The Maximum Satisfiability problem

K. Subramani¹

¹Lane Department of Computer Science and Electrical Engineering West Virginia University

April 7, 2014

MAX-SAT			
Outline			

Outline

Outline			

Outline

1 Preliminaries

Outline

1 Preliminaries

3 The randomized rounding algorithm
4 A $\frac{3}{4}$ factor algorithm

Satisfiability (SAT)

Satisfiability (SAT)

Definition (Satisfiability (SAT))

Given a CNF formula $\phi = C_1 \land C_2 \ldots C_m$, over the variables $\{x_1, x_2, \ldots, x_n\}$, is there an assignment of $\{$ **true**, **false** $\}$ values to the literals, such that each clause C_i is satisfied?

Definition (Satisfiability (SAT))

Given a CNF formula $\phi = C_1 \land C_2 \ldots C_m$, over the variables $\{x_1, x_2, \ldots, x_n\}$, is there an assignment of $\{$ **true**, **false** $\}$ values to the literals, such that each clause C_i is satisfied?

Note

SAT was the first naturally occurring problem to be proven NP-complete (Stephen Cook, 1971).

Satisfiability (SAT)

Definition (Satisfiability (SAT))

Given a CNF formula $\phi = C_1 \land C_2 \ldots C_m$, over the variables $\{x_1, x_2, \ldots, x_n\}$, is there an assignment of $\{$ **true**, **false** $\}$ values to the literals, such that each clause C_i is satisfied?

Note

SAT was the first naturally occurring problem to be proven **NP-complete** (Stephen Cook, 1971). Applications of SAT are too numerous to mention; logic, verification, AI, optimization, kSAT, $k \ge 3$ is **NP-complete**; $k \le 2$ is in **P**. HornSAT is also in **P**.

Definition (Satisfiability (SAT))

Given a CNF formula $\phi = C_1 \land C_2 \ldots C_m$, over the variables $\{x_1, x_2, \ldots, x_n\}$, is there an assignment of $\{$ **true**, **false** $\}$ values to the literals, such that each clause C_i is satisfied?

Note

SAT was the first naturally occurring problem to be proven **NP-complete** (Stephen Cook, 1971). Applications of SAT are too numerous to mention; logic, verification, AI, optimization, kSAT, $k \ge 3$ is **NP-complete**; $k \le 2$ is in **P**. HornSAT is also in **P**.

Example

$$\phi = (x_1, \bar{x_4}, \bar{x_7}) \\ (x_2, \bar{x_1}) \\ (x_3, \bar{x_1}, \bar{x_4})$$

Definition (Maximim Satisfiability (MaxSAT))

Given a CNF formula $\phi = C_1 \land C_2 \ldots C_m$, over the variables $\{x_1, x_2, \ldots, x_n\}$, find an assignment of $\{$ **true**, **false** $\}$ values to the literals, such that the number of clauses satisfied is

Definition (Maximim Satisfiability (MaxSAT))

Given a CNF formula $\phi = C_1 \land C_2 \ldots C_m$, over the variables $\{x_1, x_2, \ldots, x_n\}$, find an assignment of $\{$ **true**, **false** $\}$ values to the literals, such that the number of clauses satisfied is *maximized*.

Definition (Maximim Satisfiability (MaxSAT))

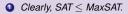
Given a CNF formula $\phi = C_1 \land C_2 \ldots C_m$, over the variables $\{x_1, x_2, \ldots, x_n\}$, find an assignment of $\{$ **true**, **false** $\}$ values to the literals, such that the number of clauses satisfied is *maximized*.

Definition (Maximim Satisfiability (MaxSAT))

Given a CNF formula $\phi = C_1 \land C_2 \ldots C_m$, over the variables $\{x_1, x_2, \ldots, x_n\}$, find an assignment of $\{$ **true**, **false** $\}$ values to the literals, such that the number of clauses satisfied is *maximized*.

Definition (Maximim Satisfiability (MaxSAT))

Given a CNF formula $\phi = C_1 \land C_2 \ldots C_m$, over the variables $\{x_1, x_2, \ldots, x_n\}$, find an assignment of $\{$ **true**, **false** $\}$ values to the literals, such that the number of clauses satisfied is *maximized*.



Definition (Maximim Satisfiability (MaxSAT))

Given a CNF formula $\phi = C_1 \land C_2 \ldots C_m$, over the variables $\{x_1, x_2, \ldots, x_n\}$, find an assignment of $\{$ **true**, **false** $\}$ values to the literals, such that the number of clauses satisfied is *maximized*.

- Clearly, SAT \leq MaxSAT.
- 2 Max2SAT and MaxHornSAT are both NP-hard.

Definition (Maximim Satisfiability (MaxSAT))

Given a CNF formula $\phi = C_1 \land C_2 \ldots C_m$, over the variables $\{x_1, x_2, \ldots, x_n\}$, find an assignment of $\{$ **true**, **false** $\}$ values to the literals, such that the number of clauses satisfied is *maximized*.

- Clearly, SAT \leq MaxSAT.
- Max2SAT and MaxHornSAT are both NP-hard.
- In the weighted version, each clause has a weight associated with it.

Definition (Maximim Satisfiability (MaxSAT))

Given a CNF formula $\phi = C_1 \land C_2 \ldots C_m$, over the variables $\{x_1, x_2, \ldots, x_n\}$, find an assignment of $\{$ **true**, **false** $\}$ values to the literals, such that the number of clauses satisfied is *maximized*.

- Clearly, SAT \leq MaxSAT.
- 2 Max2SAT and MaxHornSAT are both NP-hard.
- In the weighted version, each clause has a weight associated with it. The goal in this case is to maximize the sum of the weights of the satisfied clauses.

Definition (Maximim Satisfiability (MaxSAT))

Given a CNF formula $\phi = C_1 \land C_2 \ldots C_m$, over the variables $\{x_1, x_2, \ldots, x_n\}$, find an assignment of $\{$ **true**, **false** $\}$ values to the literals, such that the number of clauses satisfied is *maximized*.

- Clearly, SAT \leq MaxSAT.
- 2 Max2SAT and MaxHornSAT are both NP-hard.
- In the weighted version, each clause has a weight associated with it. The goal in this case is to maximize the sum of the weights of the satisfied clauses.
- We will focus on the cardinality version.

Definition (Maximim Satisfiability (MaxSAT))

Given a CNF formula $\phi = C_1 \land C_2 \ldots C_m$, over the variables $\{x_1, x_2, \ldots, x_n\}$, find an assignment of $\{$ **true**, **false** $\}$ values to the literals, such that the number of clauses satisfied is *maximized*.

- Clearly, SAT \leq MaxSAT.
- 2 Max2SAT and MaxHornSAT are both NP-hard.
- In the weighted version, each clause has a weight associated with it. The goal in this case is to maximize the sum of the weights of the satisfied clauses.
- We will focus on the cardinality version. All our arguments carry over to the weighted case with almost no change.

The variable setting algorithm

Variable-setting

The variable setting algorithm

Variable-setting



for (i = 1 to n)			
Ilip a fair coin.			

Variable-setting		
🜖 fe	or $(i = 1 \text{ to } n)$	
2	Flip a fair coin.	
3	If (the coin turns up "heads")	

Variab	Variable-setting			
0 f	• for (<i>i</i> = 1 to <i>n</i>)			
2	Flip a fair coin.			
3	If (the coin turns up "heads")			
٩	Set x _i to true .			

Variable-setting			
• for (<i>i</i> = 1 to <i>n</i>)			
2	Flip a fair coin.		
3	If (the coin turns up "heads")		
0	Set x _i to true .		
6	else		
•			

Variable-setting		
• for (<i>i</i> = 1 to <i>n</i>)		
2	Flip a fair coin.	
3	If (the coin turns up "heads")	
4	Set <i>x_i</i> to true .	
6	else	
0	Set x _i to false .	

Variabl	e-setting
🚺 fo	or $(i = 1 \text{ to } n)$
2	Flip a fair coin.
3	If (the coin turns up "heads")
٩	Set x _i to true .
6	else
0	Set x _i to false .
0	endif

Variable-setting		
🚺 fo	or $(i = 1 \text{ to } n)$	
0	Flip a fair coin.	
3	If (the coin turns up "heads")	
0	Set x _i to true .	
6	else	
6	Set x _i to false .	
0	endif	
• endfor		

Variable-se	Variable-setting	
(for (<i>i</i>	<i>i</i> = 1 to <i>n</i>)	
2 F	Flip a fair coin.	
3 H	f (the coin turns up "heads")	
0	Set x _i to true .	
5 e	else	
6	Set x _i to false .	
🧿 e	endif	
endfor		
 Return 	rn the number of satisfied clauses.	

Analysis

Analysis

Lemma

Let k denote the width of the clausal system,

Analysis

Lemma

Let k denote the width of the clausal system, i.e., the number of literals in the clause with the fewest number of literals.

Lemma

Let *k* denote the width of the clausal system, i.e., the number of literals in the clause with the fewest number of literals. The expected number of clauses satisfied by the above algorithm is $OPT \cdot (1 - \frac{1}{2^k})$.

Lemma

Let k denote the width of the clausal system, i.e., the number of literals in the clause with the fewest number of literals. The expected number of clauses satisfied by the above algorithm is $OPT \cdot (1 - \frac{1}{2^k})$.

Lemma

Let *k* denote the width of the clausal system, i.e., the number of literals in the clause with the fewest number of literals. The expected number of clauses satisfied by the above algorithm is $OPT \cdot (1 - \frac{1}{2^k})$.

Proof.

• Let p_i denote the probability that clause C_i is satisfied.

Lemma

Let *k* denote the width of the clausal system, i.e., the number of literals in the clause with the fewest number of literals. The expected number of clauses satisfied by the above algorithm is $OPT \cdot (1 - \frac{1}{2^k})$.

- Let p_i denote the probability that clause C_i is satisfied.
- ⁽²⁾ Clearly, $p_i \ge$

Lemma

Let *k* denote the width of the clausal system, i.e., the number of literals in the clause with the fewest number of literals. The expected number of clauses satisfied by the above algorithm is $OPT \cdot (1 - \frac{1}{2^k})$.

Proof.

• Let p_i denote the probability that clause C_i is satisfied.

2 Clearly,
$$p_i \ge (1 - \frac{1}{2^k})$$
.

Lemma

Let *k* denote the width of the clausal system, i.e., the number of literals in the clause with the fewest number of literals. The expected number of clauses satisfied by the above algorithm is $OPT \cdot (1 - \frac{1}{2^k})$.

- Let p_i denote the probability that clause C_i is satisfied.
- 2 Clearly, $p_i \ge (1 \frac{1}{2^k})$.
- 3 Let X_i denote an indicator variable.

Lemma

Let k denote the width of the clausal system, i.e., the number of literals in the clause with the fewest number of literals. The expected number of clauses satisfied by the above algorithm is $OPT \cdot (1 - \frac{1}{2^k})$.

- Let p_i denote the probability that clause C_i is satisfied.
- 2 Clearly, $p_i \ge (1 \frac{1}{2^k})$.
- Let X_i denote an indicator variable. X_i is set to 1, if clause C_i is satisfied under the variable setting algorithm and 0 otherwise.

Lemma

Let *k* denote the width of the clausal system, i.e., the number of literals in the clause with the fewest number of literals. The expected number of clauses satisfied by the above algorithm is $OPT \cdot (1 - \frac{1}{2^k})$.

- Let p_i denote the probability that clause C_i is satisfied.
- 2 Clearly, $p_i \ge (1 \frac{1}{2^k})$.
- Let X_i denote an indicator variable. X_i is set to 1, if clause C_i is satisfied under the variable setting algorithm and 0 otherwise.

• Let
$$X = \sum_{i=1}^{m} X_i$$
.

Lemma

Let *k* denote the width of the clausal system, i.e., the number of literals in the clause with the fewest number of literals. The expected number of clauses satisfied by the above algorithm is $OPT \cdot (1 - \frac{1}{2^k})$.

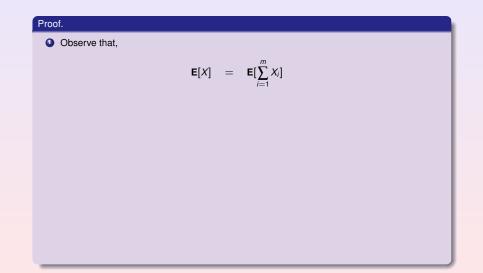
- Let p_i denote the probability that clause C_i is satisfied.
- 2 Clearly, $p_i \ge (1 \frac{1}{2^k})$.
- Let X_i denote an indicator variable. X_i is set to 1, if clause C_i is satisfied under the variable setting algorithm and 0 otherwise.
- Let $X = \sum_{i=1}^{m} X_i$. Clearly, we are interested in X.

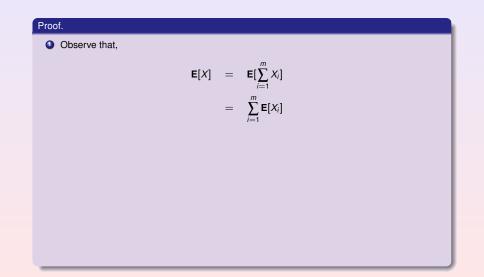
Lemma

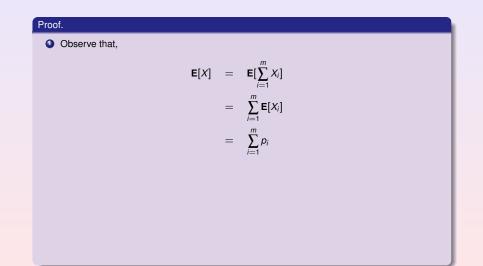
Let k denote the width of the clausal system, i.e., the number of literals in the clause with the fewest number of literals. The expected number of clauses satisfied by the above algorithm is $OPT \cdot (1 - \frac{1}{2^k})$.

- Let p_i denote the probability that clause C_i is satisfied.
- 2 Clearly, $p_i \ge (1 \frac{1}{2^k})$.
- Let X_i denote an indicator variable. X_i is set to 1, if clause C_i is satisfied under the variable setting algorithm and 0 otherwise.
- Let $X = \sum_{i=1}^{m} X_i$. Clearly, we are interested in X.
- However, since X is a random variable, we focus on E[X].

The variable setting algorithm







Proof. Observe that, $\mathbf{E}[X] = \mathbf{E}[\sum_{i=1}^m X_i]$ $= \sum_{i=1}^{m} \mathbf{E}[X_i]$ $= \sum_{i=1}^{m} p_i$ $\geq \sum_{i=1}^{m} (1 - \frac{1}{2^k})$

Proof. Observe that, $\mathbf{E}[X] = \mathbf{E}[\sum_{i=1}^{m} X_i]$ $= \sum_{i=1}^{m} \mathbf{E}[X_i]$ = $\sum_{i=1}^{m} p_i$ $\geq \sum_{i=1}^m (1-\frac{1}{2^k})$ $= m \cdot (1-\frac{1}{2^k})$

Proof. Observe that, $\mathbf{E}[X] = \mathbf{E}[\sum_{i=1}^{m} X_i]$ $= \sum_{i=1}^{m} \mathbf{E}[X_i]$ = $\sum_{i=1}^{m} p_i$ $\geq \quad \sum_{i=1}^m (1-\frac{1}{2^k})$ $= m \cdot (1 - \frac{1}{2^k})$ $\geq OPT \cdot (1 - \frac{1}{2^k}).$

The randomized rounding algorithm

Randomized Rounding

The randomized rounding algorithm

Randomized Rounding

The LP-based approach

L The randomized rounding algorithm

Randomized Rounding

The LP-based approach

• Let C_i^+ denote the set of literals that appear in uncomplemented form in clause C_i .

The randomized rounding algorithm

Randomized Rounding

The LP-based approach

Let C_j⁺ denote the set of literals that appear in uncomplemented form in clause C_j.
 Likewise, let C_j⁻ denote the set of literals that appear in complemented form in clause C_j.

The LP-based approach

- Let C_j⁺ denote the set of literals that appear in uncomplemented form in clause C_j.
 Likewise, let C_j⁻ denote the set of literals that appear in complemented form in clause C_j.
- On the MaxSAT problem can then be modeled through the following integer program:

The LP-based approach

- Let C_j⁺ denote the set of literals that appear in uncomplemented form in clause C_j.
 Likewise, let C_j⁻ denote the set of literals that appear in complemented form in clause C_j.
- **2** The MaxSAT problem can then be modeled through the following integer program:

 $\max \sum_{i=1}^{m} z_i$

The LP-based approach

- Let C_j⁺ denote the set of literals that appear in uncomplemented form in clause C_j.
 Likewise, let C_j⁻ denote the set of literals that appear in complemented form in clause C_j.
- **2** The MaxSAT problem can then be modeled through the following integer program:

$$\max \sum_{j=1}^{m} z_j$$

subject to

The LP-based approach

- Let C_j⁺ denote the set of literals that appear in uncomplemented form in clause C_j.
 Likewise, let C_j⁻ denote the set of literals that appear in complemented form in clause C_j.
- On the MaxSAT problem can then be modeled through the following integer program:

$$\max \sum_{j=1}^m z_i$$

subject to $\sum_{i \in \mathcal{C}_j^+} y_i + \sum_{i \in \mathcal{C}_j^-} (1-y_i) \geq z_j$

The LP-based approach

- Let C_j⁺ denote the set of literals that appear in uncomplemented form in clause C_j.
 Likewise, let C_j⁻ denote the set of literals that appear in complemented form in clause C_j.
- On the MaxSAT problem can then be modeled through the following integer program:

$$\begin{aligned} \max \sum_{j=1}^{m} z_{i} \\ \text{subject to} \quad \sum_{i \in C_{j}^{+}} y_{i} + \sum_{i \in C_{j}^{-}} (1 - y_{i}) \geq z_{j} \\ y_{i}, z_{j} \in \{0, 1\} \qquad \forall i, j \end{aligned}$$

The LP-based approach

Let C_j⁺ denote the set of literals that appear in uncomplemented form in clause C_j.
 Likewise, let C_j⁻ denote the set of literals that appear in complemented form in clause C_j.

On the MaxSAT problem can then be modeled through the following integer program:

$$\max \sum_{i=1}^{j=1} z_i$$
subject to
$$\sum_{i \in C_j^+} y_i + \sum_{i \in C_j^-} (1 - y_i) \ge z_j$$

$$y_i, z_j \in \{0, 1\} \quad \forall i, j$$

Selax the above integer program to a linear program and solve it.

The LP-based approach

Let C_j⁺ denote the set of literals that appear in uncomplemented form in clause C_j.
 Likewise, let C_j⁻ denote the set of literals that appear in complemented form in clause C_j.

On the MaxSAT problem can then be modeled through the following integer program:

$$\max \sum_{j=1}^{m} z_{i}$$
subject to $\sum_{i \in C_{j}^{+}} y_{i} + \sum_{i \in C_{j}^{-}} (1 - y_{i}) \ge z_{j}$
 $y_{i}, z_{j} \in \{0, 1\}$ $\forall i, j$

Selax the above integer program to a linear program and solve it.

4 Let \hat{y} and \hat{z} denote the values of the variables at the optimum solution.

The LP-based approach

Let C_j⁺ denote the set of literals that appear in uncomplemented form in clause C_j.
 Likewise, let C_j⁻ denote the set of literals that appear in complemented form in clause C_j.

On the MaxSAT problem can then be modeled through the following integer program:

$$\max \sum_{i=1}^{j=1}^{j=1} z_i$$
subject to
$$\sum_{i \in C_j^+} y_i + \sum_{i \in C_j^-} (1 - y_i) \ge z_j$$

$$y_i, z_j \in \{0, 1\} \quad \forall i, j$$

- Selax the above integer program to a linear program and solve it.
- Solution Let \hat{y} and \hat{z} denote the values of the variables at the optimum solution.
- Independently set each y_i to 1, with probability \hat{y}_i .

The LP-based approach

Let C_j⁺ denote the set of literals that appear in uncomplemented form in clause C_j.
 Likewise, let C_j⁻ denote the set of literals that appear in complemented form in clause C_j.

On the MaxSAT problem can then be modeled through the following integer program:

$$\begin{array}{ll} \max \sum_{j=1}^{m} z_i \\ \text{subject to} & \sum_{i \in C_j^+} y_i + \sum_{i \in C_j^-} (1 - y_i) \ge z_j \\ & y_i, z_j \in \{0, 1\} & \forall i, j \end{array}$$

- Selax the above integer program to a linear program and solve it.
- Solution Let \hat{y} and \hat{z} denote the values of the variables at the optimum solution.
- Independently set each y_i to 1, with probability \hat{y}_i .
- Output the number of satisfied clauses.

The randomized rounding algorithm

Analysis

The randomized rounding algorithm

Analysis

Lemma

Lemma

Let
$$\beta_k = 1 - (1 - \frac{1}{k})^k$$
.

Lemma

Let $\beta_k = 1 - (1 - \frac{1}{k})^k$. For any clause C_j with k literals, the probability that it is satisfied by the LP-rounding assignment is at least $\beta_k \hat{z}_j$.

Lemma

Let $\beta_k = 1 - (1 - \frac{1}{k})^k$. For any clause C_j with k literals, the probability that it is satisfied by the LP-rounding assignment is at least $\beta_k \hat{z}_j$.

Lemma

Let $\beta_k = 1 - (1 - \frac{1}{k})^k$. For any clause C_j with k literals, the probability that it is satisfied by the LP-rounding assignment is at least $\beta_k \hat{z}_j$.

Proof.

• Focus on a specific clause C_i with k literals.

Lemma

Let $\beta_k = 1 - (1 - \frac{1}{k})^k$. For any clause C_j with k literals, the probability that it is satisfied by the LP-rounding assignment is at least $\beta_k \hat{z}_j$.

Proof.

• Focus on a specific clause C_i with k literals.

2 Without loss of generality, we can assume that $C_j = (x_1, x_2, ..., x_k)$.

Lemma

Let $\beta_k = 1 - (1 - \frac{1}{k})^k$. For any clause C_j with k literals, the probability that it is satisfied by the LP-rounding assignment is at least $\beta_k \hat{z}_j$.

- Focus on a specific clause C_i with k literals.
- 3 Without loss of generality, we can assume that $C_j = (x_1, x_2, ..., x_k)$.
- Since the LP was solved optimally, we must have,

Lemma

Let $\beta_k = 1 - (1 - \frac{1}{k})^k$. For any clause C_j with k literals, the probability that it is satisfied by the LP-rounding assignment is at least $\beta_k \hat{z}_j$.

Proof.

• Focus on a specific clause C_i with k literals.

3 Without loss of generality, we can assume that $C_j = (x_1, x_2, ..., x_k)$.

Since the LP was solved optimally, we must have,

$$\hat{y_1} + \hat{y_2} + \ldots \hat{y_k} \geq \hat{z_j}.$$

Lemma

Let $\beta_k = 1 - (1 - \frac{1}{k})^k$. For any clause C_j with k literals, the probability that it is satisfied by the LP-rounding assignment is at least $\beta_k \hat{z}_j$.

Proof.

- Focus on a specific clause C_i with k literals.
- 3 Without loss of generality, we can assume that $C_j = (x_1, x_2, ..., x_k)$.
- Since the LP was solved optimally, we must have,

$$\hat{y_1} + \hat{y_2} + \ldots \hat{y_k} \geq \hat{z_j}.$$

• The probability that clause C_j remains unsatisfied after the rounding, is precisely the probability that each y_i , i = 1, 2, ..., k was set to 0.

Lemma

Let $\beta_k = 1 - (1 - \frac{1}{k})^k$. For any clause C_j with k literals, the probability that it is satisfied by the LP-rounding assignment is at least $\beta_k \hat{z}_j$.

Proof.

- Focus on a specific clause C_i with k literals.
- 3 Without loss of generality, we can assume that $C_j = (x_1, x_2, ..., x_k)$.
- Since the LP was solved optimally, we must have,

$$\hat{y_1} + \hat{y_2} + \ldots \hat{y_k} \geq \hat{z_j}.$$

• The probability that clause C_j remains unsatisfied after the rounding, is precisely the probability that each y_i , i = 1, 2, ..., k was set to 0. This probability is clearly

Lemma

Let $\beta_k = 1 - (1 - \frac{1}{k})^k$. For any clause C_j with k literals, the probability that it is satisfied by the LP-rounding assignment is at least $\beta_k \hat{z}_j$.

Proof.

- Focus on a specific clause C_i with k literals.
- 3 Without loss of generality, we can assume that $C_j = (x_1, x_2, ..., x_k)$.
- Since the LP was solved optimally, we must have,

$$\hat{y_1} + \hat{y_2} + \ldots \hat{y_k} \geq \hat{z_j}.$$

• The probability that clause C_j remains unsatisfied after the rounding, is precisely the probability that each $y_i, i = 1, 2, ..., k$ was set to 0. This probability is clearly $\prod_{i=1}^{k} (1 - \hat{y}_i)$.

Lemma

Let $\beta_k = 1 - (1 - \frac{1}{k})^k$. For any clause C_j with k literals, the probability that it is satisfied by the LP-rounding assignment is at least $\beta_k \hat{z}_j$.

- Focus on a specific clause C_i with k literals.
- 3 Without loss of generality, we can assume that $C_j = (x_1, x_2, ..., x_k)$.
- Since the LP was solved optimally, we must have,

$$\hat{y_1} + \hat{y_2} + \ldots \hat{y_k} \geq \hat{z_j}.$$

- The probability that clause C_j remains unsatisfied after the rounding, is precisely the probability that each $y_i, i = 1, 2, ..., k$ was set to 0. This probability is clearly $\prod_{i=1}^{k} (1 \hat{y}_i)$.
- We thus need to show that

Lemma

Let $\beta_k = 1 - (1 - \frac{1}{k})^k$. For any clause C_j with k literals, the probability that it is satisfied by the LP-rounding assignment is at least $\beta_k \hat{z}_j$.

- Focus on a specific clause C_i with k literals.
- 3 Without loss of generality, we can assume that $C_j = (x_1, x_2, ..., x_k)$.
- Since the LP was solved optimally, we must have,

$$\hat{y_1} + \hat{y_2} + \dots \hat{y_k} \geq \hat{z_j}.$$

- The probability that clause C_j remains unsatisfied after the rounding, is precisely the probability that each $y_i, i = 1, 2, ..., k$ was set to 0. This probability is clearly $\prod_{i=1}^{k} (1 \hat{y}_i)$.
- We thus need to show that

$$1-\Pi_{i=1}^k(1-\hat{y}_i)\geq$$

Lemma

Let $\beta_k = 1 - (1 - \frac{1}{k})^k$. For any clause C_j with k literals, the probability that it is satisfied by the LP-rounding assignment is at least $\beta_k \hat{z}_j$.

- Focus on a specific clause C_i with k literals.
- 3 Without loss of generality, we can assume that $C_j = (x_1, x_2, ..., x_k)$.
- Since the LP was solved optimally, we must have,

$$\hat{y_1} + \hat{y_2} + \ldots \hat{y_k} \geq \hat{z_j}.$$

- The probability that clause C_j remains unsatisfied after the rounding, is precisely the probability that each $y_i, i = 1, 2, ..., k$ was set to 0. This probability is clearly $\prod_{i=1}^{k} (1 \hat{y}_i)$.
- We thus need to show that

$$1-\prod_{i=1}^k (1-\hat{y}_i) \geq \beta_k \cdot \hat{z}_j.$$

Analysis (contd.)

Analysis (contd.)

Proof.

• The expression $1 - \prod_{i=1}^{k} (1 - \hat{y}_i)$ is minimized at $\hat{y}_i = \frac{\hat{z}_i}{k}$.

- The expression $1 \prod_{i=1}^{k} (1 \hat{y}_i)$ is minimized at $\hat{y}_i = \frac{\hat{z}_i}{k}$.
- 2 It therefore suffices to show that

- The expression $1 \prod_{i=1}^{k} (1 \hat{y}_i)$ is minimized at $\hat{y}_i = \frac{\hat{z}_i}{k}$.
- **2** It therefore suffices to show that $(1 (1 \frac{z}{k})^k) \ge \beta_k \cdot z$, for all integers *k* and all $z \in [0, 1]$.

- The expression $1 \prod_{i=1}^{k} (1 \hat{y}_i)$ is minimized at $\hat{y}_i = \frac{\hat{z}_i}{k}$.
- **2** It therefore suffices to show that $(1 (1 \frac{z}{k})^k) \ge \beta_k \cdot z$, for all integers *k* and all $z \in [0, 1]$.
- Observe that $f(x) = 1 (1 \frac{x}{k})^k$ is a concave function.

- The expression $1 \prod_{i=1}^{k} (1 \hat{y}_i)$ is minimized at $\hat{y}_i = \frac{\hat{z}_i}{k}$.
- 2 It therefore suffices to show that $(1 (1 \frac{z}{k})^k) \ge \beta_k \cdot z$, for all integers k and all $z \in [0, 1]$.
- Observe that $f(x) = 1 (1 \frac{x}{k})^k$ is a concave function.
- It therefore suffices to verify the inequality $f(x) \ge \beta_k \cdot x$ at x = 0 and x = 1.

- The expression $1 \prod_{i=1}^{k} (1 \hat{y}_i)$ is minimized at $\hat{y}_i = \frac{\hat{z}_i}{k}$.
- 2 It therefore suffices to show that $(1 (1 \frac{z}{k})^k) \ge \beta_k \cdot z$, for all integers k and all $z \in [0, 1]$.
- Observe that $f(x) = 1 (1 \frac{x}{k})^k$ is a concave function.
- **(**) It therefore suffices to verify the inequality $f(x) \ge \beta_k \cdot x$ at x = 0 and x = 1.
- Solution Note that $f(0) = 0 \ge \beta_k \cdot 0$ and $f(1) = \beta_k \ge \beta_k \cdot 1$.

- The expression $1 \prod_{i=1}^{k} (1 \hat{y}_i)$ is minimized at $\hat{y}_i = \frac{\hat{z}_i}{k}$.
- 2 It therefore suffices to show that $(1 (1 \frac{z}{k})^k) \ge \beta_k \cdot z$, for all integers k and all $z \in [0, 1]$.
- Observe that $f(x) = 1 (1 \frac{x}{k})^k$ is a concave function.
- It therefore suffices to verify the inequality $f(x) \ge \beta_k \cdot x$ at x = 0 and x = 1.
- Solution Note that $f(0) = 0 \ge \beta_k \cdot 0$ and $f(1) = \beta_k \ge \beta_k \cdot 1$.
- We apply the same logic to the linear function $g(z) = \beta_k \cdot z$ and the lemma follows.

Approximation bound

Approximation bound

Theorem

Let expected number of clauses satisfied by the randomized rounding algorithm is at least $(1 - \frac{1}{e}) \cdot OPT$.

Approximation bound

Theorem

Let expected number of clauses satisfied by the randomized rounding algorithm is at least $(1 - \frac{1}{e}) \cdot OPT$.

Approximation bound

Theorem

Let expected number of clauses satisfied by the randomized rounding algorithm is at least $(1 - \frac{1}{e}) \cdot OPT$.

Proof.

• Let X_i be 1, if clause C_i is satisfied, and 0 otherwise.

Approximation bound

Theorem

Let expected number of clauses satisfied by the randomized rounding algorithm is at least $(1 - \frac{1}{e}) \cdot OPT$.

Proof.

• Let X_i be 1, if clause C_i is satisfied, and 0 otherwise.

2 Let
$$X = \sum_{j=1}^{m} X_j$$
.

Approximation bound

Theorem

Let expected number of clauses satisfied by the randomized rounding algorithm is at least $(1 - \frac{1}{e}) \cdot OPT$.

- Let X_i be 1, if clause C_i is satisfied, and 0 otherwise.
- **2** Let $X = \sum_{j=1}^{m} X_j$.
- **9** Let k_i be the number of literals in clause C_i and let p_i denote the probability that clause C_i is satisfied.

Final Steps (contd.)

Final Steps (contd.)

Proof.			

Final Steps (contd.)

Proof.

Final Steps (contd.)

Proof.

Final Steps (contd.)

Proof.

As discussed before,

 $\mathbf{E}[X] =$

Proof.

$$\mathbf{E}[X] = \mathbf{E}[\sum_{i=1}^m X_i]$$

Proof.

$$\mathbf{E}[X] = \mathbf{E}[\sum_{j=1}^{m} X_{i}]$$
$$= \sum_{i=1}^{m} \mathbf{E}[X_{i}]$$

Proof.

$$\mathbf{E}[X] = \mathbf{E}[\sum_{j=1}^{m} X_{i}]$$
$$= \sum_{j=1}^{m} \mathbf{E}[X_{i}]$$
$$= \sum_{j=1}^{m} \rho_{i}$$

Proof.

$$E[X] = E[\sum_{j=1}^{m} X_{i}]$$
$$= \sum_{j=1}^{m} E[X_{i}]$$
$$= \sum_{j=1}^{m} p_{i}$$
$$\geq \sum_{i=1}^{m} \beta_{k_{i}} \cdot 2$$

Proof.

As discussed before,

$$E[X] = E[\sum_{j=1}^{m} X_{i}]$$
$$= \sum_{j=1}^{m} E[X_{i}]$$
$$= \sum_{j=1}^{m} p_{i}$$
$$\geq \sum_{i=1}^{m} \beta_{k_{i}} \cdot 2$$

L The randomized rounding algorithm

Final Steps (contd.)

The randomized rounding algorithm

Final Steps (contd.)

$$\mathbf{E}[X] \geq \sum_{i=1}^m (1-\frac{1}{e}) \cdot \hat{z}_i$$

$$\mathbf{E}[X] \geq \sum_{j=1}^{m} (1 - \frac{1}{e}) \cdot \hat{z}_j, \text{ since } \beta_k = 1 - (1 - \frac{1}{k})^k \geq (1 - \frac{1}{e}), \text{ for all positive integers } k$$

$$\mathbf{E}[X] \geq \sum_{j=1}^{m} (1 - \frac{1}{e}) \cdot \hat{z}_j, \text{ since } \beta_k = 1 - (1 - \frac{1}{k})^k \geq (1 - \frac{1}{e}), \text{ for all positive integers } k$$

$$= (1 - \frac{1}{e}) \cdot \sum_{j=1}^{m} \hat{z}_j$$

$$\mathbf{E}[X] \geq \sum_{j=1}^{m} (1 - \frac{1}{e}) \cdot \hat{z}_{j}, \text{ since } \beta_{k} = 1 - (1 - \frac{1}{k})^{k} \geq (1 - \frac{1}{e}), \text{ for all positive integers } k$$
$$= (1 - \frac{1}{e}) \cdot \sum_{j=1}^{m} \hat{z}_{j}$$
$$\geq (1 - \frac{1}{e}) \cdot OPT.$$

Combination Algorithm

• Run the variable flipping algorithm.

Combination Algorithm

Run the variable flipping algorithm. Let n₁ be the number of clauses satisfied by this algorithm.

- Run the variable flipping algorithm. Let n₁ be the number of clauses satisfied by this algorithm.
- In the LP-based randomized rounding algorithm.

- Run the variable flipping algorithm. Let n₁ be the number of clauses satisfied by this algorithm.
- Q Run the LP-based randomized rounding algorithm. Let n₂ be the number of clauses satisfied by this algorithm.

- Run the variable flipping algorithm. Let n₁ be the number of clauses satisfied by this algorithm.
- Q Run the LP-based randomized rounding algorithm. Let n₂ be the number of clauses satisfied by this algorithm.

```
3 return(max(n_1, n_2)).
```

Algorithm performance and clause width

$$k$$
 $\left(1-\frac{1}{2^k}\right)$ β_k

Algorithm performance and clause width

$$\begin{array}{c|cc} k & (1-\frac{1}{2^k}) & \beta_k \\ \hline 1 & 0.5 & 1.0 \end{array}$$

Algorithm performance and clause	width	ı		
	k	$\left(1-\frac{1}{2^k}\right)$	β_k	
	1	0.5	1.0	
	2	0.75	0.75	

Algorithm performance and clause	width	ı	
	k	$\left(1-\frac{1}{2^k}\right)$	β_k
	1	0.5	1.0
	2	0.75	0.75
	3	0.875	0.704

k	$(1 - \frac{1}{2^k})$	β_k
-	0 5	10
	0.5	1.0
2	0.75	0.75
~	0.75	0.70
3	0.875	0.704
4	0.938	0.684

Algorithm	performance	and claus	se width
-----------	-------------	-----------	----------

k	$(1-\frac{1}{2^{k}})$	β_k
1	0.5	1.0
2	0.75	0.75
3	0.875	0.704
4	0.938	0.684
5	0.969	0.672

Algorithm performance and clause width

k	$(1-\frac{1}{2^{k}})$	β_k
1	0.5	1.0
2	0.75	0.75
3	0.875	0.704
4	0.938	0.684
5	0.969	0.672

Lemma

Algorithm performance and clause width

k	$(1-\frac{1}{2^{k}})$	β_k
1	0.5	1.0
2	0.75	0.75
3	0.875	0.704
4	0.938	0.684
5	0.969	0.672

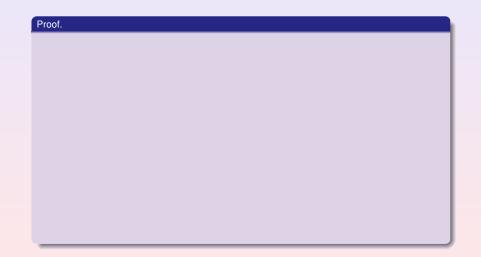
Lemma

Algorithm	performance	and clause	width
-----------	-------------	------------	-------

k	$(1-\frac{1}{2^{k}})$	β_k
1	0.5	1.0
2	0.75	0.75
3	0.875	0.704
4	0.938	0.684
5	0.969	0.672

Lemma

$$\max(n_1,n_2)\geq \frac{3}{4}\cdot OPT.$$



Proof.

• We will show that $\frac{n_1+n_2}{2} \ge \frac{3}{4} \cdot \sum_j \hat{z}_j$.

- We will show that $\frac{n_1+n_2}{2} \ge \frac{3}{4} \cdot \sum_j \hat{z}_j$.
- 2 Let S^k denote the set of clauses that contain k literals.

- We will show that $\frac{n_1+n_2}{2} \ge \frac{3}{4} \cdot \sum_j \hat{z}_j$.
- 2 Let S^k denote the set of clauses that contain k literals.
- 3 As per the variable rounding algorithm,

Proof.

- We will show that $\frac{n_1+n_2}{2} \ge \frac{3}{4} \cdot \sum_j \hat{z}_j$.
- 2 Let S^k denote the set of clauses that contain k literals.
- 3 As per the variable rounding algorithm,

 $n_1 =$

- We will show that $\frac{n_1+n_2}{2} \ge \frac{3}{4} \cdot \sum_j \hat{z}_j$.
- 2 Let S^k denote the set of clauses that contain k literals.
- 3 As per the variable rounding algorithm,

$$n_1 = \sum_k \sum_{C_i \in S^k} (1 - 2^{-k})$$

- We will show that $\frac{n_1+n_2}{2} \ge \frac{3}{4} \cdot \sum_j \hat{z}_j$.
- 2 Let S^k denote the set of clauses that contain k literals.
- 3 As per the variable rounding algorithm,

$$n_1 = \sum_k \sum_{C_j \in S^k} (1 - 2^{-k})$$

$$\geq$$

- We will show that $\frac{n_1+n_2}{2} \ge \frac{3}{4} \cdot \sum_j \hat{z}_j$.
- 2 Let S^k denote the set of clauses that contain k literals.
- 3 As per the variable rounding algorithm,

$$egin{array}{rcl} n_1 & = & \displaystyle\sum_k \sum_{C_j \in \mathcal{S}^k} \left(1 - 2^{-k}
ight) \ & \geq & \displaystyle\sum_k \sum_{C_j \in \mathcal{S}^k} \left(1 - 2^{-k}
ight) \cdot \hat{z}_j \end{array}$$

Proof.

- We will show that $\frac{n_1+n_2}{2} \ge \frac{3}{4} \cdot \sum_j \hat{z}_j$.
- 2 Let S^k denote the set of clauses that contain k literals.
- 3 As per the variable rounding algorithm,

$$\begin{array}{lll} n_1 & = & \displaystyle \sum_k \sum_{C_j \in S^k} (1 - 2^{-k}) \\ & \geq & \displaystyle \sum_k \sum_{C_j \in S^k} (1 - 2^{-k}) \cdot \hat{z_j} \end{array}$$

• As per the LP-based randomized rounding algorithm,

Proof.

- We will show that $\frac{n_1+n_2}{2} \ge \frac{3}{4} \cdot \sum_j \hat{z}_j$.
- 2 Let S^k denote the set of clauses that contain k literals.
- 3 As per the variable rounding algorithm,

$$\begin{array}{ll} n_1 & = & \sum\limits_k \sum\limits_{C_j \in S^k} (1-2^{-k}) \\ & \geq & \sum\limits_k \sum\limits_{C_j \in S^k} (1-2^{-k}) \cdot \hat{z_j} \end{array}$$

As per the LP-based randomized rounding algorithm,

 $n_2 \ge$

Proof.

- We will show that $\frac{n_1+n_2}{2} \ge \frac{3}{4} \cdot \sum_j \hat{z}_j$.
- 2 Let S^k denote the set of clauses that contain k literals.
- 3 As per the variable rounding algorithm,

$$\begin{array}{ll} n_1 & = & \sum_k \sum_{C_j \in S^k} (1 - 2^{-k}) \\ & \geq & \sum_k \sum_{C_j \in S^k} (1 - 2^{-k}) \cdot \hat{z}_j \end{array}$$

As per the LP-based randomized rounding algorithm,

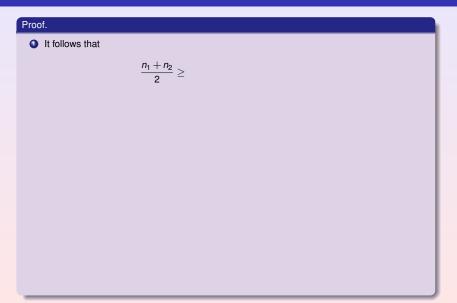
$$n_2 \geq \sum_k \sum_{C_j \in S^k} \beta_k \cdot \hat{z}_j.$$

Final Steps

Proof.

Proof.

It follows that



Proof. It follows that $\frac{n_1 + n_2}{2} \geq \sum_k \sum_{C_j \in S^k} \frac{(1 - 2^{-k}) + \beta_k}{2} \cdot \hat{z}_j.$

Proof.

It follows that

$$\frac{n_1 + n_2}{2} \ge \sum_k \sum_{C_j \in S^k} \frac{(1 - 2^{-k}) + \beta_k}{2} \cdot \hat{z}_j.$$

2 It is not hard to verify that

Proof.

It follows that

$$\frac{n_1 + n_2}{2} \ge \sum_k \sum_{C_j \in S^k} \frac{(1 - 2^{-k}) + \beta_k}{2} \cdot \hat{z}_j.$$

3 It is not hard to verify that $\left(\left(1-\frac{1}{2^k}\right)+\beta_k\right) \geq \frac{3}{2}$, for all *k*.

Proof.

It follows that

$$\frac{n_1 + n_2}{2} \ge \sum_k \sum_{C_j \in S^k} \frac{(1 - 2^{-k}) + \beta_k}{2} \cdot \hat{z}_j.$$

3 It is not hard to verify that $\left(\left(1-\frac{1}{2^k}\right)+\beta_k\right) \geq \frac{3}{2}$, for all k.

Proof.

It follows that

$$\frac{n_1 + n_2}{2} \ge \sum_k \sum_{C_j \in S^k} \frac{(1 - 2^{-k}) + \beta_k}{2} \cdot \hat{z}_j.$$

3 It is not hard to verify that
$$\left(\left(1-\frac{1}{2^k}\right)+\beta_k\right)\geq \frac{3}{2}$$
, for all k.

$$\frac{n_1+n_2}{2} \geq$$

Proof.

It follows that

$$\frac{n_1 + n_2}{2} \geq \sum_k \sum_{C_j \in S^k} \frac{(1 - 2^{-k}) + \beta_k}{2} \cdot \hat{z}_j.$$

② It is not hard to verify that
$$\left(\left(1-\frac{1}{2^k}\right)+\beta_k\right)\geq \frac{3}{2}$$
, for all k .

$$\frac{n_1+n_2}{2} \geq \sum_k \sum_{C_i \in S^k} (\frac{\frac{3}{2}}{2}) \cdot \hat{z}_j$$

Proof.

It follows that

$$\frac{n_1 + n_2}{2} \geq \sum_k \sum_{C_j \in S^k} \frac{(1 - 2^{-k}) + \beta_k}{2} \cdot \hat{z}_j.$$

② It is not hard to verify that
$$\left(\left(1-\frac{1}{2^k}\right)+\beta_k\right)\geq \frac{3}{2}$$
, for all k .

п

O Therefore,

$$rac{1+n_2}{2} \geq \sum_k \sum_{C_i \in S^k} (rac{2}{2}) \cdot \hat{z}_j$$

=

Proof.

It follows that

$$\frac{n_1 + n_2}{2} \ge \sum_k \sum_{C_j \in S^k} \frac{(1 - 2^{-k}) + \beta_k}{2} \cdot \hat{z}_j.$$

② It is not hard to verify that
$$\left(\left(1-\frac{1}{2^k}\right)+\beta_k\right)\geq \frac{3}{2}$$
, for all k .

$$egin{array}{rll} rac{\mu_1+n_2}{2} &\geq& \sum_k \sum_{C_j\in S^k} (rac{3}{2})\cdot \hat{z_j} \ &=& rac{3}{4}\cdot \sum_k \sum_{C_j\in S^k} \hat{z_j} \end{array}$$

Proof.

It follows that

$$\frac{n_1 + n_2}{2} \ge \sum_k \sum_{C_j \in S^k} \frac{(1 - 2^{-k}) + \beta_k}{2} \cdot \hat{z}_j.$$

3 It is not hard to verify that
$$\left(\left(1-\frac{1}{2^k}\right)+\beta_k\right)\geq \frac{3}{2}$$
, for all k .

O Therefore,

$$\frac{p_1 + n_2}{2} \geq \sum_k \sum_{C_j \in S^k} \left(\frac{\frac{3}{2}}{2}\right) \cdot \hat{z}_j$$
$$= \frac{3}{4} \cdot \sum_k \sum_{C_j \in S^k} \hat{z}_j$$

=

Proof.

It follows that

$$\frac{n_1 + n_2}{2} \ge \sum_k \sum_{C_j \in S^k} \frac{(1 - 2^{-k}) + \beta_k}{2} \cdot \hat{z}_j.$$

3 It is not hard to verify that
$$\left(\left(1-\frac{1}{2^k}\right)+\beta_k\right)\geq \frac{3}{2}$$
, for all k .

$$egin{array}{rcl} rac{p_1+n_2}{2} & \geq & \sum_k \sum_{C_j\in S^k} (rac{3}{2})\cdot \hat{z_j} \ & = & rac{3}{4}\cdot \sum_k \sum_{C_j\in S^k} \hat{z_j} \ & = & rac{3}{4}\cdot \sum_j \hat{z_j} \end{array}$$

Proof.

It follows that

$$\frac{n_1 + n_2}{2} \ge \sum_k \sum_{C_j \in S^k} \frac{(1 - 2^{-k}) + \beta_k}{2} \cdot \hat{z}_j.$$

3 It is not hard to verify that
$$\left(\left(1-\frac{1}{2^k}\right)+\beta_k\right)\geq \frac{3}{2}$$
, for all k .

$$\begin{array}{rcl} \frac{p_1+n_2}{2} & \geq & \sum_k \sum_{C_j \in S^k} \left(\frac{3}{2}\right) \cdot \hat{z_j} \\ & = & \frac{3}{4} \cdot \sum_k \sum_{C_j \in S^k} \hat{z_j} \\ & = & \frac{3}{4} \cdot \sum_j \hat{z_j} \\ & \geq & \end{array}$$

Proof.

It follows that

$$\frac{n_1 + n_2}{2} \ge \sum_k \sum_{C_j \in S^k} \frac{(1 - 2^{-k}) + \beta_k}{2} \cdot \hat{z}_j.$$

② It is not hard to verify that
$$\left(\left(1-\frac{1}{2^k}\right)+\beta_k\right)\geq \frac{3}{2}$$
, for all k .

n

$$\frac{1+n_2}{2} \geq \sum_{k} \sum_{C_j \in S^k} \left(\frac{\frac{3}{2}}{2}\right) \cdot \hat{z}_j$$
$$= \frac{3}{4} \cdot \sum_{k} \sum_{C_j \in S^k} \hat{z}_j$$
$$= \frac{3}{4} \cdot \sum_j \hat{z}_j$$
$$\geq \frac{3}{4} \cdot OPT.$$