Approximating Max-Cut through Semidefinite Programming

K. Subramani’

Lane Department of Computer Science and Electrical Engineering
West Virginia University

April 15, 2014

LOutIine

Outline

El The Max-Cut problem

LOutIine

Outline

El The Max-Cut problem B The semidefinite programming approach

LThe Max-Cut problem

The Max-Cut Problem

LThe Max-Cut problem

The Max-Cut Problem

LThe Max-Cut problem

The Max-Cut Problem

Given an undirected, weighted graph G = (V, E,w), with w assigning non-negative integral
weights to the edges of E,

LThe Max-Cut problem

The Max-Cut Problem

Given an undirected, weighted graph G = (V, E,w), with w assigning non-negative integral
weights to the edges of E, a cut S, S C V partitions V into two sets S and S.

LThe Max-Cut problem

The Max-Cut Problem

Definition
Given an undirected, weighted graph G = (V, E,w), with w assigning non-negative integral
weights to the edges of E, a cut S, S C V partitions V into two sets S and S.

An edge (u, v) € E belongs to the cut (S, S) if and only if exactly one of u and v belongs to S.

LThe Max-Cut problem

The Max-Cut Problem

Definition

Given an undirected, weighted graph G = (V, E,w), with w assigning non-negative integral
weights to the edges of E, a cut S, S C V partitions V into two sets S and S.

An edge (u, v) € E belongs to the cut (S, S) if and only if exactly one of u and v belongs to S.

The weight of a cut w(S, S) is defined as:

LThe Max-Cut problem

The Max-Cut Problem

Definition

Given an undirected, weighted graph G = (V, E,w), with w assigning non-negative integral
weights to the edges of E, a cut S, S C V partitions V into two sets S and S.

An edge (u, v) € E belongs to the cut (S, S) if and only if exactly one of u and v belongs to S.

The weight of a cut w(S, S) is defined as:

w(S,S) =

LThe Max-Cut problem

The Max-Cut Problem

Definition

Given an undirected, weighted graph G = (V, E,w), with w assigning non-negative integral
weights to the edges of E, a cut S, S C V partitions V into two sets S and S.

An edge (u, v) € E belongs to the cut (S, S) if and only if exactly one of u and v belongs to S.

The weight of a cut w(S, S) is defined as:

w(S,S)= Y w(uv).

ues,ves

LThe Max-Cut problem

The Max-Cut Problem

Definition

Given an undirected, weighted graph G = (V, E,w), with w assigning non-negative integral
weights to the edges of E, a cut S, S C V partitions V into two sets S and S.

An edge (u, v) € E belongs to the cut (S, S) if and only if exactly one of u and v belongs to S.

The weight of a cut w(S, S) is defined as:

w(S,S)= Y w(uv).

ues,ves

The Max-Cut problem is concerned with finding the cut of maximum weight in G.

LThe Max-Cut problem

The IP-LP Approach

LThe Max-Cut problem

The IP-LP Approach

IP formulation

LThe Max-Cut problem

The IP-LP Approach

IP formulation

@ Let yj be a variable associated with edge e;;.

LThe Max-Cut problem

The IP-LP Approach

IP formulation

@ Let yj be a variable associated with edge e;;.
yj = 1 means that g; is in the cut.

LThe Max-Cut problem

The IP-LP Approach

IP formulation

@ Let yj be a variable associated with edge e;;.
yj = 1 means that g; is in the cut.

@ Let x; be a variable associated with each vertex v;.

LThe Max-Cut problem

The IP-LP Approach

IP formulation

@ Let yj be a variable associated with edge e;;.
yj = 1 means that g; is in the cut.

@ Let x; be a variable associated with each vertex v;.
© Consider the following “natural” integer programming formulation for Max-Cut.

LThe Max-Cut problem

The IP-LP Approach

IP formulation

@ Let yj be a variable associated with edge e;;.
yj = 1 means that g; is in the cut.

@ Let x; be a variable associated with each vertex v;.
© Consider the following “natural” integer programming formulation for Max-Cut.

max Z(f,/)eE Wi - Y

LThe Max-Cut problem

The IP-LP Approach

IP formulation

@ Let yj be a variable associated with edge e;;.
yj = 1 means that g; is in the cut.

@ Let x; be a variable associated with each vertex v;.
© Consider the following “natural” integer programming formulation for Max-Cut.

max Z(f,/)eE Wi - Y

subject to yi<1-— @7 for every edge ej;

LThe Max-Cut problem

The IP-LP Approach

IP formulation

@ Let yj be a variable associated with edge e;;.
yj = 1 means that g; is in the cut.

@ Let x; be a variable associated with each vertex v;.
© Consider the following “natural” integer programming formulation for Max-Cut.

max Z(f,/)eE Wi - Y
subject to yi<1-— @7 for every edge ej;

yi <1425, for every edge e

LThe Max-Cut problem

The IP-LP Approach

IP formulation

@ Let yj be a variable associated with edge e;;.
yj = 1 means that g; is in the cut.

@ Let x; be a variable associated with each vertex v;.
© Consider the following “natural” integer programming formulation for Max-Cut.

max Z(f,/)eE Wi - Y
Xi+Xj

subject to yi <1——2, for every edge ej;
yi <1+ @, for every edge e;;

xi € {—1,1}, for every vertex v;

LThe Max-Cut problem

Analyzing the LP relaxation

LThe Max-Cut problem

Analyzing the LP relaxation

LP relaxation

LThe Max-Cut problem

Analyzing the LP relaxation

LP relaxation

@ In the LP relaxation, we set —1 < x; < 1, for each x;.

LThe Max-Cut problem

Analyzing the LP relaxation

LP relaxation

@ In the LP relaxation, we set —1 < x; < 1, for each x;.

@ However, in this case, the optimum is |E|, since we can simply set x; = 0 for each vertex,
which permits every edge to be selected!

LThe Max-Cut problem

Analyzing the LP relaxation

LP relaxation

@ In the LP relaxation, we set —1 < x; < 1, for each x;.

@ However, in this case, the optimum is |E|, since we can simply set x; = 0 for each vertex,
which permits every edge to be selected!

© Thus, the relaxation is not useful, from the perspective of bounding the error of an
approximate solution.

LThe Max-Cut problem

The Quadratically constrained programming approach

LThe Max-Cut problem

The Quadratically constrained programming approach

Modeling

LThe Max-Cut problem

The Quadratically constrained programming approach

Modeling

@ Let y; be an indicator variable for vertex v;; y; € {-+1,—1}.

LThe Max-Cut problem

The Quadratically constrained programming approach

Modeling

@ Let y; be an indicator variable for vertex v;; y; € {-+1,—1}.

LThe Max-Cut problem

The Quadratically constrained programming approach

Modeling

@ Let y; be an indicator variable for vertex v;; y; € {-+1,—1}.
@ The partition (S, S) is defined as follows:

LThe Max-Cut problem

The Quadratically constrained programming approach

Modeling

@ Let y; be an indicator variable for vertex v;; y; € {-+1,—1}.
@ The partition (S, S) is defined as follows: S={v; : y;=1}and S={v; : y; = —1}.

LThe Max-Cut problem

The Quadratically constrained programming approach

Modeling

@ Let y; be an indicator variable for vertex v;; y; € {-+1,—1}.
@ The partition (S, S) is defined as follows: S={v; : y;=1}and S={v; : y; = —1}.
© The following quadratically constrained program captures Max-Cut:

LThe Max-Cut problem

The Quadratically constrained programming approach

Modeling

@ Let y; be an indicator variable for vertex v;; y; € {-+1,—1}.
@ The partition (S, S) is defined as follows: S={v; : y;=1}and S={v; : y; = —1}.
© The following quadratically constrained program captures Max-Cut:

LThe Max-Cut problem

The Quadratically constrained programming approach

Modeling

@ Let y; be an indicator variable for vertex v;; y; € {-+1,—1}.
@ The partition (S, S) is defined as follows: S={v; : y;=1}and S={v; : y; = —1}.
© The following quadratically constrained program captures Max-Cut:

max 1 Yi<icj<nWi-(1=Yi-yj)

LThe Max-Cut problem

The Quadratically constrained programming approach

Modeling

@ Let y; be an indicator variable for vertex v;; y; € {-+1,—1}.
@ The partition (S, S) is defined as follows: S={v; : y;=1}and S={v; : y; = —1}.
© The following quadratically constrained program captures Max-Cut:

max 1 Yi<icj<nWi-(1=Yi-yj)

subject to yi=1, vieV

LThe Max-Cut problem

The Quadratically constrained programming approach

Modeling

@ Let y; be an indicator variable for vertex v;; y; € {-+1,—1}.
@ The partition (S, S) is defined as follows: S={v; : y;=1}and S={v; : y; = —1}.
© The following quadratically constrained program captures Max-Cut:

max %'Z1gi</gn wi-(1=yi-y)
subject to yi=1, vieV

Yi€Z, viEV

LThe Max-Cut problem

The vector program relaxation

LThe Max-Cut problem

The vector program relaxation

Definition

LThe Max-Cut problem

The vector program relaxation

Definition

Let vy, Vo, ... v, denote n vector variables in R”.

LThe Max-Cut problem

The vector program relaxation

Definition

Let vy, Vo, ... v, denote n vector variables in R”.

A vector program is the problem of minimizing or maximizing a linear function of the inner
products vj - vj, subject to linear constraints on these inner products.

LThe Max-Cut problem

The vector program relaxation

Definition

Let vy, Vo, ... v, denote n vector variables in R”.

A vector program is the problem of minimizing or maximizing a linear function of the inner

products vj - vj, subject to linear constraints on these inner products.
i

Vector program relaxation

LThe Max-Cut problem

The vector program relaxation

Definition

Let vy, Vo, ... v, denote n vector variables in R”.

A vector program is the problem of minimizing or maximizing a linear function of the inner

products vj - vj, subject to linear constraints on these inner products.
i

Vector program relaxation

;
max 3 - Li<icj<n Wy (1= Vi-Vj)

LThe Max-Cut problem

The vector program relaxation

Definition

Let vy, Vo, ... v, denote n vector variables in R”.

A vector program is the problem of minimizing or maximizing a linear function of the inner

products vj - vj, subject to linear constraints on these inner products.
i

Vector program relaxation

q
max 3 - Li<icj<n Wy (1= Vi-Vj)
subject to Vi-vi=1, vieVv

LThe Max-Cut problem

The vector program relaxation

Definition

Let vy, Vo, ... v, denote n vector variables in R”.

A vector program is the problem of minimizing or maximizing a linear function of the inner

products vj - vj, subject to linear constraints on these inner products.
i

Vector program relaxation

q
max 3 - Li<icj<n Wy (1= Vi-Vj)

subject to Vi-vi=1, vieV

Vi € 9{", vieV

LThe Max-Cut problem

Notes on the vector program relaxation

LThe Max-Cut problem

Notes on the vector program relaxation

LThe Max-Cut problem

Notes on the vector program relaxation

@ All the vectors vq,Va, ...V, are constrained to lie on the n-dimensional sphere Sp,_1.

LThe Max-Cut problem

Notes on the vector program relaxation

@ All the vectors vq,Va, ...V, are constrained to lie on the n-dimensional sphere Sp,_1.

@ Any feasible solution to the quadratically constrained quadratic program yields a solution to
the vector program relaxation, having the same objective function value, by setting
Vi = (yl"ovn'ao)'

LThe Max-Cut problem

Notes on the vector program relaxation

@ All the vectors vq,Va, ...V, are constrained to lie on the n-dimensional sphere Sp,_1.

@ Any feasible solution to the quadratically constrained quadratic program yields a solution to
the vector program relaxation, having the same objective function value, by setting
V) = (y,‘,O,...,O).

© Therefore, the vector program is a relaxation of the quadratically constrained quadratic
program.

LThe Max-Cut problem

Notes on the vector program relaxation

@ All the vectors vq,Va, ...V, are constrained to lie on the n-dimensional sphere Sp,_1.

@ Any feasible solution to the quadratically constrained quadratic program yields a solution to
the vector program relaxation, having the same objective function value, by setting

V) = (y,‘,O,...,O).
© Therefore, the vector program is a relaxation of the quadratically constrained quadratic
program.

Q Vector programs are approximable to any desired level of accuracy in polynomial time and
thus the vector program relaxation provides an upper bound on OPT for Max-Cut.

LThe semidefinite programming approach

The semidefinite program for Max-Cut

Semidefinite program relaxation

LThe semidefinite programming approach

The semidefinite program for Max-Cut

Semidefinite program relaxation

max 3 - Yy<icjcn Wi+ (1= Yi-¥j)

LThe semidefinite programming approach

The semidefinite program for Max-Cut

Semidefinite program relaxation

max 3 - Yy<icjcn Wi+ (1= Yi-¥j)

subject to y2=1, vieV

LThe semidefinite programming approach

The semidefinite program for Max-Cut

Semidefinite program relaxation

max 3 - La<icj<nWi- (1=)
subject to y2 =1, vieVv
Y i 01

LThe semidefinite programming approach

The semidefinite program for Max-Cut

Semidefinite program relaxation

max 3 - La<icj<nWi- (1=)
subject to y2=1, vieV
Y >0,
YeM,

LThe semidefinite programming approach

The Semidefinite programming algorithm

LThe semidefinite programming approach

The Max-Cut Algorithm

LThe semidefinite programming approach

The Max-Cut Algorithm

Randomized Rounding Algorithm

LThe semidefinite programming approach

The Max-Cut Algorithm

Randomized Rounding Algorithm

@ Solve the semidefinite program corresponding to the vector program relaxation of the
Max-Cut QCQIP optimally.

LThe semidefinite programming approach

The Max-Cut Algorithm

Randomized Rounding Algorithm

@ Solve the semidefinite program corresponding to the vector program relaxation of the
Max-Cut QCQIP optimally.

@ Convert the solution into a solution for the corresponding vector program.

LThe semidefinite programming approach

The Max-Cut Algorithm

Randomized Rounding Algorithm

@ Solve the semidefinite program corresponding to the vector program relaxation of the
Max-Cut QCQIP optimally.

@ Convert the solution into a solution for the corresponding vector program. Let aq,ap,...an
denote the optimal solution.

LThe semidefinite programming approach

The Max-Cut Algorithm

Randomized Rounding Algorithm

@ Solve the semidefinite program corresponding to the vector program relaxation of the
Max-Cut QCQIP optimally.

@ Convert the solution into a solution for the corresponding vector program. Let aq,ap,...an
denote the optimal solution.

© Pick r to be a uniformly distributed vector on the unit sphere S,_1.

LThe semidefinite programming approach

The Max-Cut Algorithm

Randomized Rounding Algorithm

@ Solve the semidefinite program corresponding to the vector program relaxation of the
Max-Cut QCQIP optimally.

@ Convert the solution into a solution for the corresponding vector program. Let aq,ap,...an
denote the optimal solution.

© Pick r to be a uniformly distributed vector on the unit sphere S,_1.
Q LetS={v; : aj-r>0}.

LThe semidefinite programming approach

The Max-Cut Algorithm

Randomized Rounding Algorithm

@ Solve the semidefinite program corresponding to the vector program relaxation of the
Max-Cut QCQIP optimally.

@ Convert the solution into a solution for the corresponding vector program. Let aq,ap,...an
denote the optimal solution.

© Pick r to be a uniformly distributed vector on the unit sphere S,_1.
Q LetS={v; : aj-r>0}.
Q@ S=Vv-s

LThe semidefinite programming approach

Analysis

LThe semidefinite programming approach

nalysis

Bounding the error

LThe semidefinite programming approach

Analysis

Bounding the error

@ Letay,ay,...a, denote the optimal solution and let OPT, denote the optimal value.

LThe semidefinite programming approach

Analysis

Bounding the error

@ Letay,ay,...a, denote the optimal solution and let OPT, denote the optimal value.
@ Let 6; denote the angle between vectors a; and a;.

LThe semidefinite programming approach

Analysis

Bounding the error

@ Letay,ay,...a, denote the optimal solution and let OPT, denote the optimal value.
@ Let 6; denote the angle between vectors a; and a;.

@ The contribution of this pair of vectors to OPT, is:

LThe semidefinite programming approach

Analysis

Bounding the error

@ Letay,ay,...a, denote the optimal solution and let OPT, denote the optimal value.
@ Let 6; denote the angle between vectors a; and a;.

@ The contribution of this pair of vectors to OPT, is: Y . (1—cos 0;).
2 ij

LThe semidefinite programming approach

Analysis

Bounding the error

@ Letay,ay,...a, denote the optimal solution and let OPT, denote the optimal value.
@ Let 6; denote the angle between vectors a; and a;.

@ The contribution of this pair of vectors to OPT, is: Y . (1—cos 0;).
2 ij

Q Prla; is separated from aj] =

LThe semidefinite programming approach

Analysis

Bounding the error

@ Letay,ay,...a, denote the optimal solution and let OPT, denote the optimal value.
@ Let 6; denote the angle between vectors a; and a;.

@ The contribution of this pair of vectors to OPT, is: Y . (1—cos 0;).
2 ij

Q Prla; is separated from aj] = %

LThe semidefinite programming approach

Analysis

Bounding the error

@ Letay,ay,...a, denote the optimal solution and let OPT, denote the optimal value.
@ Let 6; denote the angle between vectors a; and a;.

@ The contribution of this pair of vectors to OPT, is: Y . (1—cos 0;).
2 ij

Q Prla; is separated from aj] = %

@ Let W be the random variable denoting the weight of the edges in the cut.

LThe semidefinite programming approach

Analysis

Bounding the error

@ Letay,ay,...a, denote the optimal solution and let OPT, denote the optimal value.
@ Let 6; denote the angle between vectors a; and a;.

@ The contribution of this pair of vectors to OPT, is: Y . (1—cos 0;).
2 ij

Q Prla; is separated from aj] = %

@ Let W be the random variable denoting the weight of the edges in the cut.

— B 0
O Leta= 2 mMing<g<r 7=c559

LThe semidefinite programming approach

Analysis

Bounding the error

@ Letay,ay,...a, denote the optimal solution and let OPT, denote the optimal value.
@ Let 6; denote the angle between vectors a; and a;.

@ The contribution of this pair of vectors to OPT, is: Y . (1—cos 0;).
2 ij

Q Prla; is separated from aj] = %

@ Let W be the random variable denoting the weight of the edges in the cut.

Q Leta= %min0<9§,r 1759059. It is not hard to see that & > 0.87856.

LThe semidefinite programming approach

Proof of separation probability

LThe semidefinite programming approach

Proof of separation probability

Figure: Proof by picture

LThe semidefinite programming approach

Proof of separation probability

Figure: Proof by picture

LThe semidefinite programming approach

Analysis (contd.)

LThe semidefinite programming approach

Analysis (contd.)

LThe semidefinite programming approach

Analysis (contd.)

E[W] > - OPT, I

LThe semidefinite programming approach

Analysis (contd.)

E[W] > a- OPT, and hence E[W] > - OPT. I

LThe semidefinite programming approach

Analysis (contd.)

E[W] > a- OPT, and hence E[W] > o - OPT.

LThe semidefinite programming approach

Analysis (contd.)

E[W] > a- OPT, and hence E[W] > o - OPT.

@ Observe that, for any 6, 0 < 6 < 7w, we must have,

LThe semidefinite programming approach

Analysis (contd.)

E[W] > a- OPT, and hence E[W] > o - OPT.

@ Observe that, for any 6, 0 < 6 < 7, we must have,% >o- (%)‘

LThe semidefinite programming approach

Analysis (contd.)

E[W] > a- OPT, and hence E[W] > o - OPT.

@ Observe that, for any 6, 0 < 6 < 7, we must have,% >o- (%)‘
Q It follows that,

LThe semidefinite programming approach

Analysis (contd.)

E[W] > a- OPT, and hence E[W] > o - OPT.

@ Observe that, for any 6, 0 < 6 < 7, we must have,% >o- (%)‘
Q It follows that,

EW] =

LThe semidefinite programming approach

Analysis (contd.)

E[W] > a- OPT, and hence E[W] > o - OPT.

@ Observe that, for any 6, 0 < 6 < 7, we must have,% >o- (%)‘
Q It follows that,

E[w] = Z wji - Pr[v; and v; are separated |
1<i<j<n

LThe semidefinite programming approach

Analysis (contd.)

E[W] > a- OPT, and hence E[W] > o - OPT.

@ Observe that, for any 6, 0 < 6 < 7, we must have,% >o- (%)‘
Q It follows that,

E[W]

Y, w;-Pr[v; and y; are separated |
1<i<j<n

LThe semidefinite programming approach

Analysis (contd.)

E[W] > a- OPT, and hence E[W] > o - OPT.

@ Observe that, for any 6, 0 < 6 < 7, we must have,% >o- (%)‘
Q It follows that,

E[W]

Y, w;-Pr[v; and y; are separated |
1<i<j<n

Z wj; - Pr[aj and aj are separated by r]
1<i<j<n

LThe semidefinite programming approach

Analysis (contd.)

E[W] > a- OPT, and hence E[W] > o - OPT.

@ Observe that, for any 6, 0 < 6 < 7, we must have,% >o- (%)‘
Q It follows that,
EW] =

Y, w;-Pr[v; and y; are separated |
1<i<j<n

= Z wj; - Pr[aj and aj are separated by r]
1<i<j<n

LThe semidefinite programming approach

Analysis (contd.)

E[W] > a- OPT, and hence E[W] > o - OPT.

@ Observe that, for any 6, 0 < 6 < 7, we must have,% >o- (%)‘
Q It follows that,
EW] =

Y, w;-Pr[v; and y; are separated |
1<i<j<n

= Z wj; - Pr[aj and aj are separated by r]
1<i<j<n

LThe semidefinite programming approach

Analysis (contd.)

E[W] > a- OPT, and hence E[W] > o - OPT.

@ Observe that, for any 6, 0 < 6 < 7, we must have,% >o- (%)‘
Q It follows that,
EW] =

Y, w;-Pr[v; and y; are separated |
1<i<j<n

= Z wj; - Pr[aj and aj are separated by r]
1<i<j<n

9,,
= Y o

1<i<j<n

LThe semidefinite programming approach

Analysis (contd.)

E[W] > a- OPT, and hence E[W] > o - OPT.

@ Observe that, for any 6, 0 < 6 < 7, we must have,% >o- (%)‘
Q It follows that,

E[w] = Z wji - Pr[v; and v; are separated |
1<i<j<n

= Z wj; - Pr[aj and aj are separated by r]
1<i<j<n

9,,
= Y o

1<i<j<n

i\

LThe semidefinite programming approach

Analysis (contd.)

E[W] > a- OPT, and hence E[W] > o - OPT.

@ Observe that, for any 6, 0 < 6 < 7, we must have,% >o- (%)‘
Q It follows that,

E[w] = Z wji - Pr[v; and v; are separated |
1<i<j<n

= Z wj; - Pr[aj and aj are separated by r]
1<i<j<n

9,,
= Y o

1<i<j<n

1
> a- Y - -w-(1—cos6y)

1<i<j<n

LThe semidefinite programming approach

Analysis (contd.)

E[W] > a- OPT, and hence E[W] > o - OPT.

@ Observe that, for any 0, 0 < 8 < m, we must have, & > a- (1=259).
Q It follows that,

E[w] = Z wji - Pr[v; and v; are separated |

1<i<j<n

= Z wj; - Pr[aj and aj are separated by r]

1<i<j<n
o
_ i
=)Y w
1<i<j<n 7

1
> a- Y - -w-(1—cos6y)

1<i<j<n

= «a-OPT,

LThe semidefinite programming approach

Analysis (contd.)

E[W] > a- OPT, and hence E[W] > o - OPT.

@ Observe that, for any 0, 0 < 8 < m, we must have, & > a- (1=259).
Q It follows that,

E[w] = Z wji - Pr[v; and v; are separated |

1<i<j<n

= Z wj; - Pr[aj and aj are separated by r]

1<i<j<n
o
_ i
=)Y w
1<i<j<n 7

1
> a- Y - -w-(1—cos6y)

1<i<j<n

= «-OPT,>a-OPT.

LThe semidefinite programming approach

High Probability Guarantee

LThe semidefinite programming approach

High Probability Guarantee

There is a randomized approximation algorithm for Max-Cut that achieves the approximation
factor of 0.87856.

LThe semidefinite programming approach

High Probability Guarantee

There is a randomized approximation algorithm for Max-Cut that achieves the approximation
factor of 0.87856.

i

LThe semidefinite programming approach

High Probability Guarantee

There is a randomized approximation algorithm for Max-Cut that achieves the approximation
factor of 0.87856.

@ Let T denote the sum of weights of all edges in G.

LThe semidefinite programming approach

High Probability Guarantee

There is a randomized approximation algorithm for Max-Cut that achieves the approximation
factor of 0.87856.

@ Let T denote the sum of weights of all edges in G.
@ Define asothatE[W]=a-T.

LThe semidefinite programming approach

High Probability Guarantee

There is a randomized approximation algorithm for Max-Cut that achieves the approximation
factor of 0.87856.

@ Let T denote the sum of weights of all edges in G.
@ Define a so that E[W] = a- T. (a will be decided later.)

LThe semidefinite programming approach

High Probability Guarantee

There is a randomized approximation algorithm for Max-Cut that achieves the approximation
factor of 0.87856.

@ Let T denote the sum of weights of all edges in G.
@ Define a so that E[W] = a- T. (a will be decided later.)
©Q Letp=Pr[W < (1—¢)-a-T]. (¢ will be chosen later.)

LThe semidefinite programming approach

High Probability Guarantee

There is a randomized approximation algorithm for Max-Cut that achieves the approximation
factor of 0.87856.

@ Let T denote the sum of weights of all edges in G.

@ Define a so that E[W] = a- T. (a will be decided later.)
©Q Letp=Pr[W < (1—¢)-a-T]. (¢ will be chosen later.)
@ Since W < T, we must have,

LThe semidefinite programming approach

High Probability Guarantee

There is a randomized approximation algorithm for Max-Cut that achieves the approximation
factor of 0.87856.

@ Let T denote the sum of weights of all edges in G.

@ Define a so that E[W] = a- T. (a will be decided later.)

©Q Letp=Pr[W < (1—¢)-a-T]. (¢ will be chosen later.)

@ Since W < T,we musthave, a- T <p-(1—¢€)-a-T+(1—p)-T.

LThe semidefinite programming approach

High Probability Guarantee

There is a randomized approximation algorithm for Max-Cut that achieves the approximation
factor of 0.87856.

@ Let T denote the sum of weights of all edges in G.

@ Define a so that E[W] = a- T. (a will be decided later.)

©Q Letp=Pr[W < (1—¢)-a-T]. (¢ will be chosen later.)

@ Since W < T,we musthave, a- T <p-(1—¢€)-a-T+(1—p)-T.
Q i follows that,

LThe semidefinite programming approach

High Probability Guarantee

There is a randomized approximation algorithm for Max-Cut that achieves the approximation
factor of 0.87856.

@ Let T denote the sum of weights of all edges in G.

@ Define a so that E[W] = a- T. (a will be decided later.)

© Letp=Pr[W < (1—¢)-a-T]. (¢ will be chosen later.)

© Since W< T,wemusthave,a-T<p-(1—¢)-a-T+(1—p)-T.
Q@ It follows that, p <

1— a+a£

LThe semidefinite programming approach

High Probability Guarantee

There is a randomized approximation algorithm for Max-Cut that achieves the approximation
factor of 0.87856.

Let T denote the sum of weights of all edges in G.

Define a so that E[W] = a- T. (a will be decided later.)
Letp=Pr[W < (1—¢)-a- T]. (¢ will be chosen later.)

Since W < T,we musthave, a-T<p-(1—¢)-a-T+(1—p)-T.
It follows that, p <

m

©000O0COC

Now observe that,

LThe semidefinite programming approach

High Probability Guarantee

There is a randomized approximation algorithm for Max-Cut that achieves the approximation
factor of 0.87856.

Let T denote the sum of weights of all edges in G.

Define a so that E[W] = a- T. (a will be decided later.)
Letp=Pr[W < (1—¢)-a- T]. (¢ will be chosen later.)

Since W < T,we musthave, a-T<p-(1—¢)-a-T+(1—p)-T.
It follows that, p <

m

©000O0COC

Now observe that,
T>

LThe semidefinite programming approach

High Probability Guarantee

There is a randomized approximation algorithm for Max-Cut that achieves the approximation
factor of 0.87856.

Let T denote the sum of weights of all edges in G.

Define a so that E[W] = a- T. (a will be decided later.)
Letp=Pr[W < (1—¢)-a- T]. (¢ will be chosen later.)

Since W < T,we musthave, a-T<p-(1—¢)-a-T+(1—p)-T.
It follows that, p <

m

©000O0COC

Now observe that,
T >E[W] =

LThe semidefinite programming approach

High Probability Guarantee

There is a randomized approximation algorithm for Max-Cut that achieves the approximation
factor of 0.87856.

Let T denote the sum of weights of all edges in G.

Define a so that E[W] = a- T. (a will be decided later.)
Letp=Pr[W < (1—¢)-a- T]. (¢ will be chosen later.)

Since W < T,we musthave, a-T<p-(1—¢)-a-T+(1—p)-T.
It follows that, p <

m

©000O0COC

Now observe that,
T>E[W]=a-T>

LThe semidefinite programming approach

High Probability Guarantee

There is a randomized approximation algorithm for Max-Cut that achieves the approximation
factor of 0.87856.

Let T denote the sum of weights of all edges in G.

Define a so that E[W] = a- T. (a will be decided later.)
Letp=Pr[W < (1—¢)-a- T]. (¢ will be chosen later.)

Since W < T,we musthave, a-T<p-(1—¢)-a-T+(1—p)-T.
It follows that, p <

m

©000O0COC

Now observe that,
T>E[W]=a-T>a-OPT, >

LThe semidefinite programming approach

High Probability Guarantee

There is a randomized approximation algorithm for Max-Cut that achieves the approximation
factor of 0.87856.

Let T denote the sum of weights of all edges in G.

Define a so that E[W] = a- T. (a will be decided later.)
Letp=Pr[W < (1—¢)-a- T]. (¢ will be chosen later.)

Since W < T,we musthave, a-T<p-(1—¢)-a-T+(1—p)-T.
It follows that, p <

m

©000O0COC

Now observe that,
T>E[W]=a-T>a-OPT, > a-OPT >

LThe semidefinite programming approach

High Probability Guarantee

There is a randomized approximation algorithm for Max-Cut that achieves the approximation
factor of 0.87856.

Let T denote the sum of weights of all edges in G.

Define a so that E[W] = a- T. (a will be decided later.)
Letp=Pr[W < (1—¢)-a- T]. (¢ will be chosen later.)

Since W < T,we musthave, a-T<p-(1—¢)-a-T+(1—p)-T.
It follows that, p <

m

©000O0COC

Now observe that,

T>E[W]=a T>0a- OPT,>a- OPT > &T.

LThe semidefinite programming approach

High Probability Guarantee

There is a randomized approximation algorithm for Max-Cut that achieves the approximation
factor of 0.87856.

Let T denote the sum of weights of all edges in G.

Define a so that E[W] = a- T. (a will be decided later.)
Letp=Pr[W < (1—¢)-a- T]. (¢ will be chosen later.)

Since W < T,we musthave, a-T<p-(1—¢)-a-T+(1—p)-T.
It follows that, p <

m
Now observe that,

T>E[W]=a T>0a- OPT,>a- OPT > &T.

© 0000CO0COC

Therefore,

LThe semidefinite programming approach

High Probability Guarantee

There is a randomized approximation algorithm for Max-Cut that achieves the approximation
factor of 0.87856.

Let T denote the sum of weights of all edges in G.

Define a so that E[W] = a- T. (a will be decided later.)
Letp=Pr[W < (1—¢)-a- T]. (¢ will be chosen later.)

Since W < T,we musthave, a-T<p-(1—¢)-a-T+(1—p)-T.
It follows that, p <

m

Now observe that,
T>E[W]=a-T>a OPT, >a-OPT > %I
Therefore, § <a<1.

© 0000CO0COC

LThe semidefinite programming approach

High Probability Guarantee

There is a randomized approximation algorithm for Max-Cut that achieves the approximation
factor of 0.87856.

Let T denote the sum of weights of all edges in G.

Define a so that E[W] = a- T. (a will be decided later.)
Letp=Pr[W < (1—¢)-a- T]. (¢ will be chosen later.)

Since W < T,we musthave, a-T<p-(1—¢)-a-T+(1—p)-T.
It follows that, p <

m

Now observe that,
T>E[W]=a-T>a OPT, >a-OPT > %I
Therefore, § <a<1.

© 0000CO0COC

Q Hence,

LThe semidefinite programming approach

High Probability Guarantee

There is a randomized approximation algorithm for Max-Cut that achieves the approximation
factor of 0.87856.

Let T denote the sum of weights of all edges in G.

Define a so that E[W] = a- T. (a will be decided later.)
Letp=Pr[W < (1—¢)-a- T]. (¢ will be chosen later.)

Since W < T,we musthave, a-T<p-(1—¢)-a-T+(1—p)-T.
It follows that, p <

m

Now observe that,
T>E[W]=a-T>a-OPT, > a-OPT > "‘T
Therefore, § <a<1.

© 0000CO0COC

Q@ Hence, p<1—W-

LThe semidefinite programming approach

High Probability Guarantee

There is a randomized approximation algorithm for Max-Cut that achieves the approximation
factor of 0.87856.

Let T denote the sum of weights of all edges in G.

Define a so that E[W] = a- T. (a will be decided later.)
Letp=Pr[W < (1—¢)-a- T]. (¢ will be chosen later.)

Since W < T,we musthave, a-T<p-(1—¢)-a-T+(1—p)-T.
It follows that, p <

m

©000O0COC

Now observe that,
T>E[W]=a-T>a-OPT, > o-OPT > I

Z78
@ Therefore, § <a<1.

Q@ Hence, p<1—W-

_ o8
Q Letc= ey

LThe semidefinite programming approach

Completing the analysis

LThe semidefinite programming approach

Completing the analysis

Final steps

LThe semidefinite programming approach

Completing the analysis

Final steps

@ Run the semidefinite algorithm and perform the randomized rounding 15 times and output
the heaviest cut.

LThe semidefinite programming approach

Completing the analysis

Final steps

@ Run the semidefinite algorithm and perform the randomized rounding 15 times and output
the heaviest cut.

Q Let W' be the weight of this cut.

LThe semidefinite programming approach

Completing the analysis

Final steps

@ Run the semidefinite algorithm and perform the randomized rounding 15 times and output
the heaviest cut.

Q Let W' be the weight of this cut.
© It follows that,

LThe semidefinite programming approach

Completing the analysis

Final steps

@ Run the semidefinite algorithm and perform the randomized rounding 15 times and output
the heaviest cut.

Q Let W' be the weight of this cut.
© It follows that,

Pr[W >(1—¢)-a-T]

LThe semidefinite programming approach

Completing the analysis

Final steps

@ Run the semidefinite algorithm and perform the randomized rounding 15 times and output
the heaviest cut.

Q Let W' be the weight of this cut.
© It follows that,

PriW >(1—¢)-aT] >

LThe semidefinite programming approach

Completing the analysis

Final steps

@ Run the semidefinite algorithm and perform the randomized rounding 15 times and output
the heaviest cut.

Q Let W' be the weight of this cut.
© It follows that,

o=

PrW' >(1-¢)-a-T] > 1—(1—-c)

LThe semidefinite programming approach

Completing the analysis

Final steps

@ Run the semidefinite algorithm and perform the randomized rounding 15 times and output
the heaviest cut.

Q Let W' be the weight of this cut.
© It follows that,

o=

Pr[W >(1—¢)-a-T]

[\

1—(1—2¢)

Y

LThe semidefinite programming approach

Completing the analysis

Final steps

@ Run the semidefinite algorithm and perform the randomized rounding 15 times and output
the heaviest cut.

Q Let W' be the weight of this cut.
© It follows that,

\
-
|
—
=
|
o
N
o=

Pr[W >(1—¢)-a-T]

Y
I
|

LThe semidefinite programming approach

Completing the analysis

Final steps

@ Run the semidefinite algorithm and perform the randomized rounding 15 times and output
the heaviest cut.

Q Let W' be the weight of this cut.
© It follows that,

\
-
|
—
=
|
o
N
o=

Pr[W >(1—¢)-a-T]

Y
I
|

Q Sincea- T >

LThe semidefinite programming approach

Completing the analysis

Final steps

@ Run the semidefinite algorithm and perform the randomized rounding 15 times and output
the heaviest cut.

Q Let W' be the weight of this cut.
© It follows that,

\
-
|
—
=
|
o
N
o=

Pr[W >(1—¢)-a-T]

Y
I
|

Q Sincea- T > - OPT >

LThe semidefinite programming approach

Completing the analysis

Final steps

@ Run the semidefinite algorithm and perform the randomized rounding 15 times and output
the heaviest cut.

Q Let W' be the weight of this cut.
© It follows that,

\
-
|
—
=
|
o
N
o=

Pr[W >(1—¢)-a-T]

Y
I
|

@ Sincea- T > o- OPT > 0.87856- OPT,

LThe semidefinite programming approach

Completing the analysis

Final steps

@ Run the semidefinite algorithm and perform the randomized rounding 15 times and output
the heaviest cut.

Q Let W' be the weight of this cut.
© It follows that,

\
-
|
—
=
|
o
N
o=

Pr[W >(1—¢)-a-T]

Y
I
|

Q Sincea- T > - OPT > 0.87856 - OPT, we can pick a value of € > 0, so that
(1—¢€)-aT>

LThe semidefinite programming approach

Completing the analysis

Final steps

@ Run the semidefinite algorithm and perform the randomized rounding 15 times and output
the heaviest cut.

Q Let W' be the weight of this cut.
© It follows that,

\
-
|
—
=
|
o
N
o=

Pr[W >(1—¢)-a-T]

Y
I
|

Q Sincea- T > - OPT > 0.87856 - OPT, we can pick a value of € > 0, so that
(1—¢€)-a-T>0.87856- OPT.

LThe semidefinite programming approach

Summal

LThe semidefinite programming approach

Summary

Step by step procedure

LThe semidefinite programming approach

Summary

Step by step procedure

@ Formulate the problem as a Quadratically Constrained Quadratic Integer Program (QCQIP).

LThe semidefinite programming approach

Summary

Step by step procedure

@ Formulate the problem as a Quadratically Constrained Quadratic Integer Program (QCQIP).
@ Relax the QCQIP to a vector program (VP).

LThe semidefinite programming approach

Summary

Step by step procedure

@ Formulate the problem as a Quadratically Constrained Quadratic Integer Program (QCQIP).
@ Relax the QCQIP to a vector program (VP).
© Replace VP with an equivalent semidefinite program (SDP).

LThe semidefinite programming approach

Summary

Step by step procedure

@ Formulate the problem as a Quadratically Constrained Quadratic Integer Program (QCQIP).
@ Relax the QCQIP to a vector program (VP).

© Replace VP with an equivalent semidefinite program (SDP).

Q Solve the SDP optimally

LThe semidefinite programming approach

Summary

Step by step procedure

@ Formulate the problem as a Quadratically Constrained Quadratic Integer Program (QCQIP).
@ Relax the QCQIP to a vector program (VP).

© Replace VP with an equivalent semidefinite program (SDP).

Q Solve the SDP optimally (Ellipsoid Method).

LThe semidefinite programming approach

Summary

Step by step procedure

@ Formulate the problem as a Quadratically Constrained Quadratic Integer Program (QCQIP).
@ Relax the QCQIP to a vector program (VP).

© Replace VP with an equivalent semidefinite program (SDP).

Q Solve the SDP optimally (Ellipsoid Method).

@ Perform randomized rounding to obtain a solution.

LThe semidefinite programming approach

Summary

Step by step procedure

©000O0O

Formulate the problem as a Quadratically Constrained Quadratic Integer Program (QCQIP).
Relax the QCQIP to a vector program (VP).

Replace VP with an equivalent semidefinite program (SDP).

Solve the SDP optimally (Ellipsoid Method).

Perform randomized rounding to obtain a solution.

If needed, improve the guarantee of the approximation, by running the algorithm an
appropriate number of times.

	Outline
	Main Talk
	The Max-Cut problem
	The semidefinite programming approach

