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Semidefinite Programming

The Max-Cut problem

The Max-Cut Problem

Definition

Given an undirected, weighted graph G = 〈V ,E ,w〉, with w assigning non-negative integral
weights to the edges of E , a cut S, S ⊆ V partitions V into two sets S and S̄.

An edge (u,v) ∈ E belongs to the cut (S, S̄) if and only if exactly one of u and v belongs to S.

The weight of a cut w(S, S̄) is defined as:

w(S, S̄) = ∑
u∈S,v∈S̄

w(u,v).

The Max-Cut problem is concerned with finding the cut of maximum weight in G.
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The Max-Cut problem

The IP-LP Approach

IP formulation

1 Let yij be a variable associated with edge eij .
yij = 1 means that eij is in the cut.

2 Let xi be a variable associated with each vertex vi .
3 Consider the following “natural” integer programming formulation for Max-Cut.

max ∑(i,j)∈E wij · yij

subject to yij ≤ 1− xi +xj
2 , for every edge eij

yij ≤ 1 +
xi +xj

2 , for every edge eij

xi ∈ {−1,1}, for every vertex vi
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Semidefinite Programming

The Max-Cut problem

Analyzing the LP relaxation

LP relaxation

1 In the LP relaxation, we set −1≤ xi ≤ 1, for each xi .

2 However, in this case, the optimum is |E |, since we can simply set xi = 0 for each vertex,
which permits every edge to be selected!

3 Thus, the relaxation is not useful, from the perspective of bounding the error of an
approximate solution.
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The Max-Cut problem

The Quadratically constrained programming approach

Modeling

1 Let yi be an indicator variable for vertex vi ; yi ∈ {+1,−1}.
2 The partition (S, S̄) is defined as follows: S = {vi : yi = 1} and S̄ = {vi : yi =−1}.
3 The following quadratically constrained program captures Max-Cut:

max 1
2 ·∑1≤i<j≤n wij · (1− yi · yj )

subject to y2
i = 1, vi ∈ V

yi ∈ Z, vi ∈ V
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The Max-Cut problem

The vector program relaxation

Definition

Let v1, v2, . . . vn denote n vector variables in ℜn.

A vector program is the problem of minimizing or maximizing a linear function of the inner
products vi ·vj, subject to linear constraints on these inner products.

Vector program relaxation

max 1
2 ·∑1≤i<j≤n wij · (1−vi ·vj)

subject to vi ·vi = 1, vi ∈ V

vi ∈ℜn, vi ∈ V
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The Max-Cut problem

Notes on the vector program relaxation

Note

1 All the vectors v1,v2, . . .vn are constrained to lie on the n-dimensional sphere Sn−1.

2 Any feasible solution to the quadratically constrained quadratic program yields a solution to
the vector program relaxation, having the same objective function value, by setting
vi = (yi ,0, . . . ,0).

3 Therefore, the vector program is a relaxation of the quadratically constrained quadratic
program.

4 Vector programs are approximable to any desired level of accuracy in polynomial time and
thus the vector program relaxation provides an upper bound on OPT for Max-Cut.
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The semidefinite program for Max-Cut

Semidefinite program relaxation

max 1
2 ·∑1≤i<j≤n wij · (1− yi · yj )

subject to y2
i = 1, vi ∈ V

Y� 0,

Y ∈Mn
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The Max-Cut Algorithm

Randomized Rounding Algorithm

1 Solve the semidefinite program corresponding to the vector program relaxation of the
Max-Cut QCQIP optimally.

2 Convert the solution into a solution for the corresponding vector program. Let a1,a2, . . .an
denote the optimal solution.

3 Pick r to be a uniformly distributed vector on the unit sphere Sn−1.

4 Let S = {vi : ai · r≥ 0}.
5 S̄ = V −S.
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Semidefinite Programming

The semidefinite programming approach

Analysis

Bounding the error

1 Let a1,a2, . . .an denote the optimal solution and let OPTv denote the optimal value.

2 Let θij denote the angle between vectors ai and aj.

3 The contribution of this pair of vectors to OPTv is:
wij
2 · (1− cosθij ).

4 Pr[ai is separated from aj] =
θij
π

.
5 Let W be the random variable denoting the weight of the edges in the cut.
6 Let α = 2

π
min0<θ≤π

θ

1−cosθ
. It is not hard to see that α > 0.87856.
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The semidefinite programming approach

Analysis (contd.)

Lemma

E[W ]≥ α ·OPTv and hence E[W ]≥ α ·OPT.

Proof.

1 Observe that, for any θ , 0 < θ ≤ π , we must have, θ

π
≥ α · ( 1−cosθ

2 ).

2 It follows that,

E[W ] = ∑
1≤i<j≤n

wij ·Pr[vi and vj are separated ]

= ∑
1≤i<j≤n

wij ·Pr[ai and aj are separated by r]

= ∑
1≤i<j≤n

wij ·
θij

π

≥ α · ∑
1≤i<j≤n

1
2
·wij · (1− cosθij )

= α ·OPTv ≥ α ·OPT .
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Semidefinite Programming

The semidefinite programming approach

High Probability Guarantee

Theorem

There is a randomized approximation algorithm for Max-Cut that achieves the approximation
factor of 0.87856.

Proof.

1 Let T denote the sum of weights of all edges in G.

2 Define a so that E[W ] = a ·T . (a will be decided later.)
3 Let p = Pr[W < (1− ε) ·a ·T ]. (ε will be chosen later.)

4 Since W ≤ T , we must have, a ·T ≤ p · (1− ε) ·a ·T + (1−p) ·T .
5 It follows that, p ≤ 1−a

1−a+a·ε .

6 Now observe that,
T ≥ E[W ] = a ·T ≥ α ·OPTv ≥ α ·OPT ≥ α·T

2 .
7 Therefore, α

2 ≤ a≤ 1.

8 Hence, p ≤ 1− ε· α2
1+ε− α

2
.

9 Let c =
ε· α2

1+ε− α
2

.
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Semidefinite Programming

The semidefinite programming approach

Completing the analysis

Final steps

1 Run the semidefinite algorithm and perform the randomized rounding 1
c times and output

the heaviest cut.

2 Let W ′ be the weight of this cut.
3 It follows that,

Pr[W ′ ≥ (1− ε) ·a ·T ] ≥ 1− (1− c)
1
c

≥ 1− 1
e
.

4 Since a ·T ≥ α ·OPT > 0.87856 ·OPT , we can pick a value of ε > 0, so that
(1− ε) ·a ·T ≥ 0.87856 ·OPT .
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1
c

≥ 1− 1
e
.

4 Since a ·T ≥ α ·OPT > 0.87856 ·OPT , we can pick a value of ε > 0, so that
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The semidefinite programming approach

Summary

Step by step procedure

1 Formulate the problem as a Quadratically Constrained Quadratic Integer Program (QCQIP).

2 Relax the QCQIP to a vector program (VP).
3 Replace VP with an equivalent semidefinite program (SDP).

4 Solve the SDP optimally (Ellipsoid Method).
5 Perform randomized rounding to obtain a solution.
6 If needed, improve the guarantee of the approximation, by running the algorithm an

appropriate number of times.
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