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Primal-Dual Schema

Preliminaries

Main Ideas

Algorithm design for problems in P

1 The primal-dual approach was used in algorithm design for problems such as matching,
network flows, shortest paths in digraphs, etc., in which the LP-relaxations have integral
optimal solutions.

2 For LP optimal solutions, we know that the primal and dual complementary slackness
conditions have to be satisfied.

3 The approach starts with feasible primal and dual solutions and iteratively attempts to
satisfy complementary slackness conditions.

4 When they are all satisfied, both primal and dual solutions must be optimal.
5 Cannot work directly for NP-hard problems, since the LP relaxations need not have integral

optimal solutions.
6 However, a relaxation of the complementary slackness conditions helps in the derivation of

approximation algorithms.
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Primal-Dual Schema

Preliminaries

Primal and Dual forms

Forms

Primal (P):

z = min ∑
n
j=1 cj · xj

s.t. ∑
n
j=1 aij · xj ≥ bi , i = 1,2, . . .m

xj ≥ 0, j = 1,2, . . .n

z = min c ·x
s.t. A ·x≥ b

x≥ 0

Dual (D):

w = max ∑
m
i=1 bi · yi

subject to ∑
m
i=1 aij · yi ≤ cj , j = 1,2, . . .n

yi ≥ 0, i = 1,2, . . .m

w = max b ·y
s.t. y ·A≤ c

y≥ 0
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Preliminaries

Complementary Slackness

Theorem

Let x and y be primal and dual feasible solutions, respectively. Then, x and y are both optimal iff
all of the following conditions are satisfied:

1 Primal Complementary Slackness:

For each 1≤ j ≤ n : either xj = 0, or
m

∑
i=1

aij · yi = cj

2 Dual Complementary Slackness:

For each 1≤ i ≤m : either yi = 0, or
n

∑
j=1

aij · xj = bi .
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Preliminaries

Proof of Complementary Slackness

Proof.

(i) Recall that the primal is minA·x≥b,x≥0 c ·x and the dual is maxy·A≤c,y≥0 b ·y.

(ii) Let (x∗,y∗) denote an optimal primal-dual pair.

(iii) Define t∗ = A ·x∗−b (surplus) and s∗ = c−y∗ ·A (slack).
Clearly, t∗ ≥ 0 and s∗ ≥ 0.

(iv) The complementary slackness conditions can be rewritten as:
Primal: ∀i, 1≤ i ≤ n, either xi = 0 or si = 0, and
Dual: ∀j, 1≤ j ≤m, either yj = 0 or tj = 0.

(v) We have,

c ·x∗ = (s∗+y∗ ·A) ·x∗

= s∗x∗+y∗ ·A ·x∗

= s∗x∗+y∗ · (t∗+b)

= s∗x∗+y∗ · t∗+y∗b
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Proof.

1 But c ·x∗ = y∗ ·b.

2 It follows that, s∗x∗+y∗ · t∗ = 0.
3 Hence, s∗ ·x∗ = 0 and y∗ · t∗ = 0, since x∗,y∗,s∗, t∗ ≥ 0.

4 Hence for 1≤ i ≤ n, xi · si = 0, i.e., either xi = 0 or si = 0.
5 Likewise, for 1≤ j ≤ n, either yj = 0 or tj = 0.
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Interpretation

(1) If a primal variable x∗i > 0, then the corresponding dual constraint must be binding, i.e.,
s∗i = 0.

(2) If a dual constraint is not binding, i.e., s∗i > 0, then the corresponding primal variable (x∗i )
must be 0.

(3) If a dual variable y∗i > 0, then the corresponding primal constraint must be binding, i.e.,
t∗i = 0.

(4) If a primal constraint is non-binding, i.e., t∗i > 0, then the corresponding dual variable (y∗i )
must be zero.
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Relaxed primal conditions

Let α ≥ 1.

∀j 1≤ j ≤ n : either xj = 0 or
cj

α
≤

m

∑
i=1

aij · yi ≤ cj .

Relaxed dual conditions

Let β ≥ 1.

∀i 1≤ i ≤m : either yi = 0 or bi ≤
n

∑
j=1

aij · xj ≤ β ·bi .



Primal-Dual Schema

Preliminaries

Relaxed complementary slackness conditions

Relaxed primal conditions

Let α ≥ 1.

∀j 1≤ j ≤ n : either xj = 0 or
cj

α
≤

m

∑
i=1

aij · yi ≤ cj .

Relaxed dual conditions

Let β ≥ 1.

∀i 1≤ i ≤m : either yi = 0 or bi ≤
n

∑
j=1

aij · xj ≤ β ·bi .



Primal-Dual Schema

Preliminaries

Relaxed complementary slackness conditions

Relaxed primal conditions

Let α ≥ 1.

∀j 1≤ j ≤ n : either xj = 0 or
cj

α
≤

m

∑
i=1

aij · yi ≤ cj .

Relaxed dual conditions

Let β ≥ 1.

∀i 1≤ i ≤m : either yi = 0 or bi ≤
n

∑
j=1

aij · xj ≤ β ·bi .



Primal-Dual Schema

Preliminaries

Relaxed complementary slackness conditions

Relaxed primal conditions

Let α ≥ 1.

∀j 1≤ j ≤ n : either xj = 0 or

cj

α
≤

m

∑
i=1

aij · yi ≤ cj .

Relaxed dual conditions

Let β ≥ 1.

∀i 1≤ i ≤m : either yi = 0 or bi ≤
n

∑
j=1

aij · xj ≤ β ·bi .



Primal-Dual Schema

Preliminaries

Relaxed complementary slackness conditions

Relaxed primal conditions

Let α ≥ 1.

∀j 1≤ j ≤ n : either xj = 0 or
cj

α
≤

m

∑
i=1

aij · yi ≤ cj .

Relaxed dual conditions

Let β ≥ 1.

∀i 1≤ i ≤m : either yi = 0 or bi ≤
n

∑
j=1

aij · xj ≤ β ·bi .



Primal-Dual Schema

Preliminaries

Relaxed complementary slackness conditions

Relaxed primal conditions

Let α ≥ 1.

∀j 1≤ j ≤ n : either xj = 0 or
cj

α
≤

m

∑
i=1

aij · yi ≤ cj .

Relaxed dual conditions

Let β ≥ 1.

∀i 1≤ i ≤m : either yi = 0 or bi ≤
n

∑
j=1

aij · xj ≤ β ·bi .



Primal-Dual Schema

Preliminaries

Relaxed complementary slackness conditions

Relaxed primal conditions

Let α ≥ 1.

∀j 1≤ j ≤ n : either xj = 0 or
cj

α
≤

m

∑
i=1

aij · yi ≤ cj .

Relaxed dual conditions

Let β ≥ 1.

∀i 1≤ i ≤m : either yi = 0 or bi ≤
n

∑
j=1

aij · xj ≤ β ·bi .



Primal-Dual Schema

Preliminaries

Relaxed complementary slackness conditions

Relaxed primal conditions

Let α ≥ 1.

∀j 1≤ j ≤ n : either xj = 0 or
cj

α
≤

m

∑
i=1

aij · yi ≤ cj .

Relaxed dual conditions

Let β ≥ 1.

∀i 1≤ i ≤m : either yi = 0 or

bi ≤
n

∑
j=1

aij · xj ≤ β ·bi .



Primal-Dual Schema

Preliminaries

Relaxed complementary slackness conditions

Relaxed primal conditions

Let α ≥ 1.

∀j 1≤ j ≤ n : either xj = 0 or
cj

α
≤

m

∑
i=1

aij · yi ≤ cj .

Relaxed dual conditions

Let β ≥ 1.

∀i 1≤ i ≤m : either yi = 0 or bi ≤
n

∑
j=1

aij · xj ≤ β ·bi .



Primal-Dual Schema

Preliminaries

Application to approximation algorithms

Lemma (Main Lemma)

If x and y are primal and dual feasible solutions satisfying the relaxed complementary slackness
conditions, then

n

∑
i=1

cj · xj ≤ α ·β ·
m

∑
i=1

bi · yi .
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Preliminaries

The primal-dual approach

Algorithmic procedure

1 We start with a primal infeasible and dual feasible solution. Usually, x = 0 and y = 0.

2 Both solutions are improved iteratively. The feasibility of primal is improved and the
optimality of the dual is improved.

3 The primal solution is always extended integrally, so the final primal solution is integral.

4 In the end, we want to ensure that a primal feasible solution is obtained, and all relaxed
complementarity slackness conditions are met for a suitable choice of α and β .

5 An approximation algorithm ensures one set of complementary slackness conditions and
relaxes the other.

6 If the goal is to ensure that primal conditions are ensured, then we set α = 1. If the goal is
to ensure that the dual conditions are ensured then β is set to 1.

7 The current primal solution is used to determine the improvement to the dual and vice
versa.

8 Finally, the cost of the dual solution is used as a lower bound on OPT and the
approximation guarantee of α ·β is obtained.
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Primal-Dual schema for Set Cover

Preliminaries

The Set Cover Problem

Given,

1 A ground set U = {e1,e2, . . . ,en},
2 A collection of sets SP = {S1,S2, . . .Sm}, Si ⊆ U, i = 1,2, . . . ,m
3 A weight function c : Si → Z+,

find a collection of subsets Si , whose union covers the elements of U at minimum cost.

Note

If all weights are unity (or the same), the problem is called the Cardinality Set Cover problem.
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Formulating the Integer Program

IP formulation

min ∑S∈SP
c(S) · xS

subject to ∑S :e∈S xS ≥ 1, e ∈ U

xS ∈ {0,1}, S ∈ SP
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The Linear Program relaxation

Relaxation

min ∑S∈SP
c(S) · xS

subject to ∑S :e∈S xS ≥ 1, e ∈ U

xS ≥ 0, S ∈ SP

Note

For our scheme, we choose α = 1 and β = f , where f is the frequency of the most frequent
element.
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Primal-Dual schema for Set Cover

Relaxed complementary slackness conditions

Primal Conditions

∀S ∈ SP : xS 6= 0⇒ ∑
e :e∈S

ye = c(S).

Note

1 A set S is tight under the current assignment to y, if ∑e∈S ye = c(S).

2 Since primal variables are incremented integrally, the primal condition can be restated as:
Pick only tight sets in the cover.

3 Clearly no set can be overpacked, if dual feasibility is to be maintained.
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The above conditions can be interpreted as follows: Each element having a non-zero dual can
be covered at most f times. But this condition is trivially satisfied by all elements e ∈ U!
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The Primal Dual Algorithm for Set Cover

The Algorithm

1 Set x← 0 and y← 0.

2 Until (all elements are covered) do:
3 Pick an uncovered element, say e and raise ye , until some set goes tight.

4 Pick all tight sets in the cover and update x.
5 Declare all elements occurring in these sets as “covered.”
6 Output the set cover x.
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The Primal Dual Algorithm

Analysis

Theorem

The above algorithm achieves an approximation factor of f .

Proof.

1 Is x a primal feasible solution, i.e., are all elements covered? Yes.

2 Is y a dual feasible solution, i.e., is any set overpacked? No set is overpacked and hence y
is indeed dual feasible.

3 Note that x and y satisfy the relaxed complementary slackness conditions, with α = 1 and
β = f .

4 By the Main Lemma, it follows that the approximation factor is f .



Primal-Dual Schema

The Primal Dual Algorithm

Analysis

Theorem

The above algorithm achieves an approximation factor of f .

Proof.

1 Is x a primal feasible solution, i.e., are all elements covered? Yes.

2 Is y a dual feasible solution, i.e., is any set overpacked? No set is overpacked and hence y
is indeed dual feasible.

3 Note that x and y satisfy the relaxed complementary slackness conditions, with α = 1 and
β = f .

4 By the Main Lemma, it follows that the approximation factor is f .



Primal-Dual Schema

The Primal Dual Algorithm

Analysis

Theorem

The above algorithm achieves an approximation factor of f .

Proof.

1 Is x a primal feasible solution, i.e., are all elements covered? Yes.

2 Is y a dual feasible solution, i.e., is any set overpacked? No set is overpacked and hence y
is indeed dual feasible.

3 Note that x and y satisfy the relaxed complementary slackness conditions, with α = 1 and
β = f .

4 By the Main Lemma, it follows that the approximation factor is f .



Primal-Dual Schema

The Primal Dual Algorithm

Analysis

Theorem

The above algorithm achieves an approximation factor of f .

Proof.

1 Is x a primal feasible solution, i.e., are all elements covered? Yes.

2 Is y a dual feasible solution, i.e., is any set overpacked? No set is overpacked and hence y
is indeed dual feasible.

3 Note that x and y satisfy the relaxed complementary slackness conditions, with α = 1 and
β = f .

4 By the Main Lemma, it follows that the approximation factor is f .



Primal-Dual Schema

The Primal Dual Algorithm

Analysis

Theorem

The above algorithm achieves an approximation factor of f .

Proof.

1 Is x a primal feasible solution, i.e., are all elements covered?

Yes.

2 Is y a dual feasible solution, i.e., is any set overpacked? No set is overpacked and hence y
is indeed dual feasible.

3 Note that x and y satisfy the relaxed complementary slackness conditions, with α = 1 and
β = f .

4 By the Main Lemma, it follows that the approximation factor is f .



Primal-Dual Schema

The Primal Dual Algorithm

Analysis

Theorem

The above algorithm achieves an approximation factor of f .

Proof.

1 Is x a primal feasible solution, i.e., are all elements covered? Yes.

2 Is y a dual feasible solution, i.e., is any set overpacked? No set is overpacked and hence y
is indeed dual feasible.

3 Note that x and y satisfy the relaxed complementary slackness conditions, with α = 1 and
β = f .

4 By the Main Lemma, it follows that the approximation factor is f .



Primal-Dual Schema

The Primal Dual Algorithm

Analysis

Theorem

The above algorithm achieves an approximation factor of f .

Proof.

1 Is x a primal feasible solution, i.e., are all elements covered? Yes.

2 Is y a dual feasible solution, i.e., is any set overpacked?

No set is overpacked and hence y
is indeed dual feasible.

3 Note that x and y satisfy the relaxed complementary slackness conditions, with α = 1 and
β = f .

4 By the Main Lemma, it follows that the approximation factor is f .



Primal-Dual Schema

The Primal Dual Algorithm

Analysis

Theorem

The above algorithm achieves an approximation factor of f .

Proof.

1 Is x a primal feasible solution, i.e., are all elements covered? Yes.

2 Is y a dual feasible solution, i.e., is any set overpacked? No set is overpacked and hence y
is indeed dual feasible.

3 Note that x and y satisfy the relaxed complementary slackness conditions, with α = 1 and
β = f .

4 By the Main Lemma, it follows that the approximation factor is f .



Primal-Dual Schema

The Primal Dual Algorithm

Analysis

Theorem

The above algorithm achieves an approximation factor of f .

Proof.

1 Is x a primal feasible solution, i.e., are all elements covered? Yes.

2 Is y a dual feasible solution, i.e., is any set overpacked? No set is overpacked and hence y
is indeed dual feasible.

3 Note that x and y satisfy the relaxed complementary slackness conditions, with α = 1 and
β = f .

4 By the Main Lemma, it follows that the approximation factor is f .



Primal-Dual Schema

The Primal Dual Algorithm

Analysis

Theorem

The above algorithm achieves an approximation factor of f .

Proof.

1 Is x a primal feasible solution, i.e., are all elements covered? Yes.

2 Is y a dual feasible solution, i.e., is any set overpacked? No set is overpacked and hence y
is indeed dual feasible.

3 Note that x and y satisfy the relaxed complementary slackness conditions, with α = 1 and
β = f .

4 By the Main Lemma, it follows that the approximation factor is f .



Primal-Dual Schema

Tightness

Tightness Analysis

Example

1 Let SP consist of the following: (n−1) sets of cost 1, viz., {e1,en}, {e2,en}, . . . {en−1,en}
and one set {e1,e2, . . . ,en,en+1} of cost (1+ ε), where ε > 0 is a small constant.

2 Observe that f = n.
3 Suppose that the algorithm picks yen in the first iteration.

4 When yen is raised to 1, all sets {ei ,en}, i = 1,2, . . .(n−1), go tight.
5 Thus they are all picked, covering the elements in {e1,e2, . . . ,en}.
6 In the second iteration, yen+1 is raised to ε and the set {e1,e2, . . . ,en,en+1} becomes tight

and is picked.
7 The total cost of the picked cover is (n+ ε).
8 The optimal cover has cost (1+ ε).
9 This example achieves the bound of f = n.
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