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weights to the edges of E, a cut S, S C V partitions V into two sets S and S.
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The Max-Cut problem is concerned with finding the cut of maximum weight in G.
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IP formulation

@ Let yj be a variable associated with edge e;;.
yj = 1 means that g; is in the cut.

@ Let x; be a variable associated with each vertex v;.
© Consider the following “natural” integer programming formulation for Max-Cut.

max Z(f,/)eE Wi - Y
Xi+Xj

subject to yi <1——2, for every edge ej;
yi <1+ @, for every edge e;;

xi € {—1,1}, for every vertex v;




LThe Max-Cut problem

Analyzing the LP relaxation




LThe Max-Cut problem

Analyzing the LP relaxation

LP relaxation




LThe Max-Cut problem

Analyzing the LP relaxation

LP relaxation

@ In the LP relaxation, we set —1 < x; < 1, for each x;.




LThe Max-Cut problem

Analyzing the LP relaxation

LP relaxation

@ In the LP relaxation, we set —1 < x; < 1, for each x;.

@ However, in this case, the optimum is |E|, since we can simply set x; = 0 for each vertex,
which permits every edge to be selected!




LThe Max-Cut problem

Analyzing the LP relaxation

LP relaxation

@ In the LP relaxation, we set —1 < x; < 1, for each x;.

@ However, in this case, the optimum is |E|, since we can simply set x; = 0 for each vertex,
which permits every edge to be selected!

© Thus, the relaxation is not useful, from the perspective of bounding the error of an
approximate solution.
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Modeling

@ Let y; be an indicator variable for vertex v;; y; € {-+1,—1}.
@ The partition (S, S) is defined as follows: S={v; : y;=1}and S={v; : y; = —1}.
© The following quadratically constrained program captures Max-Cut:

max %'Z1gi</gn wi-(1=yi-y)
subject to yi=1, vieV

Yi€Z, viEV
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Definition

Let vy, Vo, ... v, denote n vector variables in R”.

A vector program is the problem of minimizing or maximizing a linear function of the inner

products vj - vj, subject to linear constraints on these inner products.
i

Vector program relaxation

q
max 3 - Li<icj<n Wy (1= Vi-Vj)

subject to Vi-vi=1, vieV

Vi € 9{", vieV
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Notes on the vector program relaxation

@ All the vectors vq,Va, ...V, are constrained to lie on the n-dimensional sphere Sp,_1.

@ Any feasible solution to the quadratically constrained quadratic program yields a solution to
the vector program relaxation, having the same objective function value, by setting

V) = (y,‘,O,...,O).
© Therefore, the vector program is a relaxation of the quadratically constrained quadratic
program.

Q Vector programs are approximable to any desired level of accuracy in polynomial time and
thus the vector program relaxation provides an upper bound on OPT for Max-Cut.
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Semidefinite program relaxation

max 3 - La<icj<nWi- (1= )
subject to y2=1, vieV
Y >0,
YeM,
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Randomized Rounding Algorithm

@ Solve the semidefinite program corresponding to the vector program relaxation of the
Max-Cut QCQIP optimally.

@ Convert the solution into a solution for the corresponding vector program. Let aq,ap,...an
denote the optimal solution.

© Pick r to be a uniformly distributed vector on the unit sphere S,_1.
Q LetS={v; : aj-r>0}.
Q@ S=Vv-s
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Bounding the error

@ Letay,ay,...a, denote the optimal solution and let OPT, denote the optimal value.
@ Let 6; denote the angle between vectors a; and a;.

@ The contribution of this pair of vectors to OPT, is: Y . (1—cos 0;).
2 ij

Q Prla; is separated from aj] = %

@ Let W be the random variable denoting the weight of the edges in the cut.

Q Leta= %min0<9§,r 1759059. It is not hard to see that & > 0.87856.
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There is a randomized approximation algorithm for Max-Cut that achieves the approximation
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Summary

Step by step procedure

©000O0O

Formulate the problem as a Quadratically Constrained Quadratic Integer Program (QCQIP).
Relax the QCQIP to a vector program (VP).

Replace VP with an equivalent semidefinite program (SDP).

Solve the SDP optimally (Ellipsoid Method).

Perform randomized rounding to obtain a solution.

If needed, improve the guarantee of the approximation, by running the algorithm an
appropriate number of times.
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