
Semidefinite Programming

Approximating Max-Cut through Semidefinite Programming

K. Subramani1

1Lane Department of Computer Science and Electrical Engineering
West Virginia University

April 15, 2014

Semidefinite Programming

Outline

Outline

1 The Max-Cut problem

2 The semidefinite programming approach

Semidefinite Programming

Outline

Outline

1 The Max-Cut problem 2 The semidefinite programming approach

Semidefinite Programming

The Max-Cut problem

The Max-Cut Problem

Definition

Given an undirected, weighted graph G = 〈V ,E ,w〉, with w assigning non-negative integral
weights to the edges of E , a cut S, S ⊆ V partitions V into two sets S and S̄.

An edge (u,v) ∈ E belongs to the cut (S, S̄) if and only if exactly one of u and v belongs to S.

The weight of a cut w(S, S̄) is defined as:

w(S, S̄) = ∑
u∈S,v∈S̄

w(u,v).

The Max-Cut problem is concerned with finding the cut of maximum weight in G.

Semidefinite Programming

The Max-Cut problem

The Max-Cut Problem

Definition

Given an undirected, weighted graph G = 〈V ,E ,w〉, with w assigning non-negative integral
weights to the edges of E , a cut S, S ⊆ V partitions V into two sets S and S̄.

An edge (u,v) ∈ E belongs to the cut (S, S̄) if and only if exactly one of u and v belongs to S.

The weight of a cut w(S, S̄) is defined as:

w(S, S̄) = ∑
u∈S,v∈S̄

w(u,v).

The Max-Cut problem is concerned with finding the cut of maximum weight in G.

Semidefinite Programming

The Max-Cut problem

The Max-Cut Problem

Definition

Given an undirected, weighted graph G = 〈V ,E ,w〉, with w assigning non-negative integral
weights to the edges of E ,

a cut S, S ⊆ V partitions V into two sets S and S̄.

An edge (u,v) ∈ E belongs to the cut (S, S̄) if and only if exactly one of u and v belongs to S.

The weight of a cut w(S, S̄) is defined as:

w(S, S̄) = ∑
u∈S,v∈S̄

w(u,v).

The Max-Cut problem is concerned with finding the cut of maximum weight in G.

Semidefinite Programming

The Max-Cut problem

The Max-Cut Problem

Definition

Given an undirected, weighted graph G = 〈V ,E ,w〉, with w assigning non-negative integral
weights to the edges of E , a cut S, S ⊆ V partitions V into two sets S and S̄.

An edge (u,v) ∈ E belongs to the cut (S, S̄) if and only if exactly one of u and v belongs to S.

The weight of a cut w(S, S̄) is defined as:

w(S, S̄) = ∑
u∈S,v∈S̄

w(u,v).

The Max-Cut problem is concerned with finding the cut of maximum weight in G.

Semidefinite Programming

The Max-Cut problem

The Max-Cut Problem

Definition

Given an undirected, weighted graph G = 〈V ,E ,w〉, with w assigning non-negative integral
weights to the edges of E , a cut S, S ⊆ V partitions V into two sets S and S̄.

An edge (u,v) ∈ E belongs to the cut (S, S̄) if and only if exactly one of u and v belongs to S.

The weight of a cut w(S, S̄) is defined as:

w(S, S̄) = ∑
u∈S,v∈S̄

w(u,v).

The Max-Cut problem is concerned with finding the cut of maximum weight in G.

Semidefinite Programming

The Max-Cut problem

The Max-Cut Problem

Definition

Given an undirected, weighted graph G = 〈V ,E ,w〉, with w assigning non-negative integral
weights to the edges of E , a cut S, S ⊆ V partitions V into two sets S and S̄.

An edge (u,v) ∈ E belongs to the cut (S, S̄) if and only if exactly one of u and v belongs to S.

The weight of a cut w(S, S̄) is defined as:

w(S, S̄) = ∑
u∈S,v∈S̄

w(u,v).

The Max-Cut problem is concerned with finding the cut of maximum weight in G.

Semidefinite Programming

The Max-Cut problem

The Max-Cut Problem

Definition

Given an undirected, weighted graph G = 〈V ,E ,w〉, with w assigning non-negative integral
weights to the edges of E , a cut S, S ⊆ V partitions V into two sets S and S̄.

An edge (u,v) ∈ E belongs to the cut (S, S̄) if and only if exactly one of u and v belongs to S.

The weight of a cut w(S, S̄) is defined as:

w(S, S̄) =

∑
u∈S,v∈S̄

w(u,v).

The Max-Cut problem is concerned with finding the cut of maximum weight in G.

Semidefinite Programming

The Max-Cut problem

The Max-Cut Problem

Definition

Given an undirected, weighted graph G = 〈V ,E ,w〉, with w assigning non-negative integral
weights to the edges of E , a cut S, S ⊆ V partitions V into two sets S and S̄.

An edge (u,v) ∈ E belongs to the cut (S, S̄) if and only if exactly one of u and v belongs to S.

The weight of a cut w(S, S̄) is defined as:

w(S, S̄) = ∑
u∈S,v∈S̄

w(u,v).

The Max-Cut problem is concerned with finding the cut of maximum weight in G.

Semidefinite Programming

The Max-Cut problem

The Max-Cut Problem

Definition

Given an undirected, weighted graph G = 〈V ,E ,w〉, with w assigning non-negative integral
weights to the edges of E , a cut S, S ⊆ V partitions V into two sets S and S̄.

An edge (u,v) ∈ E belongs to the cut (S, S̄) if and only if exactly one of u and v belongs to S.

The weight of a cut w(S, S̄) is defined as:

w(S, S̄) = ∑
u∈S,v∈S̄

w(u,v).

The Max-Cut problem is concerned with finding the cut of maximum weight in G.

Semidefinite Programming

The Max-Cut problem

The IP-LP Approach

IP formulation

1 Let yij be a variable associated with edge eij .
yij = 1 means that eij is in the cut.

2 Let xi be a variable associated with each vertex vi .
3 Consider the following “natural” integer programming formulation for Max-Cut.

max ∑(i,j)∈E wij · yij

subject to yij ≤ 1− xi +xj
2 , for every edge eij

yij ≤ 1 +
xi +xj

2 , for every edge eij

xi ∈ {−1,1}, for every vertex vi

Semidefinite Programming

The Max-Cut problem

The IP-LP Approach

IP formulation

1 Let yij be a variable associated with edge eij .
yij = 1 means that eij is in the cut.

2 Let xi be a variable associated with each vertex vi .
3 Consider the following “natural” integer programming formulation for Max-Cut.

max ∑(i,j)∈E wij · yij

subject to yij ≤ 1− xi +xj
2 , for every edge eij

yij ≤ 1 +
xi +xj

2 , for every edge eij

xi ∈ {−1,1}, for every vertex vi

Semidefinite Programming

The Max-Cut problem

The IP-LP Approach

IP formulation

1 Let yij be a variable associated with edge eij .

yij = 1 means that eij is in the cut.

2 Let xi be a variable associated with each vertex vi .
3 Consider the following “natural” integer programming formulation for Max-Cut.

max ∑(i,j)∈E wij · yij

subject to yij ≤ 1− xi +xj
2 , for every edge eij

yij ≤ 1 +
xi +xj

2 , for every edge eij

xi ∈ {−1,1}, for every vertex vi

Semidefinite Programming

The Max-Cut problem

The IP-LP Approach

IP formulation

1 Let yij be a variable associated with edge eij .
yij = 1 means that eij is in the cut.

2 Let xi be a variable associated with each vertex vi .
3 Consider the following “natural” integer programming formulation for Max-Cut.

max ∑(i,j)∈E wij · yij

subject to yij ≤ 1− xi +xj
2 , for every edge eij

yij ≤ 1 +
xi +xj

2 , for every edge eij

xi ∈ {−1,1}, for every vertex vi

Semidefinite Programming

The Max-Cut problem

The IP-LP Approach

IP formulation

1 Let yij be a variable associated with edge eij .
yij = 1 means that eij is in the cut.

2 Let xi be a variable associated with each vertex vi .

3 Consider the following “natural” integer programming formulation for Max-Cut.

max ∑(i,j)∈E wij · yij

subject to yij ≤ 1− xi +xj
2 , for every edge eij

yij ≤ 1 +
xi +xj

2 , for every edge eij

xi ∈ {−1,1}, for every vertex vi

Semidefinite Programming

The Max-Cut problem

The IP-LP Approach

IP formulation

1 Let yij be a variable associated with edge eij .
yij = 1 means that eij is in the cut.

2 Let xi be a variable associated with each vertex vi .
3 Consider the following “natural” integer programming formulation for Max-Cut.

max ∑(i,j)∈E wij · yij

subject to yij ≤ 1− xi +xj
2 , for every edge eij

yij ≤ 1 +
xi +xj

2 , for every edge eij

xi ∈ {−1,1}, for every vertex vi

Semidefinite Programming

The Max-Cut problem

The IP-LP Approach

IP formulation

1 Let yij be a variable associated with edge eij .
yij = 1 means that eij is in the cut.

2 Let xi be a variable associated with each vertex vi .
3 Consider the following “natural” integer programming formulation for Max-Cut.

max ∑(i,j)∈E wij · yij

subject to yij ≤ 1− xi +xj
2 , for every edge eij

yij ≤ 1 +
xi +xj

2 , for every edge eij

xi ∈ {−1,1}, for every vertex vi

Semidefinite Programming

The Max-Cut problem

The IP-LP Approach

IP formulation

1 Let yij be a variable associated with edge eij .
yij = 1 means that eij is in the cut.

2 Let xi be a variable associated with each vertex vi .
3 Consider the following “natural” integer programming formulation for Max-Cut.

max ∑(i,j)∈E wij · yij

subject to yij ≤ 1− xi +xj
2 , for every edge eij

yij ≤ 1 +
xi +xj

2 , for every edge eij

xi ∈ {−1,1}, for every vertex vi

Semidefinite Programming

The Max-Cut problem

The IP-LP Approach

IP formulation

1 Let yij be a variable associated with edge eij .
yij = 1 means that eij is in the cut.

2 Let xi be a variable associated with each vertex vi .
3 Consider the following “natural” integer programming formulation for Max-Cut.

max ∑(i,j)∈E wij · yij

subject to yij ≤ 1− xi +xj
2 , for every edge eij

yij ≤ 1 +
xi +xj

2 , for every edge eij

xi ∈ {−1,1}, for every vertex vi

Semidefinite Programming

The Max-Cut problem

The IP-LP Approach

IP formulation

1 Let yij be a variable associated with edge eij .
yij = 1 means that eij is in the cut.

2 Let xi be a variable associated with each vertex vi .
3 Consider the following “natural” integer programming formulation for Max-Cut.

max ∑(i,j)∈E wij · yij

subject to yij ≤ 1− xi +xj
2 , for every edge eij

yij ≤ 1 +
xi +xj

2 , for every edge eij

xi ∈ {−1,1}, for every vertex vi

Semidefinite Programming

The Max-Cut problem

Analyzing the LP relaxation

LP relaxation

1 In the LP relaxation, we set −1≤ xi ≤ 1, for each xi .

2 However, in this case, the optimum is |E |, since we can simply set xi = 0 for each vertex,
which permits every edge to be selected!

3 Thus, the relaxation is not useful, from the perspective of bounding the error of an
approximate solution.

Semidefinite Programming

The Max-Cut problem

Analyzing the LP relaxation

LP relaxation

1 In the LP relaxation, we set −1≤ xi ≤ 1, for each xi .

2 However, in this case, the optimum is |E |, since we can simply set xi = 0 for each vertex,
which permits every edge to be selected!

3 Thus, the relaxation is not useful, from the perspective of bounding the error of an
approximate solution.

Semidefinite Programming

The Max-Cut problem

Analyzing the LP relaxation

LP relaxation

1 In the LP relaxation, we set −1≤ xi ≤ 1, for each xi .

2 However, in this case, the optimum is |E |, since we can simply set xi = 0 for each vertex,
which permits every edge to be selected!

3 Thus, the relaxation is not useful, from the perspective of bounding the error of an
approximate solution.

Semidefinite Programming

The Max-Cut problem

Analyzing the LP relaxation

LP relaxation

1 In the LP relaxation, we set −1≤ xi ≤ 1, for each xi .

2 However, in this case, the optimum is |E |, since we can simply set xi = 0 for each vertex,
which permits every edge to be selected!

3 Thus, the relaxation is not useful, from the perspective of bounding the error of an
approximate solution.

Semidefinite Programming

The Max-Cut problem

Analyzing the LP relaxation

LP relaxation

1 In the LP relaxation, we set −1≤ xi ≤ 1, for each xi .

2 However, in this case, the optimum is |E |, since we can simply set xi = 0 for each vertex,
which permits every edge to be selected!

3 Thus, the relaxation is not useful, from the perspective of bounding the error of an
approximate solution.

Semidefinite Programming

The Max-Cut problem

The Quadratically constrained programming approach

Modeling

1 Let yi be an indicator variable for vertex vi ; yi ∈ {+1,−1}.
2 The partition (S, S̄) is defined as follows: S = {vi : yi = 1} and S̄ = {vi : yi =−1}.
3 The following quadratically constrained program captures Max-Cut:

max 1
2 ·∑1≤i<j≤n wij · (1− yi · yj)

subject to y2
i = 1, vi ∈ V

yi ∈ Z, vi ∈ V

Semidefinite Programming

The Max-Cut problem

The Quadratically constrained programming approach

Modeling

1 Let yi be an indicator variable for vertex vi ; yi ∈ {+1,−1}.
2 The partition (S, S̄) is defined as follows: S = {vi : yi = 1} and S̄ = {vi : yi =−1}.
3 The following quadratically constrained program captures Max-Cut:

max 1
2 ·∑1≤i<j≤n wij · (1− yi · yj)

subject to y2
i = 1, vi ∈ V

yi ∈ Z, vi ∈ V

Semidefinite Programming

The Max-Cut problem

The Quadratically constrained programming approach

Modeling

1 Let yi be an indicator variable for vertex vi ; yi ∈ {+1,−1}.

2 The partition (S, S̄) is defined as follows: S = {vi : yi = 1} and S̄ = {vi : yi =−1}.
3 The following quadratically constrained program captures Max-Cut:

max 1
2 ·∑1≤i<j≤n wij · (1− yi · yj)

subject to y2
i = 1, vi ∈ V

yi ∈ Z, vi ∈ V

Semidefinite Programming

The Max-Cut problem

The Quadratically constrained programming approach

Modeling

1 Let yi be an indicator variable for vertex vi ; yi ∈ {+1,−1}.

2 The partition (S, S̄) is defined as follows: S = {vi : yi = 1} and S̄ = {vi : yi =−1}.
3 The following quadratically constrained program captures Max-Cut:

max 1
2 ·∑1≤i<j≤n wij · (1− yi · yj)

subject to y2
i = 1, vi ∈ V

yi ∈ Z, vi ∈ V

Semidefinite Programming

The Max-Cut problem

The Quadratically constrained programming approach

Modeling

1 Let yi be an indicator variable for vertex vi ; yi ∈ {+1,−1}.
2 The partition (S, S̄) is defined as follows:

S = {vi : yi = 1} and S̄ = {vi : yi =−1}.
3 The following quadratically constrained program captures Max-Cut:

max 1
2 ·∑1≤i<j≤n wij · (1− yi · yj)

subject to y2
i = 1, vi ∈ V

yi ∈ Z, vi ∈ V

Semidefinite Programming

The Max-Cut problem

The Quadratically constrained programming approach

Modeling

1 Let yi be an indicator variable for vertex vi ; yi ∈ {+1,−1}.
2 The partition (S, S̄) is defined as follows: S = {vi : yi = 1} and S̄ = {vi : yi =−1}.

3 The following quadratically constrained program captures Max-Cut:

max 1
2 ·∑1≤i<j≤n wij · (1− yi · yj)

subject to y2
i = 1, vi ∈ V

yi ∈ Z, vi ∈ V

Semidefinite Programming

The Max-Cut problem

The Quadratically constrained programming approach

Modeling

1 Let yi be an indicator variable for vertex vi ; yi ∈ {+1,−1}.
2 The partition (S, S̄) is defined as follows: S = {vi : yi = 1} and S̄ = {vi : yi =−1}.
3 The following quadratically constrained program captures Max-Cut:

max 1
2 ·∑1≤i<j≤n wij · (1− yi · yj)

subject to y2
i = 1, vi ∈ V

yi ∈ Z, vi ∈ V

Semidefinite Programming

The Max-Cut problem

The Quadratically constrained programming approach

Modeling

1 Let yi be an indicator variable for vertex vi ; yi ∈ {+1,−1}.
2 The partition (S, S̄) is defined as follows: S = {vi : yi = 1} and S̄ = {vi : yi =−1}.
3 The following quadratically constrained program captures Max-Cut:

max 1
2 ·∑1≤i<j≤n wij · (1− yi · yj)

subject to y2
i = 1, vi ∈ V

yi ∈ Z, vi ∈ V

Semidefinite Programming

The Max-Cut problem

The Quadratically constrained programming approach

Modeling

1 Let yi be an indicator variable for vertex vi ; yi ∈ {+1,−1}.
2 The partition (S, S̄) is defined as follows: S = {vi : yi = 1} and S̄ = {vi : yi =−1}.
3 The following quadratically constrained program captures Max-Cut:

max 1
2 ·∑1≤i<j≤n wij · (1− yi · yj)

subject to y2
i = 1, vi ∈ V

yi ∈ Z, vi ∈ V

Semidefinite Programming

The Max-Cut problem

The Quadratically constrained programming approach

Modeling

1 Let yi be an indicator variable for vertex vi ; yi ∈ {+1,−1}.
2 The partition (S, S̄) is defined as follows: S = {vi : yi = 1} and S̄ = {vi : yi =−1}.
3 The following quadratically constrained program captures Max-Cut:

max 1
2 ·∑1≤i<j≤n wij · (1− yi · yj)

subject to y2
i = 1, vi ∈ V

yi ∈ Z, vi ∈ V

Semidefinite Programming

The Max-Cut problem

The Quadratically constrained programming approach

Modeling

1 Let yi be an indicator variable for vertex vi ; yi ∈ {+1,−1}.
2 The partition (S, S̄) is defined as follows: S = {vi : yi = 1} and S̄ = {vi : yi =−1}.
3 The following quadratically constrained program captures Max-Cut:

max 1
2 ·∑1≤i<j≤n wij · (1− yi · yj)

subject to y2
i = 1, vi ∈ V

yi ∈ Z, vi ∈ V

Semidefinite Programming

The Max-Cut problem

The vector program relaxation

Definition

Let v1, v2, . . . vn denote n vector variables in ℜn.

A vector program is the problem of minimizing or maximizing a linear function of the inner
products vi ·vj, subject to linear constraints on these inner products.

Vector program relaxation

max 1
2 ·∑1≤i<j≤n wij · (1−vi ·vj)

subject to vi ·vi = 1, vi ∈ V

vi ∈ℜn, vi ∈ V

Semidefinite Programming

The Max-Cut problem

The vector program relaxation

Definition

Let v1, v2, . . . vn denote n vector variables in ℜn.

A vector program is the problem of minimizing or maximizing a linear function of the inner
products vi ·vj, subject to linear constraints on these inner products.

Vector program relaxation

max 1
2 ·∑1≤i<j≤n wij · (1−vi ·vj)

subject to vi ·vi = 1, vi ∈ V

vi ∈ℜn, vi ∈ V

Semidefinite Programming

The Max-Cut problem

The vector program relaxation

Definition

Let v1, v2, . . . vn denote n vector variables in ℜn.

A vector program is the problem of minimizing or maximizing a linear function of the inner
products vi ·vj, subject to linear constraints on these inner products.

Vector program relaxation

max 1
2 ·∑1≤i<j≤n wij · (1−vi ·vj)

subject to vi ·vi = 1, vi ∈ V

vi ∈ℜn, vi ∈ V

Semidefinite Programming

The Max-Cut problem

The vector program relaxation

Definition

Let v1, v2, . . . vn denote n vector variables in ℜn.

A vector program is the problem of minimizing or maximizing a linear function of the inner
products vi ·vj, subject to linear constraints on these inner products.

Vector program relaxation

max 1
2 ·∑1≤i<j≤n wij · (1−vi ·vj)

subject to vi ·vi = 1, vi ∈ V

vi ∈ℜn, vi ∈ V

Semidefinite Programming

The Max-Cut problem

The vector program relaxation

Definition

Let v1, v2, . . . vn denote n vector variables in ℜn.

A vector program is the problem of minimizing or maximizing a linear function of the inner
products vi ·vj, subject to linear constraints on these inner products.

Vector program relaxation

max 1
2 ·∑1≤i<j≤n wij · (1−vi ·vj)

subject to vi ·vi = 1, vi ∈ V

vi ∈ℜn, vi ∈ V

Semidefinite Programming

The Max-Cut problem

The vector program relaxation

Definition

Let v1, v2, . . . vn denote n vector variables in ℜn.

A vector program is the problem of minimizing or maximizing a linear function of the inner
products vi ·vj, subject to linear constraints on these inner products.

Vector program relaxation

max 1
2 ·∑1≤i<j≤n wij · (1−vi ·vj)

subject to vi ·vi = 1, vi ∈ V

vi ∈ℜn, vi ∈ V

Semidefinite Programming

The Max-Cut problem

The vector program relaxation

Definition

Let v1, v2, . . . vn denote n vector variables in ℜn.

A vector program is the problem of minimizing or maximizing a linear function of the inner
products vi ·vj, subject to linear constraints on these inner products.

Vector program relaxation

max 1
2 ·∑1≤i<j≤n wij · (1−vi ·vj)

subject to vi ·vi = 1, vi ∈ V

vi ∈ℜn, vi ∈ V

Semidefinite Programming

The Max-Cut problem

The vector program relaxation

Definition

Let v1, v2, . . . vn denote n vector variables in ℜn.

A vector program is the problem of minimizing or maximizing a linear function of the inner
products vi ·vj, subject to linear constraints on these inner products.

Vector program relaxation

max 1
2 ·∑1≤i<j≤n wij · (1−vi ·vj)

subject to vi ·vi = 1, vi ∈ V

vi ∈ℜn, vi ∈ V

Semidefinite Programming

The Max-Cut problem

Notes on the vector program relaxation

Note

1 All the vectors v1,v2, . . .vn are constrained to lie on the n-dimensional sphere Sn−1.

2 Any feasible solution to the quadratically constrained quadratic program yields a solution to
the vector program relaxation, having the same objective function value, by setting
vi = (yi ,0, . . . ,0).

3 Therefore, the vector program is a relaxation of the quadratically constrained quadratic
program.

4 Vector programs are approximable to any desired level of accuracy in polynomial time and
thus the vector program relaxation provides an upper bound on OPT for Max-Cut.

Semidefinite Programming

The Max-Cut problem

Notes on the vector program relaxation

Note

1 All the vectors v1,v2, . . .vn are constrained to lie on the n-dimensional sphere Sn−1.

2 Any feasible solution to the quadratically constrained quadratic program yields a solution to
the vector program relaxation, having the same objective function value, by setting
vi = (yi ,0, . . . ,0).

3 Therefore, the vector program is a relaxation of the quadratically constrained quadratic
program.

4 Vector programs are approximable to any desired level of accuracy in polynomial time and
thus the vector program relaxation provides an upper bound on OPT for Max-Cut.

Semidefinite Programming

The Max-Cut problem

Notes on the vector program relaxation

Note

1 All the vectors v1,v2, . . .vn are constrained to lie on the n-dimensional sphere Sn−1.

2 Any feasible solution to the quadratically constrained quadratic program yields a solution to
the vector program relaxation, having the same objective function value, by setting
vi = (yi ,0, . . . ,0).

3 Therefore, the vector program is a relaxation of the quadratically constrained quadratic
program.

4 Vector programs are approximable to any desired level of accuracy in polynomial time and
thus the vector program relaxation provides an upper bound on OPT for Max-Cut.

Semidefinite Programming

The Max-Cut problem

Notes on the vector program relaxation

Note

1 All the vectors v1,v2, . . .vn are constrained to lie on the n-dimensional sphere Sn−1.

2 Any feasible solution to the quadratically constrained quadratic program yields a solution to
the vector program relaxation, having the same objective function value, by setting
vi = (yi ,0, . . . ,0).

3 Therefore, the vector program is a relaxation of the quadratically constrained quadratic
program.

4 Vector programs are approximable to any desired level of accuracy in polynomial time and
thus the vector program relaxation provides an upper bound on OPT for Max-Cut.

Semidefinite Programming

The Max-Cut problem

Notes on the vector program relaxation

Note

1 All the vectors v1,v2, . . .vn are constrained to lie on the n-dimensional sphere Sn−1.

2 Any feasible solution to the quadratically constrained quadratic program yields a solution to
the vector program relaxation, having the same objective function value, by setting
vi = (yi ,0, . . . ,0).

3 Therefore, the vector program is a relaxation of the quadratically constrained quadratic
program.

4 Vector programs are approximable to any desired level of accuracy in polynomial time and
thus the vector program relaxation provides an upper bound on OPT for Max-Cut.

Semidefinite Programming

The Max-Cut problem

Notes on the vector program relaxation

Note

1 All the vectors v1,v2, . . .vn are constrained to lie on the n-dimensional sphere Sn−1.

2 Any feasible solution to the quadratically constrained quadratic program yields a solution to
the vector program relaxation, having the same objective function value, by setting
vi = (yi ,0, . . . ,0).

3 Therefore, the vector program is a relaxation of the quadratically constrained quadratic
program.

4 Vector programs are approximable to any desired level of accuracy in polynomial time and
thus the vector program relaxation provides an upper bound on OPT for Max-Cut.

Semidefinite Programming

The semidefinite programming approach

The semidefinite program for Max-Cut

Semidefinite program relaxation

max 1
2 ·∑1≤i<j≤n wij · (1− yi · yj)

subject to y2
i = 1, vi ∈ V

Y� 0,

Y ∈Mn

Semidefinite Programming

The semidefinite programming approach

The semidefinite program for Max-Cut

Semidefinite program relaxation

max 1
2 ·∑1≤i<j≤n wij · (1− yi · yj)

subject to y2
i = 1, vi ∈ V

Y� 0,

Y ∈Mn

Semidefinite Programming

The semidefinite programming approach

The semidefinite program for Max-Cut

Semidefinite program relaxation

max 1
2 ·∑1≤i<j≤n wij · (1− yi · yj)

subject to y2
i = 1, vi ∈ V

Y� 0,

Y ∈Mn

Semidefinite Programming

The semidefinite programming approach

The semidefinite program for Max-Cut

Semidefinite program relaxation

max 1
2 ·∑1≤i<j≤n wij · (1− yi · yj)

subject to y2
i = 1, vi ∈ V

Y� 0,

Y ∈Mn

Semidefinite Programming

The semidefinite programming approach

The semidefinite program for Max-Cut

Semidefinite program relaxation

max 1
2 ·∑1≤i<j≤n wij · (1− yi · yj)

subject to y2
i = 1, vi ∈ V

Y� 0,

Y ∈Mn

Semidefinite Programming

The semidefinite programming approach

The Semidefinite programming algorithm

Semidefinite Programming

The semidefinite programming approach

The Max-Cut Algorithm

Randomized Rounding Algorithm

1 Solve the semidefinite program corresponding to the vector program relaxation of the
Max-Cut QCQIP optimally.

2 Convert the solution into a solution for the corresponding vector program. Let a1,a2, . . .an
denote the optimal solution.

3 Pick r to be a uniformly distributed vector on the unit sphere Sn−1.

4 Let S = {vi : ai · r≥ 0}.
5 S̄ = V −S.

Semidefinite Programming

The semidefinite programming approach

The Max-Cut Algorithm

Randomized Rounding Algorithm

1 Solve the semidefinite program corresponding to the vector program relaxation of the
Max-Cut QCQIP optimally.

2 Convert the solution into a solution for the corresponding vector program. Let a1,a2, . . .an
denote the optimal solution.

3 Pick r to be a uniformly distributed vector on the unit sphere Sn−1.

4 Let S = {vi : ai · r≥ 0}.
5 S̄ = V −S.

Semidefinite Programming

The semidefinite programming approach

The Max-Cut Algorithm

Randomized Rounding Algorithm

1 Solve the semidefinite program corresponding to the vector program relaxation of the
Max-Cut QCQIP optimally.

2 Convert the solution into a solution for the corresponding vector program. Let a1,a2, . . .an
denote the optimal solution.

3 Pick r to be a uniformly distributed vector on the unit sphere Sn−1.

4 Let S = {vi : ai · r≥ 0}.
5 S̄ = V −S.

Semidefinite Programming

The semidefinite programming approach

The Max-Cut Algorithm

Randomized Rounding Algorithm

1 Solve the semidefinite program corresponding to the vector program relaxation of the
Max-Cut QCQIP optimally.

2 Convert the solution into a solution for the corresponding vector program.

Let a1,a2, . . .an
denote the optimal solution.

3 Pick r to be a uniformly distributed vector on the unit sphere Sn−1.

4 Let S = {vi : ai · r≥ 0}.
5 S̄ = V −S.

Semidefinite Programming

The semidefinite programming approach

The Max-Cut Algorithm

Randomized Rounding Algorithm

1 Solve the semidefinite program corresponding to the vector program relaxation of the
Max-Cut QCQIP optimally.

2 Convert the solution into a solution for the corresponding vector program. Let a1,a2, . . .an
denote the optimal solution.

3 Pick r to be a uniformly distributed vector on the unit sphere Sn−1.

4 Let S = {vi : ai · r≥ 0}.
5 S̄ = V −S.

Semidefinite Programming

The semidefinite programming approach

The Max-Cut Algorithm

Randomized Rounding Algorithm

1 Solve the semidefinite program corresponding to the vector program relaxation of the
Max-Cut QCQIP optimally.

2 Convert the solution into a solution for the corresponding vector program. Let a1,a2, . . .an
denote the optimal solution.

3 Pick r to be a uniformly distributed vector on the unit sphere Sn−1.

4 Let S = {vi : ai · r≥ 0}.
5 S̄ = V −S.

Semidefinite Programming

The semidefinite programming approach

The Max-Cut Algorithm

Randomized Rounding Algorithm

1 Solve the semidefinite program corresponding to the vector program relaxation of the
Max-Cut QCQIP optimally.

2 Convert the solution into a solution for the corresponding vector program. Let a1,a2, . . .an
denote the optimal solution.

3 Pick r to be a uniformly distributed vector on the unit sphere Sn−1.

4 Let S = {vi : ai · r≥ 0}.

5 S̄ = V −S.

Semidefinite Programming

The semidefinite programming approach

The Max-Cut Algorithm

Randomized Rounding Algorithm

1 Solve the semidefinite program corresponding to the vector program relaxation of the
Max-Cut QCQIP optimally.

2 Convert the solution into a solution for the corresponding vector program. Let a1,a2, . . .an
denote the optimal solution.

3 Pick r to be a uniformly distributed vector on the unit sphere Sn−1.

4 Let S = {vi : ai · r≥ 0}.
5 S̄ = V −S.

Semidefinite Programming

The semidefinite programming approach

Analysis

Bounding the error

1 Let a1,a2, . . .an denote the optimal solution and let OPTv denote the optimal value.

2 Let θij denote the angle between vectors ai and aj.

3 The contribution of this pair of vectors to OPTv is:
wij
2 · (1− cosθij).

4 Pr[ai is separated from aj] =
θij
π

.
5 Let W be the random variable denoting the weight of the edges in the cut.
6 Let α = 2

π
min0<θ≤π

θ

1−cosθ
. It is not hard to see that α > 0.87856.

Semidefinite Programming

The semidefinite programming approach

Analysis

Bounding the error

1 Let a1,a2, . . .an denote the optimal solution and let OPTv denote the optimal value.

2 Let θij denote the angle between vectors ai and aj.

3 The contribution of this pair of vectors to OPTv is:
wij
2 · (1− cosθij).

4 Pr[ai is separated from aj] =
θij
π

.
5 Let W be the random variable denoting the weight of the edges in the cut.
6 Let α = 2

π
min0<θ≤π

θ

1−cosθ
. It is not hard to see that α > 0.87856.

Semidefinite Programming

The semidefinite programming approach

Analysis

Bounding the error

1 Let a1,a2, . . .an denote the optimal solution and let OPTv denote the optimal value.

2 Let θij denote the angle between vectors ai and aj.

3 The contribution of this pair of vectors to OPTv is:
wij
2 · (1− cosθij).

4 Pr[ai is separated from aj] =
θij
π

.
5 Let W be the random variable denoting the weight of the edges in the cut.
6 Let α = 2

π
min0<θ≤π

θ

1−cosθ
. It is not hard to see that α > 0.87856.

Semidefinite Programming

The semidefinite programming approach

Analysis

Bounding the error

1 Let a1,a2, . . .an denote the optimal solution and let OPTv denote the optimal value.

2 Let θij denote the angle between vectors ai and aj.

3 The contribution of this pair of vectors to OPTv is:
wij
2 · (1− cosθij).

4 Pr[ai is separated from aj] =
θij
π

.
5 Let W be the random variable denoting the weight of the edges in the cut.
6 Let α = 2

π
min0<θ≤π

θ

1−cosθ
. It is not hard to see that α > 0.87856.

Semidefinite Programming

The semidefinite programming approach

Analysis

Bounding the error

1 Let a1,a2, . . .an denote the optimal solution and let OPTv denote the optimal value.

2 Let θij denote the angle between vectors ai and aj.

3 The contribution of this pair of vectors to OPTv is:

wij
2 · (1− cosθij).

4 Pr[ai is separated from aj] =
θij
π

.
5 Let W be the random variable denoting the weight of the edges in the cut.
6 Let α = 2

π
min0<θ≤π

θ

1−cosθ
. It is not hard to see that α > 0.87856.

Semidefinite Programming

The semidefinite programming approach

Analysis

Bounding the error

1 Let a1,a2, . . .an denote the optimal solution and let OPTv denote the optimal value.

2 Let θij denote the angle between vectors ai and aj.

3 The contribution of this pair of vectors to OPTv is:
wij
2 · (1− cosθij).

4 Pr[ai is separated from aj] =
θij
π

.
5 Let W be the random variable denoting the weight of the edges in the cut.
6 Let α = 2

π
min0<θ≤π

θ

1−cosθ
. It is not hard to see that α > 0.87856.

Semidefinite Programming

The semidefinite programming approach

Analysis

Bounding the error

1 Let a1,a2, . . .an denote the optimal solution and let OPTv denote the optimal value.

2 Let θij denote the angle between vectors ai and aj.

3 The contribution of this pair of vectors to OPTv is:
wij
2 · (1− cosθij).

4 Pr[ai is separated from aj] =

θij
π

.
5 Let W be the random variable denoting the weight of the edges in the cut.
6 Let α = 2

π
min0<θ≤π

θ

1−cosθ
. It is not hard to see that α > 0.87856.

Semidefinite Programming

The semidefinite programming approach

Analysis

Bounding the error

1 Let a1,a2, . . .an denote the optimal solution and let OPTv denote the optimal value.

2 Let θij denote the angle between vectors ai and aj.

3 The contribution of this pair of vectors to OPTv is:
wij
2 · (1− cosθij).

4 Pr[ai is separated from aj] =
θij
π

.

5 Let W be the random variable denoting the weight of the edges in the cut.
6 Let α = 2

π
min0<θ≤π

θ

1−cosθ
. It is not hard to see that α > 0.87856.

Semidefinite Programming

The semidefinite programming approach

Analysis

Bounding the error

1 Let a1,a2, . . .an denote the optimal solution and let OPTv denote the optimal value.

2 Let θij denote the angle between vectors ai and aj.

3 The contribution of this pair of vectors to OPTv is:
wij
2 · (1− cosθij).

4 Pr[ai is separated from aj] =
θij
π

.
5 Let W be the random variable denoting the weight of the edges in the cut.

6 Let α = 2
π

min0<θ≤π
θ

1−cosθ
. It is not hard to see that α > 0.87856.

Semidefinite Programming

The semidefinite programming approach

Analysis

Bounding the error

1 Let a1,a2, . . .an denote the optimal solution and let OPTv denote the optimal value.

2 Let θij denote the angle between vectors ai and aj.

3 The contribution of this pair of vectors to OPTv is:
wij
2 · (1− cosθij).

4 Pr[ai is separated from aj] =
θij
π

.
5 Let W be the random variable denoting the weight of the edges in the cut.
6 Let α = 2

π
min0<θ≤π

θ

1−cosθ
.

It is not hard to see that α > 0.87856.

Semidefinite Programming

The semidefinite programming approach

Analysis

Bounding the error

1 Let a1,a2, . . .an denote the optimal solution and let OPTv denote the optimal value.

2 Let θij denote the angle between vectors ai and aj.

3 The contribution of this pair of vectors to OPTv is:
wij
2 · (1− cosθij).

4 Pr[ai is separated from aj] =
θij
π

.
5 Let W be the random variable denoting the weight of the edges in the cut.
6 Let α = 2

π
min0<θ≤π

θ

1−cosθ
. It is not hard to see that α > 0.87856.

Semidefinite Programming

The semidefinite programming approach

Proof of separation probability

Proof

θij

θij

ai

aj

r

l

Figure: Proof by picture

Semidefinite Programming

The semidefinite programming approach

Proof of separation probability

Proof

θij

θij

ai

aj

r

l

Figure: Proof by picture

Semidefinite Programming

The semidefinite programming approach

Proof of separation probability

Proof

θij

θij

ai

aj

r

l

Figure: Proof by picture

Semidefinite Programming

The semidefinite programming approach

Analysis (contd.)

Lemma

E[W]≥ α ·OPTv and hence E[W]≥ α ·OPT.

Proof.

1 Observe that, for any θ , 0 < θ ≤ π , we must have, θ

π
≥ α · (1−cosθ

2).

2 It follows that,

E[W] = ∑
1≤i<j≤n

wij ·Pr[vi and vj are separated]

= ∑
1≤i<j≤n

wij ·Pr[ai and aj are separated by r]

= ∑
1≤i<j≤n

wij ·
θij

π

≥ α · ∑
1≤i<j≤n

1
2
·wij · (1− cosθij)

= α ·OPTv ≥ α ·OPT .

Semidefinite Programming

The semidefinite programming approach

Analysis (contd.)

Lemma

E[W]≥ α ·OPTv and hence E[W]≥ α ·OPT.

Proof.

1 Observe that, for any θ , 0 < θ ≤ π , we must have, θ

π
≥ α · (1−cosθ

2).

2 It follows that,

E[W] = ∑
1≤i<j≤n

wij ·Pr[vi and vj are separated]

= ∑
1≤i<j≤n

wij ·Pr[ai and aj are separated by r]

= ∑
1≤i<j≤n

wij ·
θij

π

≥ α · ∑
1≤i<j≤n

1
2
·wij · (1− cosθij)

= α ·OPTv ≥ α ·OPT .

Semidefinite Programming

The semidefinite programming approach

Analysis (contd.)

Lemma

E[W]≥ α ·OPTv

and hence E[W]≥ α ·OPT.

Proof.

1 Observe that, for any θ , 0 < θ ≤ π , we must have, θ

π
≥ α · (1−cosθ

2).

2 It follows that,

E[W] = ∑
1≤i<j≤n

wij ·Pr[vi and vj are separated]

= ∑
1≤i<j≤n

wij ·Pr[ai and aj are separated by r]

= ∑
1≤i<j≤n

wij ·
θij

π

≥ α · ∑
1≤i<j≤n

1
2
·wij · (1− cosθij)

= α ·OPTv ≥ α ·OPT .

Semidefinite Programming

The semidefinite programming approach

Analysis (contd.)

Lemma

E[W]≥ α ·OPTv and hence E[W]≥ α ·OPT.

Proof.

1 Observe that, for any θ , 0 < θ ≤ π , we must have, θ

π
≥ α · (1−cosθ

2).

2 It follows that,

E[W] = ∑
1≤i<j≤n

wij ·Pr[vi and vj are separated]

= ∑
1≤i<j≤n

wij ·Pr[ai and aj are separated by r]

= ∑
1≤i<j≤n

wij ·
θij

π

≥ α · ∑
1≤i<j≤n

1
2
·wij · (1− cosθij)

= α ·OPTv ≥ α ·OPT .

Semidefinite Programming

The semidefinite programming approach

Analysis (contd.)

Lemma

E[W]≥ α ·OPTv and hence E[W]≥ α ·OPT.

Proof.

1 Observe that, for any θ , 0 < θ ≤ π , we must have, θ

π
≥ α · (1−cosθ

2).

2 It follows that,

E[W] = ∑
1≤i<j≤n

wij ·Pr[vi and vj are separated]

= ∑
1≤i<j≤n

wij ·Pr[ai and aj are separated by r]

= ∑
1≤i<j≤n

wij ·
θij

π

≥ α · ∑
1≤i<j≤n

1
2
·wij · (1− cosθij)

= α ·OPTv ≥ α ·OPT .

Semidefinite Programming

The semidefinite programming approach

Analysis (contd.)

Lemma

E[W]≥ α ·OPTv and hence E[W]≥ α ·OPT.

Proof.

1 Observe that, for any θ , 0 < θ ≤ π , we must have,

θ

π
≥ α · (1−cosθ

2).

2 It follows that,

E[W] = ∑
1≤i<j≤n

wij ·Pr[vi and vj are separated]

= ∑
1≤i<j≤n

wij ·Pr[ai and aj are separated by r]

= ∑
1≤i<j≤n

wij ·
θij

π

≥ α · ∑
1≤i<j≤n

1
2
·wij · (1− cosθij)

= α ·OPTv ≥ α ·OPT .

Semidefinite Programming

The semidefinite programming approach

Analysis (contd.)

Lemma

E[W]≥ α ·OPTv and hence E[W]≥ α ·OPT.

Proof.

1 Observe that, for any θ , 0 < θ ≤ π , we must have, θ

π
≥ α · (1−cosθ

2).

2 It follows that,

E[W] = ∑
1≤i<j≤n

wij ·Pr[vi and vj are separated]

= ∑
1≤i<j≤n

wij ·Pr[ai and aj are separated by r]

= ∑
1≤i<j≤n

wij ·
θij

π

≥ α · ∑
1≤i<j≤n

1
2
·wij · (1− cosθij)

= α ·OPTv ≥ α ·OPT .

Semidefinite Programming

The semidefinite programming approach

Analysis (contd.)

Lemma

E[W]≥ α ·OPTv and hence E[W]≥ α ·OPT.

Proof.

1 Observe that, for any θ , 0 < θ ≤ π , we must have, θ

π
≥ α · (1−cosθ

2).

2 It follows that,

E[W] = ∑
1≤i<j≤n

wij ·Pr[vi and vj are separated]

= ∑
1≤i<j≤n

wij ·Pr[ai and aj are separated by r]

= ∑
1≤i<j≤n

wij ·
θij

π

≥ α · ∑
1≤i<j≤n

1
2
·wij · (1− cosθij)

= α ·OPTv ≥ α ·OPT .

Semidefinite Programming

The semidefinite programming approach

Analysis (contd.)

Lemma

E[W]≥ α ·OPTv and hence E[W]≥ α ·OPT.

Proof.

1 Observe that, for any θ , 0 < θ ≤ π , we must have, θ

π
≥ α · (1−cosθ

2).

2 It follows that,

E[W] =

∑
1≤i<j≤n

wij ·Pr[vi and vj are separated]

= ∑
1≤i<j≤n

wij ·Pr[ai and aj are separated by r]

= ∑
1≤i<j≤n

wij ·
θij

π

≥ α · ∑
1≤i<j≤n

1
2
·wij · (1− cosθij)

= α ·OPTv ≥ α ·OPT .

Semidefinite Programming

The semidefinite programming approach

Analysis (contd.)

Lemma

E[W]≥ α ·OPTv and hence E[W]≥ α ·OPT.

Proof.

1 Observe that, for any θ , 0 < θ ≤ π , we must have, θ

π
≥ α · (1−cosθ

2).

2 It follows that,

E[W] = ∑
1≤i<j≤n

wij ·Pr[vi and vj are separated]

= ∑
1≤i<j≤n

wij ·Pr[ai and aj are separated by r]

= ∑
1≤i<j≤n

wij ·
θij

π

≥ α · ∑
1≤i<j≤n

1
2
·wij · (1− cosθij)

= α ·OPTv ≥ α ·OPT .

Semidefinite Programming

The semidefinite programming approach

Analysis (contd.)

Lemma

E[W]≥ α ·OPTv and hence E[W]≥ α ·OPT.

Proof.

1 Observe that, for any θ , 0 < θ ≤ π , we must have, θ

π
≥ α · (1−cosθ

2).

2 It follows that,

E[W] = ∑
1≤i<j≤n

wij ·Pr[vi and vj are separated]

=

∑
1≤i<j≤n

wij ·Pr[ai and aj are separated by r]

= ∑
1≤i<j≤n

wij ·
θij

π

≥ α · ∑
1≤i<j≤n

1
2
·wij · (1− cosθij)

= α ·OPTv ≥ α ·OPT .

Semidefinite Programming

The semidefinite programming approach

Analysis (contd.)

Lemma

E[W]≥ α ·OPTv and hence E[W]≥ α ·OPT.

Proof.

1 Observe that, for any θ , 0 < θ ≤ π , we must have, θ

π
≥ α · (1−cosθ

2).

2 It follows that,

E[W] = ∑
1≤i<j≤n

wij ·Pr[vi and vj are separated]

= ∑
1≤i<j≤n

wij ·Pr[ai and aj are separated by r]

= ∑
1≤i<j≤n

wij ·
θij

π

≥ α · ∑
1≤i<j≤n

1
2
·wij · (1− cosθij)

= α ·OPTv ≥ α ·OPT .

Semidefinite Programming

The semidefinite programming approach

Analysis (contd.)

Lemma

E[W]≥ α ·OPTv and hence E[W]≥ α ·OPT.

Proof.

1 Observe that, for any θ , 0 < θ ≤ π , we must have, θ

π
≥ α · (1−cosθ

2).

2 It follows that,

E[W] = ∑
1≤i<j≤n

wij ·Pr[vi and vj are separated]

= ∑
1≤i<j≤n

wij ·Pr[ai and aj are separated by r]

=

∑
1≤i<j≤n

wij ·
θij

π

≥ α · ∑
1≤i<j≤n

1
2
·wij · (1− cosθij)

= α ·OPTv ≥ α ·OPT .

Semidefinite Programming

The semidefinite programming approach

Analysis (contd.)

Lemma

E[W]≥ α ·OPTv and hence E[W]≥ α ·OPT.

Proof.

1 Observe that, for any θ , 0 < θ ≤ π , we must have, θ

π
≥ α · (1−cosθ

2).

2 It follows that,

E[W] = ∑
1≤i<j≤n

wij ·Pr[vi and vj are separated]

= ∑
1≤i<j≤n

wij ·Pr[ai and aj are separated by r]

=

∑
1≤i<j≤n

wij ·
θij

π

≥ α · ∑
1≤i<j≤n

1
2
·wij · (1− cosθij)

= α ·OPTv ≥ α ·OPT .

Semidefinite Programming

The semidefinite programming approach

Analysis (contd.)

Lemma

E[W]≥ α ·OPTv and hence E[W]≥ α ·OPT.

Proof.

1 Observe that, for any θ , 0 < θ ≤ π , we must have, θ

π
≥ α · (1−cosθ

2).

2 It follows that,

E[W] = ∑
1≤i<j≤n

wij ·Pr[vi and vj are separated]

= ∑
1≤i<j≤n

wij ·Pr[ai and aj are separated by r]

= ∑
1≤i<j≤n

wij ·
θij

π

≥ α · ∑
1≤i<j≤n

1
2
·wij · (1− cosθij)

= α ·OPTv ≥ α ·OPT .

Semidefinite Programming

The semidefinite programming approach

Analysis (contd.)

Lemma

E[W]≥ α ·OPTv and hence E[W]≥ α ·OPT.

Proof.

1 Observe that, for any θ , 0 < θ ≤ π , we must have, θ

π
≥ α · (1−cosθ

2).

2 It follows that,

E[W] = ∑
1≤i<j≤n

wij ·Pr[vi and vj are separated]

= ∑
1≤i<j≤n

wij ·Pr[ai and aj are separated by r]

= ∑
1≤i<j≤n

wij ·
θij

π

≥

α · ∑
1≤i<j≤n

1
2
·wij · (1− cosθij)

= α ·OPTv ≥ α ·OPT .

Semidefinite Programming

The semidefinite programming approach

Analysis (contd.)

Lemma

E[W]≥ α ·OPTv and hence E[W]≥ α ·OPT.

Proof.

1 Observe that, for any θ , 0 < θ ≤ π , we must have, θ

π
≥ α · (1−cosθ

2).

2 It follows that,

E[W] = ∑
1≤i<j≤n

wij ·Pr[vi and vj are separated]

= ∑
1≤i<j≤n

wij ·Pr[ai and aj are separated by r]

= ∑
1≤i<j≤n

wij ·
θij

π

≥ α · ∑
1≤i<j≤n

1
2
·wij · (1− cosθij)

= α ·OPTv ≥ α ·OPT .

Semidefinite Programming

The semidefinite programming approach

Analysis (contd.)

Lemma

E[W]≥ α ·OPTv and hence E[W]≥ α ·OPT.

Proof.

1 Observe that, for any θ , 0 < θ ≤ π , we must have, θ

π
≥ α · (1−cosθ

2).

2 It follows that,

E[W] = ∑
1≤i<j≤n

wij ·Pr[vi and vj are separated]

= ∑
1≤i<j≤n

wij ·Pr[ai and aj are separated by r]

= ∑
1≤i<j≤n

wij ·
θij

π

≥ α · ∑
1≤i<j≤n

1
2
·wij · (1− cosθij)

= α ·OPTv

≥ α ·OPT .

Semidefinite Programming

The semidefinite programming approach

Analysis (contd.)

Lemma

E[W]≥ α ·OPTv and hence E[W]≥ α ·OPT.

Proof.

1 Observe that, for any θ , 0 < θ ≤ π , we must have, θ

π
≥ α · (1−cosθ

2).

2 It follows that,

E[W] = ∑
1≤i<j≤n

wij ·Pr[vi and vj are separated]

= ∑
1≤i<j≤n

wij ·Pr[ai and aj are separated by r]

= ∑
1≤i<j≤n

wij ·
θij

π

≥ α · ∑
1≤i<j≤n

1
2
·wij · (1− cosθij)

= α ·OPTv ≥ α ·OPT .

Semidefinite Programming

The semidefinite programming approach

High Probability Guarantee

Theorem

There is a randomized approximation algorithm for Max-Cut that achieves the approximation
factor of 0.87856.

Proof.

1 Let T denote the sum of weights of all edges in G.

2 Define a so that E[W] = a ·T . (a will be decided later.)
3 Let p = Pr[W < (1− ε) ·a ·T]. (ε will be chosen later.)

4 Since W ≤ T , we must have, a ·T ≤ p · (1− ε) ·a ·T + (1−p) ·T .
5 It follows that, p ≤ 1−a

1−a+a·ε .

6 Now observe that,
T ≥ E[W] = a ·T ≥ α ·OPTv ≥ α ·OPT ≥ α·T

2 .
7 Therefore, α

2 ≤ a≤ 1.

8 Hence, p ≤ 1− ε· α2
1+ε− α

2
.

9 Let c =
ε· α2

1+ε− α
2

.

Semidefinite Programming

The semidefinite programming approach

High Probability Guarantee

Theorem

There is a randomized approximation algorithm for Max-Cut that achieves the approximation
factor of 0.87856.

Proof.

1 Let T denote the sum of weights of all edges in G.

2 Define a so that E[W] = a ·T . (a will be decided later.)
3 Let p = Pr[W < (1− ε) ·a ·T]. (ε will be chosen later.)

4 Since W ≤ T , we must have, a ·T ≤ p · (1− ε) ·a ·T + (1−p) ·T .
5 It follows that, p ≤ 1−a

1−a+a·ε .

6 Now observe that,
T ≥ E[W] = a ·T ≥ α ·OPTv ≥ α ·OPT ≥ α·T

2 .
7 Therefore, α

2 ≤ a≤ 1.

8 Hence, p ≤ 1− ε· α2
1+ε− α

2
.

9 Let c =
ε· α2

1+ε− α
2

.

Semidefinite Programming

The semidefinite programming approach

High Probability Guarantee

Theorem

There is a randomized approximation algorithm for Max-Cut that achieves the approximation
factor of 0.87856.

Proof.

1 Let T denote the sum of weights of all edges in G.

2 Define a so that E[W] = a ·T . (a will be decided later.)
3 Let p = Pr[W < (1− ε) ·a ·T]. (ε will be chosen later.)

4 Since W ≤ T , we must have, a ·T ≤ p · (1− ε) ·a ·T + (1−p) ·T .
5 It follows that, p ≤ 1−a

1−a+a·ε .

6 Now observe that,
T ≥ E[W] = a ·T ≥ α ·OPTv ≥ α ·OPT ≥ α·T

2 .
7 Therefore, α

2 ≤ a≤ 1.

8 Hence, p ≤ 1− ε· α2
1+ε− α

2
.

9 Let c =
ε· α2

1+ε− α
2

.

Semidefinite Programming

The semidefinite programming approach

High Probability Guarantee

Theorem

There is a randomized approximation algorithm for Max-Cut that achieves the approximation
factor of 0.87856.

Proof.

1 Let T denote the sum of weights of all edges in G.

2 Define a so that E[W] = a ·T . (a will be decided later.)
3 Let p = Pr[W < (1− ε) ·a ·T]. (ε will be chosen later.)

4 Since W ≤ T , we must have, a ·T ≤ p · (1− ε) ·a ·T + (1−p) ·T .
5 It follows that, p ≤ 1−a

1−a+a·ε .

6 Now observe that,
T ≥ E[W] = a ·T ≥ α ·OPTv ≥ α ·OPT ≥ α·T

2 .
7 Therefore, α

2 ≤ a≤ 1.

8 Hence, p ≤ 1− ε· α2
1+ε− α

2
.

9 Let c =
ε· α2

1+ε− α
2

.

Semidefinite Programming

The semidefinite programming approach

High Probability Guarantee

Theorem

There is a randomized approximation algorithm for Max-Cut that achieves the approximation
factor of 0.87856.

Proof.

1 Let T denote the sum of weights of all edges in G.

2 Define a so that E[W] = a ·T .

(a will be decided later.)
3 Let p = Pr[W < (1− ε) ·a ·T]. (ε will be chosen later.)

4 Since W ≤ T , we must have, a ·T ≤ p · (1− ε) ·a ·T + (1−p) ·T .
5 It follows that, p ≤ 1−a

1−a+a·ε .

6 Now observe that,
T ≥ E[W] = a ·T ≥ α ·OPTv ≥ α ·OPT ≥ α·T

2 .
7 Therefore, α

2 ≤ a≤ 1.

8 Hence, p ≤ 1− ε· α2
1+ε− α

2
.

9 Let c =
ε· α2

1+ε− α
2

.

Semidefinite Programming

The semidefinite programming approach

High Probability Guarantee

Theorem

There is a randomized approximation algorithm for Max-Cut that achieves the approximation
factor of 0.87856.

Proof.

1 Let T denote the sum of weights of all edges in G.

2 Define a so that E[W] = a ·T . (a will be decided later.)

3 Let p = Pr[W < (1− ε) ·a ·T]. (ε will be chosen later.)

4 Since W ≤ T , we must have, a ·T ≤ p · (1− ε) ·a ·T + (1−p) ·T .
5 It follows that, p ≤ 1−a

1−a+a·ε .

6 Now observe that,
T ≥ E[W] = a ·T ≥ α ·OPTv ≥ α ·OPT ≥ α·T

2 .
7 Therefore, α

2 ≤ a≤ 1.

8 Hence, p ≤ 1− ε· α2
1+ε− α

2
.

9 Let c =
ε· α2

1+ε− α
2

.

Semidefinite Programming

The semidefinite programming approach

High Probability Guarantee

Theorem

There is a randomized approximation algorithm for Max-Cut that achieves the approximation
factor of 0.87856.

Proof.

1 Let T denote the sum of weights of all edges in G.

2 Define a so that E[W] = a ·T . (a will be decided later.)
3 Let p = Pr[W < (1− ε) ·a ·T]. (ε will be chosen later.)

4 Since W ≤ T , we must have, a ·T ≤ p · (1− ε) ·a ·T + (1−p) ·T .
5 It follows that, p ≤ 1−a

1−a+a·ε .

6 Now observe that,
T ≥ E[W] = a ·T ≥ α ·OPTv ≥ α ·OPT ≥ α·T

2 .
7 Therefore, α

2 ≤ a≤ 1.

8 Hence, p ≤ 1− ε· α2
1+ε− α

2
.

9 Let c =
ε· α2

1+ε− α
2

.

Semidefinite Programming

The semidefinite programming approach

High Probability Guarantee

Theorem

There is a randomized approximation algorithm for Max-Cut that achieves the approximation
factor of 0.87856.

Proof.

1 Let T denote the sum of weights of all edges in G.

2 Define a so that E[W] = a ·T . (a will be decided later.)
3 Let p = Pr[W < (1− ε) ·a ·T]. (ε will be chosen later.)

4 Since W ≤ T , we must have,

a ·T ≤ p · (1− ε) ·a ·T + (1−p) ·T .
5 It follows that, p ≤ 1−a

1−a+a·ε .

6 Now observe that,
T ≥ E[W] = a ·T ≥ α ·OPTv ≥ α ·OPT ≥ α·T

2 .
7 Therefore, α

2 ≤ a≤ 1.

8 Hence, p ≤ 1− ε· α2
1+ε− α

2
.

9 Let c =
ε· α2

1+ε− α
2

.

Semidefinite Programming

The semidefinite programming approach

High Probability Guarantee

Theorem

There is a randomized approximation algorithm for Max-Cut that achieves the approximation
factor of 0.87856.

Proof.

1 Let T denote the sum of weights of all edges in G.

2 Define a so that E[W] = a ·T . (a will be decided later.)
3 Let p = Pr[W < (1− ε) ·a ·T]. (ε will be chosen later.)

4 Since W ≤ T , we must have, a ·T ≤ p · (1− ε) ·a ·T + (1−p) ·T .

5 It follows that, p ≤ 1−a
1−a+a·ε .

6 Now observe that,
T ≥ E[W] = a ·T ≥ α ·OPTv ≥ α ·OPT ≥ α·T

2 .
7 Therefore, α

2 ≤ a≤ 1.

8 Hence, p ≤ 1− ε· α2
1+ε− α

2
.

9 Let c =
ε· α2

1+ε− α
2

.

Semidefinite Programming

The semidefinite programming approach

High Probability Guarantee

Theorem

There is a randomized approximation algorithm for Max-Cut that achieves the approximation
factor of 0.87856.

Proof.

1 Let T denote the sum of weights of all edges in G.

2 Define a so that E[W] = a ·T . (a will be decided later.)
3 Let p = Pr[W < (1− ε) ·a ·T]. (ε will be chosen later.)

4 Since W ≤ T , we must have, a ·T ≤ p · (1− ε) ·a ·T + (1−p) ·T .
5 It follows that,

p ≤ 1−a
1−a+a·ε .

6 Now observe that,
T ≥ E[W] = a ·T ≥ α ·OPTv ≥ α ·OPT ≥ α·T

2 .
7 Therefore, α

2 ≤ a≤ 1.

8 Hence, p ≤ 1− ε· α2
1+ε− α

2
.

9 Let c =
ε· α2

1+ε− α
2

.

Semidefinite Programming

The semidefinite programming approach

High Probability Guarantee

Theorem

There is a randomized approximation algorithm for Max-Cut that achieves the approximation
factor of 0.87856.

Proof.

1 Let T denote the sum of weights of all edges in G.

2 Define a so that E[W] = a ·T . (a will be decided later.)
3 Let p = Pr[W < (1− ε) ·a ·T]. (ε will be chosen later.)

4 Since W ≤ T , we must have, a ·T ≤ p · (1− ε) ·a ·T + (1−p) ·T .
5 It follows that, p ≤ 1−a

1−a+a·ε .

6 Now observe that,
T ≥ E[W] = a ·T ≥ α ·OPTv ≥ α ·OPT ≥ α·T

2 .
7 Therefore, α

2 ≤ a≤ 1.

8 Hence, p ≤ 1− ε· α2
1+ε− α

2
.

9 Let c =
ε· α2

1+ε− α
2

.

Semidefinite Programming

The semidefinite programming approach

High Probability Guarantee

Theorem

There is a randomized approximation algorithm for Max-Cut that achieves the approximation
factor of 0.87856.

Proof.

1 Let T denote the sum of weights of all edges in G.

2 Define a so that E[W] = a ·T . (a will be decided later.)
3 Let p = Pr[W < (1− ε) ·a ·T]. (ε will be chosen later.)

4 Since W ≤ T , we must have, a ·T ≤ p · (1− ε) ·a ·T + (1−p) ·T .
5 It follows that, p ≤ 1−a

1−a+a·ε .

6 Now observe that,

T ≥ E[W] = a ·T ≥ α ·OPTv ≥ α ·OPT ≥ α·T
2 .

7 Therefore, α

2 ≤ a≤ 1.

8 Hence, p ≤ 1− ε· α2
1+ε− α

2
.

9 Let c =
ε· α2

1+ε− α
2

.

Semidefinite Programming

The semidefinite programming approach

High Probability Guarantee

Theorem

There is a randomized approximation algorithm for Max-Cut that achieves the approximation
factor of 0.87856.

Proof.

1 Let T denote the sum of weights of all edges in G.

2 Define a so that E[W] = a ·T . (a will be decided later.)
3 Let p = Pr[W < (1− ε) ·a ·T]. (ε will be chosen later.)

4 Since W ≤ T , we must have, a ·T ≤ p · (1− ε) ·a ·T + (1−p) ·T .
5 It follows that, p ≤ 1−a

1−a+a·ε .

6 Now observe that,
T ≥

E[W] = a ·T ≥ α ·OPTv ≥ α ·OPT ≥ α·T
2 .

7 Therefore, α

2 ≤ a≤ 1.

8 Hence, p ≤ 1− ε· α2
1+ε− α

2
.

9 Let c =
ε· α2

1+ε− α
2

.

Semidefinite Programming

The semidefinite programming approach

High Probability Guarantee

Theorem

There is a randomized approximation algorithm for Max-Cut that achieves the approximation
factor of 0.87856.

Proof.

1 Let T denote the sum of weights of all edges in G.

2 Define a so that E[W] = a ·T . (a will be decided later.)
3 Let p = Pr[W < (1− ε) ·a ·T]. (ε will be chosen later.)

4 Since W ≤ T , we must have, a ·T ≤ p · (1− ε) ·a ·T + (1−p) ·T .
5 It follows that, p ≤ 1−a

1−a+a·ε .

6 Now observe that,
T ≥ E[W] =

a ·T ≥ α ·OPTv ≥ α ·OPT ≥ α·T
2 .

7 Therefore, α

2 ≤ a≤ 1.

8 Hence, p ≤ 1− ε· α2
1+ε− α

2
.

9 Let c =
ε· α2

1+ε− α
2

.

Semidefinite Programming

The semidefinite programming approach

High Probability Guarantee

Theorem

There is a randomized approximation algorithm for Max-Cut that achieves the approximation
factor of 0.87856.

Proof.

1 Let T denote the sum of weights of all edges in G.

2 Define a so that E[W] = a ·T . (a will be decided later.)
3 Let p = Pr[W < (1− ε) ·a ·T]. (ε will be chosen later.)

4 Since W ≤ T , we must have, a ·T ≤ p · (1− ε) ·a ·T + (1−p) ·T .
5 It follows that, p ≤ 1−a

1−a+a·ε .

6 Now observe that,
T ≥ E[W] = a ·T ≥

α ·OPTv ≥ α ·OPT ≥ α·T
2 .

7 Therefore, α

2 ≤ a≤ 1.

8 Hence, p ≤ 1− ε· α2
1+ε− α

2
.

9 Let c =
ε· α2

1+ε− α
2

.

Semidefinite Programming

The semidefinite programming approach

High Probability Guarantee

Theorem

There is a randomized approximation algorithm for Max-Cut that achieves the approximation
factor of 0.87856.

Proof.

1 Let T denote the sum of weights of all edges in G.

2 Define a so that E[W] = a ·T . (a will be decided later.)
3 Let p = Pr[W < (1− ε) ·a ·T]. (ε will be chosen later.)

4 Since W ≤ T , we must have, a ·T ≤ p · (1− ε) ·a ·T + (1−p) ·T .
5 It follows that, p ≤ 1−a

1−a+a·ε .

6 Now observe that,
T ≥ E[W] = a ·T ≥ α ·OPTv ≥

α ·OPT ≥ α·T
2 .

7 Therefore, α

2 ≤ a≤ 1.

8 Hence, p ≤ 1− ε· α2
1+ε− α

2
.

9 Let c =
ε· α2

1+ε− α
2

.

Semidefinite Programming

The semidefinite programming approach

High Probability Guarantee

Theorem

There is a randomized approximation algorithm for Max-Cut that achieves the approximation
factor of 0.87856.

Proof.

1 Let T denote the sum of weights of all edges in G.

2 Define a so that E[W] = a ·T . (a will be decided later.)
3 Let p = Pr[W < (1− ε) ·a ·T]. (ε will be chosen later.)

4 Since W ≤ T , we must have, a ·T ≤ p · (1− ε) ·a ·T + (1−p) ·T .
5 It follows that, p ≤ 1−a

1−a+a·ε .

6 Now observe that,
T ≥ E[W] = a ·T ≥ α ·OPTv ≥ α ·OPT ≥

α·T
2 .

7 Therefore, α

2 ≤ a≤ 1.

8 Hence, p ≤ 1− ε· α2
1+ε− α

2
.

9 Let c =
ε· α2

1+ε− α
2

.

Semidefinite Programming

The semidefinite programming approach

High Probability Guarantee

Theorem

There is a randomized approximation algorithm for Max-Cut that achieves the approximation
factor of 0.87856.

Proof.

1 Let T denote the sum of weights of all edges in G.

2 Define a so that E[W] = a ·T . (a will be decided later.)
3 Let p = Pr[W < (1− ε) ·a ·T]. (ε will be chosen later.)

4 Since W ≤ T , we must have, a ·T ≤ p · (1− ε) ·a ·T + (1−p) ·T .
5 It follows that, p ≤ 1−a

1−a+a·ε .

6 Now observe that,
T ≥ E[W] = a ·T ≥ α ·OPTv ≥ α ·OPT ≥ α·T

2 .

7 Therefore, α

2 ≤ a≤ 1.

8 Hence, p ≤ 1− ε· α2
1+ε− α

2
.

9 Let c =
ε· α2

1+ε− α
2

.

Semidefinite Programming

The semidefinite programming approach

High Probability Guarantee

Theorem

There is a randomized approximation algorithm for Max-Cut that achieves the approximation
factor of 0.87856.

Proof.

1 Let T denote the sum of weights of all edges in G.

2 Define a so that E[W] = a ·T . (a will be decided later.)
3 Let p = Pr[W < (1− ε) ·a ·T]. (ε will be chosen later.)

4 Since W ≤ T , we must have, a ·T ≤ p · (1− ε) ·a ·T + (1−p) ·T .
5 It follows that, p ≤ 1−a

1−a+a·ε .

6 Now observe that,
T ≥ E[W] = a ·T ≥ α ·OPTv ≥ α ·OPT ≥ α·T

2 .
7 Therefore,

α

2 ≤ a≤ 1.

8 Hence, p ≤ 1− ε· α2
1+ε− α

2
.

9 Let c =
ε· α2

1+ε− α
2

.

Semidefinite Programming

The semidefinite programming approach

High Probability Guarantee

Theorem

There is a randomized approximation algorithm for Max-Cut that achieves the approximation
factor of 0.87856.

Proof.

1 Let T denote the sum of weights of all edges in G.

2 Define a so that E[W] = a ·T . (a will be decided later.)
3 Let p = Pr[W < (1− ε) ·a ·T]. (ε will be chosen later.)

4 Since W ≤ T , we must have, a ·T ≤ p · (1− ε) ·a ·T + (1−p) ·T .
5 It follows that, p ≤ 1−a

1−a+a·ε .

6 Now observe that,
T ≥ E[W] = a ·T ≥ α ·OPTv ≥ α ·OPT ≥ α·T

2 .
7 Therefore, α

2 ≤ a≤ 1.

8 Hence, p ≤ 1− ε· α2
1+ε− α

2
.

9 Let c =
ε· α2

1+ε− α
2

.

Semidefinite Programming

The semidefinite programming approach

High Probability Guarantee

Theorem

There is a randomized approximation algorithm for Max-Cut that achieves the approximation
factor of 0.87856.

Proof.

1 Let T denote the sum of weights of all edges in G.

2 Define a so that E[W] = a ·T . (a will be decided later.)
3 Let p = Pr[W < (1− ε) ·a ·T]. (ε will be chosen later.)

4 Since W ≤ T , we must have, a ·T ≤ p · (1− ε) ·a ·T + (1−p) ·T .
5 It follows that, p ≤ 1−a

1−a+a·ε .

6 Now observe that,
T ≥ E[W] = a ·T ≥ α ·OPTv ≥ α ·OPT ≥ α·T

2 .
7 Therefore, α

2 ≤ a≤ 1.

8 Hence,

p ≤ 1− ε· α2
1+ε− α

2
.

9 Let c =
ε· α2

1+ε− α
2

.

Semidefinite Programming

The semidefinite programming approach

High Probability Guarantee

Theorem

There is a randomized approximation algorithm for Max-Cut that achieves the approximation
factor of 0.87856.

Proof.

1 Let T denote the sum of weights of all edges in G.

2 Define a so that E[W] = a ·T . (a will be decided later.)
3 Let p = Pr[W < (1− ε) ·a ·T]. (ε will be chosen later.)

4 Since W ≤ T , we must have, a ·T ≤ p · (1− ε) ·a ·T + (1−p) ·T .
5 It follows that, p ≤ 1−a

1−a+a·ε .

6 Now observe that,
T ≥ E[W] = a ·T ≥ α ·OPTv ≥ α ·OPT ≥ α·T

2 .
7 Therefore, α

2 ≤ a≤ 1.

8 Hence, p ≤ 1− ε· α2
1+ε− α

2
.

9 Let c =
ε· α2

1+ε− α
2

.

Semidefinite Programming

The semidefinite programming approach

High Probability Guarantee

Theorem

There is a randomized approximation algorithm for Max-Cut that achieves the approximation
factor of 0.87856.

Proof.

1 Let T denote the sum of weights of all edges in G.

2 Define a so that E[W] = a ·T . (a will be decided later.)
3 Let p = Pr[W < (1− ε) ·a ·T]. (ε will be chosen later.)

4 Since W ≤ T , we must have, a ·T ≤ p · (1− ε) ·a ·T + (1−p) ·T .
5 It follows that, p ≤ 1−a

1−a+a·ε .

6 Now observe that,
T ≥ E[W] = a ·T ≥ α ·OPTv ≥ α ·OPT ≥ α·T

2 .
7 Therefore, α

2 ≤ a≤ 1.

8 Hence, p ≤ 1− ε· α2
1+ε− α

2
.

9 Let c =
ε· α2

1+ε− α
2

.

Semidefinite Programming

The semidefinite programming approach

Completing the analysis

Final steps

1 Run the semidefinite algorithm and perform the randomized rounding 1
c times and output

the heaviest cut.

2 Let W ′ be the weight of this cut.
3 It follows that,

Pr[W ′ ≥ (1− ε) ·a ·T] ≥ 1− (1− c)
1
c

≥ 1− 1
e
.

4 Since a ·T ≥ α ·OPT > 0.87856 ·OPT , we can pick a value of ε > 0, so that
(1− ε) ·a ·T ≥ 0.87856 ·OPT .

Semidefinite Programming

The semidefinite programming approach

Completing the analysis

Final steps

1 Run the semidefinite algorithm and perform the randomized rounding 1
c times and output

the heaviest cut.

2 Let W ′ be the weight of this cut.
3 It follows that,

Pr[W ′ ≥ (1− ε) ·a ·T] ≥ 1− (1− c)
1
c

≥ 1− 1
e
.

4 Since a ·T ≥ α ·OPT > 0.87856 ·OPT , we can pick a value of ε > 0, so that
(1− ε) ·a ·T ≥ 0.87856 ·OPT .

Semidefinite Programming

The semidefinite programming approach

Completing the analysis

Final steps

1 Run the semidefinite algorithm and perform the randomized rounding 1
c times and output

the heaviest cut.

2 Let W ′ be the weight of this cut.
3 It follows that,

Pr[W ′ ≥ (1− ε) ·a ·T] ≥ 1− (1− c)
1
c

≥ 1− 1
e
.

4 Since a ·T ≥ α ·OPT > 0.87856 ·OPT , we can pick a value of ε > 0, so that
(1− ε) ·a ·T ≥ 0.87856 ·OPT .

Semidefinite Programming

The semidefinite programming approach

Completing the analysis

Final steps

1 Run the semidefinite algorithm and perform the randomized rounding 1
c times and output

the heaviest cut.

2 Let W ′ be the weight of this cut.

3 It follows that,

Pr[W ′ ≥ (1− ε) ·a ·T] ≥ 1− (1− c)
1
c

≥ 1− 1
e
.

4 Since a ·T ≥ α ·OPT > 0.87856 ·OPT , we can pick a value of ε > 0, so that
(1− ε) ·a ·T ≥ 0.87856 ·OPT .

Semidefinite Programming

The semidefinite programming approach

Completing the analysis

Final steps

1 Run the semidefinite algorithm and perform the randomized rounding 1
c times and output

the heaviest cut.

2 Let W ′ be the weight of this cut.
3 It follows that,

Pr[W ′ ≥ (1− ε) ·a ·T] ≥ 1− (1− c)
1
c

≥ 1− 1
e
.

4 Since a ·T ≥ α ·OPT > 0.87856 ·OPT , we can pick a value of ε > 0, so that
(1− ε) ·a ·T ≥ 0.87856 ·OPT .

Semidefinite Programming

The semidefinite programming approach

Completing the analysis

Final steps

1 Run the semidefinite algorithm and perform the randomized rounding 1
c times and output

the heaviest cut.

2 Let W ′ be the weight of this cut.
3 It follows that,

Pr[W ′ ≥ (1− ε) ·a ·T]

≥ 1− (1− c)
1
c

≥ 1− 1
e
.

4 Since a ·T ≥ α ·OPT > 0.87856 ·OPT , we can pick a value of ε > 0, so that
(1− ε) ·a ·T ≥ 0.87856 ·OPT .

Semidefinite Programming

The semidefinite programming approach

Completing the analysis

Final steps

1 Run the semidefinite algorithm and perform the randomized rounding 1
c times and output

the heaviest cut.

2 Let W ′ be the weight of this cut.
3 It follows that,

Pr[W ′ ≥ (1− ε) ·a ·T] ≥

1− (1− c)
1
c

≥ 1− 1
e
.

4 Since a ·T ≥ α ·OPT > 0.87856 ·OPT , we can pick a value of ε > 0, so that
(1− ε) ·a ·T ≥ 0.87856 ·OPT .

Semidefinite Programming

The semidefinite programming approach

Completing the analysis

Final steps

1 Run the semidefinite algorithm and perform the randomized rounding 1
c times and output

the heaviest cut.

2 Let W ′ be the weight of this cut.
3 It follows that,

Pr[W ′ ≥ (1− ε) ·a ·T] ≥ 1− (1− c)
1
c

≥ 1− 1
e
.

4 Since a ·T ≥ α ·OPT > 0.87856 ·OPT , we can pick a value of ε > 0, so that
(1− ε) ·a ·T ≥ 0.87856 ·OPT .

Semidefinite Programming

The semidefinite programming approach

Completing the analysis

Final steps

1 Run the semidefinite algorithm and perform the randomized rounding 1
c times and output

the heaviest cut.

2 Let W ′ be the weight of this cut.
3 It follows that,

Pr[W ′ ≥ (1− ε) ·a ·T] ≥ 1− (1− c)
1
c

≥

1− 1
e
.

4 Since a ·T ≥ α ·OPT > 0.87856 ·OPT , we can pick a value of ε > 0, so that
(1− ε) ·a ·T ≥ 0.87856 ·OPT .

Semidefinite Programming

The semidefinite programming approach

Completing the analysis

Final steps

1 Run the semidefinite algorithm and perform the randomized rounding 1
c times and output

the heaviest cut.

2 Let W ′ be the weight of this cut.
3 It follows that,

Pr[W ′ ≥ (1− ε) ·a ·T] ≥ 1− (1− c)
1
c

≥ 1− 1
e
.

4 Since a ·T ≥ α ·OPT > 0.87856 ·OPT , we can pick a value of ε > 0, so that
(1− ε) ·a ·T ≥ 0.87856 ·OPT .

Semidefinite Programming

The semidefinite programming approach

Completing the analysis

Final steps

1 Run the semidefinite algorithm and perform the randomized rounding 1
c times and output

the heaviest cut.

2 Let W ′ be the weight of this cut.
3 It follows that,

Pr[W ′ ≥ (1− ε) ·a ·T] ≥ 1− (1− c)
1
c

≥ 1− 1
e
.

4 Since a ·T ≥

α ·OPT > 0.87856 ·OPT , we can pick a value of ε > 0, so that
(1− ε) ·a ·T ≥ 0.87856 ·OPT .

Semidefinite Programming

The semidefinite programming approach

Completing the analysis

Final steps

1 Run the semidefinite algorithm and perform the randomized rounding 1
c times and output

the heaviest cut.

2 Let W ′ be the weight of this cut.
3 It follows that,

Pr[W ′ ≥ (1− ε) ·a ·T] ≥ 1− (1− c)
1
c

≥ 1− 1
e
.

4 Since a ·T ≥ α ·OPT >

0.87856 ·OPT , we can pick a value of ε > 0, so that
(1− ε) ·a ·T ≥ 0.87856 ·OPT .

Semidefinite Programming

The semidefinite programming approach

Completing the analysis

Final steps

1 Run the semidefinite algorithm and perform the randomized rounding 1
c times and output

the heaviest cut.

2 Let W ′ be the weight of this cut.
3 It follows that,

Pr[W ′ ≥ (1− ε) ·a ·T] ≥ 1− (1− c)
1
c

≥ 1− 1
e
.

4 Since a ·T ≥ α ·OPT > 0.87856 ·OPT ,

we can pick a value of ε > 0, so that
(1− ε) ·a ·T ≥ 0.87856 ·OPT .

Semidefinite Programming

The semidefinite programming approach

Completing the analysis

Final steps

1 Run the semidefinite algorithm and perform the randomized rounding 1
c times and output

the heaviest cut.

2 Let W ′ be the weight of this cut.
3 It follows that,

Pr[W ′ ≥ (1− ε) ·a ·T] ≥ 1− (1− c)
1
c

≥ 1− 1
e
.

4 Since a ·T ≥ α ·OPT > 0.87856 ·OPT , we can pick a value of ε > 0, so that
(1− ε) ·a ·T ≥

0.87856 ·OPT .

Semidefinite Programming

The semidefinite programming approach

Completing the analysis

Final steps

1 Run the semidefinite algorithm and perform the randomized rounding 1
c times and output

the heaviest cut.

2 Let W ′ be the weight of this cut.
3 It follows that,

Pr[W ′ ≥ (1− ε) ·a ·T] ≥ 1− (1− c)
1
c

≥ 1− 1
e
.

4 Since a ·T ≥ α ·OPT > 0.87856 ·OPT , we can pick a value of ε > 0, so that
(1− ε) ·a ·T ≥ 0.87856 ·OPT .

Semidefinite Programming

The semidefinite programming approach

Summary

Step by step procedure

1 Formulate the problem as a Quadratically Constrained Quadratic Integer Program (QCQIP).

2 Relax the QCQIP to a vector program (VP).
3 Replace VP with an equivalent semidefinite program (SDP).

4 Solve the SDP optimally (Ellipsoid Method).
5 Perform randomized rounding to obtain a solution.
6 If needed, improve the guarantee of the approximation, by running the algorithm an

appropriate number of times.

Semidefinite Programming

The semidefinite programming approach

Summary

Step by step procedure

1 Formulate the problem as a Quadratically Constrained Quadratic Integer Program (QCQIP).

2 Relax the QCQIP to a vector program (VP).
3 Replace VP with an equivalent semidefinite program (SDP).

4 Solve the SDP optimally (Ellipsoid Method).
5 Perform randomized rounding to obtain a solution.
6 If needed, improve the guarantee of the approximation, by running the algorithm an

appropriate number of times.

Semidefinite Programming

The semidefinite programming approach

Summary

Step by step procedure

1 Formulate the problem as a Quadratically Constrained Quadratic Integer Program (QCQIP).

2 Relax the QCQIP to a vector program (VP).
3 Replace VP with an equivalent semidefinite program (SDP).

4 Solve the SDP optimally (Ellipsoid Method).
5 Perform randomized rounding to obtain a solution.
6 If needed, improve the guarantee of the approximation, by running the algorithm an

appropriate number of times.

Semidefinite Programming

The semidefinite programming approach

Summary

Step by step procedure

1 Formulate the problem as a Quadratically Constrained Quadratic Integer Program (QCQIP).

2 Relax the QCQIP to a vector program (VP).

3 Replace VP with an equivalent semidefinite program (SDP).

4 Solve the SDP optimally (Ellipsoid Method).
5 Perform randomized rounding to obtain a solution.
6 If needed, improve the guarantee of the approximation, by running the algorithm an

appropriate number of times.

Semidefinite Programming

The semidefinite programming approach

Summary

Step by step procedure

1 Formulate the problem as a Quadratically Constrained Quadratic Integer Program (QCQIP).

2 Relax the QCQIP to a vector program (VP).
3 Replace VP with an equivalent semidefinite program (SDP).

4 Solve the SDP optimally (Ellipsoid Method).
5 Perform randomized rounding to obtain a solution.
6 If needed, improve the guarantee of the approximation, by running the algorithm an

appropriate number of times.

Semidefinite Programming

The semidefinite programming approach

Summary

Step by step procedure

1 Formulate the problem as a Quadratically Constrained Quadratic Integer Program (QCQIP).

2 Relax the QCQIP to a vector program (VP).
3 Replace VP with an equivalent semidefinite program (SDP).

4 Solve the SDP optimally

(Ellipsoid Method).
5 Perform randomized rounding to obtain a solution.
6 If needed, improve the guarantee of the approximation, by running the algorithm an

appropriate number of times.

Semidefinite Programming

The semidefinite programming approach

Summary

Step by step procedure

1 Formulate the problem as a Quadratically Constrained Quadratic Integer Program (QCQIP).

2 Relax the QCQIP to a vector program (VP).
3 Replace VP with an equivalent semidefinite program (SDP).

4 Solve the SDP optimally (Ellipsoid Method).

5 Perform randomized rounding to obtain a solution.
6 If needed, improve the guarantee of the approximation, by running the algorithm an

appropriate number of times.

Semidefinite Programming

The semidefinite programming approach

Summary

Step by step procedure

1 Formulate the problem as a Quadratically Constrained Quadratic Integer Program (QCQIP).

2 Relax the QCQIP to a vector program (VP).
3 Replace VP with an equivalent semidefinite program (SDP).

4 Solve the SDP optimally (Ellipsoid Method).
5 Perform randomized rounding to obtain a solution.

6 If needed, improve the guarantee of the approximation, by running the algorithm an
appropriate number of times.

Semidefinite Programming

The semidefinite programming approach

Summary

Step by step procedure

1 Formulate the problem as a Quadratically Constrained Quadratic Integer Program (QCQIP).

2 Relax the QCQIP to a vector program (VP).
3 Replace VP with an equivalent semidefinite program (SDP).

4 Solve the SDP optimally (Ellipsoid Method).
5 Perform randomized rounding to obtain a solution.
6 If needed, improve the guarantee of the approximation, by running the algorithm an

appropriate number of times.

	Outline
	Main Talk
	The Max-Cut problem
	The semidefinite programming approach

