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The Set Cover Problem

Given,
@ Aground set U={ei,ez,...,en},
@ A collection of sets Sp = {S1,S,,...Sm}, SiC U, i=1,2,....m
© A weight functionc : S; — Zy,
find a collection of subsets S;, whose union covers the elements of U at minimum cost.

If all weights are unity (or the same), the problem is called the Cardinality Set Cover problem.
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IP formulation

min Yses, ¢(S) - Xs
subject to Y s ecsXs > 1, ecU
Xs€{0,1}, SeSp
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Simple rounding

Rounding Algorithm

@ Find an optimal solution to the LP relaxation.
@ Let f denote the frequency of the most frequent element.
© Pick all sets S for which xs > 17 in this solution.

The above algorithm achieves an approximation factor of f for the set cover problem. I




LA Simple Rounding Algorithm

Analysis




LA Simple Rounding Algorithm

Analysis




LA Simple Rounding Algorithm

Analysis

@ Let C denote the collection of sets picked by the algorithm.




LA Simple Rounding Algorithm

Analysis

@ Let C denote the collection of sets picked by the algorithm.
@ Focus an arbitrary element e € U. Assume it belong to the sets Sy, Sy, ... S, where r < f.




LA Simple Rounding Algorithm

Analysis

@ Let C denote the collection of sets picked by the algorithm.
@ Focus an arbitrary element e € U. Assume it belong to the sets Sy, Sy, ... S, where r < f.
Q Since Y[ x> 1,




LA Simple Rounding Algorithm

Analysis

@ Let C denote the collection of sets picked by the algorithm.
@ Focus an arbitrary element e € U. Assume it belong to the sets Sy, Sy, ... S, where r < f.
Q Since Y/_; x; > 1, at least one of the x; > 1




LA Simple Rounding Algorithm

Analysis

@ Let C denote the collection of sets picked by the algorithm.
@ Focus an arbitrary element e € U. Assume it belong to the sets Sy, Sy, ... S, where r < f.
Q Since YJ_; x; > 1, at least one of the x; > 1 > 1.




LA Simple Rounding Algorithm

Analysis

@ Let C denote the collection of sets picked by the algorithm.
@ Focus an arbitrary element e € U. Assume it belong to the sets Sy, Sy, ... S, where r < f.
Q Since YJ_; x; > 1, at least one of the x; > 1 > 1.

© Thus, the corresponding set will be picked and e will be covered, i.e., C is a valid cover.




LA Simple Rounding Algorithm

Analysis

@ Let C denote the collection of sets picked by the algorithm.

@ Focus an arbitrary element e € U. Assume it belong to the sets Sy, Sy, ... S, where r < f.
Q Since YJ_; x; > 1, at least one of the x; > 1 > 1.

© Thus, the corresponding set will be picked and e will be covered, i.e., C is a valid cover.

© The rounding process increases xs for each S by at most a factor of f.




LA Simple Rounding Algorithm

Analysis

@ Let C denote the collection of sets picked by the algorithm.

@ Focus an arbitrary element e € U. Assume it belong to the sets Sy, Sy, ... S, where r < f.
Q Since YJ_; x; > 1, at least one of the x; > 1 > 1.

© Thus, the corresponding set will be picked and e will be covered, i.e., C is a valid cover.
© The rounding process increases xs for each S by at most a factor of f.

@ Thus, the cost of C is at most f times the cost of the optimal fractional cover




LA Simple Rounding Algorithm

Analysis

Let C denote the collection of sets picked by the algorithm.

Focus an arbitrary element e € U. Assume it belong to the sets Sy, S, ... S, where r < f.
Since Y/_; x; > 1, at least one of the x; > i>1

Thus, the corresponding set will be picked and e will be covered, i.e., C is a valid cover.
The rounding process increases xs for each S by at most a factor of f.

Thus, the cost of C is at most f times the cost of the optimal fractional cover and hence at
most f times the cost of the optimal integer cover!
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A Randomized Rounding Algorithm

Randomized Approach
@ Solve the LP relaxation optimally. Let x denote the optimal fractional solution.
@ Set probability vector p = x.

© Round each xs to 1 by flipping a coin with "head” bias pg. If the coin turns up heads, set xs
to 1. Otherwise, set xs to 0.

© Output all sets S, such that xg = 1.
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Approximation guarantee

E[cost(C)]

Y Pr[Sis picked] - cs
SeSp

= ) pscs

SeSp
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Elementary facts
Q@ (1—-1)k<iforalk=1,2,.
@ The function Fl,.:1 (1—pj), subject to Zf‘:1 pi>1,0<p; <1,i=1,2,...k, is maximized
atpi= 1 foralli=1,2,...k
Q PI’(E1 (@] Eg) < PI’(E1 ) “F PI’(Eg).
Q If X'is a non- negative random variable and a > 0 is a positive constant, then
Pr[X > a-E[X]] < +. (Markov's inequality!)
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@ Run the randomized algorithm ¢ In n times independently and merge all the sets obtained
into a set C', where (1)o7 < 1

@ Observe that Pr[ais not covered by C'] is at most:

Summing over all elements, Pr[C’ is not a valid cover] is at most n- ﬁ = }.

Clearly, E[cost(C')] < OPT¢-c-Inn.
Applying Markov’s inequality, Pr[cost(C') > 4 - OPT¢-c-Inn] < %.

The probability of these two undesirable events is at most %
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Hence, the probability that C’ is a valid set cover and has cost at most 4 - ¢- OPT; -Inn is
ast least 3.
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Improving the bound

@ Run the randomized algorithm ¢ In n times independently and merge all the sets obtained
into a set C', where (1)o7 < 1

@ Observe that Pr[ais not covered by C'] is at most:

ummi Vi b i vali ver| i R
© Summing over all elements, Pr[ C’ is not a valid cover] is at most n 41,7 1

Q Clearly, E[cost(C)] < OPT;-c-Inn.

@ Applying Markov's inequality, Pr[cost(C’) > 4 - OPT¢-c-Inn] < %.

@ The probability of these two undesirable events is at most %

@ Hence, the probability that C’ is a valid set cover and has cost at most 4-c- OPT;-Innis
ast least 3.

Q If either condition is violated, repeat the experiment. Since the number of trials is a
geometric random variable, the expected number of repetitions is at most 2.
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© Convexity of polyhedral sets.
© Extreme point solution.

@ Half-integral solution.




L Half-integrality of Vertex Cover

Half-integrality of vertex cover




L Half-integrality of Vertex Cover

Half-integrality of vertex cover

Let x denote a feasible solution of the above LP that is not half-integral.




L Half-integrality of Vertex Cover

Half-integrality of vertex cover

Let x denote a feasible solution of the above LP that is not half-integral. Then x is not an extreme
point solution of the LP.




L Half-integrality of Vertex Cover

Half-integrality of vertex cover

Let x denote a feasible solution of the above LP that is not half-integral. Then x is not an extreme
point solution of the LP.

v
v




L Half-integrality of Vertex Cover

Half-integrality of vertex cover

Let x denote a feasible solution of the above LP that is not half-integral. Then x is not an extreme
point solution of the LP.

v

@ Consider the set S of vertices for which the extreme point solution x does not assign
half-integral values.

\




L Half-integrality of Vertex Cover

Half-integrality of vertex cover

Let x denote a feasible solution of the above LP that is not half-integral. Then x is not an extreme
point solution of the LP.

v

@ Consider the set S of vertices for which the extreme point solution x does not assign
half-integral values.

@ Partition the vertices in S into

\




L Half-integrality of Vertex Cover

Half-integrality of vertex cover

Let x denote a feasible solution of the above LP that is not half-integral. Then x is not an extreme
point solution of the LP.

v

@ Consider the set S of vertices for which the extreme point solution x does not assign
half-integral values.

@ Partition the vertices in S into

1
Vi={v: §<x.,<1}7

\




L Half-integrality of Vertex Cover

Half-integrality of vertex cover

Let x denote a feasible solution of the above LP that is not half-integral. Then x is not an extreme
point solution of the LP.

v

@ Consider the set S of vertices for which the extreme point solution x does not assign
half-integral values.

@ Partition the vertices in S into

1 1
Vyi={v: §<xv<1}, V_:{v:0<xv<§}

\




L Half-integrality of Vertex Cover

Half-integrality of vertex cover

Let x denote a feasible solution of the above LP that is not half-integral. Then x is not an extreme
point solution of the LP.

v

@ Consider the set S of vertices for which the extreme point solution x does not assign
half-integral values.

@ Partition the vertices in S into

1 1
Vyi={v: §<xv<1}, V_:{v:0<xv<§}

© Let € > 0 denote a constant.

\




L Half-integrality of Vertex Cover

Half-integrality of vertex cover

Let x denote a feasible solution of the above LP that is not half-integral. Then x is not an extreme
point solution of the LP.

v

@ Consider the set S of vertices for which the extreme point solution x does not assign
half-integral values.

@ Partition the vertices in S into

1 1
Vyi={v: §<xv<1}, V_:{v:0<xv<§}

© Let € > 0 denote a constant. Define y, and z, as follows:

Xy +€&, X, € Vy Xy —€, xy € Vi
W=<xy—€& Xx,€V_ Zy=<{Xxy,+¢& x,€V_
Xy, otherwise Xy, otherwise

\
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@ Ify and z are feasible, then x cannot be an extreme point, since x = % (y+2).
@ ltis easy to choose €, so that y and z are non-negative.
@ Focus on a specific edge (u, v). We consider the following cases:

(1]

2]

@ xis distinct from y and z, since V4 U V_ £ 0.

Xy + X, > 1 - Clearly, we can choose € small enough so that y and z do not violate the constraint
for this edge.

Xy +x, = 1 - In this case, there are three possibilities for x, and x,, viz., x, = x, = ‘5
X, =0,x, =1,and u € V,ve V_. Inall three cases, for any choice of £, we must have,

Xut+Xy=YutW=2+2z =1
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Approximation algorithm for vertex cover

Corollary

All extreme point solutions to the above linear programming relaxation of the vertex-cover
problem are half-integral.

v

We now have a 2-approximation algorithm for weighted vertex cover.

@ Solve the LP to obtain an extreme point solution.

Q@ Pick all the vertices that are set to % or 1.

N
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