Set-Cover approximation through LP-Rounding

K. Subramani¹

¹Lane Department of Computer Science and Electrical Engineering West Virginia University

April 1, 2014

Outline			

Outline			

1 Preliminaries

2 A Simple Rounding Algorithm

1 Preliminaries

2 A Simple Rounding Algorithm

3 A Randomized Rounding Algorithm

1 Preliminaries

2 A Simple Rounding Algorithm

- 3 A Randomized Rounding Algorithm
- 4 Half-integrality of Vertex Cover

The Set Cover Problem

Given,

The Set Cover Problem

Given,

The Set Cover Problem

Given,

• A ground set $U = \{e_1, e_2, ..., e_n\},$

The Set Cover Problem

Given,

- A ground set $U = \{e_1, e_2, ..., e_n\},$
- 2 A collection of sets $S_P = \{S_1, S_2, \dots, S_m\}, S_i \subseteq U, i = 1, 2, \dots, m$

The Set Cover Problem

Given,

- A ground set $U = \{e_1, e_2, ..., e_n\},$
- 2 A collection of sets $S_P = \{S_1, S_2, \dots, S_m\}, S_i \subseteq U, i = 1, 2, \dots, m$
- **3** A weight function \mathbf{c} : $S_i \rightarrow Z_+$,

The Set Cover Problem

Given,

- A ground set $U = \{e_1, e_2, ..., e_n\},$
- 2 A collection of sets $S_P = \{S_1, S_2, \dots, S_m\}, S_i \subseteq U, i = 1, 2, \dots, m$
- **3** A weight function \mathbf{c} : $S_i \rightarrow Z_+$,

find a collection of subsets S_i , whose union covers the elements of U at minimum cost.

The Set Cover Problem

Given,

- A ground set $U = \{e_1, e_2, ..., e_n\},\$
- 2 A collection of sets $S_P = \{S_1, S_2, \dots, S_m\}, S_i \subseteq U, i = 1, 2, \dots, m$
- **3** A weight function \mathbf{c} : $S_i \rightarrow Z_+$,

find a collection of subsets S_i , whose union covers the elements of U at minimum cost.

Note

If all weights are unity (or the same),

The Set Cover Problem

Given,

- A ground set $U = \{e_1, e_2, ..., e_n\},$
- 2 A collection of sets $S_P = \{S_1, S_2, \dots, S_m\}, S_i \subseteq U, i = 1, 2, \dots, m$
- **3** A weight function \mathbf{c} : $S_i \rightarrow Z_+$,

find a collection of subsets S_i , whose union covers the elements of U at minimum cost.

Note

If all weights are unity (or the same), the problem is called the Cardinality Set Cover problem.

IP formulation

IP formulation

min $\sum_{S \in S_P} c(S) \cdot x_S$

IP formulation

$\begin{array}{ll} \min \sum_{S \in \mathcal{S}_{\mathcal{P}}} c(S) \cdot x_S \\ \text{subject to} & \sum_{S : e \in \mathcal{S}} x_S \geq 1, \qquad e \in U \end{array}$

IP formulation

	min $\sum_{\mathcal{S}\in\mathcal{S}_{\mathcal{P}}} c(\mathcal{S})\cdot x_{\mathcal{S}}$	
subject to	$\sum_{S:e\in S} x_S \ge 1$,	$e \in U$
	$x_{\mathcal{S}} \in \{0,1\},$	$\pmb{S}\in\pmb{S_P}$

Relaxation

Relaxation

min $\sum_{S \in S_P} c(S) \cdot x_S$

Relaxation

$$\min \sum_{S \in S_P} c(S) \cdot x_S$$

subject to $\sum_{S : e \in S} x_S \ge 1, e \in U$

Relaxation

	min $\sum_{S \in S_P} c(S) \cdot x_S$	
subject to	$\sum_{\mathcal{S}: e \in \mathcal{S}} x_{\mathcal{S}} \ge 1$,	$e \in U$
	$x_S \ge 0,$	$m{S}\in m{S}_{P}$

LP-Rounding

Simple rounding

LP-Rounding
A Simple Rounding Algorithm

Simple rounding

Rounding Algorithm

A Simple Rounding Algorithm

Simple rounding

Rounding Algorithm

• Find an optimal solution to the LP relaxation.

Simple rounding

Rounding Algorithm

- Find an optimal solution to the LP relaxation.
- 2 Let *f* denote the frequency of the most frequent element.

Simple rounding

Rounding Algorithm

- Find an optimal solution to the LP relaxation.
- 2 Let *f* denote the frequency of the most frequent element.
- **③** Pick all sets *S* for which $x_S \ge \frac{1}{t}$ in this solution.

Simple rounding

Rounding Algorithm

- Find an optimal solution to the LP relaxation.
- 2 Let *f* denote the frequency of the most frequent element.
- **9** Pick all sets *S* for which $x_S \ge \frac{1}{t}$ in this solution.

Lemma

The above algorithm achieves an approximation factor of f for the set cover problem.

LP-Rounding

Analysis

LP-Rounding

Analysis

A Simple Rounding Algorithm

Analysis

Proof.

• Let *C* denote the collection of sets picked by the algorithm.

- Let C denote the collection of sets picked by the algorithm.
- **2** Focus an arbitrary element $e \in U$. Assume it belong to the sets S_1, S_2, \ldots, S_r , where $r \leq f$.

- Let *C* denote the collection of sets picked by the algorithm.
- **2** Focus an arbitrary element $e \in U$. Assume it belong to the sets $S_1, S_2, \ldots S_r$, where $r \leq f$.

3 Since
$$\sum_{j=1}^{r} x_j \ge 1$$
,

- Let *C* denote the collection of sets picked by the algorithm.
- **2** Focus an arbitrary element $e \in U$. Assume it belong to the sets $S_1, S_2, \ldots S_r$, where $r \leq f$.
- Since $\sum_{j=1}^{r} x_j \ge 1$, at least one of the $x_j \ge \frac{1}{r}$

- Let *C* denote the collection of sets picked by the algorithm.
- **2** Focus an arbitrary element $e \in U$. Assume it belong to the sets $S_1, S_2, \ldots S_r$, where $r \leq f$.
- Since $\sum_{j=1}^{r} x_j \ge 1$, at least one of the $x_j \ge \frac{1}{r} \ge \frac{1}{f}$.
- Let C denote the collection of sets picked by the algorithm.
- **2** Focus an arbitrary element $e \in U$. Assume it belong to the sets S_1, S_2, \ldots, S_r , where $r \leq f$.
- Since $\sum_{j=1}^{r} x_j \ge 1$, at least one of the $x_j \ge \frac{1}{r} \ge \frac{1}{f}$.
- Solution Thus, the corresponding set will be picked and *e* will be covered, i.e., *C* is a valid cover.

- Let C denote the collection of sets picked by the algorithm.
- **2** Focus an arbitrary element $e \in U$. Assume it belong to the sets S_1, S_2, \ldots, S_r , where $r \leq f$.
- Since $\sum_{j=1}^{r} x_j \ge 1$, at least one of the $x_j \ge \frac{1}{r} \ge \frac{1}{f}$.
- Solution Thus, the corresponding set will be picked and *e* will be covered, i.e., *C* is a valid cover.
- **(**) The rounding process increases x_S for each S by at most a factor of f.

- Let C denote the collection of sets picked by the algorithm.
- **2** Focus an arbitrary element $e \in U$. Assume it belong to the sets S_1, S_2, \ldots, S_r , where $r \leq f$.
- Since $\sum_{j=1}^{r} x_j \ge 1$, at least one of the $x_j \ge \frac{1}{r} \ge \frac{1}{t}$.
- Thus, the corresponding set will be picked and e will be covered, i.e., C is a valid cover.
- Solution The rounding process increases x_S for each S by at most a factor of f.
- Thus, the cost of C is at most f times the cost of the optimal fractional cover

- Let C denote the collection of sets picked by the algorithm.
- **2** Focus an arbitrary element $e \in U$. Assume it belong to the sets S_1, S_2, \ldots, S_r , where $r \leq f$.
- Since $\sum_{j=1}^{r} x_j \ge 1$, at least one of the $x_j \ge \frac{1}{r} \ge \frac{1}{t}$.
- Thus, the corresponding set will be picked and e will be covered, i.e., C is a valid cover.
- The rounding process increases x_S for each S by at most a factor of f.
- O Thus, the cost of C is at most f times the cost of the optimal fractional cover and hence at most f times the cost of the optimal integer cover!

A Randomized Rounding Algorithm

A Randomized Rounding Algorithm

A Randomized Rounding Algorithm

Randomized Approach

O Solve the LP relaxation optimally. Let **x** denote the optimal fractional solution.

A Randomized Rounding Algorithm

- Solve the LP relaxation optimally. Let **x** denote the optimal fractional solution.
- 2 Set probability vector $\mathbf{p} = \mathbf{x}$.

A Randomized Rounding Algorithm

- **O** Solve the LP relaxation optimally. Let **x** denote the optimal fractional solution.
- **2** Set probability vector $\mathbf{p} = \mathbf{x}$.
- Sound each x_S to 1 by flipping a coin with "head" bias p_S .

A Randomized Rounding Algorithm

- **O** Solve the LP relaxation optimally. Let **x** denote the optimal fractional solution.
- **2** Set probability vector $\mathbf{p} = \mathbf{x}$.
- **()** Round each x_S to 1 by flipping a coin with "head" bias p_S . If the coin turns up heads, set x_S to 1.

A Randomized Rounding Algorithm

- **O** Solve the LP relaxation optimally. Let **x** denote the optimal fractional solution.
- **2** Set probability vector $\mathbf{p} = \mathbf{x}$.
- O Round each x_S to 1 by flipping a coin with "head" bias p_S. If the coin turns up heads, set x_S to 1. Otherwise, set x_S to 0.

A Randomized Rounding Algorithm

- **O** Solve the LP relaxation optimally. Let **x** denote the optimal fractional solution.
- **2** Set probability vector $\mathbf{p} = \mathbf{x}$.
- O Round each x_S to 1 by flipping a coin with "head" bias p_S. If the coin turns up heads, set x_S to 1. Otherwise, set x_S to 0.
- Output all sets S, such that $x_S = 1$.

LP-Rounding
A Randomized Rounding Algorithm

Analysis

Analysis

Analysis

Approximation guarantee

E[cost(C)] =

$$\mathbf{E}[cost(C)] = \sum_{S \in S_P} \mathbf{Pr}[S \text{ is picked }] \cdot c_S$$

$$\begin{split} \mathsf{E}[cost(C)] &= \sum_{S \in S_P} \mathsf{Pr}[S \text{ is picked }] \cdot c_S \\ &= \sum_{S \in S_P} p_S \cdot c_S \end{split}$$

$$\mathbf{E}[cost(C)] = \sum_{S \in S_P} \mathbf{Pr}[S \text{ is picked }] \cdot c_S$$
$$= \sum_{S \in S_P} p_S \cdot c_S$$
$$= OPT_f$$

Facts from calculus and probability

Facts from calculus and probability

Facts from calculus and probability

•
$$(1 - \frac{1}{k})^k \le \frac{1}{e}$$
, for all $k = 1, 2, ... \infty$

Facts from calculus and probability

- $(1-\frac{1}{k})^k \leq \frac{1}{e}$, for all $k = 1, 2, \dots \infty$.
- **2** The function $\prod_{i=1}^{k} (1-p_i)$, subject to $\sum_{i=1}^{k} p_i \ge 1$, $0 \le p_i \le 1$, i = 1, 2, ..., k, is maximized at $p_i = \frac{1}{k}$ for all i = 1, 2, ..., k.

Facts from calculus and probability

- $(1-\frac{1}{k})^k \leq \frac{1}{e}$, for all $k = 1, 2, \dots \infty$.
- **2** The function $\prod_{i=1}^{k} (1-p_i)$, subject to $\sum_{i=1}^{k} p_i \ge 1$, $0 \le p_i \le 1$, i = 1, 2, ..., k, is maximized at $p_i = \frac{1}{k}$ for all i = 1, 2, ..., k.

Facts from calculus and probability

- $(1-\frac{1}{k})^k \leq \frac{1}{e}$, for all $k = 1, 2, \dots \infty$.
- **2** The function $\prod_{i=1}^{k} (1-p_i)$, subject to $\sum_{i=1}^{k} p_i \ge 1$, $0 \le p_i \le 1$, i = 1, 2, ..., k, is maximized at $p_i = \frac{1}{k}$ for all i = 1, 2, ..., k.
- If X is a non-negative random variable and a > 0 is a positive constant, then

Facts from calculus and probability

- $(1-\frac{1}{k})^k \leq \frac{1}{e}$, for all $k = 1, 2, \dots \infty$.
- **2** The function $\prod_{i=1}^{k} (1-p_i)$, subject to $\sum_{i=1}^{k} p_i \ge 1$, $0 \le p_i \le 1$, i = 1, 2, ..., k, is maximized at $p_i = \frac{1}{k}$ for all i = 1, 2, ..., k.
- If X is a non-negative random variable and a > 0 is a positive constant, then $\Pr[X \ge a \cdot \mathbf{E}[X]] \le \frac{1}{a}$.

Facts from calculus and probability

- $(1-\frac{1}{k})^k \leq \frac{1}{e}, \text{ for all } k = 1, 2, \dots \infty.$
- **2** The function $\prod_{i=1}^{k} (1-p_i)$, subject to $\sum_{i=1}^{k} p_i \ge 1$, $0 \le p_i \le 1$, i = 1, 2, ..., k, is maximized at $p_i = \frac{1}{k}$ for all i = 1, 2, ..., k.
- If X is a non-negative random variable and a > 0 is a positive constant, then $\Pr[X \ge a \cdot \mathbf{E}[X]] \le \frac{1}{2}$. (Markov's inequality!)

Feasibility Analysis

Feasibility Analysis

Feasibility

• Pick an arbitrary element $a \in U$.

Feasibility

• Pick an arbitrary element $a \in U$. We will study the probability that it is covered in the set cover that is output by the randomized algorithm discussed above.

- Pick an arbitrary element $a \in U$. We will study the probability that it is covered in the set cover that is output by the randomized algorithm discussed above.
- **2** W.I.o.g. assume that $a \in S_1, S_2, \ldots S_k$.

- Pick an arbitrary element $a \in U$. We will study the probability that it is covered in the set cover that is output by the randomized algorithm discussed above.
- **2** W.I.o.g. assume that $a \in S_1, S_2, \ldots S_k$.

• Let
$$x_1 = p_1, x_2 = p_2, ..., x_k = p_k$$
.

- Pick an arbitrary element $a \in U$. We will study the probability that it is covered in the set cover that is output by the randomized algorithm discussed above.
- **2** W.I.o.g. assume that $a \in S_1, S_2, \ldots S_k$.
- 3 Let $x_1 = p_1, x_2 = p_2, ..., x_k = p_k$.
- Since *a* is fractionally covered, $\sum_{i=1}^{k} p_i$

- Pick an arbitrary element $a \in U$. We will study the probability that it is covered in the set cover that is output by the randomized algorithm discussed above.
- **2** W.I.o.g. assume that $a \in S_1, S_2, \ldots S_k$.
- 3 Let $x_1 = p_1, x_2 = p_2, ..., x_k = p_k$.
- Since *a* is fractionally covered, $\sum_{i=1}^{k} p_i \ge 1$.

- Pick an arbitrary element $a \in U$. We will study the probability that it is covered in the set cover that is output by the randomized algorithm discussed above.
- **2** W.I.o.g. assume that $a \in S_1, S_2, \ldots S_k$.
- 3 Let $x_1 = p_1, x_2 = p_2, ..., x_k = p_k$.
- Since *a* is fractionally covered, $\sum_{i=1}^{k} p_i \ge 1$.
- **(**) The probability that a is not covered by set S_i is

- Pick an arbitrary element $a \in U$. We will study the probability that it is covered in the set cover that is output by the randomized algorithm discussed above.
- **2** W.I.o.g. assume that $a \in S_1, S_2, \ldots S_k$.
- 3 Let $x_1 = p_1, x_2 = p_2, ..., x_k = p_k$.
- Since *a* is fractionally covered, $\sum_{i=1}^{k} p_i \ge 1$.
- **()** The probability that *a* is not covered by set S_i is $(1 p_i)$.

- Pick an arbitrary element $a \in U$. We will study the probability that it is covered in the set cover that is output by the randomized algorithm discussed above.
- **2** W.I.o.g. assume that $a \in S_1, S_2, \ldots S_k$.
- 3 Let $x_1 = p_1, x_2 = p_2, ..., x_k = p_k$.
- Since *a* is fractionally covered, $\sum_{i=1}^{k} p_i \ge 1$.
- **(**) The probability that *a* is not covered by set S_i is $(1 p_i)$.
- The probability that *a* is not covered by any of the S_i , i = 1, 2, ..., k is
- Pick an arbitrary element $a \in U$. We will study the probability that it is covered in the set cover that is output by the randomized algorithm discussed above.
- **2** W.I.o.g. assume that $a \in S_1, S_2, \ldots S_k$.
- 3 Let $x_1 = p_1, x_2 = p_2, ..., x_k = p_k$.
- Since *a* is fractionally covered, $\sum_{i=1}^{k} p_i \ge 1$.
- **(**) The probability that *a* is not covered by set S_i is $(1 p_i)$.
- The probability that *a* is not covered by any of the S_i , i = 1, 2, ..., k is $\prod_{i=1}^{k} (1 p_i)$.

- Pick an arbitrary element a ∈ U. We will study the probability that it is covered in the set cover that is output by the randomized algorithm discussed above.
- **2** W.I.o.g. assume that $a \in S_1, S_2, \ldots S_k$.
- 3 Let $x_1 = p_1, x_2 = p_2, ..., x_k = p_k$.
- Since *a* is fractionally covered, $\sum_{i=1}^{k} p_i \ge 1$.
- **(**) The probability that *a* is not covered by set S_i is $(1 p_i)$.
- The probability that *a* is not covered by any of the S_i , i = 1, 2, ..., k is $\prod_{i=1}^{k} (1 p_i)$.
- O Thus, the probability that a is not covered by any of the sets is at most $(1 \frac{1}{k})^k$

- Pick an arbitrary element a ∈ U. We will study the probability that it is covered in the set cover that is output by the randomized algorithm discussed above.
- **2** W.I.o.g. assume that $a \in S_1, S_2, \ldots S_k$.
- 3 Let $x_1 = p_1, x_2 = p_2, ..., x_k = p_k$.
- Since *a* is fractionally covered, $\sum_{i=1}^{k} p_i \ge 1$.
- **(**) The probability that *a* is not covered by set S_i is $(1 p_i)$.
- The probability that *a* is not covered by any of the S_i , i = 1, 2, ..., k is $\prod_{i=1}^{k} (1 p_i)$.
- **2** Thus, the probability that *a* is not covered by any of the sets is at most $(1 \frac{1}{k})^k \le \frac{1}{e}$.

- Pick an arbitrary element a ∈ U. We will study the probability that it is covered in the set cover that is output by the randomized algorithm discussed above.
- **2** W.I.o.g. assume that $a \in S_1, S_2, \ldots S_k$.
- 3 Let $x_1 = p_1, x_2 = p_2, ..., x_k = p_k$.
- Since *a* is fractionally covered, $\sum_{i=1}^{k} p_i \ge 1$.
- **(**) The probability that *a* is not covered by set S_i is $(1 p_i)$.
- The probability that *a* is not covered by any of the S_i , i = 1, 2, ..., k is $\prod_{i=1}^{k} (1 p_i)$.
- **2** Thus, the probability that *a* is not covered by any of the sets is at most $(1 \frac{1}{k})^k \le \frac{1}{e}$.
- In the probability that *a* is covered by some set in the cover is at least

- Pick an arbitrary element a ∈ U. We will study the probability that it is covered in the set cover that is output by the randomized algorithm discussed above.
- **2** W.I.o.g. assume that $a \in S_1, S_2, \ldots S_k$.

• Let
$$x_1 = p_1, x_2 = p_2, ..., x_k = p_k$$
.

- Since *a* is fractionally covered, $\sum_{i=1}^{k} p_i \ge 1$.
- **(**) The probability that *a* is not covered by set S_i is $(1 p_i)$.
- The probability that *a* is not covered by any of the S_i , i = 1, 2, ..., k is $\prod_{i=1}^{k} (1 p_i)$.
- **()** Thus, the probability that *a* is not covered by any of the sets is at most $(1 \frac{1}{k})^k \le \frac{1}{e}$.
- Thus, the probability that a is covered by some set in the cover is at least $(1 \frac{1}{e})$.

A Randomized Rounding Algorithm

Improving the bound

LP-Rounding
A Randomized Rounding Algorithm

Improving the bound

Boosting

Q Run the randomized algorithm c ⋅ ln n times independently and merge all the sets obtained into a set C', where (¹/_e)^{c⋅ln n} ≤ ¹/_{4·n}.

- O Run the randomized algorithm c ⋅ ln n times independently and merge all the sets obtained into a set C', where (¹/_e)^{c ⋅ ln n} ≤ ¹/_{4⋅n}.
- Observe that **Pr**[*a* is not covered by *C*'] is at most:

- O Run the randomized algorithm c ⋅ ln n times independently and merge all the sets obtained into a set C', where (¹/_e)^{c ⋅ ln n} ≤ ¹/_{4⋅n}.
- Observe that $\Pr[a \text{ is not covered by } C']$ is at most:

$$\left(\frac{1}{e}\right)^{c \cdot \ln t}$$

- O Run the randomized algorithm c ⋅ ln n times independently and merge all the sets obtained into a set C', where (¹/_e)^{c ⋅ ln n} ≤ ¹/_{4⋅n}.
- Observe that **Pr**[*a* is not covered by *C*'] is at most:

$$(\frac{1}{e})^{c \cdot \ln n} \leq \frac{1}{4 \cdot n}$$

Boosting

- O Run the randomized algorithm c ⋅ ln n times independently and merge all the sets obtained into a set C', where (¹/_e)^{c ⋅ ln n} ≤ ¹/_{4⋅n}.
- Observe that **Pr**[*a* is not covered by *C*'] is at most:

$$(\frac{1}{e})^{c \cdot \ln n} \leq \frac{1}{4 \cdot n}$$

Summing over all elements, Pr[C' is not a valid cover] is at most

Boosting

- O Run the randomized algorithm c ⋅ ln n times independently and merge all the sets obtained into a set C', where (¹/_e)^{c ⋅ ln n} ≤ ¹/_{4⋅n}.
- Observe that **Pr**[*a* is not covered by *C*'] is at most:

$$(\frac{1}{e})^{c \cdot \ln n} \leq \frac{1}{4 \cdot n}$$

Summing over all elements, $\Pr[C' \text{ is not a valid cover}]$ is at most $n \cdot \frac{1}{4 \cdot n}$

Boosting

- O Run the randomized algorithm c ⋅ ln n times independently and merge all the sets obtained into a set C', where (¹/_e)^{c ⋅ ln n} ≤ ¹/_{4⋅n}.
- Observe that **Pr**[*a* is not covered by *C*'] is at most:

$$(\frac{1}{e})^{c \cdot \ln n} \leq \frac{1}{4 \cdot n}$$

Summing over all elements, $\Pr[C' \text{ is not a valid cover}]$ is at most $n \cdot \frac{1}{4 \cdot n} = \frac{1}{4}$.

- O Run the randomized algorithm c ⋅ ln n times independently and merge all the sets obtained into a set C', where (¹/_e)^{c ⋅ ln n} ≤ ¹/_{4⋅n}.
- Observe that **Pr**[*a* is not covered by *C*'] is at most:

$$(\frac{1}{e})^{c \cdot \ln n} \leq \frac{1}{4 \cdot n}$$

- Summing over all elements, $\Pr[C' \text{ is not a valid cover}]$ is at most $n \cdot \frac{1}{4 \cdot n} = \frac{1}{4}$.
- Clearly, $\mathbf{E}[cost(C')] \leq OPT_f \cdot c \cdot \ln n$.

- O Run the randomized algorithm c ⋅ ln n times independently and merge all the sets obtained into a set C', where (¹/_e)^{c ⋅ ln n} ≤ ¹/_{4⋅n}.
- Observe that **Pr**[*a* is not covered by *C*'] is at most:

$$(\frac{1}{e})^{c \cdot \ln n} \leq \frac{1}{4 \cdot n}$$

- Summing over all elements, $\Pr[C' \text{ is not a valid cover}]$ is at most $n \cdot \frac{1}{4 \cdot n} = \frac{1}{4}$.
- Clearly, $\mathbf{E}[cost(C')] \leq OPT_f \cdot c \cdot \ln n$.
- Solution Applying Markov's inequality, $\Pr[cost(C') \ge 4 \cdot OPT_f \cdot c \cdot \ln n]$

- O Run the randomized algorithm c ⋅ ln n times independently and merge all the sets obtained into a set C', where (¹/_e)^{c ⋅ ln n} ≤ ¹/_{4⋅n}.
- Observe that **Pr**[*a* is not covered by *C*'] is at most:

$$(\frac{1}{e})^{c \cdot \ln n} \leq \frac{1}{4 \cdot n}$$

- Summing over all elements, $\Pr[C' \text{ is not a valid cover}]$ is at most $n \cdot \frac{1}{4 \cdot n} = \frac{1}{4}$.
- Clearly, $\mathbf{E}[cost(C')] \leq OPT_f \cdot c \cdot \ln n$.
- Solution Applying Markov's inequality, $\Pr[cost(C') \ge 4 \cdot OPT_f \cdot c \cdot \ln n] \le \frac{1}{4}$.

- O Run the randomized algorithm c ⋅ ln n times independently and merge all the sets obtained into a set C', where (¹/_e)^{c ⋅ ln n} ≤ ¹/_{4⋅n}.
- Observe that **Pr**[*a* is not covered by *C*'] is at most:

$$(\frac{1}{e})^{c \cdot \ln n} \leq \frac{1}{4 \cdot n}$$

- **3** Summing over all elements, $\Pr[C' \text{ is not a valid cover}]$ is at most $n \cdot \frac{1}{4 \cdot n} = \frac{1}{4}$.
- Clearly, $\mathbf{E}[cost(C')] \leq OPT_f \cdot c \cdot \ln n$.
- Solution Applying Markov's inequality, $\Pr[cost(C') \ge 4 \cdot OPT_f \cdot c \cdot \ln n] \le \frac{1}{4}$.
- The probability of these two undesirable events is at most $\frac{1}{2}$.

- Q Run the randomized algorithm c ⋅ ln n times independently and merge all the sets obtained into a set C', where (¹/_d)^{c ⋅ ln n} ≤ ¹/_{4⋅n}.
- Observe that **Pr**[*a* is not covered by *C*'] is at most:

$$(\frac{1}{e})^{c \cdot \ln n} \leq \frac{1}{4 \cdot n}$$

- **3** Summing over all elements, $\Pr[C' \text{ is not a valid cover}]$ is at most $n \cdot \frac{1}{4 \cdot n} = \frac{1}{4}$.
- Clearly, $\mathbf{E}[cost(C')] \leq OPT_f \cdot c \cdot \ln n$.
- Solution Applying Markov's inequality, $\Pr[cost(C') \ge 4 \cdot OPT_f \cdot c \cdot \ln n] \le \frac{1}{4}$.
- The probability of these two undesirable events is at most $\frac{1}{2}$.
- Hence, the probability that C' is a valid set cover and has cost at most 4 · c · OPT_f · ln n is ast least ¹/₂.

- Q Run the randomized algorithm c ⋅ ln n times independently and merge all the sets obtained into a set C', where (¹/₆)^{c ⋅ ln n} ≤ ¹/_{4⋅n}.
- Observe that **Pr**[*a* is not covered by *C*'] is at most:

$$(\frac{1}{e})^{c \cdot \ln n} \leq \frac{1}{4 \cdot n}$$

- **3** Summing over all elements, $\Pr[C' \text{ is not a valid cover}]$ is at most $n \cdot \frac{1}{4 \cdot n} = \frac{1}{4}$.
- Clearly, $\mathbf{E}[cost(C')] \leq OPT_f \cdot c \cdot \ln n$.
- Solution Applying Markov's inequality, $\Pr[cost(C') \ge 4 \cdot OPT_f \cdot c \cdot \ln n] \le \frac{1}{4}$.
- The probability of these two undesirable events is at most $\frac{1}{2}$.
- O Hence, the probability that C' is a valid set cover and has cost at most 4 ⋅ c ⋅ OPT_f ⋅ ln n is ast least ¹/₂.
- If either condition is violated, repeat the experiment.

- Q Run the randomized algorithm c ⋅ ln n times independently and merge all the sets obtained into a set C', where (¹/₆)^{c ⋅ ln n} ≤ ¹/_{4⋅n}.
- Observe that **Pr**[*a* is not covered by *C*'] is at most:

$$(\frac{1}{e})^{c \cdot \ln n} \leq \frac{1}{4 \cdot n}$$

- **3** Summing over all elements, $\Pr[C' \text{ is not a valid cover}]$ is at most $n \cdot \frac{1}{4 \cdot n} = \frac{1}{4}$.
- Clearly, $\mathbf{E}[cost(C')] \leq OPT_f \cdot c \cdot \ln n$.
- Solution Applying Markov's inequality, $\Pr[cost(C') \ge 4 \cdot OPT_f \cdot c \cdot \ln n] \le \frac{1}{4}$.
- The probability of these two undesirable events is at most $\frac{1}{2}$.
- Wence, the probability that C' is a valid set cover and has cost at most 4 ⋅ c ⋅ OPT_f ⋅ ln n is ast least ¹/₂.
- If either condition is violated, repeat the experiment. Since the number of trials is a geometric random variable, the expected number of repetitions is at most 2.

The IP formulation for Vertex Cover and its LP Relaxation

The IP formulation for Vertex Cover and its LP Relaxation

IP formulation

Let *V* denote the vertex set, *E* denote the edge set and \mathbf{c} : $V \rightarrow Q^+$ denote the weight function.

The IP formulation for Vertex Cover and its LP Relaxation

IP formulation

The IP formulation for Vertex Cover and its LP Relaxation

IP formulation

Let *V* denote the vertex set, *E* denote the edge set and $\mathbf{c} : V \to Q^+$ denote the weight function. The IP formulation for the vertex cover problem is:

min $\sum_{v \in V} c(v) \cdot x_v$

The IP formulation for Vertex Cover and its LP Relaxation

IP formulation

$$\begin{array}{ll} \min \sum_{v \in V} c(v) \cdot x_v \\ \text{subject to} & x_u + x_v \geq 1, \quad \forall (u,v) \in E \end{array}$$

The IP formulation for Vertex Cover and its LP Relaxation

IP formulation

	min $\sum_{v \in V} c(v) \cdot x_v$	
subject to	$x_u + x_v \ge 1$,	$\forall (u, v) \in E$
	$x_v \in \{0,1\}$	$\forall v \in V$

The IP formulation for Vertex Cover and its LP Relaxation

IP formulation

	min $\sum_{v \in V} c(v) \cdot x_v$	
subject to	$x_u + x_v \ge 1$,	$\forall (u, v) \in E$
	$x_v \in \{0,1\}$	$\forall v \in V$

The IP formulation for Vertex Cover and its LP Relaxation

IP formulation

Let *V* denote the vertex set, *E* denote the edge set and $\mathbf{c} : V \to Q^+$ denote the weight function. The IP formulation for the vertex cover problem is:

	min $\sum_{v \in V} c(v) \cdot x_v$	
subject to	$x_u+x_v\geq 1,$	$\forall (u, v) \in E$
	$x_{\nu} \in \{0,1\}$	$\forall v \in V$

The IP formulation for Vertex Cover and its LP Relaxation

IP formulation

Let *V* denote the vertex set, *E* denote the edge set and $\mathbf{c} : V \to Q^+$ denote the weight function. The IP formulation for the vertex cover problem is:

	min $\sum_{v \in V} c(v) \cdot x_v$	
subject to	$x_u + x_v \ge 1$,	$\forall (u, v) \in E$
	$x_{\nu} \in \{0,1\}$	$\forall v \in V$

LP relaxation

min $\sum_{v \in V} c(v) \cdot x_v$

The IP formulation for Vertex Cover and its LP Relaxation

IP formulation

Let *V* denote the vertex set, *E* denote the edge set and $\mathbf{c} : V \to Q^+$ denote the weight function. The IP formulation for the vertex cover problem is:

	min $\sum_{v \in V} c(v) \cdot x_v$	
subject to	$x_u+x_v\geq 1,$	$\forall (u, v) \in E$
	$x_{\nu} \in \{0,1\}$	$\forall v \in V$

$$\min \sum_{v \in V} c(v) \cdot x_v$$

subject to $x_u + x_v \ge 1, \quad \forall (u, v) \in E$

The IP formulation for Vertex Cover and its LP Relaxation

IP formulation

Let *V* denote the vertex set, *E* denote the edge set and $\mathbf{c} : V \to Q^+$ denote the weight function. The IP formulation for the vertex cover problem is:

	min $\sum_{v \in V} c(v) \cdot x_v$	
subject to	$x_u+x_v\geq 1,$	$\forall (u, v) \in E$
	$x_{v} \in \{0,1\}$	$\forall v \in V$

$$\begin{array}{ll} \min \sum_{v \in V} c(v) \cdot x_v \\ \text{subject to} & x_u + x_v \geq 1, \quad \forall (u,v) \in E \\ & x_v \geq 0 \quad \forall v \in V \end{array}$$

The IP formulation for Vertex Cover and its LP Relaxation

IP formulation

Let *V* denote the vertex set, *E* denote the edge set and $\mathbf{c} : V \to Q^+$ denote the weight function. The IP formulation for the vertex cover problem is:

	min $\sum_{v \in V} c(v) \cdot x_v$	
subject to	$x_u+x_v\geq 1,$	$\forall (u, v) \in E$
	$x_{v} \in \{0,1\}$	$\forall v \in V$

$$\begin{array}{ll} \min \sum_{v \in V} c(v) \cdot x_v \\ \text{subject to} & x_u + x_v \geq 1, \quad \forall (u,v) \in E \\ & x_v \geq 0 \quad \forall v \in V \end{array}$$

Some concepts from polyhedral theory

Some concepts from polyhedral theory

Concepts

Some concepts from polyhedral theory

Concepts

Convex sets.
Some concepts from polyhedral theory

Concepts

Polyhedral sets.

Some concepts from polyhedral theory

Concepts

- Convex sets.
- Polyhedral sets.
- Convexity of polyhedral sets.

Some concepts from polyhedral theory

Concepts

- Convex sets.
- 2 Polyhedral sets.
- Convexity of polyhedral sets.
- Extreme point solution.

Some concepts from polyhedral theory

Concepts

- Convex sets.
- 2 Polyhedral sets.
- Convexity of polyhedral sets.
- Extreme point solution.
- Half-integral solution.

Half-integrality of vertex cover

Half-integrality of vertex cover

Lemma

Let x denote a feasible solution of the above LP that is not half-integral.

Lemma

Let **x** denote a feasible solution of the above LP that is not half-integral. Then **x** is not an extreme point solution of the LP.

Lemma

Let **x** denote a feasible solution of the above LP that is not half-integral. Then **x** is not an extreme point solution of the LP.

Lemma

Let **x** denote a feasible solution of the above LP that is not half-integral. Then **x** is not an extreme point solution of the LP.

Proof.

Onsider the set S of vertices for which the extreme point solution x does not assign half-integral values.

Lemma

Let **x** denote a feasible solution of the above LP that is not half-integral. Then **x** is not an extreme point solution of the LP.

Proof.

Onsider the set S of vertices for which the extreme point solution x does not assign half-integral values.

2 Partition the vertices in S into

Lemma

Let **x** denote a feasible solution of the above LP that is not half-integral. Then **x** is not an extreme point solution of the LP.

Proof.

 Consider the set S of vertices for which the extreme point solution x does not assign half-integral values.

2 Partition the vertices in S into

$$V_+ = \{ v : \frac{1}{2} < x_v < 1 \},$$

Lemma

Let **x** denote a feasible solution of the above LP that is not half-integral. Then **x** is not an extreme point solution of the LP.

Proof.

 Consider the set S of vertices for which the extreme point solution x does not assign half-integral values.

2 Partition the vertices in S into

$$V_{+} = \{v : \frac{1}{2} < x_{v} < 1\}, \ V_{-} = \{v : 0 < x_{v} < \frac{1}{2}\}$$

Lemma

Let **x** denote a feasible solution of the above LP that is not half-integral. Then **x** is not an extreme point solution of the LP.

Proof.

 Consider the set S of vertices for which the extreme point solution x does not assign half-integral values.

2 Partition the vertices in S into

$$V_{+} = \{v : \frac{1}{2} < x_{v} < 1\}, \ V_{-} = \{v : 0 < x_{v} < \frac{1}{2}\}$$

3 Let $\varepsilon > 0$ denote a constant.

Lemma

Let **x** denote a feasible solution of the above LP that is not half-integral. Then **x** is not an extreme point solution of the LP.

Proof.

 Consider the set S of vertices for which the extreme point solution x does not assign half-integral values.

2 Partition the vertices in S into

$$V_{+} = \{ v : \frac{1}{2} < x_{v} < 1 \}, \ V_{-} = \{ v : 0 < x_{v} < \frac{1}{2} \}$$

3 Let $\varepsilon > 0$ denote a constant. Define y_v and z_v as follows:

$$y_{\nu} = \begin{cases} x_{\nu} + \varepsilon, \ x_{\nu} \in V_{+} \\ x_{\nu} - \varepsilon, \ x_{\nu} \in V_{-} \\ x_{\nu}, \ \text{otherwise} \end{cases} \qquad z_{\nu} = \begin{cases} x_{\nu} - \varepsilon, \ x_{\nu} \in V_{+} \\ x_{\nu} + \varepsilon, \ x_{\nu} \in V_{-} \\ x_{\nu}, \ \text{otherwise} \end{cases}$$

Completing the proof

Completing the proof

Proof.

• x is distinct from y and z,

Completing the proof

Proof.

() x is distinct from **y** and **z**, since $V_+ \cup V_- \neq \emptyset$.

- **x** is distinct from **y** and **z**, since $V_+ \cup V_- \neq \emptyset$.
- 2 If y and z are feasible, then x cannot be an extreme point, since

- **x** is distinct from **y** and **z**, since $V_+ \cup V_- \neq \emptyset$.
- 2 If y and z are feasible, then x cannot be an extreme point, since $x = \frac{1}{2} \cdot (y + z)$.

- **x** is distinct from **y** and **z**, since $V_+ \cup V_- \neq \emptyset$.
- **2** If **y** and **z** are feasible, then **x** cannot be an extreme point, since $\mathbf{x} = \frac{1}{2} \cdot (\mathbf{y} + \mathbf{z})$.
- It is easy to choose ε , so that **y** and **z** are non-negative.

- **x** is distinct from **y** and **z**, since $V_+ \cup V_- \neq \emptyset$.
- 2 If y and z are feasible, then x cannot be an extreme point, since $x = \frac{1}{2} \cdot (y + z)$.
- It is easy to choose ε , so that **y** and **z** are non-negative.
- Focus on a specific edge (u, v).

- **x** is distinct from **y** and **z**, since $V_+ \cup V_- \neq \emptyset$.
- 2 If y and z are feasible, then x cannot be an extreme point, since $x = \frac{1}{2} \cdot (y + z)$.
- It is easy to choose ε , so that **y** and **z** are non-negative.
- Focus on a specific edge (u, v). We consider the following cases:

Proof.

- **x** is distinct from **y** and **z**, since $V_+ \cup V_- \neq \emptyset$.
- 2 If y and z are feasible, then x cannot be an extreme point, since $x = \frac{1}{2} \cdot (y + z)$.

It is easy to choose ε , so that **y** and **z** are non-negative.

- Solution (u, v). We consider the following cases:
 - x_u + x_v > 1 Clearly, we can choose ε small enough so that y and z do not violate the constraint for this edge.

- **x** is distinct from **y** and **z**, since $V_+ \cup V_- \neq \emptyset$.
- 3 If y and z are feasible, then x cannot be an extreme point, since $x = \frac{1}{2} \cdot (y + z)$.
- It is easy to choose ε , so that **y** and **z** are non-negative.
- Solution (u, v). We consider the following cases:
 - x_u + x_v > 1 Clearly, we can choose ε small enough so that y and z do not violate the constraint for this edge.
 - 2 $x_u + x_v = 1$ In this case, there are three possibilities for x_u and x_v , viz.,

Proof.

- **x** is distinct from **y** and **z**, since $V_+ \cup V_- \neq \emptyset$.
- 3 If y and z are feasible, then x cannot be an extreme point, since $x = \frac{1}{2} \cdot (y + z)$.

It is easy to choose ε , so that **y** and **z** are non-negative.

Solution (u, v). We consider the following cases:

- x_u + x_v > 1 Clearly, we can choose ε small enough so that y and z do not violate the constraint for this edge.
- 2 $x_u + x_v = 1$ In this case, there are three possibilities for x_u and x_v , viz., $x_u = x_v = \frac{1}{2}$,

Proof.

- **x** is distinct from **y** and **z**, since $V_+ \cup V_- \neq \emptyset$.
- 3 If y and z are feasible, then x cannot be an extreme point, since $x = \frac{1}{2} \cdot (y + z)$.

It is easy to choose ε , so that **y** and **z** are non-negative.

Solution (u, v). We consider the following cases:

● x_u + x_v > 1 - Clearly, we can choose ε small enough so that y and z do not violate the constraint for this edge.

2 $x_u + x_v = 1$ - In this case, there are three possibilities for x_u and x_v , viz., $x_u = x_v = \frac{1}{2}$, $x_u = 0, x_v = 1$,

Proof.

- **x** is distinct from **y** and **z**, since $V_+ \cup V_- \neq \emptyset$.
- 3 If y and z are feasible, then x cannot be an extreme point, since $x = \frac{1}{2} \cdot (y + z)$.

It is easy to choose ε , so that **y** and **z** are non-negative.

Solution (u, v). We consider the following cases:

● x_u + x_v > 1 - Clearly, we can choose ε small enough so that y and z do not violate the constraint for this edge.

2 $x_u + x_v = 1$ - In this case, there are three possibilities for x_u and x_v , viz., $x_u = x_v = \frac{1}{2}$, $x_u = 0, x_v = 1$, and $u \in V_+, v \in V_-$.

Proof.

- **x** is distinct from **y** and **z**, since $V_+ \cup V_- \neq \emptyset$.
- 3 If y and z are feasible, then x cannot be an extreme point, since $x = \frac{1}{2} \cdot (y + z)$.

It is easy to choose ε , so that **y** and **z** are non-negative.

Solution (u, v). We consider the following cases:

 x_u + x_v > 1 - Clearly, we can choose ε small enough so that y and z do not violate the constraint for this edge.

2 $x_u + x_v = 1$ - In this case, there are three possibilities for x_u and x_v , viz., $x_u = x_v = \frac{1}{2}$, $x_u = 0, x_v = 1$, and $u \in V_+, v \in V_-$. In all three cases, for any choice of ε , we must have,

Proof.

- **x** is distinct from **y** and **z**, since $V_+ \cup V_- \neq \emptyset$.
- 3 If y and z are feasible, then x cannot be an extreme point, since $x = \frac{1}{2} \cdot (y + z)$.

It is easy to choose ε , so that **y** and **z** are non-negative.

Solution (u, v). We consider the following cases:

● x_u + x_v > 1 - Clearly, we can choose ε small enough so that y and z do not violate the constraint for this edge.

2 $x_u + x_v = 1$ - In this case, there are three possibilities for x_u and x_v , viz., $x_u = x_v = \frac{1}{2}$, $x_u = 0, x_v = 1$, and $u \in V_+, v \in V_-$. In all three cases, for any choice of ε , we must have,

$$x_u + x_v = y_u + y_v = z_u + z_v = 1$$

Approximation algorithm for vertex cover

Corollary

All extreme point solutions to the above linear programming relaxation of the vertex-cover problem are half-integral.

Approximation algorithm for vertex cover

Corollary

All extreme point solutions to the above linear programming relaxation of the vertex-cover problem are half-integral.

Note

Approximation algorithm for vertex cover

Corollary

All extreme point solutions to the above linear programming relaxation of the vertex-cover problem are half-integral.

Note

We now have a 2-approximation algorithm for weighted vertex cover.

Approximation algorithm for vertex cover

Corollary

All extreme point solutions to the above linear programming relaxation of the vertex-cover problem are half-integral.

Note

We now have a 2-approximation algorithm for weighted vertex cover.

Solve the LP to obtain an extreme point solution.

Approximation algorithm for vertex cover

Corollary

All extreme point solutions to the above linear programming relaxation of the vertex-cover problem are half-integral.

Note

We now have a 2-approximation algorithm for weighted vertex cover.

- Solve the LP to obtain an extreme point solution.
- 2 Pick all the vertices that are set to $\frac{1}{2}$ or 1.