Approximating Max-Cut through Semidefinite Programming

K. Subramani¹

¹Lane Department of Computer Science and Electrical Engineering West Virginia University

April 15, 2014

ni
d
١i

Outline

Outline

1 The Max-Cut problem

ì
ic
le
ni
ł
Ρ
ni
C

Outline

1 The Max-Cut problem

2 The semidefinite programming approach

The Max-Cut Problem

The Max-Cut Problem

Definition

Definition

Given an undirected, weighted graph $G = \langle V, E, \mathbf{w} \rangle$, with **w** assigning non-negative integral weights to the edges of *E*,

Definition

Given an undirected, weighted graph $G = \langle V, E, \mathbf{w} \rangle$, with \mathbf{w} assigning non-negative integral weights to the edges of E, a *cut* S, $S \subseteq V$ partitions V into two sets S and \overline{S} .

Definition

Given an undirected, weighted graph $G = \langle V, E, \mathbf{w} \rangle$, with \mathbf{w} assigning non-negative integral weights to the edges of E, a *cut* S, $S \subseteq V$ partitions V into two sets S and \overline{S} .

An edge $(u, v) \in E$ belongs to the cut (S, \overline{S}) if and only if exactly one of u and v belongs to S.

Definition

Given an undirected, weighted graph $G = \langle V, E, \mathbf{w} \rangle$, with \mathbf{w} assigning non-negative integral weights to the edges of E, a *cut* S, $S \subseteq V$ partitions V into two sets S and \overline{S} .

An edge $(u, v) \in E$ belongs to the cut (S, \overline{S}) if and only if exactly one of u and v belongs to S.

The weight of a cut $w(S, \overline{S})$ is defined as:

Definition

Given an undirected, weighted graph $G = \langle V, E, \mathbf{w} \rangle$, with \mathbf{w} assigning non-negative integral weights to the edges of E, a *cut* S, $S \subseteq V$ partitions V into two sets S and \overline{S} .

An edge $(u, v) \in E$ belongs to the cut (S, \overline{S}) if and only if exactly one of u and v belongs to S.

The weight of a cut $w(S, \overline{S})$ is defined as:

$$w(S, \overline{S}) =$$

Definition

Given an undirected, weighted graph $G = \langle V, E, \mathbf{w} \rangle$, with \mathbf{w} assigning non-negative integral weights to the edges of E, a *cut* S, $S \subseteq V$ partitions V into two sets S and \overline{S} .

An edge $(u, v) \in E$ belongs to the cut (S, \overline{S}) if and only if exactly one of u and v belongs to S.

The weight of a cut $w(S, \overline{S})$ is defined as:

$$w(S,\overline{S}) = \sum_{u \in S, v \in \overline{S}} w(u,v).$$

Definition

Given an undirected, weighted graph $G = \langle V, E, \mathbf{w} \rangle$, with \mathbf{w} assigning non-negative integral weights to the edges of E, a *cut* S, $S \subseteq V$ partitions V into two sets S and \overline{S} .

An edge $(u, v) \in E$ belongs to the cut (S, \overline{S}) if and only if exactly one of u and v belongs to S.

The weight of a cut $w(S, \overline{S})$ is defined as:

$$w(S,\overline{S}) = \sum_{u \in S, v \in \overline{S}} w(u,v).$$

The Max-Cut problem is concerned with finding the cut of maximum weight in G.

The IP-LP Approach

The IP-LP Approach

IP formulation

IP formulation

• Let y_{ij} be a variable associated with edge e_{ij} .

IP formulation

Let y_{ij} be a variable associated with edge e_{ij}.
 y_{ij} = 1 means that e_{ij} is in the cut.

IP formulation

- Let y_{ij} be a variable associated with edge e_{ij}.
 y_{ij} = 1 means that e_{ij} is in the cut.
- 2 Let x_i be a variable associated with each vertex v_i .

IP formulation

- Let y_{ij} be a variable associated with edge e_{ij}.
 y_{ij} = 1 means that e_{ij} is in the cut.
- 2 Let x_i be a variable associated with each vertex v_i .
- **③** Consider the following "natural" integer programming formulation for Max-Cut.

IP formulation

- Let y_{ij} be a variable associated with edge e_{ij}.
 y_{ij} = 1 means that e_{ij} is in the cut.
- 2 Let x_i be a variable associated with each vertex v_i .
- **③** Consider the following "natural" integer programming formulation for Max-Cut.

 $\max \sum_{(i,j)\in E} w_{ij} \cdot y_{ij}$

IP formulation

- Let y_{ij} be a variable associated with edge e_{ij}.
 y_{ij} = 1 means that e_{ij} is in the cut.
- 2 Let x_i be a variable associated with each vertex v_i .
- **Onsider the following "natural" integer programming formulation for Max-Cut.**

 $\begin{array}{ll} \max \; \sum_{(i,j) \in E} w_{ij} \cdot y_{ij} \\ \text{subject to} & y_{ij} \leq 1 - \frac{x_i + x_j}{2}, & \text{for every edge } e_{ij} \end{array}$

IP formulation

- Let y_{ij} be a variable associated with edge e_{ij}.
 y_{ij} = 1 means that e_{ij} is in the cut.
- 2 Let x_i be a variable associated with each vertex v_i .
- **③** Consider the following "natural" integer programming formulation for Max-Cut.

 $\begin{array}{ll} \max \ \sum_{(i,j) \in E} w_{ij} \cdot y_{ij} \\ \text{subject to} & y_{ij} \leq 1 - \frac{x_i + x_j}{2}, & \text{ for every edge } e_{ij} \\ & y_{ij} \leq 1 + \frac{x_i + x_j}{2}, & \text{ for every edge } e_{ij} \end{array}$

IP formulation

- Let y_{ij} be a variable associated with edge e_{ij}.
 y_{ij} = 1 means that e_{ij} is in the cut.
- 2 Let x_i be a variable associated with each vertex v_i .
- **③** Consider the following "natural" integer programming formulation for Max-Cut.

	$\max \sum_{(i,j)\in E} w_{ij} \cdot y_{ij}$	
subject to	$y_{ij} \leq 1 - rac{x_i + x_j}{2}$	for every edge eij
	$y_{ij} \leq 1 + \frac{x_i + x_j}{2},$	for every edge eij
	$x_i \in \{-1,1\},$	for every vertex v_i

Analyzing the LP relaxation

Analyzing the LP relaxation

LP relaxation

Analyzing the LP relaxation

LP relaxation

• In the LP relaxation, we set $-1 \le x_i \le 1$, for each x_i .

Analyzing the LP relaxation

LP relaxation

- In the LP relaxation, we set $-1 \le x_i \le 1$, for each x_i .
- **9** However, in this case, the optimum is |E|, since we can simply set $x_i = 0$ for each vertex, which permits every edge to be selected!

Analyzing the LP relaxation

LP relaxation

- In the LP relaxation, we set $-1 \le x_i \le 1$, for each x_i .
- **9** However, in this case, the optimum is |E|, since we can simply set $x_i = 0$ for each vertex, which permits every edge to be selected!
- O Thus, the relaxation is not useful, from the perspective of bounding the error of an approximate solution.

The Quadratically constrained programming approach

The Quadratically constrained programming approach

The Quadratically constrained programming approach

Modeling

• Let y_i be an indicator variable for vertex v_i ; $y_i \in \{+1, -1\}$.

The Quadratically constrained programming approach

Modeling

• Let y_i be an indicator variable for vertex v_i ; $y_i \in \{+1, -1\}$.

The Quadratically constrained programming approach

- Let y_i be an indicator variable for vertex v_i ; $y_i \in \{+1, -1\}$.
- **2** The partition (S, \overline{S}) is defined as follows:

The Quadratically constrained programming approach

- Let y_i be an indicator variable for vertex v_i ; $y_i \in \{+1, -1\}$.
- **2** The partition (S, \overline{S}) is defined as follows: $S = \{v_i : y_i = 1\}$ and $\overline{S} = \{v_i : y_i = -1\}$.

The Quadratically constrained programming approach

- Let y_i be an indicator variable for vertex v_i ; $y_i \in \{+1, -1\}$.
- **2** The partition (S, \overline{S}) is defined as follows: $S = \{v_i : y_i = 1\}$ and $\overline{S} = \{v_i : y_i = -1\}$.
- The following quadratically constrained program captures Max-Cut:

The Quadratically constrained programming approach

- Let y_i be an indicator variable for vertex v_i ; $y_i \in \{+1, -1\}$.
- **2** The partition (S, \overline{S}) is defined as follows: $S = \{v_i : y_i = 1\}$ and $\overline{S} = \{v_i : y_i = -1\}$.
- The following quadratically constrained program captures Max-Cut:

The Quadratically constrained programming approach

Modeling

- Let y_i be an indicator variable for vertex v_i ; $y_i \in \{+1, -1\}$.
- **2** The partition (S, \overline{S}) is defined as follows: $S = \{v_i : y_i = 1\}$ and $\overline{S} = \{v_i : y_i = -1\}$.

The following quadratically constrained program captures Max-Cut:

$$\max \frac{1}{2} \cdot \sum_{1 \le i < j \le n} w_{ij} \cdot (1 - y_i \cdot y_j)$$

The Quadratically constrained programming approach

Modeling

• Let y_i be an indicator variable for vertex v_i ; $y_i \in \{+1, -1\}$.

S

3 The partition (S, \overline{S}) is defined as follows: $S = \{v_i : y_i = 1\}$ and $\overline{S} = \{v_i : y_i = -1\}$.

The following quadratically constrained program captures Max-Cut:

$$\begin{array}{ll} \max \ \frac{1}{2} \cdot \sum_{1 \leq i < j \leq n} w_{ij} \cdot \left(1 - y_i \cdot y_j\right) \\ \text{ubject to} & y_i^2 = 1, & v_i \in V \end{array}$$

The Quadratically constrained programming approach

Modeling

- Let y_i be an indicator variable for vertex v_i ; $y_i \in \{+1, -1\}$.
- **3** The partition (S, \overline{S}) is defined as follows: $S = \{v_i : y_i = 1\}$ and $\overline{S} = \{v_i : y_i = -1\}$.

The following quadratically constrained program captures Max-Cut:

$$\begin{array}{ll} \max \ \frac{1}{2} \cdot \sum_{1 \leq i < j \leq n} w_{ij} \cdot \left(1 - y_i \cdot y_j\right) \\ \text{subject to} & y_i^2 = 1, & v_i \in V \\ & y_i \in \mathbf{Z}, & v_i \in V \end{array}$$

The vector program relaxation

The vector program relaxation

Definition

The vector program relaxation

Definition

Let $\mathbf{v_1}, \mathbf{v_2}, \dots \mathbf{v_n}$ denote *n* vector variables in \Re^n .

The vector program relaxation

Definition

Let $\mathbf{v_1}, \mathbf{v_2}, \dots \mathbf{v_n}$ denote *n* vector variables in \mathfrak{R}^n .

A vector program is the problem of minimizing or maximizing a linear function of the inner products $v_i \cdot v_j$, subject to linear constraints on these inner products.

The vector program relaxation

Definition

Let $\mathbf{v_1}, \mathbf{v_2}, \dots \mathbf{v_n}$ denote *n* vector variables in \mathfrak{R}^n .

A vector program is the problem of minimizing or maximizing a linear function of the inner products $v_i \cdot v_j$, subject to linear constraints on these inner products.

The vector program relaxation

Definition

Let $\mathbf{v_1}, \mathbf{v_2}, \dots \mathbf{v_n}$ denote *n* vector variables in \mathfrak{R}^n .

A vector program is the problem of minimizing or maximizing a linear function of the inner products $v_i \cdot v_j$, subject to linear constraints on these inner products.

$$\max \frac{1}{2} \cdot \sum_{1 \le i < j \le n} w_{ij} \cdot (1 - \mathbf{v}_i \cdot \mathbf{v}_j)$$

The vector program relaxation

Definition

Let $\mathbf{v_1}, \mathbf{v_2}, \dots \mathbf{v_n}$ denote *n* vector variables in \mathfrak{R}^n .

A vector program is the problem of minimizing or maximizing a linear function of the inner products $v_i \cdot v_j$, subject to linear constraints on these inner products.

$$\begin{array}{ll} \max \ \frac{1}{2} \cdot \sum_{1 \le i < j \le n} w_{ij} \cdot \left(1 - \mathbf{v}_i \cdot \mathbf{v}_j\right) \\ \text{ubject to} & \mathbf{v}_i \cdot \mathbf{v}_i = 1, \qquad v_i \in V \end{array}$$

The vector program relaxation

Definition

Let $\mathbf{v_1}, \mathbf{v_2}, \dots \mathbf{v_n}$ denote *n* vector variables in \mathfrak{R}^n .

A vector program is the problem of minimizing or maximizing a linear function of the inner products $v_i \cdot v_j$, subject to linear constraints on these inner products.

$$\begin{array}{ll} \max \ \frac{1}{2} \cdot \sum_{1 \leq i < j \leq n} w_{ij} \cdot (1 - \mathbf{v}_i \cdot \mathbf{v}_j) \\ \text{subject to} & \mathbf{v}_i \cdot \mathbf{v}_i = 1, \qquad v_i \in V \\ \mathbf{v}_i \in \Re^n, \qquad v_i \in V \end{array}$$

Notes on the vector program relaxation

Notes on the vector program relaxation

Notes on the vector program relaxation

Note

• All the vectors $v_1, v_2, ..., v_n$ are constrained to lie on the n-dimensional sphere S_{n-1} .

Notes on the vector program relaxation

- **()** All the vectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ are constrained to lie on the n-dimensional sphere S_{n-1} .
- Any feasible solution to the quadratically constrained quadratic program yields a solution to the vector program relaxation, having the same objective function value, by setting v_i = (y_i, 0, ..., 0).

Notes on the vector program relaxation

- **1** All the vectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ are constrained to lie on the n-dimensional sphere S_{n-1} .
- Any feasible solution to the quadratically constrained quadratic program yields a solution to the vector program relaxation, having the same objective function value, by setting v_i = (y_i, 0, ..., 0).
- Therefore, the vector program is a relaxation of the quadratically constrained quadratic program.

Notes on the vector program relaxation

- **1** All the vectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ are constrained to lie on the n-dimensional sphere S_{n-1} .
- Any feasible solution to the quadratically constrained quadratic program yields a solution to the vector program relaxation, having the same objective function value, by setting v_i = (y_i, 0, ..., 0).
- Therefore, the vector program is a relaxation of the quadratically constrained quadratic program.
- Vector programs are approximable to any desired level of accuracy in polynomial time and thus the vector program relaxation provides an upper bound on OPT for Max-Cut.

The semidefinite program for Max-Cut

The semidefinite program for Max-Cut

$$\max \frac{1}{2} \cdot \sum_{1 \le i < j \le n} w_{ij} \cdot (1 - y_i \cdot y_j)$$

The semidefinite program for Max-Cut

$$\max \frac{1}{2} \cdot \sum_{1 \le i < j \le n} w_{ij} \cdot (1 - y_i \cdot y_j)$$

subject to $y_i^2 = 1, \quad v_i \in V$

The semidefinite program for Max-Cut

$$\begin{array}{ll} \max \ \frac{1}{2} \cdot \sum_{1 \leq i < j \leq n} w_{ij} \cdot (1 - y_i \cdot y_j) \\ \text{subject to} & y_i^2 = 1, & v_i \in V \\ & \mathbf{Y} \succeq \mathbf{0}, \end{array}$$

The semidefinite program for Max-Cut

$$\begin{array}{ll} \max \ \frac{1}{2} \cdot \sum_{1 \leq i < j \leq n} w_{ij} \cdot (1 - y_i \cdot y_j) \\ \text{subject to} & y_i^2 = 1, & v_i \in V \\ & \mathbf{Y} \succeq \mathbf{0}, \\ & \mathbf{Y} \in \mathbf{M_n} \end{array}$$

The Semidefinite programming algorithm

The Max-Cut Algorithm

The Max-Cut Algorithm

Randomized Rounding Algorithm

The Max-Cut Algorithm

Randomized Rounding Algorithm

 Solve the semidefinite program corresponding to the vector program relaxation of the Max-Cut QCQIP optimally.

The Max-Cut Algorithm

Randomized Rounding Algorithm

- Solve the semidefinite program corresponding to the vector program relaxation of the Max-Cut QCQIP optimally.
- 2 Convert the solution into a solution for the corresponding vector program.

The Max-Cut Algorithm

Randomized Rounding Algorithm

- Solve the semidefinite program corresponding to the vector program relaxation of the Max-Cut QCQIP optimally.
- Onvert the solution into a solution for the corresponding vector program. Let a₁, a₂,...a_n denote the optimal solution.

The Max-Cut Algorithm

Randomized Rounding Algorithm

- Solve the semidefinite program corresponding to the vector program relaxation of the Max-Cut QCQIP optimally.
- Onvert the solution into a solution for the corresponding vector program. Let a₁, a₂,...a_n denote the optimal solution.

O Pick **r** to be a uniformly distributed vector on the unit sphere S_{n-1} .

The Max-Cut Algorithm

Randomized Rounding Algorithm

- Solve the semidefinite program corresponding to the vector program relaxation of the Max-Cut QCQIP optimally.
- Onvert the solution into a solution for the corresponding vector program. Let a₁, a₂,...a_n denote the optimal solution.

O Pick **r** to be a uniformly distributed vector on the unit sphere S_{n-1} .

• Let
$$S = \{v_i : \mathbf{a_i} \cdot \mathbf{r} \ge 0\}$$
.

The Max-Cut Algorithm

Randomized Rounding Algorithm

- Solve the semidefinite program corresponding to the vector program relaxation of the Max-Cut QCQIP optimally.
- Onvert the solution into a solution for the corresponding vector program. Let a₁, a₂,...a_n denote the optimal solution.

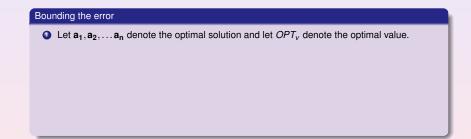
O Pick **r** to be a uniformly distributed vector on the unit sphere S_{n-1} .

• Let
$$S = \{v_i : a_i \cdot r \ge 0\}$$
.

Analysis

Analysis

Analysis



Analysis

- **()** Let $\mathbf{a}_1, \mathbf{a}_2, \dots \mathbf{a}_n$ denote the optimal solution and let OPT_v denote the optimal value.
- 2 Let θ_{ij} denote the angle between vectors \mathbf{a}_i and \mathbf{a}_j .

Analysis

- **()** Let $\mathbf{a}_1, \mathbf{a}_2, \dots \mathbf{a}_n$ denote the optimal solution and let OPT_v denote the optimal value.
- 2 Let θ_{ij} denote the angle between vectors \mathbf{a}_i and \mathbf{a}_j .
- 3 The contribution of this pair of vectors to OPT_v is:

Analysis

- **()** Let $\mathbf{a}_1, \mathbf{a}_2, \dots \mathbf{a}_n$ denote the optimal solution and let OPT_v denote the optimal value.
- 2 Let θ_{ij} denote the angle between vectors \mathbf{a}_i and \mathbf{a}_j .
- 3 The contribution of this pair of vectors to OPT_V is: $\frac{w_{ij}}{2} \cdot (1 \cos \theta_{ij})$.

Analysis

- **()** Let $\mathbf{a_1}, \mathbf{a_2}, \dots \mathbf{a_n}$ denote the optimal solution and let OPT_v denote the optimal value.
- 2 Let θ_{ij} denote the angle between vectors \mathbf{a}_i and \mathbf{a}_j .
- 3 The contribution of this pair of vectors to OPT_V is: $\frac{w_{ij}}{2} \cdot (1 \cos \theta_{ij})$.
- $Pr[a_i \text{ is separated from } a_j] =$

Analysis

- **()** Let $\mathbf{a_1}, \mathbf{a_2}, \dots \mathbf{a_n}$ denote the optimal solution and let OPT_v denote the optimal value.
- 2 Let θ_{ij} denote the angle between vectors \mathbf{a}_i and \mathbf{a}_j .
- 3 The contribution of this pair of vectors to OPT_v is: $\frac{w_{ij}}{2} \cdot (1 \cos \theta_{ij})$.
- **Pr**[**a**_i is separated from \mathbf{a}_j] = $\frac{\theta_{ij}}{\pi}$.

Analysis

- **()** Let $\mathbf{a_1}, \mathbf{a_2}, \dots \mathbf{a_n}$ denote the optimal solution and let OPT_v denote the optimal value.
- 2 Let θ_{ij} denote the angle between vectors \mathbf{a}_i and \mathbf{a}_j .
- 3 The contribution of this pair of vectors to OPT_V is: $\frac{w_{ij}}{2} \cdot (1 \cos \theta_{ij})$.
- **Pr**[\mathbf{a}_i is separated from \mathbf{a}_j] = $\frac{\theta_{ij}}{\pi}$.
- Let W be the random variable denoting the weight of the edges in the cut.

Analysis

- **()** Let $\mathbf{a_1}, \mathbf{a_2}, \dots \mathbf{a_n}$ denote the optimal solution and let OPT_v denote the optimal value.
- 2 Let θ_{ij} denote the angle between vectors \mathbf{a}_i and \mathbf{a}_j .
- 3 The contribution of this pair of vectors to OPT_V is: $\frac{w_{ij}}{2} \cdot (1 \cos \theta_{ij})$.
- **Pr**[\mathbf{a}_i is separated from \mathbf{a}_j] = $\frac{\theta_{ij}}{\pi}$.
- Let W be the random variable denoting the weight of the edges in the cut.

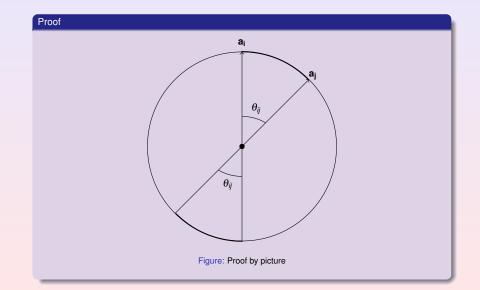
• Let
$$\alpha = \frac{2}{\pi} \min_{0 < \theta \le \pi} \frac{\theta}{1 - \cos \theta}$$
.

Analysis

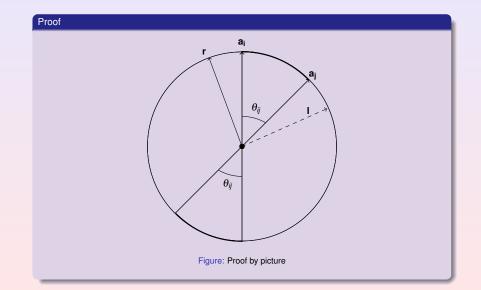
- **()** Let $\mathbf{a_1}, \mathbf{a_2}, \dots \mathbf{a_n}$ denote the optimal solution and let OPT_v denote the optimal value.
- 2 Let θ_{ij} denote the angle between vectors \mathbf{a}_i and \mathbf{a}_j .
- 3 The contribution of this pair of vectors to OPT_{v} is: $\frac{w_{ij}}{2} \cdot (1 \cos \theta_{ij})$.
- **Pr**[**a**_i is separated from **a**_j] = $\frac{\theta_{ij}}{\pi}$.
- Let W be the random variable denoting the weight of the edges in the cut.
- Let $\alpha = \frac{2}{\pi} \min_{0 < \theta \le \pi} \frac{\theta}{1 \cos \theta}$. It is not hard to see that $\alpha > 0.87856$.

Proof of separation probability

Proof of separation probability



Proof of separation probability



Analysis (contd.)

Analysis (contd.)

Lemma

Analysis (contd.)

Lemma

 $\mathbf{E}[W] \ge \alpha \cdot OPT_v$

Analysis (contd.)

Lemma

 $\mathbf{E}[W] \geq \alpha \cdot OPT_v$ and hence $\mathbf{E}[W] \geq \alpha \cdot OPT$.

Analysis (contd.)

Lemma

 $\mathbf{E}[W] \geq \alpha \cdot OPT_v$ and hence $\mathbf{E}[W] \geq \alpha \cdot OPT$.

Lemma

 $\mathbf{E}[W] \geq \alpha \cdot OPT_{v}$ and hence $\mathbf{E}[W] \geq \alpha \cdot OPT$.

Proof.

• Observe that, for any θ , $0 < \theta \le \pi$, we must have,

Lemma

 $\mathbf{E}[W] \geq \alpha \cdot OPT_v$ and hence $\mathbf{E}[W] \geq \alpha \cdot OPT$.

Proof.

• Observe that, for any θ , $0 < \theta \le \pi$, we must have, $\frac{\theta}{\pi} \ge \alpha \cdot (\frac{1 - \cos \theta}{2})$.

Lemma

 $\mathbf{E}[W] \geq \alpha \cdot OPT_{v}$ and hence $\mathbf{E}[W] \geq \alpha \cdot OPT$.

- Observe that, for any θ , $0 < \theta \le \pi$, we must have, $\frac{\theta}{\pi} \ge \alpha \cdot (\frac{1 \cos \theta}{2})$.
- It follows that,

Lemma

$$\mathbf{E}[W] \geq \alpha \cdot OPT_v$$
 and hence $\mathbf{E}[W] \geq \alpha \cdot OPT$.

- Observe that, for any θ , $0 < \theta \le \pi$, we must have, $\frac{\theta}{\pi} \ge \alpha \cdot (\frac{1 \cos \theta}{2})$.
- It follows that,

$$E[W] =$$

Lemma

$$\mathbf{E}[W] \geq \alpha \cdot OPT_v$$
 and hence $\mathbf{E}[W] \geq \alpha \cdot OPT$.

- Observe that, for any θ , $0 < \theta \le \pi$, we must have, $\frac{\theta}{\pi} \ge \alpha \cdot (\frac{1-\cos\theta}{2})$.
- It follows that,

$$\mathbf{E}[W] = \sum_{1 \le i < j \le n} w_{ij} \cdot \mathbf{Pr}[v_i \text{ and } v_j \text{ are separated }]$$

Lemma

$$\mathbf{E}[W] \geq \alpha \cdot OPT_v$$
 and hence $\mathbf{E}[W] \geq \alpha \cdot OPT$.

Proof.

• Observe that, for any θ , $0 < \theta \le \pi$, we must have, $\frac{\theta}{\pi} \ge \alpha \cdot (\frac{1-\cos\theta}{2})$.

=

$$\mathbf{E}[W] = \sum_{1 \le i < j \le n} w_{ij} \cdot \mathbf{Pr}[v_i \text{ and } v_j \text{ are separated }]$$

Lemma

$$\mathbf{E}[W] \geq \alpha \cdot OPT_v$$
 and hence $\mathbf{E}[W] \geq \alpha \cdot OPT$.

- Observe that, for any θ , $0 < \theta \le \pi$, we must have, $\frac{\theta}{\pi} \ge \alpha \cdot (\frac{1-\cos\theta}{2})$.
- It follows that,

$$E[W] = \sum_{1 \le i < j \le n} w_{ij} \cdot \Pr[v_i \text{ and } v_j \text{ are separated }]$$
$$= \sum_{1 \le i < j \le n} w_{ij} \cdot \Pr[\mathbf{a}_i \text{ and } \mathbf{a}_j \text{ are separated by } \mathbf{r}]$$

Lemma

$$\mathbf{E}[W] \geq \alpha \cdot OPT_v$$
 and hence $\mathbf{E}[W] \geq \alpha \cdot OPT$.

Proof.

• Observe that, for any θ , $0 < \theta \le \pi$, we must have, $\frac{\theta}{\pi} \ge \alpha \cdot (\frac{1-\cos\theta}{2})$.

=

$$E[W] = \sum_{1 \le i < j \le n} w_{ij} \cdot \Pr[v_i \text{ and } v_j \text{ are separated }]$$

$$= \sum_{1 \le i < j \le n} w_{ij} \cdot \Pr[\mathbf{a}_i \text{ and } \mathbf{a}_j \text{ are separated by } \mathbf{r}]$$

Lemma

$$\mathbf{E}[W] \geq \alpha \cdot OPT_v$$
 and hence $\mathbf{E}[W] \geq \alpha \cdot OPT$.

Proof.

• Observe that, for any θ , $0 < \theta \le \pi$, we must have, $\frac{\theta}{\pi} \ge \alpha \cdot (\frac{1-\cos\theta}{2})$.

=

$$E[W] = \sum_{1 \le i < j \le n} w_{ij} \cdot \Pr[v_i \text{ and } v_j \text{ are separated }]$$

$$= \sum_{1 \le i < j \le n} w_{ij} \cdot \Pr[\mathbf{a}_i \text{ and } \mathbf{a}_j \text{ are separated by } \mathbf{r}]$$

Lemma

$$\mathbf{E}[W] \geq \alpha \cdot OPT_v$$
 and hence $\mathbf{E}[W] \geq \alpha \cdot OPT$.

Proof.

• Observe that, for any θ , $0 < \theta \le \pi$, we must have, $\frac{\theta}{\pi} \ge \alpha \cdot (\frac{1-\cos\theta}{2})$.

$$E[W] = \sum_{1 \le i < j \le n} w_{ij} \cdot \Pr[v_i \text{ and } v_j \text{ are separated }]$$

$$= \sum_{1 \le i < j \le n} w_{ij} \cdot \Pr[\mathbf{a}_i \text{ and } \mathbf{a}_j \text{ are separated by } \mathbf{r}]$$

$$= \sum_{1 \le i < j \le n} w_{ij} \cdot \frac{\theta_{ij}}{\pi}$$

Lemma

$$\mathbf{E}[W] \geq \alpha \cdot OPT_v$$
 and hence $\mathbf{E}[W] \geq \alpha \cdot OPT$.

Proof.

• Observe that, for any θ , $0 < \theta \le \pi$, we must have, $\frac{\theta}{\pi} \ge \alpha \cdot (\frac{1-\cos\theta}{2})$.

It follows that,

$$E[W] = \sum_{1 \le i < j \le n} w_{ij} \cdot \Pr[v_i \text{ and } v_j \text{ are separated }]$$

$$= \sum_{1 \le i < j \le n} w_{ij} \cdot \Pr[\mathbf{a}_i \text{ and } \mathbf{a}_j \text{ are separated by } \mathbf{r}]$$

$$= \sum_{1 \le i < j \le n} w_{ij} \cdot \frac{\theta_{ij}}{\pi}$$

 \geq

Lemma

$$\mathbf{E}[W] \geq \alpha \cdot OPT_v$$
 and hence $\mathbf{E}[W] \geq \alpha \cdot OPT$.

E

Proof.

• Observe that, for any θ , $0 < \theta \le \pi$, we must have, $\frac{\theta}{\pi} \ge \alpha \cdot (\frac{1-\cos\theta}{2})$.

$$[W] = \sum_{1 \le i < j \le n} w_{ij} \cdot \mathbf{Pr}[v_i \text{ and } v_j \text{ are separated }]$$

$$= \sum_{1 \le i < j \le n} w_{ij} \cdot \mathbf{Pr}[\mathbf{a}_i \text{ and } \mathbf{a}_j \text{ are separated by } \mathbf{r}]$$

$$= \sum_{1 \le i < j \le n} w_{ij} \cdot \frac{\theta_{ij}}{\pi}$$

$$\ge \alpha \cdot \sum_{1 \le i < j \le n} \frac{1}{2} \cdot w_{ij} \cdot (1 - \cos \theta_{ij})$$

Lemma

$$\mathbf{E}[W] \geq \alpha \cdot OPT_v$$
 and hence $\mathbf{E}[W] \geq \alpha \cdot OPT$.

Proof.

• Observe that, for any θ , $0 < \theta \le \pi$, we must have, $\frac{\theta}{\pi} \ge \alpha \cdot (\frac{1-\cos\theta}{2})$.

$$\mathbf{E}[W] = \sum_{1 \le i < j \le n} w_{ij} \cdot \mathbf{Pr}[v_i \text{ and } v_j \text{ are separated }]$$

$$= \sum_{1 \le i < j \le n} w_{ij} \cdot \mathbf{Pr}[\mathbf{a}_i \text{ and } \mathbf{a}_j \text{ are separated by } \mathbf{r}]$$

$$= \sum_{1 \le i < j \le n} w_{ij} \cdot \frac{\theta_{ij}}{\pi}$$

$$\ge \alpha \cdot \sum_{1 \le i < j \le n} \frac{1}{2} \cdot w_{ij} \cdot (1 - \cos \theta_{ij})$$

$$= \alpha \cdot OPT_v$$

Lemma

$$\mathbf{E}[W] \geq \alpha \cdot OPT_v$$
 and hence $\mathbf{E}[W] \geq \alpha \cdot OPT$.

Е

Proof.

• Observe that, for any θ , $0 < \theta \le \pi$, we must have, $\frac{\theta}{\pi} \ge \alpha \cdot (\frac{1-\cos\theta}{2})$.

$$[W] = \sum_{1 \le i < j \le n} w_{ij} \cdot \Pr[v_i \text{ and } v_j \text{ are separated }]$$

=
$$\sum_{1 \le i < j \le n} w_{ij} \cdot \Pr[\mathbf{a}_i \text{ and } \mathbf{a}_j \text{ are separated by } \mathbf{r}]$$

=
$$\sum_{1 \le i < j \le n} w_{ij} \cdot \frac{\theta_{ij}}{\pi}$$

\ge \alpha \le \sum_{1 \le i < j \le n} \frac{1}{2} \cdot w_{ij} \cdot (1 - \cos \theta_{ij})
= \alpha \cdot OPT_v \ge \alpha \cdot OPT.

High Probability Guarantee

High Probability Guarantee

Theorem

There is a randomized approximation algorithm for Max-Cut that achieves the approximation factor of 0.87856.

High Probability Guarantee

Theorem

There is a randomized approximation algorithm for Max-Cut that achieves the approximation factor of 0.87856.

Theorem

There is a randomized approximation algorithm for Max-Cut that achieves the approximation factor of 0.87856.

Proof.

• Let *T* denote the sum of weights of all edges in *G*.

High Probability Guarantee

Theorem

There is a randomized approximation algorithm for Max-Cut that achieves the approximation factor of 0.87856.

- Let *T* denote the sum of weights of all edges in *G*.
- 2 Define *a* so that $\mathbf{E}[W] = a \cdot T$.

Theorem

There is a randomized approximation algorithm for Max-Cut that achieves the approximation factor of 0.87856.

- Let *T* denote the sum of weights of all edges in *G*.
- 2 Define a so that $\mathbf{E}[W] = a \cdot T$. (a will be decided later.)

Theorem

There is a randomized approximation algorithm for Max-Cut that achieves the approximation factor of 0.87856.

- Let T denote the sum of weights of all edges in G.
- 2 Define *a* so that $\mathbf{E}[W] = a \cdot T$. (*a* will be decided later.)
- Solution Let $p = \Pr[W < (1 \varepsilon) \cdot a \cdot T]$. (ε will be chosen later.)

Theorem

There is a randomized approximation algorithm for Max-Cut that achieves the approximation factor of 0.87856.

- Let T denote the sum of weights of all edges in G.
- 2 Define a so that $\mathbf{E}[W] = a \cdot T$. (a will be decided later.)
- Solution Let $p = \Pr[W < (1 \varepsilon) \cdot a \cdot T]$. (ε will be chosen later.)
- Since $W \leq T$, we must have,

Theorem

There is a randomized approximation algorithm for Max-Cut that achieves the approximation factor of 0.87856.

- Let T denote the sum of weights of all edges in G.
- 2 Define a so that $\mathbf{E}[W] = a \cdot T$. (a will be decided later.)
- Solution Let $p = \Pr[W < (1 \varepsilon) \cdot a \cdot T]$. (ε will be chosen later.)
- Since $W \le T$, we must have, $a \cdot T \le p \cdot (1 \varepsilon) \cdot a \cdot T + (1 p) \cdot T$.

Theorem

There is a randomized approximation algorithm for Max-Cut that achieves the approximation factor of 0.87856.

- Let T denote the sum of weights of all edges in G.
- 2 Define a so that $\mathbf{E}[W] = a \cdot T$. (a will be decided later.)
- Solution Let $p = \Pr[W < (1 \varepsilon) \cdot a \cdot T]$. (ε will be chosen later.)
- Since $W \le T$, we must have, $a \cdot T \le p \cdot (1-\varepsilon) \cdot a \cdot T + (1-p) \cdot T$.
- It follows that,

Theorem

There is a randomized approximation algorithm for Max-Cut that achieves the approximation factor of 0.87856.

- Let T denote the sum of weights of all edges in G.
- 2 Define *a* so that $\mathbf{E}[W] = a \cdot T$. (*a* will be decided later.)
- Solution Let $p = \Pr[W < (1 \varepsilon) \cdot a \cdot T]$. (ε will be chosen later.)
- Since $W \le T$, we must have, $a \cdot T \le p \cdot (1-\varepsilon) \cdot a \cdot T + (1-p) \cdot T$.

$$It follows that, p \leq \frac{1-a}{1-a+a \cdot \varepsilon}.$$

Theorem

There is a randomized approximation algorithm for Max-Cut that achieves the approximation factor of 0.87856.

- Let T denote the sum of weights of all edges in G.
- 2 Define a so that $\mathbf{E}[W] = a \cdot T$. (a will be decided later.)
- Solution Let $p = \Pr[W < (1 \varepsilon) \cdot a \cdot T]$. (ε will be chosen later.)
- Since $W \le T$, we must have, $a \cdot T \le p \cdot (1-\varepsilon) \cdot a \cdot T + (1-p) \cdot T$.
- **(**) It follows that, $p \leq \frac{1-a}{1-a+a\cdot\varepsilon}$.
- Now observe that,

Theorem

There is a randomized approximation algorithm for Max-Cut that achieves the approximation factor of 0.87856.

- Let T denote the sum of weights of all edges in G.
- 2 Define a so that $\mathbf{E}[W] = a \cdot T$. (a will be decided later.)
- 3 Let $p = \Pr[W < (1 \varepsilon) \cdot a \cdot T]$. (ε will be chosen later.)
- Since $W \le T$, we must have, $a \cdot T \le p \cdot (1 \varepsilon) \cdot a \cdot T + (1 p) \cdot T$.
- It follows that, $p \leq \frac{1-a}{1-a+a\cdot\varepsilon}$.
- Now observe that,

$$T \ge$$

Theorem

There is a randomized approximation algorithm for Max-Cut that achieves the approximation factor of 0.87856.

Proof.

- Let T denote the sum of weights of all edges in G.
- 2 Define a so that $\mathbf{E}[W] = a \cdot T$. (a will be decided later.)
- Solution Let $p = \Pr[W < (1 \varepsilon) \cdot a \cdot T]$. (ε will be chosen later.)
- Since $W \le T$, we must have, $a \cdot T \le p \cdot (1 \varepsilon) \cdot a \cdot T + (1 p) \cdot T$.
- **1** It follows that, $p \leq \frac{1-a}{1-a+a\cdot\varepsilon}$.

• Now observe that, $T \ge \mathbf{E}[W] =$

Theorem

There is a randomized approximation algorithm for Max-Cut that achieves the approximation factor of 0.87856.

Proof.

- Let T denote the sum of weights of all edges in G.
- 2 Define a so that $\mathbf{E}[W] = a \cdot T$. (a will be decided later.)
- Let $p = \Pr[W < (1 \varepsilon) \cdot a \cdot T]$. (ε will be chosen later.)
- Since $W \le T$, we must have, $a \cdot T \le p \cdot (1-\varepsilon) \cdot a \cdot T + (1-p) \cdot T$.
- $It follows that, p \leq \frac{1-a}{1-a+a \cdot \varepsilon}.$

• Now observe that, $T \ge \mathbf{E}[W] = \mathbf{a} \cdot T \ge$

Theorem

There is a randomized approximation algorithm for Max-Cut that achieves the approximation factor of 0.87856.

- Let T denote the sum of weights of all edges in G.
- 2 Define a so that $\mathbf{E}[W] = a \cdot T$. (a will be decided later.)
- Let $p = \Pr[W < (1 \varepsilon) \cdot a \cdot T]$. (ε will be chosen later.)
- Since $W \le T$, we must have, $a \cdot T \le p \cdot (1 \varepsilon) \cdot a \cdot T + (1 p) \cdot T$.
- It follows that, $p \leq \frac{1-a}{1-a+a\cdot\varepsilon}$.
- Solution Now observe that, $T \ge \mathbf{E}[W] = a \cdot T \ge \alpha \cdot OPT_v \ge c$

Theorem

There is a randomized approximation algorithm for Max-Cut that achieves the approximation factor of 0.87856.

- Let T denote the sum of weights of all edges in G.
- 2 Define a so that $\mathbf{E}[W] = a \cdot T$. (a will be decided later.)
- Let $p = \Pr[W < (1 \varepsilon) \cdot a \cdot T]$. (ε will be chosen later.)
- Since $W \le T$, we must have, $a \cdot T \le p \cdot (1 \varepsilon) \cdot a \cdot T + (1 p) \cdot T$.
- It follows that, $p \leq \frac{1-a}{1-a+a \cdot \varepsilon}$.
- Now observe that, $T \ge \mathbf{E}[W] = \mathbf{a} \cdot T \ge \alpha \cdot OPT_v \ge \alpha \cdot OPT \ge$

Theorem

There is a randomized approximation algorithm for Max-Cut that achieves the approximation factor of 0.87856.

- Let T denote the sum of weights of all edges in G.
- 2 Define a so that $\mathbf{E}[W] = a \cdot T$. (a will be decided later.)
- Let $p = \Pr[W < (1 \varepsilon) \cdot a \cdot T]$. (ε will be chosen later.)
- Since $W \le T$, we must have, $a \cdot T \le p \cdot (1 \varepsilon) \cdot a \cdot T + (1 p) \cdot T$.
- It follows that, $p \leq \frac{1-a}{1-a+a \cdot \varepsilon}$.
- Now observe that, $T \ge \mathbf{E}[W] = \mathbf{a} \cdot T \ge \alpha \cdot OPT_v \ge \alpha \cdot OPT \ge \frac{\alpha \cdot T}{2}$.

Theorem

There is a randomized approximation algorithm for Max-Cut that achieves the approximation factor of 0.87856.

- Let T denote the sum of weights of all edges in G.
- 2 Define a so that $\mathbf{E}[W] = a \cdot T$. (a will be decided later.)
- Let $p = \Pr[W < (1 \varepsilon) \cdot a \cdot T]$. (ε will be chosen later.)
- Since $W \le T$, we must have, $a \cdot T \le p \cdot (1-\varepsilon) \cdot a \cdot T + (1-p) \cdot T$.
- It follows that, $p \leq \frac{1-a}{1-a+a \cdot \varepsilon}$.
- Now observe that, $T \ge \mathbf{E}[W] = \mathbf{a} \cdot T \ge \alpha \cdot OPT_v \ge \alpha \cdot OPT \ge \frac{\alpha \cdot T}{2}.$
- Therefore,

Theorem

There is a randomized approximation algorithm for Max-Cut that achieves the approximation factor of 0.87856.

- Let T denote the sum of weights of all edges in G.
- 2 Define a so that $\mathbf{E}[W] = a \cdot T$. (a will be decided later.)
- Let $p = \Pr[W < (1 \varepsilon) \cdot a \cdot T]$. (ε will be chosen later.)
- Since $W \le T$, we must have, $a \cdot T \le p \cdot (1-\varepsilon) \cdot a \cdot T + (1-p) \cdot T$.
- **5** It follows that, $p \leq \frac{1-a}{1-a+a\cdot\varepsilon}$.
- Now observe that, $T \ge \mathbf{E}[W] = a \cdot T \ge \alpha \cdot OPT_v \ge \alpha \cdot OPT \ge \frac{\alpha \cdot T}{2}.$
- Therefore, $\frac{\alpha}{2} \le a \le 1$.

Theorem

There is a randomized approximation algorithm for Max-Cut that achieves the approximation factor of 0.87856.

Proof.

- Let T denote the sum of weights of all edges in G.
- 2 Define a so that $\mathbf{E}[W] = a \cdot T$. (a will be decided later.)
- Let $p = \Pr[W < (1 \varepsilon) \cdot a \cdot T]$. (ε will be chosen later.)
- Since $W \le T$, we must have, $a \cdot T \le p \cdot (1 \varepsilon) \cdot a \cdot T + (1 p) \cdot T$.
- **5** It follows that, $p \leq \frac{1-a}{1-a+a\cdot\varepsilon}$.
- Now observe that, $T \ge \mathbf{E}[W] = a \cdot T \ge \alpha \cdot OPT_v \ge \alpha \cdot OPT \ge \frac{\alpha \cdot T}{2}.$
- Therefore, $\frac{\alpha}{2} \le a \le 1$.

Hence,

Theorem

There is a randomized approximation algorithm for Max-Cut that achieves the approximation factor of 0.87856.

- Let T denote the sum of weights of all edges in G.
- 2 Define a so that $\mathbf{E}[W] = a \cdot T$. (a will be decided later.)
- Let $p = \Pr[W < (1 \varepsilon) \cdot a \cdot T]$. (ε will be chosen later.)
- Since $W \le T$, we must have, $a \cdot T \le p \cdot (1-\varepsilon) \cdot a \cdot T + (1-p) \cdot T$.
- It follows that, $p \leq \frac{1-a}{1-a+a \cdot \varepsilon}$.
- Now observe that, $T \ge \mathbf{E}[W] = \mathbf{a} \cdot T \ge \alpha \cdot OPT_v \ge \alpha \cdot OPT \ge \frac{\alpha \cdot T}{2}.$
- Therefore, $\frac{\alpha}{2} \le a \le 1$.
- **3** Hence, $p \leq 1 \frac{\varepsilon \cdot \frac{\alpha}{2}}{1 + \varepsilon \frac{\alpha}{2}}$.

Theorem

There is a randomized approximation algorithm for Max-Cut that achieves the approximation factor of 0.87856.

- Let T denote the sum of weights of all edges in G.
- 2 Define a so that $\mathbf{E}[W] = a \cdot T$. (a will be decided later.)
- Let $p = \Pr[W < (1 \varepsilon) \cdot a \cdot T]$. (ε will be chosen later.)
- Since $W \le T$, we must have, $a \cdot T \le p \cdot (1-\varepsilon) \cdot a \cdot T + (1-p) \cdot T$.
- **5** It follows that, $p \leq \frac{1-a}{1-a+a\cdot\varepsilon}$.
- Now observe that, $T \ge \mathbf{E}[W] = \mathbf{a} \cdot T \ge \alpha \cdot OPT_v \ge \alpha \cdot OPT \ge \frac{\alpha \cdot T}{2}.$
- O Therefore, $\frac{\alpha}{2} \le a \le 1$.
- **i** Hence, $p \leq 1 \frac{\varepsilon \cdot \frac{\alpha}{2}}{1 + \varepsilon \frac{\alpha}{2}}$.

• Let
$$c = \frac{\varepsilon \cdot \frac{\alpha}{2}}{1 + \varepsilon - \frac{\alpha}{2}}$$
.

Completing the analysis

Completing the analysis

Completing the analysis

Final steps

• Run the semidefinite algorithm and perform the randomized rounding $\frac{1}{c}$ times and output the heaviest cut.

Completing the analysis

- Run the semidefinite algorithm and perform the randomized rounding ¹/_c times and output the heaviest cut.
- **2** Let W' be the weight of this cut.

Completing the analysis

- Run the semidefinite algorithm and perform the randomized rounding ¹/_c times and output the heaviest cut.
- 2 Let W' be the weight of this cut.
- It follows that,

Completing the analysis

- Run the semidefinite algorithm and perform the randomized rounding ¹/_c times and output the heaviest cut.
- **2** Let W' be the weight of this cut.
- It follows that,

$$\Pr[W' \ge (1 - \varepsilon) \cdot a \cdot T]$$

Completing the analysis

Final steps

- Run the semidefinite algorithm and perform the randomized rounding ¹/_c times and output the heaviest cut.
- 2 Let W' be the weight of this cut.
- It follows that,

 $\Pr[W' \ge (1 - \varepsilon) \cdot a \cdot T] \ge$

Completing the analysis

- Run the semidefinite algorithm and perform the randomized rounding $\frac{1}{c}$ times and output the heaviest cut.
- **2** Let W' be the weight of this cut.
- It follows that,

$$\Pr[W' \ge (1-\varepsilon) \cdot a \cdot T] \ge 1-(1-c)^{\frac{1}{c}}$$

Completing the analysis

- Run the semidefinite algorithm and perform the randomized rounding $\frac{1}{c}$ times and output the heaviest cut.
- **2** Let W' be the weight of this cut.
- It follows that,

$$\Pr[W' \ge (1-\varepsilon) \cdot a \cdot T] \ge 1-(1-c)^{\frac{1}{c}}$$

Completing the analysis

- Run the semidefinite algorithm and perform the randomized rounding $\frac{1}{c}$ times and output the heaviest cut.
- **2** Let W' be the weight of this cut.
- It follows that,

$$\Pr[W' \ge (1-\varepsilon) \cdot a \cdot T] \ge 1-(1-c)^{\frac{1}{c}}$$
$$\ge 1-\frac{1}{e}.$$

Completing the analysis

Final steps

- Run the semidefinite algorithm and perform the randomized rounding $\frac{1}{c}$ times and output the heaviest cut.
- 2 Let W' be the weight of this cut.
- It follows that,

$$\begin{aligned} \mathbf{Pr}[W' \geq (1-\varepsilon) \cdot a \cdot T] &\geq 1 - (1-c)^{\frac{1}{c}} \\ &\geq 1 - \frac{1}{a}. \end{aligned}$$

 $\bigcirc \quad \text{Since } a \cdot T \ge$

Completing the analysis

Final steps

- Run the semidefinite algorithm and perform the randomized rounding $\frac{1}{c}$ times and output the heaviest cut.
- 2 Let W' be the weight of this cut.
- It follows that,

$$\begin{aligned} \mathbf{Pr}[W' \geq (1-\varepsilon) \cdot a \cdot T] &\geq 1 - (1-c)^{\frac{1}{c}} \\ &\geq 1 - \frac{1}{a}. \end{aligned}$$

 $I Since a \cdot T \geq \alpha \cdot OPT >$

Completing the analysis

Final steps

- Run the semidefinite algorithm and perform the randomized rounding $\frac{1}{c}$ times and output the heaviest cut.
- 2 Let W' be the weight of this cut.
- It follows that,

$$\begin{aligned} \mathbf{Pr}[W' \geq (1-\varepsilon) \cdot a \cdot T] &\geq 1 - (1-c)^{\frac{1}{c}} \\ &\geq 1 - \frac{1}{e}. \end{aligned}$$

• Since $a \cdot T \ge \alpha \cdot OPT > 0.87856 \cdot OPT$,

Completing the analysis

Final steps

- Run the semidefinite algorithm and perform the randomized rounding $\frac{1}{c}$ times and output the heaviest cut.
- 2 Let W' be the weight of this cut.
- It follows that,

$$\begin{aligned} \mathbf{Pr}[W' \geq (1-\varepsilon) \cdot a \cdot T] &\geq 1 - (1-c)^{\frac{1}{c}} \\ &\geq 1 - \frac{1}{e}. \end{aligned}$$

• Since $a \cdot T \ge \alpha \cdot OPT > 0.87856 \cdot OPT$, we can pick a value of $\varepsilon > 0$, so that $(1 - \varepsilon) \cdot a \cdot T \ge 1$

Completing the analysis

Final steps

- Run the semidefinite algorithm and perform the randomized rounding $\frac{1}{c}$ times and output the heaviest cut.
- 2 Let W' be the weight of this cut.
- It follows that,

$$\begin{aligned} \mathbf{Pr}[W' \geq (1-\varepsilon) \cdot a \cdot T] &\geq 1 - (1-c)^{\frac{1}{c}} \\ &\geq 1 - \frac{1}{e}. \end{aligned}$$

• Since $a \cdot T \ge \alpha \cdot OPT > 0.87856 \cdot OPT$, we can pick a value of $\varepsilon > 0$, so that $(1 - \varepsilon) \cdot a \cdot T \ge 0.87856 \cdot OPT$.

Summary

Summary

Summary

Step by step procedure

• Formulate the problem as a Quadratically Constrained Quadratic Integer Program (QCQIP).

Summary

- Formulate the problem as a Quadratically Constrained Quadratic Integer Program (QCQIP).
- 2 Relax the QCQIP to a vector program (VP).

Summary

- Formulate the problem as a Quadratically Constrained Quadratic Integer Program (QCQIP).
- Provide the QCQIP to a vector program (VP).
- Seplace VP with an equivalent semidefinite program (SDP).

Summary

- Formulate the problem as a Quadratically Constrained Quadratic Integer Program (QCQIP).
- Provide the QCQIP to a vector program (VP).
- 3 Replace VP with an equivalent semidefinite program (SDP).
- Solve the SDP optimally

Summary

- Formulate the problem as a Quadratically Constrained Quadratic Integer Program (QCQIP).
- Provide the QCQIP to a vector program (VP).
- Seplace VP with an equivalent semidefinite program (SDP).
- Solve the SDP optimally (Ellipsoid Method).

Summary

- Formulate the problem as a Quadratically Constrained Quadratic Integer Program (QCQIP).
- Provide the QCQIP to a vector program (VP).
- 3 Replace VP with an equivalent semidefinite program (SDP).
- Solve the SDP optimally (Ellipsoid Method).
- Perform randomized rounding to obtain a solution.

Summary

- Formulate the problem as a Quadratically Constrained Quadratic Integer Program (QCQIP).
- Provide the QCQIP to a vector program (VP).
- Seplace VP with an equivalent semidefinite program (SDP).
- Solve the SDP optimally (Ellipsoid Method).
- Perform randomized rounding to obtain a solution.
- If needed, improve the guarantee of the approximation, by running the algorithm an appropriate number of times.