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MAX-SAT

Preliminaries

Satisfiability (SAT)

Definition (Satisfiability (SAT))

Given a CNF formula φ = C1 ∧C2 . . .Cm , over the variables {x1,x2, . . . ,xn}, is there an
assignment of {true, false} values to the literals, such that each clause Ci is satisfied?

Note

SAT was the first naturally occurring problem to be proven NP-complete (Stephen Cook, 1971).
Applications of SAT are too numerous to mention; logic, verification, AI, optimization, . . ..
kSAT, k ≥ 3 is NP-complete; k ≤ 2 is in P. HornSAT is also in P.

Example

φ = (x1, x̄4, x̄7)

(x2, x̄1)

(x3, x̄1, x̄4)
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Preliminaries

MaxSAT

Definition (Maximim Satisfiability (MaxSAT))

Given a CNF formula φ = C1 ∧C2 . . .Cm , over the variables {x1,x2, . . . ,xn}, find an assignment
of {true, false} values to the literals, such that the number of clauses satisfied is maximized.

Note

1 Clearly, SAT ≤ MaxSAT.

2 Max2SAT and MaxHornSAT are both NP-hard.
3 In the weighted version, each clause has a weight associated with it. The goal in this case

is to maximize the sum of the weights of the satisfied clauses.

4 We will focus on the cardinality version. All our arguments carry over to the weighted case
with almost no change.
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The variable setting algorithm

Variable-setting

1 for (i = 1 to n)

2 Flip a fair coin.
3 If (the coin turns up “heads”)

4 Set xi to true.
5 else
6 Set xi to false.
7 endif
8 endfor
9 Return the number of satisfied clauses.
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MAX-SAT

The variable setting algorithm

Analysis

Lemma

Let k denote the width of the clausal system, i.e., the number of literals in the clause with the
fewest number of literals. The expected number of clauses satisfied by the above algorithm is
OPT · (1− 1

2k ).

Proof.

1 Let pi denote the probability that clause Ci is satisfied.

2 Clearly, pi ≥ (1− 1
2k ).

3 Let Xi denote an indicator variable. Xi is set to 1, if clause Ci is satisfied under the variable
setting algorithm and 0 otherwise.

4 Let X = ∑
m
i=1 Xi . Clearly, we are interested in X .

5 However, since X is a random variable, we focus on E[X ].
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Randomized Rounding

The LP-based approach

1 Let C+
j denote the set of literals that appear in uncomplemented form in clause Cj .

Likewise, let C−j denote the set of literals that appear in complemented form in clause Cj .

2 The MaxSAT problem can then be modeled through the following integer program:

max∑
m
j=1 zi

subject to ∑i∈C+
j

yi + ∑i∈C−j
(1− yi )≥ zj

yi ,zj ∈ {0,1} ∀i, j

3 Relax the above integer program to a linear program and solve it.

4 Let ŷ and ẑ denote the values of the variables at the optimum solution.
5 Independently set each yi to 1, with probability ŷi .
6 Output the number of satisfied clauses.
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4 Let ŷ and ẑ denote the values of the variables at the optimum solution.
5 Independently set each yi to 1, with probability ŷi .
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6 Output the number of satisfied clauses.



MAX-SAT

The randomized rounding algorithm

Randomized Rounding

The LP-based approach

1 Let C+
j denote the set of literals that appear in uncomplemented form in clause Cj .

Likewise, let C−j denote the set of literals that appear in complemented form in clause Cj .

2 The MaxSAT problem can then be modeled through the following integer program:

max∑
m
j=1 zi

subject to ∑i∈C+
j

yi + ∑i∈C−j
(1− yi )≥ zj

yi ,zj ∈ {0,1} ∀i, j

3 Relax the above integer program to a linear program and solve it.
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MAX-SAT

The randomized rounding algorithm

Analysis

Lemma

Let βk = 1− (1− 1
k )k . For any clause Cj with k literals, the probability that it is satisfied by the

LP-rounding assignment is at least βk ẑj .

Proof.

1 Focus on a specific clause Cj with k literals.

2 Without loss of generality, we can assume that Cj = (x1,x2, . . . ,xk ).
3 Since the LP was solved optimally, we must have,

ŷ1 + ŷ2 + . . . ŷk ≥ ẑj .

4 The probability that clause Cj remains unsatisfied after the rounding, is precisely the
probability that each yi , i = 1,2, . . .k was set to 0. This probability is clearly Πk

i=1(1− ŷi ).
5 We thus need to show that

1−Πk
i=1(1− ŷi )≥ βk · ẑj .
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5 We thus need to show that

1−Πk
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4 The probability that clause Cj remains unsatisfied after the rounding, is precisely the
probability that each yi , i = 1,2, . . .k was set to 0. This probability is clearly Πk

i=1(1− ŷi ).
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MAX-SAT

The randomized rounding algorithm

Analysis

Lemma

Let βk = 1− (1− 1
k )k . For any clause Cj with k literals, the probability that it is satisfied by the

LP-rounding assignment is at least βk ẑj .
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5 We thus need to show that

1−Πk
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4 The probability that clause Cj remains unsatisfied after the rounding, is precisely the
probability that each yi , i = 1,2, . . .k was set to 0. This probability is clearly Πk

i=1(1− ŷi ).
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βk · ẑj .
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4 The probability that clause Cj remains unsatisfied after the rounding, is precisely the
probability that each yi , i = 1,2, . . .k was set to 0. This probability is clearly Πk

i=1(1− ŷi ).
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MAX-SAT

The randomized rounding algorithm

Analysis (contd.)

Proof.

1 The expression 1−Πk
i=1(1− ŷi ) is minimized at ŷi =

ẑj
k .

2 It therefore suffices to show that (1− (1− z
k )k )≥ βk · z, for all integers k and all z ∈ [0,1].

3 Observe that f (x) = 1− (1− x
k )k is a concave function.

4 It therefore suffices to verify the inequality f (x)≥ βk · x at x = 0 and x = 1.
5 Note that f (0) = 0≥ βk ·0 and f (1) = βk ≥ βk ·1.
6 We apply the same logic to the linear function g(z) = βk · z and the lemma follows.
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MAX-SAT

The randomized rounding algorithm

Final Steps (contd.)

Proof.

1 As discussed before,

E[X ] =

E[
m

∑
j=1

Xi ]

=
m

∑
j=1

E[Xi ]

=
m

∑
j=1

pi

≥
m

∑
j=1

βki · ẑj
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4 As per the LP-based randomized rounding algorithm,

n2 ≥ ∑
k

∑
Cj∈Sk

βk · ẑj .
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ẑj

=
3
4
·∑

j
ẑj
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