0.

[Preliminaries

Proof of complementary slackness

@ Butc-x*=y*-b.

Q It follows that, s*x* +y* - t* = 0.

© Hence, s*-x* =0and y*-t* =0, since x*,y*,s*,t* > 0.
© Hencefor1<i<n,xi-s;=0,i.e., eitherx; =0ors; =0.
© Likewise, for 1 <j < n, either y; =0 or tj = 0.

[Preliminaries

Interpretation of complementary slackness

[Preliminaries

Interpretation of complementary slackness

Interpretation

[Preliminaries

Interpretation of complementary slackness

Interpretation

(1) If a primal variable x; > 0, then the corresponding dual constraint must be binding, i.e.,
si =0.

[Preliminaries

Interpretation of complementary slackness

Interpretation

(1) If a primal variable x; > 0, then the corresponding dual constraint must be binding, i.e.,
si =0.

(2) If a dual constraint is not binding, i.e., s; > 0, then the corresponding primal variable (x;")
must be 0.

[Preliminaries

Interpretation of complementary slackness

Interpretation

(1) If a primal variable x; > 0, then the corresponding dual constraint must be binding, i.e.,
si =0.

(2) If a dual constraint is not binding, i.e., s; > 0, then the corresponding primal variable (x;")
must be 0.

(3) If a dual variable y;* > 0, then the corresponding primal constraint must be binding, i.e.,
t* =0.

[Preliminaries

Interpretation of complementary slackness

Interpretation

(1) If a primal variable x; > 0, then the corresponding dual constraint must be binding, i.e.,
si =0.

(2) If a dual constraint is not binding, i.e., s; > 0, then the corresponding primal variable (x;")
must be 0.

(3) If a dual variable y;* > 0, then the corresponding primal constraint must be binding, i.e.,
t* =0.

(4) If a primal constraint is non-binding, i.e., t* > 0, then the corresponding dual variable (y;*)
must be zero.

[Preliminaries

Relaxed complementary slackness conditions

[Preliminaries

Relaxed complementary slackness conditions

Relaxed primal conditions

[Preliminaries

Relaxed complementary slackness conditions

Relaxed primal conditions
Let o > 1.

[Preliminaries

Relaxed complementary slackness conditions

Relaxed primal conditions
Let o > 1.

Vj1<j<n: eitherx;=0 or

[Preliminaries

Relaxed complementary slackness conditions

Relaxed primal conditions
Let o > 1.

ci m
Vi1<j<n: eitherx; =0 or 2 <Y gy <c.
J1=/= G a_; i Vi < G

[Preliminaries

Relaxed complementary slackness conditions

Relaxed primal conditions

Let o > 1.

@ _ &
Vi1<j<n: eitherx; =0 or 2 <Y gy <c.
J1=/= G a_; i Vi < G

V.

Relaxed dual conditions

\

[Preliminaries

Relaxed complementary slackness conditions

Relaxed primal conditions

Let o > 1.

@ _ &
Vi1<j<n: eitherx; =0 or 2 <Y gy <c.
J1=/= G a_; i Vi < G

V.

Relaxed dual conditions

Let B >1.

\

[Preliminaries

Relaxed complementary slackness conditions

Relaxed primal conditions

Let o > 1.

@ _ &
Vi1<j<n: eitherx; =0 or 2 <Y gy <c.
J1=/= G a_; i Vi < G

V.

Relaxed dual conditions

Let B >1.

Vi1<i<m: eithery;=0 or

\

[Preliminaries

Relaxed complementary slackness conditions

Relaxed primal conditions

Let o > 1.

@ _ &
Vi1<j<n: eitherx; =0 or 2 <Y gy <c.
J1=/= G a_; i Vi < G

V.

Relaxed dual conditions

Let B >1.

Jj=1

n
Vi1<i<m: eithery;=0 or b,v§2a,v,~x,-§ﬁ-b,v.

\

[Preliminaries

Application to approximation algorithms

[Preliminaries

Application to approximation algorithms

Lemma (Main Lemma)

Ifx and'y are primal and dual feasible solutions satisfying the relaxed complementary slackness
conditions, then

[Preliminaries

Application to approximation algorithms

Lemma (Main Lemma)

Ifx and'y are primal and dual feasible solutions satisfying the relaxed complementary slackness
conditions, then

n m
Yo x<aB-Y by
i=1 i=1

[Preliminaries

Proof of Main Lemma

[Preliminaries

Proof of Main Lemma

[Preliminaries

Proof of Main Lemma

[Preliminaries

Proof of Main Lemma

Yo <
=

[Preliminaries

Proof of Main Lemma

n

Yo < Z(a-(iaw,v))-x;
=1 i=

=

[Preliminaries

Proof of Main Lemma

Xn‘,"i‘xi < Xn‘,(a'(iaij‘}’/))'xj
= J=1 i=1
= a'(i(iaij'}’i))"(/
j=1 i=

[Preliminaries

Proof of Main Lemma

IA

i(a-()rfafryf))-xj

Jj=1 i=1

Zall ¥i)) %

n

Zf/X/)Yr

j=1

n
Y6
j=1

Ms T M:

[Preliminaries

Proof of Main Lemma

iclxl < 2(“ (Zalj ¥i)) - X
J=1 = i=
= @B E ey
j=1 i=
= o (i) ajj - Xj) Yi
i=1 j=1
< @3B0y

[Preliminaries

Proof of Main Lemma

Proof.
n
Y 6%
j=1

IA

Z(“ (Zau ¥i)) - X

j=1 i=

O‘(ZZaUYI)X/

j=1 i=

>

n

:OC(a,,)(])y,
9

Ms

J

(B-bi))-yi

IN

a-(

J"JS

a-B»Zb,--y,-‘
i=

[Preliminaries

The primal-dual approach

[Preliminaries

The primal-dual approach

Algorithmic procedure

[Preliminaries

The primal-dual approach

Algorithmic procedure

@ We start with a primal infeasible and dual feasible solution.

[Preliminaries

The primal-dual approach

Algorithmic procedure

@ We start with a primal infeasible and dual feasible solution. Usually, x =0 and y = 0.

[Preliminaries

The primal-dual approach

Algorithmic procedure

@ We start with a primal infeasible and dual feasible solution. Usually, x =0 and y = 0.

@ Both solutions are improved iteratively.

[Preliminaries

The primal-dual approach

Algorithmic procedure

@ We start with a primal infeasible and dual feasible solution. Usually, x =0 and y = 0.

@ Both solutions are improved iteratively. The feasibility of primal is improved and the
optimality of the dual is improved.

[Preliminaries

The primal-dual approach

Algorithmic procedure

@ We start with a primal infeasible and dual feasible solution. Usually, x =0 and y = 0.

@ Both solutions are improved iteratively. The feasibility of primal is improved and the
optimality of the dual is improved.

© The primal solution is always extended integrally, so the final primal solution is integral.

[Preliminaries

The primal-dual approach

Algorithmic procedure

@ We start with a primal infeasible and dual feasible solution. Usually, x =0 and y = 0.

Both solutions are improved iteratively. The feasibility of primal is improved and the
optimality of the dual is improved.

(2
© The primal solution is always extended integrally, so the final primal solution is integral.
Q

In the end, we want to ensure that a primal feasible solution is obtained, and all relaxed
complementarity slackness conditions are met for a suitable choice of o and 3.

[Preliminaries

The primal-dual approach

Algorithmic procedure

We start with a primal infeasible and dual feasible solution. Usually, x =0 and y = 0.

Both solutions are improved iteratively. The feasibility of primal is improved and the
optimality of the dual is improved.

The primal solution is always extended integrally, so the final primal solution is integral.

In the end, we want to ensure that a primal feasible solution is obtained, and all relaxed
complementarity slackness conditions are met for a suitable choice of o and 3.

© 060 O©OO

An approximation algorithm ensures one set of complementary slackness conditions and
relaxes the other.

[Preliminaries

The primal-dual approach

Algorithmic procedure

We start with a primal infeasible and dual feasible solution. Usually, x =0 and y = 0.

Both solutions are improved iteratively. The feasibility of primal is improved and the
optimality of the dual is improved.

The primal solution is always extended integrally, so the final primal solution is integral.

In the end, we want to ensure that a primal feasible solution is obtained, and all relaxed
complementarity slackness conditions are met for a suitable choice of o and 3.

An approximation algorithm ensures one set of complementary slackness conditions and
relaxes the other.

© 06 00 O©6O

If the goal is to ensure that primal conditions are ensured, then we set o = 1.

[Preliminaries

The primal-dual approach

Algorithmic procedure

We start with a primal infeasible and dual feasible solution. Usually, x =0 and y = 0.

Both solutions are improved iteratively. The feasibility of primal is improved and the
optimality of the dual is improved.

The primal solution is always extended integrally, so the final primal solution is integral.

In the end, we want to ensure that a primal feasible solution is obtained, and all relaxed
complementarity slackness conditions are met for a suitable choice of o and 3.

An approximation algorithm ensures one set of complementary slackness conditions and
relaxes the other.

© 06 00 O©6O

If the goal is to ensure that primal conditions are ensured, then we set o = 1. If the goal is
to ensure that the dual conditions are ensured then 3 is set to 1.

[Preliminaries

The primal-dual approach

Algorithmic procedure

We start with a primal infeasible and dual feasible solution. Usually, x =0 and y = 0.

Both solutions are improved iteratively. The feasibility of primal is improved and the
optimality of the dual is improved.

The primal solution is always extended integrally, so the final primal solution is integral.

In the end, we want to ensure that a primal feasible solution is obtained, and all relaxed
complementarity slackness conditions are met for a suitable choice of o and 3.

An approximation algorithm ensures one set of complementary slackness conditions and
relaxes the other.

If the goal is to ensure that primal conditions are ensured, then we set o = 1. If the goal is
to ensure that the dual conditions are ensured then 3 is set to 1.

© 06 0 060 ©60

The current primal solution is used to determine the improvement to the dual and vice
versa.

[Preliminaries

The primal-dual approach

Algorithmic procedure

We start with a primal infeasible and dual feasible solution. Usually, x =0 and y = 0.

Both solutions are improved iteratively. The feasibility of primal is improved and the
optimality of the dual is improved.

The primal solution is always extended integrally, so the final primal solution is integral.

In the end, we want to ensure that a primal feasible solution is obtained, and all relaxed
complementarity slackness conditions are met for a suitable choice of o and 3.

An approximation algorithm ensures one set of complementary slackness conditions and
relaxes the other.

If the goal is to ensure that primal conditions are ensured, then we set o = 1. If the goal is
to ensure that the dual conditions are ensured then 3 is set to 1.

The current primal solution is used to determine the improvement to the dual and vice
versa.

© © 06 0 60 ©06O

Finally, the cost of the dual solution is used as a lower bound on OPT and the
approximation guarantee of o - 3 is obtained.

[Primal-Dual schema for Set Cover

Preliminaries

[Primal-Dual schema for Set Cover

Preliminaries

The Set Cover Problem

[Primal-Dual schema for Set Cover

Preliminaries

The Set Cover Problem

[Primal-Dual schema for Set Cover

Preliminaries

The Set Cover Problem

Given,

© Aground set U= {ey,es,...,en},

[Primal-Dual schema for Set Cover

Preliminaries

The Set Cover Problem

Given,
@ Aground set U={ei,ez,...,en},
@ Acollection of sets Sp = {S1,5,,...S»}, SiC U,i=1,2,....m

[Primal-Dual schema for Set Cover

Preliminaries

The Set Cover Problem

Given,
@ Aground set U={ei,ez,...,en},
@ A collection of sets Sp = {S1,S,,...Sm}, SiC U, i=1,2,....m
© A weight functionc : S; — Zy,

[Primal-Dual schema for Set Cover

Preliminaries

The Set Cover Problem

Given,
@ Aground set U={ei,ez,...,en},
@ A collection of sets Sp = {S1,S,,...Sm}, SiC U, i=1,2,....m
© A weight functionc : S; — Zy,
find a collection of subsets S;, whose union covers the elements of U at minimum cost.

[Primal-Dual schema for Set Cover

Preliminaries

The Set Cover Problem

Given,
@ Aground set U={ei,ez,...,en},
@ A collection of sets Sp = {S1,S,,...Sm}, SiC U, i=1,2,....m
© A weight functionc : S; — Zy,
find a collection of subsets S;, whose union covers the elements of U at minimum cost.

If all weights are unity (or the same),

[Primal-Dual schema for Set Cover

Preliminaries

The Set Cover Problem

Given,
@ Aground set U={ei,ez,...,en},
@ A collection of sets Sp = {S1,S,,...Sm}, SiC U, i=1,2,....m
© A weight functionc : S; — Zy,
find a collection of subsets S;, whose union covers the elements of U at minimum cost.

If all weights are unity (or the same), the problem is called the Cardinality Set Cover problem.

[Primal-Dual schema for Set Cover

Formulating the Integer Program

IP formulation

[Primal-Dual schema for Set Cover

Formulating the Integer Program

IP formulation

min Yses, ¢(S) - Xs

[Primal-Dual schema for Set Cover

Formulating the Integer Program

IP formulation

min Yses, ¢(S) - Xs
subject to Y s ecsXs > 1, ecU

[Primal-Dual schema for Set Cover

Formulating the Integer Program

IP formulation

min Yses, ¢(S) - Xs
subject to Y s ecsXs > 1, ecU
Xs€{0,1}, SeSp

[Primal-Dual schema for Set Cover

The Linear Program relaxation

[Primal-Dual schema for Set Cover

The Linear Program relaxation

Relaxation

[Primal-Dual schema for Set Cover

The Linear Program relaxation

Relaxation

min Y ses, ¢(S) - Xs

[Primal-Dual schema for Set Cover

The Linear Program relaxation

Relaxation

min Y ses, ¢(S) - Xs
subject to Y s ecsXs > 1, ecU

[Primal-Dual schema for Set Cover

The Linear Program relaxation

Relaxation

min Y ses, ¢(S) - Xs
subject to Y s ecsXs > 1, ecU
xs >0, SeSp

[Primal-Dual schema for Set Cover

The Linear Program relaxation

Relaxation

min Y ses, ¢(S) - Xs
subject to Y s ecsXs > 1, ecU
xs >0, SeSp

v
v

[Primal-Dual schema for Set Cover

The Linear Program relaxation

Relaxation

min Y ses, ¢(S) - Xs
subject to Y s ecsXs > 1, ecU
xs >0, SeSp

v

For our scheme, we choose . = 1 and 3 = f, where f is the frequency of the most frequent
element.

N,

[Primal-Dual schema for Set Cover

Relaxed complementary slackness conditions

Primal Conditions

[Primal-Dual schema for Set Cover

Relaxed complementary slackness conditions

Primal Conditions

[Primal-Dual schema for Set Cover

Relaxed complementary slackness conditions

Primal Conditions

[Primal-Dual schema for Set Cover

Relaxed complementary slackness conditions

Primal Conditions

VSESp i xs#£0= Y ye=c(S).

e:ecS

[Primal-Dual schema for Set Cover

Relaxed complementary slackness conditions

Primal Conditions

VSESp i xs#£0= Y ye=c(S).

e:ecS

v
v

[Primal-Dual schema for Set Cover

Relaxed complementary slackness conditions

Primal Conditions

VSESp i xs#£0= Y ye=c(S).

e:ecS

v

@ A set S is tight under the current assignment to'y, if Y ocs Ye = ¢(S).

[Primal-Dual schema for Set Cover

Relaxed complementary slackness conditions

Primal Conditions

VSESp i xs#£0= Y ye=c(S).

e:ecS

v

@ A set S is tight under the current assignment to'y, if Y ocs Ye = ¢(S).

@ Since primal variables are incremented integrally, the primal condition can be restated as:

[Primal-Dual schema for Set Cover

Relaxed complementary slackness conditions

Primal Conditions

VSESp i xs#£0= Y ye=c(S).

e:ecS

v

@ A set S is tight under the current assignment to'y, if Y ocs Ye = ¢(S).

@ Since primal variables are incremented integrally, the primal condition can be restated as:
Pick only tight sets in the cover.

[Primal-Dual schema for Set Cover

Relaxed complementary slackness conditions

Primal Conditions

VSESp i xs#£0= Y ye=c(S).

e:ecS

v
@ A set S is tight under the current assignment to'y, if Y ocs Ye = ¢(S).

@ Since primal variables are incremented integrally, the primal condition can be restated as:
Pick only tight sets in the cover.

@ Clearly no set can be overpacked, if dual feasibility is to be maintained.

[Primal-Dual schema for Set Cover

Relaxed complementary slackness conditions

[Primal-Dual schema for Set Cover

Relaxed complementary slackness conditions

Dual Conditions

[Primal-Dual schema for Set Cover

Relaxed complementary slackness conditions

Dual Conditions

[Primal-Dual schema for Set Cover

Relaxed complementary slackness conditions

Dual Conditions

[Primal-Dual schema for Set Cover

Relaxed complementary slackness conditions

Dual Conditions

[Primal-Dual schema for Set Cover

Relaxed complementary slackness conditions

Dual Conditions

[Primal-Dual schema for Set Cover

Relaxed complementary slackness conditions

Dual Conditions

Ve: Yye#0=> Z xs < f.
S:ecS

v
v

[Primal-Dual schema for Set Cover

Relaxed complementary slackness conditions

Dual Conditions

Ve: Yye#0=> Z xs < f.
S:ecS

v

The above conditions can be interpreted as follows:

N

[Primal-Dual schema for Set Cover

Relaxed complementary slackness conditions

Dual Conditions

Ve: Yye#0=> Z xs < f.
S:ecS

v

The above conditions can be interpreted as follows: Each element having a non-zero dual can
be covered at most f times.

N

[Primal-Dual schema for Set Cover

Relaxed complementary slackness conditions

Dual Conditions

Ve: Yye#0=> Z xs < f.
S:ecS

v

The above conditions can be interpreted as follows: Each element having a non-zero dual can
be covered at most f times. But this condition is trivially satisfied by all elements e € U!

N

LThe Primal Dual Algorithm

The Primal Dual Algorithm for Set Cover

LThe Primal Dual Algorithm

The Primal Dual Algorithm for Set Cover

The Algorithm

LThe Primal Dual Algorithm

The Primal Dual Algorithm for Set Cover

The Algorithm

@ Setx«+0andy<« 0.

LThe Primal Dual Algorithm

The Primal Dual Algorithm for Set Cover

The Algorithm

@ Setx«+0andy<« 0.
@ Until (all elements are covered) do:

LThe Primal Dual Algorithm

The Primal Dual Algorithm for Set Cover

The Algorithm

@ Setx«+0andy<« 0.
@ Until (all elements are covered) do:
Q Pick an uncovered element, say e and raise y,, until some set goes tight.

LThe Primal Dual Algorithm

The Primal Dual Algorithm for Set Cover

The Algorithm

@ Setx«+0andy<« 0.

@ Until (all elements are covered) do:

Q Pick an uncovered element, say e and raise ye, until some set goes tight.
Q Pick all tight sets in the cover and update x.

LThe Primal Dual Algorithm

The Primal Dual Algorithm for Set Cover

The Algorithm

@ Setx«+0andy<« 0.

@ Until (all elements are covered) do:

Q Pick an uncovered element, say e and raise ye, until some set goes tight.
Q Pick all tight sets in the cover and update x.

Q Declare all elements occurring in these sets as “covered.”

LThe Primal Dual Algorithm

The Primal Dual Algorithm for Set Cover

The Algorithm

@ Setx«+0andy<« 0.
@ Until (all elements are covered) do:

Q Pick an uncovered element, say e and raise y,, until some set goes tight.
Q Pick all tight sets in the cover and update x.
Q Declare all elements occurring in these sets as “covered.”

Q@ Output the set cover x.

LThe Primal Dual Algorithm

Analysis

LThe Primal Dual Algorithm

Analysis

The above algorithm achieves an approximation factor of f.

LThe

Primal Dual Algorithm

Analysis

The above algorithm achieves an approximation factor of f.

LThe

Primal Dual Algorithm

Analysis

The above algorithm achieves an approximation factor of f.

LThe Primal Dual Algorithm

Analysis

The above algorithm achieves an approximation factor of f.

@ Is x a primal feasible solution, i.e., are all elements covered?

LThe Primal Dual Algorithm

Analysis

The above algorithm achieves an approximation factor of f.

@ Is x a primal feasible solution, i.e., are all elements covered? Yes.

LThe Primal Dual Algorithm

Analysis

The above algorithm achieves an approximation factor of f.

@ Is x a primal feasible solution, i.e., are all elements covered? Yes.

@ Isy adual feasible solution, i.e., is any set overpacked?

LThe Primal Dual Algorithm

Analysis

The above algorithm achieves an approximation factor of f.

@ Is x a primal feasible solution, i.e., are all elements covered? Yes.

@ Isy adual feasible solution, i.e., is any set overpacked? No set is overpacked and hence y
is indeed dual feasible.

LThe Primal Dual Algorithm

Analysis

The above algorithm achieves an approximation factor of f.

@ Is x a primal feasible solution, i.e., are all elements covered? Yes.

@ Isy adual feasible solution, i.e., is any set overpacked? No set is overpacked and hence y
is indeed dual feasible.

© Note that x and y satisfy the relaxed complementary slackness conditions, with & = 1 and

B=f.

LThe Primal Dual Algorithm

Analysis

The above algorithm achieves an approximation factor of f.

@ Is x a primal feasible solution, i.e., are all elements covered? Yes.

@ Isy adual feasible solution, i.e., is any set overpacked? No set is overpacked and hence y
is indeed dual feasible.

© Note that x and y satisfy the relaxed complementary slackness conditions, with & = 1 and
B=f.

©Q By the Main Lemma, it follows that the approximation factor is f.

LTighlness

Tightness Analysis

LTighlness

Tightness Analysis

LTighlness

Tightness Analysis

@ Let Sp consist of the following: (n— 1) sets of cost 1, viz., {e1,en}, {€2,€n}, ... {€n—1,€n}
and one set {e1,€e2,...,€n,ent1} Of cost (14 €), where € > 0 is a small constant.

LTighlness

Tightness Analysis

@ Let Sp consist of the following: (n— 1) sets of cost 1, viz., {e1,en}, {€2,€n}, ... {€n—1,€n}
and one set {e1,€e2,...,€n,ent1} Of cost (14 €), where € > 0 is a small constant.

@ Observe that f = n.

LTighlness

Tightness Analysis

@ Let Sp consist of the following: (n— 1) sets of cost 1, viz., {e1,en}, {€2,€n}, ... {€n—1,€n}
and one set {e1,€e2,...,€n,ent1} Of cost (14 €), where € > 0 is a small constant.

@ Observe that f = n.

© Suppose that the algorithm picks ye, in the first iteration.

LTighlness

Tightness Analysis

@ Let Sp consist of the following: (n— 1) sets of cost 1, viz., {e1,en}, {€2,€n}, ... {€n—1,€n}
and one set {ey, €z,...,€n,ent1} Of cost (1+ €), where € > 0 is a small constant.

@ Observe that f = n.

© Suppose that the algorithm picks ye, in the first iteration.
© When y,, is raised to 1, all sets {e;,ep}, i=1,2,...(n—1), go tight.

LTighlness

Tightness Analysis

@ Let Sp consist of the following: (n— 1) sets of cost 1, viz., {e1,en}, {€2,€n}, ... {€n—1,€n}
and one set {ey, €z,...,€n,ent1} Of cost (1+ €), where € > 0 is a small constant.

@ Observe that f = n.

© Suppose that the algorithm picks ye, in the first iteration.
© When y,, is raised to 1, all sets {e;,ep}, i=1,2,...(n—1), go tight.
@ Thus they are all picked, covering the elements in {e1,es,...,€n}.

LTighlness

Tightness Analysis

@ Let Sp consist of the following: (n— 1) sets of cost 1, viz., {e1,en}, {€2,€n}, ... {€n—1,€n}
and one set {ey, €z,...,€n,ent1} Of cost (1+ €), where € > 0 is a small constant.

Observe that f = n.

Suppose that the algorithm picks ye, in the first iteration.

When ye, is raised to 1, all sets {ej, e}, i =1,2,...(n—1), go tight.
Thus they are all picked, covering the elements in {ey, 2, ...,€en}.

©000O0

In the second iteration, ye,, , is raised to € and the set {e1,e2,...,€n,ent1} becomes tight
and is picked.

LTighlness

Tightness Analysis

@ Let Sp consist of the following: (n— 1) sets of cost 1, viz., {e1,en}, {€2,€n}, ... {€n—1,€n}
and one set {ey, €z,...,€n,ent1} Of cost (1+ €), where € > 0 is a small constant.

Observe that f = n.

Suppose that the algorithm picks ye, in the first iteration.

When ye, is raised to 1, all sets {ej, e}, i =1,2,...(n—1), go tight.
Thus they are all picked, covering the elements in {ey, 2, ...,€en}.

In the second iteration, ye,, , is raised to € and the set {e1,e2,...,€n,ent1} becomes tight
and is picked.

© 000O0CO

The total cost of the picked cover is (n+ €).

LTighlness

Tightness Analysis

@ Let Sp consist of the following: (n— 1) sets of cost 1, viz., {e1,en}, {€2,€n}, ... {€n—1,€n}
and one set {ey, €z,...,€n,ent1} Of cost (1+ €), where € > 0 is a small constant.

Observe that f = n.

Suppose that the algorithm picks ye, in the first iteration.

When ye, is raised to 1, all sets {ej, e}, i =1,2,...(n—1), go tight.
Thus they are all picked, covering the elements in {ey, 2, ...,€en}.

In the second iteration, ye,, , is raised to € and the set {e1,e2,...,€n,ent1} becomes tight
and is picked.

The total cost of the picked cover is (n+ €).

00 000O0CO0

The optimal cover has cost (1+¢).

LTighlness

Tightness Analysis

@ Let Sp consist of the following: (n— 1) sets of cost 1, viz., {e1,en}, {€2,€n}, ... {€n—1,€n}
and one set {ey, €z,...,€n,ent1} Of cost (1+ €), where € > 0 is a small constant.

Observe that f = n.

Suppose that the algorithm picks ye, in the first iteration.

When ye, is raised to 1, all sets {ej, e}, i =1,2,...(n—1), go tight.
Thus they are all picked, covering the elements in {ey, 2, ...,€en}.

In the second iteration, ye,, , is raised to € and the set {e1,e2,...,€n,ent1} becomes tight
and is picked.

The total cost of the picked cover is (n+ €).
The optimal cover has cost (1+¢).

000 ©0000O0

This example achieves the bound of f = n.

	Outline
	Main Talk
	Preliminaries
	Primal-Dual schema for Set Cover
	The Primal Dual Algorithm
	Tightness

