
MAX-SAT

The Maximum Satisfiability problem

K. Subramani1

1Lane Department of Computer Science and Electrical Engineering
West Virginia University

April 7, 2014



MAX-SAT

Outline

Outline

1 Preliminaries

2 The variable setting algorithm

3 The randomized rounding algorithm

4 A 3
4 factor algorithm



MAX-SAT

Outline

Outline

1 Preliminaries

2 The variable setting algorithm

3 The randomized rounding algorithm

4 A 3
4 factor algorithm



MAX-SAT

Outline

Outline

1 Preliminaries

2 The variable setting algorithm

3 The randomized rounding algorithm

4 A 3
4 factor algorithm



MAX-SAT

Outline

Outline

1 Preliminaries

2 The variable setting algorithm

3 The randomized rounding algorithm

4 A 3
4 factor algorithm



MAX-SAT

Preliminaries

Satisfiability (SAT)

Definition (Satisfiability (SAT))

Given a CNF formula φ = C1 ∧C2 . . .Cm , over the variables {x1,x2, . . . ,xn}, is there an
assignment of {true, false} values to the literals, such that each clause Ci is satisfied?

Note

SAT was the first naturally occurring problem to be proven NP-complete (Stephen Cook, 1971).
Applications of SAT are too numerous to mention; logic, verification, AI, optimization, . . ..
kSAT, k ≥ 3 is NP-complete; k ≤ 2 is in P. HornSAT is also in P.

Example

φ = (x1, x̄4, x̄7)

(x2, x̄1)

(x3, x̄1, x̄4)



MAX-SAT

Preliminaries

Satisfiability (SAT)

Definition (Satisfiability (SAT))

Given a CNF formula φ = C1 ∧C2 . . .Cm , over the variables {x1,x2, . . . ,xn}, is there an
assignment of {true, false} values to the literals, such that each clause Ci is satisfied?

Note

SAT was the first naturally occurring problem to be proven NP-complete (Stephen Cook, 1971).
Applications of SAT are too numerous to mention; logic, verification, AI, optimization, . . ..
kSAT, k ≥ 3 is NP-complete; k ≤ 2 is in P. HornSAT is also in P.

Example

φ = (x1, x̄4, x̄7)

(x2, x̄1)

(x3, x̄1, x̄4)



MAX-SAT

Preliminaries

Satisfiability (SAT)

Definition (Satisfiability (SAT))

Given a CNF formula φ = C1 ∧C2 . . .Cm , over the variables {x1,x2, . . . ,xn}, is there an
assignment of {true, false} values to the literals, such that each clause Ci is satisfied?

Note

SAT was the first naturally occurring problem to be proven NP-complete (Stephen Cook, 1971).

Applications of SAT are too numerous to mention; logic, verification, AI, optimization, . . ..
kSAT, k ≥ 3 is NP-complete; k ≤ 2 is in P. HornSAT is also in P.

Example

φ = (x1, x̄4, x̄7)

(x2, x̄1)

(x3, x̄1, x̄4)



MAX-SAT

Preliminaries

Satisfiability (SAT)

Definition (Satisfiability (SAT))

Given a CNF formula φ = C1 ∧C2 . . .Cm , over the variables {x1,x2, . . . ,xn}, is there an
assignment of {true, false} values to the literals, such that each clause Ci is satisfied?

Note

SAT was the first naturally occurring problem to be proven NP-complete (Stephen Cook, 1971).
Applications of SAT are too numerous to mention; logic, verification, AI, optimization, . . ..
kSAT, k ≥ 3 is NP-complete; k ≤ 2 is in P. HornSAT is also in P.

Example

φ = (x1, x̄4, x̄7)

(x2, x̄1)

(x3, x̄1, x̄4)



MAX-SAT

Preliminaries

Satisfiability (SAT)

Definition (Satisfiability (SAT))

Given a CNF formula φ = C1 ∧C2 . . .Cm , over the variables {x1,x2, . . . ,xn}, is there an
assignment of {true, false} values to the literals, such that each clause Ci is satisfied?

Note

SAT was the first naturally occurring problem to be proven NP-complete (Stephen Cook, 1971).
Applications of SAT are too numerous to mention; logic, verification, AI, optimization, . . ..
kSAT, k ≥ 3 is NP-complete; k ≤ 2 is in P. HornSAT is also in P.

Example

φ = (x1, x̄4, x̄7)

(x2, x̄1)

(x3, x̄1, x̄4)



MAX-SAT

Preliminaries

MaxSAT

Definition (Maximim Satisfiability (MaxSAT))

Given a CNF formula φ = C1 ∧C2 . . .Cm , over the variables {x1,x2, . . . ,xn}, find an assignment
of {true, false} values to the literals, such that the number of clauses satisfied is maximized.

Note

1 Clearly, SAT ≤ MaxSAT.

2 Max2SAT and MaxHornSAT are both NP-hard.
3 In the weighted version, each clause has a weight associated with it. The goal in this case

is to maximize the sum of the weights of the satisfied clauses.

4 We will focus on the cardinality version. All our arguments carry over to the weighted case
with almost no change.



MAX-SAT

Preliminaries

MaxSAT

Definition (Maximim Satisfiability (MaxSAT))

Given a CNF formula φ = C1 ∧C2 . . .Cm , over the variables {x1,x2, . . . ,xn}, find an assignment
of {true, false} values to the literals, such that the number of clauses satisfied is

maximized.

Note

1 Clearly, SAT ≤ MaxSAT.

2 Max2SAT and MaxHornSAT are both NP-hard.
3 In the weighted version, each clause has a weight associated with it. The goal in this case

is to maximize the sum of the weights of the satisfied clauses.

4 We will focus on the cardinality version. All our arguments carry over to the weighted case
with almost no change.



MAX-SAT

Preliminaries

MaxSAT

Definition (Maximim Satisfiability (MaxSAT))

Given a CNF formula φ = C1 ∧C2 . . .Cm , over the variables {x1,x2, . . . ,xn}, find an assignment
of {true, false} values to the literals, such that the number of clauses satisfied is maximized.

Note

1 Clearly, SAT ≤ MaxSAT.

2 Max2SAT and MaxHornSAT are both NP-hard.
3 In the weighted version, each clause has a weight associated with it. The goal in this case

is to maximize the sum of the weights of the satisfied clauses.

4 We will focus on the cardinality version. All our arguments carry over to the weighted case
with almost no change.



MAX-SAT

Preliminaries

MaxSAT

Definition (Maximim Satisfiability (MaxSAT))

Given a CNF formula φ = C1 ∧C2 . . .Cm , over the variables {x1,x2, . . . ,xn}, find an assignment
of {true, false} values to the literals, such that the number of clauses satisfied is maximized.

Note

1 Clearly, SAT ≤ MaxSAT.

2 Max2SAT and MaxHornSAT are both NP-hard.
3 In the weighted version, each clause has a weight associated with it. The goal in this case

is to maximize the sum of the weights of the satisfied clauses.

4 We will focus on the cardinality version. All our arguments carry over to the weighted case
with almost no change.



MAX-SAT

Preliminaries

MaxSAT

Definition (Maximim Satisfiability (MaxSAT))

Given a CNF formula φ = C1 ∧C2 . . .Cm , over the variables {x1,x2, . . . ,xn}, find an assignment
of {true, false} values to the literals, such that the number of clauses satisfied is maximized.

Note

1 Clearly, SAT ≤ MaxSAT.

2 Max2SAT and MaxHornSAT are both NP-hard.
3 In the weighted version, each clause has a weight associated with it. The goal in this case

is to maximize the sum of the weights of the satisfied clauses.

4 We will focus on the cardinality version. All our arguments carry over to the weighted case
with almost no change.



MAX-SAT

Preliminaries

MaxSAT

Definition (Maximim Satisfiability (MaxSAT))

Given a CNF formula φ = C1 ∧C2 . . .Cm , over the variables {x1,x2, . . . ,xn}, find an assignment
of {true, false} values to the literals, such that the number of clauses satisfied is maximized.

Note

1 Clearly, SAT ≤ MaxSAT.

2 Max2SAT and MaxHornSAT are both NP-hard.
3 In the weighted version, each clause has a weight associated with it. The goal in this case

is to maximize the sum of the weights of the satisfied clauses.

4 We will focus on the cardinality version. All our arguments carry over to the weighted case
with almost no change.



MAX-SAT

Preliminaries

MaxSAT

Definition (Maximim Satisfiability (MaxSAT))

Given a CNF formula φ = C1 ∧C2 . . .Cm , over the variables {x1,x2, . . . ,xn}, find an assignment
of {true, false} values to the literals, such that the number of clauses satisfied is maximized.

Note

1 Clearly, SAT ≤ MaxSAT.

2 Max2SAT and MaxHornSAT are both NP-hard.

3 In the weighted version, each clause has a weight associated with it. The goal in this case
is to maximize the sum of the weights of the satisfied clauses.

4 We will focus on the cardinality version. All our arguments carry over to the weighted case
with almost no change.



MAX-SAT

Preliminaries

MaxSAT

Definition (Maximim Satisfiability (MaxSAT))

Given a CNF formula φ = C1 ∧C2 . . .Cm , over the variables {x1,x2, . . . ,xn}, find an assignment
of {true, false} values to the literals, such that the number of clauses satisfied is maximized.

Note

1 Clearly, SAT ≤ MaxSAT.

2 Max2SAT and MaxHornSAT are both NP-hard.
3 In the weighted version, each clause has a weight associated with it.

The goal in this case
is to maximize the sum of the weights of the satisfied clauses.

4 We will focus on the cardinality version. All our arguments carry over to the weighted case
with almost no change.



MAX-SAT

Preliminaries

MaxSAT

Definition (Maximim Satisfiability (MaxSAT))

Given a CNF formula φ = C1 ∧C2 . . .Cm , over the variables {x1,x2, . . . ,xn}, find an assignment
of {true, false} values to the literals, such that the number of clauses satisfied is maximized.

Note

1 Clearly, SAT ≤ MaxSAT.

2 Max2SAT and MaxHornSAT are both NP-hard.
3 In the weighted version, each clause has a weight associated with it. The goal in this case

is to maximize the sum of the weights of the satisfied clauses.

4 We will focus on the cardinality version. All our arguments carry over to the weighted case
with almost no change.



MAX-SAT

Preliminaries

MaxSAT

Definition (Maximim Satisfiability (MaxSAT))

Given a CNF formula φ = C1 ∧C2 . . .Cm , over the variables {x1,x2, . . . ,xn}, find an assignment
of {true, false} values to the literals, such that the number of clauses satisfied is maximized.

Note

1 Clearly, SAT ≤ MaxSAT.

2 Max2SAT and MaxHornSAT are both NP-hard.
3 In the weighted version, each clause has a weight associated with it. The goal in this case

is to maximize the sum of the weights of the satisfied clauses.

4 We will focus on the cardinality version.

All our arguments carry over to the weighted case
with almost no change.



MAX-SAT

Preliminaries

MaxSAT

Definition (Maximim Satisfiability (MaxSAT))

Given a CNF formula φ = C1 ∧C2 . . .Cm , over the variables {x1,x2, . . . ,xn}, find an assignment
of {true, false} values to the literals, such that the number of clauses satisfied is maximized.

Note

1 Clearly, SAT ≤ MaxSAT.

2 Max2SAT and MaxHornSAT are both NP-hard.
3 In the weighted version, each clause has a weight associated with it. The goal in this case

is to maximize the sum of the weights of the satisfied clauses.

4 We will focus on the cardinality version. All our arguments carry over to the weighted case
with almost no change.



MAX-SAT

The variable setting algorithm

The variable setting algorithm

Variable-setting

1 for (i = 1 to n)

2 Flip a fair coin.
3 If (the coin turns up “heads”)

4 Set xi to true.
5 else
6 Set xi to false.
7 endif
8 endfor
9 Return the number of satisfied clauses.



MAX-SAT

The variable setting algorithm

The variable setting algorithm

Variable-setting

1 for (i = 1 to n)

2 Flip a fair coin.
3 If (the coin turns up “heads”)

4 Set xi to true.
5 else
6 Set xi to false.
7 endif
8 endfor
9 Return the number of satisfied clauses.



MAX-SAT

The variable setting algorithm

The variable setting algorithm

Variable-setting

1 for (i = 1 to n)

2 Flip a fair coin.
3 If (the coin turns up “heads”)

4 Set xi to true.
5 else
6 Set xi to false.
7 endif
8 endfor
9 Return the number of satisfied clauses.



MAX-SAT

The variable setting algorithm

The variable setting algorithm

Variable-setting

1 for (i = 1 to n)

2 Flip a fair coin.
3 If (the coin turns up “heads”)

4 Set xi to true.
5 else
6 Set xi to false.
7 endif
8 endfor
9 Return the number of satisfied clauses.



MAX-SAT

The variable setting algorithm

The variable setting algorithm

Variable-setting

1 for (i = 1 to n)

2 Flip a fair coin.

3 If (the coin turns up “heads”)

4 Set xi to true.
5 else
6 Set xi to false.
7 endif
8 endfor
9 Return the number of satisfied clauses.



MAX-SAT

The variable setting algorithm

The variable setting algorithm

Variable-setting

1 for (i = 1 to n)

2 Flip a fair coin.
3 If (the coin turns up “heads”)

4 Set xi to true.
5 else
6 Set xi to false.
7 endif
8 endfor
9 Return the number of satisfied clauses.



MAX-SAT

The variable setting algorithm

The variable setting algorithm

Variable-setting

1 for (i = 1 to n)

2 Flip a fair coin.
3 If (the coin turns up “heads”)

4 Set xi to true.

5 else
6 Set xi to false.
7 endif
8 endfor
9 Return the number of satisfied clauses.



MAX-SAT

The variable setting algorithm

The variable setting algorithm

Variable-setting

1 for (i = 1 to n)

2 Flip a fair coin.
3 If (the coin turns up “heads”)

4 Set xi to true.
5 else

6 Set xi to false.
7 endif
8 endfor
9 Return the number of satisfied clauses.



MAX-SAT

The variable setting algorithm

The variable setting algorithm

Variable-setting

1 for (i = 1 to n)

2 Flip a fair coin.
3 If (the coin turns up “heads”)

4 Set xi to true.
5 else
6 Set xi to false.

7 endif
8 endfor
9 Return the number of satisfied clauses.



MAX-SAT

The variable setting algorithm

The variable setting algorithm

Variable-setting

1 for (i = 1 to n)

2 Flip a fair coin.
3 If (the coin turns up “heads”)

4 Set xi to true.
5 else
6 Set xi to false.
7 endif

8 endfor
9 Return the number of satisfied clauses.



MAX-SAT

The variable setting algorithm

The variable setting algorithm

Variable-setting

1 for (i = 1 to n)

2 Flip a fair coin.
3 If (the coin turns up “heads”)

4 Set xi to true.
5 else
6 Set xi to false.
7 endif
8 endfor

9 Return the number of satisfied clauses.



MAX-SAT

The variable setting algorithm

The variable setting algorithm

Variable-setting

1 for (i = 1 to n)

2 Flip a fair coin.
3 If (the coin turns up “heads”)

4 Set xi to true.
5 else
6 Set xi to false.
7 endif
8 endfor
9 Return the number of satisfied clauses.



MAX-SAT

The variable setting algorithm

Analysis

Lemma

Let k denote the width of the clausal system, i.e., the number of literals in the clause with the
fewest number of literals. The expected number of clauses satisfied by the above algorithm is
OPT · (1− 1

2k ).

Proof.

1 Let pi denote the probability that clause Ci is satisfied.

2 Clearly, pi ≥ (1− 1
2k ).

3 Let Xi denote an indicator variable. Xi is set to 1, if clause Ci is satisfied under the variable
setting algorithm and 0 otherwise.

4 Let X = ∑
m
i=1 Xi . Clearly, we are interested in X .

5 However, since X is a random variable, we focus on E[X ].



MAX-SAT

The variable setting algorithm

Analysis

Lemma

Let k denote the width of the clausal system,

i.e., the number of literals in the clause with the
fewest number of literals. The expected number of clauses satisfied by the above algorithm is
OPT · (1− 1

2k ).

Proof.

1 Let pi denote the probability that clause Ci is satisfied.

2 Clearly, pi ≥ (1− 1
2k ).

3 Let Xi denote an indicator variable. Xi is set to 1, if clause Ci is satisfied under the variable
setting algorithm and 0 otherwise.

4 Let X = ∑
m
i=1 Xi . Clearly, we are interested in X .

5 However, since X is a random variable, we focus on E[X ].



MAX-SAT

The variable setting algorithm

Analysis

Lemma

Let k denote the width of the clausal system, i.e., the number of literals in the clause with the
fewest number of literals.

The expected number of clauses satisfied by the above algorithm is
OPT · (1− 1

2k ).

Proof.

1 Let pi denote the probability that clause Ci is satisfied.

2 Clearly, pi ≥ (1− 1
2k ).

3 Let Xi denote an indicator variable. Xi is set to 1, if clause Ci is satisfied under the variable
setting algorithm and 0 otherwise.

4 Let X = ∑
m
i=1 Xi . Clearly, we are interested in X .

5 However, since X is a random variable, we focus on E[X ].



MAX-SAT

The variable setting algorithm

Analysis

Lemma

Let k denote the width of the clausal system, i.e., the number of literals in the clause with the
fewest number of literals. The expected number of clauses satisfied by the above algorithm is
OPT · (1− 1

2k ).

Proof.

1 Let pi denote the probability that clause Ci is satisfied.

2 Clearly, pi ≥ (1− 1
2k ).

3 Let Xi denote an indicator variable. Xi is set to 1, if clause Ci is satisfied under the variable
setting algorithm and 0 otherwise.

4 Let X = ∑
m
i=1 Xi . Clearly, we are interested in X .

5 However, since X is a random variable, we focus on E[X ].



MAX-SAT

The variable setting algorithm

Analysis

Lemma

Let k denote the width of the clausal system, i.e., the number of literals in the clause with the
fewest number of literals. The expected number of clauses satisfied by the above algorithm is
OPT · (1− 1

2k ).

Proof.

1 Let pi denote the probability that clause Ci is satisfied.

2 Clearly, pi ≥ (1− 1
2k ).

3 Let Xi denote an indicator variable. Xi is set to 1, if clause Ci is satisfied under the variable
setting algorithm and 0 otherwise.

4 Let X = ∑
m
i=1 Xi . Clearly, we are interested in X .

5 However, since X is a random variable, we focus on E[X ].



MAX-SAT

The variable setting algorithm

Analysis

Lemma

Let k denote the width of the clausal system, i.e., the number of literals in the clause with the
fewest number of literals. The expected number of clauses satisfied by the above algorithm is
OPT · (1− 1

2k ).

Proof.

1 Let pi denote the probability that clause Ci is satisfied.

2 Clearly, pi ≥ (1− 1
2k ).

3 Let Xi denote an indicator variable. Xi is set to 1, if clause Ci is satisfied under the variable
setting algorithm and 0 otherwise.

4 Let X = ∑
m
i=1 Xi . Clearly, we are interested in X .

5 However, since X is a random variable, we focus on E[X ].



MAX-SAT

The variable setting algorithm

Analysis

Lemma

Let k denote the width of the clausal system, i.e., the number of literals in the clause with the
fewest number of literals. The expected number of clauses satisfied by the above algorithm is
OPT · (1− 1

2k ).

Proof.

1 Let pi denote the probability that clause Ci is satisfied.

2 Clearly, pi ≥

(1− 1
2k ).

3 Let Xi denote an indicator variable. Xi is set to 1, if clause Ci is satisfied under the variable
setting algorithm and 0 otherwise.

4 Let X = ∑
m
i=1 Xi . Clearly, we are interested in X .

5 However, since X is a random variable, we focus on E[X ].



MAX-SAT

The variable setting algorithm

Analysis

Lemma

Let k denote the width of the clausal system, i.e., the number of literals in the clause with the
fewest number of literals. The expected number of clauses satisfied by the above algorithm is
OPT · (1− 1

2k ).

Proof.

1 Let pi denote the probability that clause Ci is satisfied.

2 Clearly, pi ≥ (1− 1
2k ).

3 Let Xi denote an indicator variable. Xi is set to 1, if clause Ci is satisfied under the variable
setting algorithm and 0 otherwise.

4 Let X = ∑
m
i=1 Xi . Clearly, we are interested in X .

5 However, since X is a random variable, we focus on E[X ].



MAX-SAT

The variable setting algorithm

Analysis

Lemma

Let k denote the width of the clausal system, i.e., the number of literals in the clause with the
fewest number of literals. The expected number of clauses satisfied by the above algorithm is
OPT · (1− 1

2k ).

Proof.

1 Let pi denote the probability that clause Ci is satisfied.

2 Clearly, pi ≥ (1− 1
2k ).

3 Let Xi denote an indicator variable.

Xi is set to 1, if clause Ci is satisfied under the variable
setting algorithm and 0 otherwise.

4 Let X = ∑
m
i=1 Xi . Clearly, we are interested in X .

5 However, since X is a random variable, we focus on E[X ].



MAX-SAT

The variable setting algorithm

Analysis

Lemma

Let k denote the width of the clausal system, i.e., the number of literals in the clause with the
fewest number of literals. The expected number of clauses satisfied by the above algorithm is
OPT · (1− 1

2k ).

Proof.

1 Let pi denote the probability that clause Ci is satisfied.

2 Clearly, pi ≥ (1− 1
2k ).

3 Let Xi denote an indicator variable. Xi is set to 1, if clause Ci is satisfied under the variable
setting algorithm and 0 otherwise.

4 Let X = ∑
m
i=1 Xi . Clearly, we are interested in X .

5 However, since X is a random variable, we focus on E[X ].



MAX-SAT

The variable setting algorithm

Analysis

Lemma

Let k denote the width of the clausal system, i.e., the number of literals in the clause with the
fewest number of literals. The expected number of clauses satisfied by the above algorithm is
OPT · (1− 1

2k ).

Proof.

1 Let pi denote the probability that clause Ci is satisfied.

2 Clearly, pi ≥ (1− 1
2k ).

3 Let Xi denote an indicator variable. Xi is set to 1, if clause Ci is satisfied under the variable
setting algorithm and 0 otherwise.

4 Let X = ∑
m
i=1 Xi .

Clearly, we are interested in X .
5 However, since X is a random variable, we focus on E[X ].



MAX-SAT

The variable setting algorithm

Analysis

Lemma

Let k denote the width of the clausal system, i.e., the number of literals in the clause with the
fewest number of literals. The expected number of clauses satisfied by the above algorithm is
OPT · (1− 1

2k ).

Proof.

1 Let pi denote the probability that clause Ci is satisfied.

2 Clearly, pi ≥ (1− 1
2k ).

3 Let Xi denote an indicator variable. Xi is set to 1, if clause Ci is satisfied under the variable
setting algorithm and 0 otherwise.

4 Let X = ∑
m
i=1 Xi . Clearly, we are interested in X .

5 However, since X is a random variable, we focus on E[X ].



MAX-SAT

The variable setting algorithm

Analysis

Lemma

Let k denote the width of the clausal system, i.e., the number of literals in the clause with the
fewest number of literals. The expected number of clauses satisfied by the above algorithm is
OPT · (1− 1

2k ).

Proof.

1 Let pi denote the probability that clause Ci is satisfied.

2 Clearly, pi ≥ (1− 1
2k ).

3 Let Xi denote an indicator variable. Xi is set to 1, if clause Ci is satisfied under the variable
setting algorithm and 0 otherwise.

4 Let X = ∑
m
i=1 Xi . Clearly, we are interested in X .

5 However, since X is a random variable, we focus on E[X ].



MAX-SAT

The variable setting algorithm

Analysis (contd.)

Proof.

1 Observe that,

E[X ] = E[
m

∑
i=1

Xi ]

=
m

∑
i=1

E[Xi ]

=
m

∑
i=1

pi

≥
m

∑
i=1

(1− 1
2k )

= m · (1− 1
2k )

≥ OPT · (1− 1
2k ).



MAX-SAT

The variable setting algorithm

Analysis (contd.)

Proof.

1 Observe that,

E[X ] = E[
m

∑
i=1

Xi ]

=
m

∑
i=1

E[Xi ]

=
m

∑
i=1

pi

≥
m

∑
i=1

(1− 1
2k )

= m · (1− 1
2k )

≥ OPT · (1− 1
2k ).



MAX-SAT

The variable setting algorithm

Analysis (contd.)

Proof.

1 Observe that,

E[X ] = E[
m

∑
i=1

Xi ]

=
m

∑
i=1

E[Xi ]

=
m

∑
i=1

pi

≥
m

∑
i=1

(1− 1
2k )

= m · (1− 1
2k )

≥ OPT · (1− 1
2k ).



MAX-SAT

The variable setting algorithm

Analysis (contd.)

Proof.

1 Observe that,

E[X ] =

E[
m

∑
i=1

Xi ]

=
m

∑
i=1

E[Xi ]

=
m

∑
i=1

pi

≥
m

∑
i=1

(1− 1
2k )

= m · (1− 1
2k )

≥ OPT · (1− 1
2k ).



MAX-SAT

The variable setting algorithm

Analysis (contd.)

Proof.

1 Observe that,

E[X ] = E[
m

∑
i=1

Xi ]

=
m

∑
i=1

E[Xi ]

=
m

∑
i=1

pi

≥
m

∑
i=1

(1− 1
2k )

= m · (1− 1
2k )

≥ OPT · (1− 1
2k ).



MAX-SAT

The variable setting algorithm

Analysis (contd.)

Proof.

1 Observe that,

E[X ] = E[
m

∑
i=1

Xi ]

=
m

∑
i=1

E[Xi ]

=
m

∑
i=1

pi

≥
m

∑
i=1

(1− 1
2k )

= m · (1− 1
2k )

≥ OPT · (1− 1
2k ).



MAX-SAT

The variable setting algorithm

Analysis (contd.)

Proof.

1 Observe that,

E[X ] = E[
m

∑
i=1

Xi ]

=
m

∑
i=1

E[Xi ]

=
m

∑
i=1

pi

≥
m

∑
i=1

(1− 1
2k )

= m · (1− 1
2k )

≥ OPT · (1− 1
2k ).



MAX-SAT

The variable setting algorithm

Analysis (contd.)

Proof.

1 Observe that,

E[X ] = E[
m

∑
i=1

Xi ]

=
m

∑
i=1

E[Xi ]

=
m

∑
i=1

pi

≥
m

∑
i=1

(1− 1
2k )

= m · (1− 1
2k )

≥ OPT · (1− 1
2k ).



MAX-SAT

The variable setting algorithm

Analysis (contd.)

Proof.

1 Observe that,

E[X ] = E[
m

∑
i=1

Xi ]

=
m

∑
i=1

E[Xi ]

=
m

∑
i=1

pi

≥
m

∑
i=1

(1− 1
2k )

= m · (1− 1
2k )

≥ OPT · (1− 1
2k ).



MAX-SAT

The variable setting algorithm

Analysis (contd.)

Proof.

1 Observe that,

E[X ] = E[
m

∑
i=1

Xi ]

=
m

∑
i=1

E[Xi ]

=
m

∑
i=1

pi

≥
m

∑
i=1

(1− 1
2k )

= m · (1− 1
2k )

≥ OPT · (1− 1
2k ).



MAX-SAT

The randomized rounding algorithm

Randomized Rounding

The LP-based approach

1 Let C+
j denote the set of literals that appear in uncomplemented form in clause Cj .

Likewise, let C−j denote the set of literals that appear in complemented form in clause Cj .

2 The MaxSAT problem can then be modeled through the following integer program:

max∑
m
j=1 zi

subject to ∑i∈C+
j

yi + ∑i∈C−j
(1− yi )≥ zj

yi ,zj ∈ {0,1} ∀i, j

3 Relax the above integer program to a linear program and solve it.

4 Let ŷ and ẑ denote the values of the variables at the optimum solution.
5 Independently set each yi to 1, with probability ŷi .
6 Output the number of satisfied clauses.



MAX-SAT

The randomized rounding algorithm

Randomized Rounding

The LP-based approach

1 Let C+
j denote the set of literals that appear in uncomplemented form in clause Cj .

Likewise, let C−j denote the set of literals that appear in complemented form in clause Cj .

2 The MaxSAT problem can then be modeled through the following integer program:

max∑
m
j=1 zi

subject to ∑i∈C+
j

yi + ∑i∈C−j
(1− yi )≥ zj

yi ,zj ∈ {0,1} ∀i, j

3 Relax the above integer program to a linear program and solve it.

4 Let ŷ and ẑ denote the values of the variables at the optimum solution.
5 Independently set each yi to 1, with probability ŷi .
6 Output the number of satisfied clauses.



MAX-SAT

The randomized rounding algorithm

Randomized Rounding

The LP-based approach

1 Let C+
j denote the set of literals that appear in uncomplemented form in clause Cj .

Likewise, let C−j denote the set of literals that appear in complemented form in clause Cj .

2 The MaxSAT problem can then be modeled through the following integer program:

max∑
m
j=1 zi

subject to ∑i∈C+
j

yi + ∑i∈C−j
(1− yi )≥ zj

yi ,zj ∈ {0,1} ∀i, j

3 Relax the above integer program to a linear program and solve it.

4 Let ŷ and ẑ denote the values of the variables at the optimum solution.
5 Independently set each yi to 1, with probability ŷi .
6 Output the number of satisfied clauses.



MAX-SAT

The randomized rounding algorithm

Randomized Rounding

The LP-based approach

1 Let C+
j denote the set of literals that appear in uncomplemented form in clause Cj .

Likewise, let C−j denote the set of literals that appear in complemented form in clause Cj .

2 The MaxSAT problem can then be modeled through the following integer program:

max∑
m
j=1 zi

subject to ∑i∈C+
j

yi + ∑i∈C−j
(1− yi )≥ zj

yi ,zj ∈ {0,1} ∀i, j

3 Relax the above integer program to a linear program and solve it.

4 Let ŷ and ẑ denote the values of the variables at the optimum solution.
5 Independently set each yi to 1, with probability ŷi .
6 Output the number of satisfied clauses.



MAX-SAT

The randomized rounding algorithm

Randomized Rounding

The LP-based approach

1 Let C+
j denote the set of literals that appear in uncomplemented form in clause Cj .

Likewise, let C−j denote the set of literals that appear in complemented form in clause Cj .

2 The MaxSAT problem can then be modeled through the following integer program:

max∑
m
j=1 zi

subject to ∑i∈C+
j

yi + ∑i∈C−j
(1− yi )≥ zj

yi ,zj ∈ {0,1} ∀i, j

3 Relax the above integer program to a linear program and solve it.

4 Let ŷ and ẑ denote the values of the variables at the optimum solution.
5 Independently set each yi to 1, with probability ŷi .
6 Output the number of satisfied clauses.



MAX-SAT

The randomized rounding algorithm

Randomized Rounding

The LP-based approach

1 Let C+
j denote the set of literals that appear in uncomplemented form in clause Cj .

Likewise, let C−j denote the set of literals that appear in complemented form in clause Cj .

2 The MaxSAT problem can then be modeled through the following integer program:

max∑
m
j=1 zi

subject to ∑i∈C+
j

yi + ∑i∈C−j
(1− yi )≥ zj

yi ,zj ∈ {0,1} ∀i, j

3 Relax the above integer program to a linear program and solve it.

4 Let ŷ and ẑ denote the values of the variables at the optimum solution.
5 Independently set each yi to 1, with probability ŷi .
6 Output the number of satisfied clauses.



MAX-SAT

The randomized rounding algorithm

Randomized Rounding

The LP-based approach

1 Let C+
j denote the set of literals that appear in uncomplemented form in clause Cj .

Likewise, let C−j denote the set of literals that appear in complemented form in clause Cj .

2 The MaxSAT problem can then be modeled through the following integer program:

max∑
m
j=1 zi

subject to

∑i∈C+
j

yi + ∑i∈C−j
(1− yi )≥ zj

yi ,zj ∈ {0,1} ∀i, j

3 Relax the above integer program to a linear program and solve it.

4 Let ŷ and ẑ denote the values of the variables at the optimum solution.
5 Independently set each yi to 1, with probability ŷi .
6 Output the number of satisfied clauses.



MAX-SAT

The randomized rounding algorithm

Randomized Rounding

The LP-based approach

1 Let C+
j denote the set of literals that appear in uncomplemented form in clause Cj .

Likewise, let C−j denote the set of literals that appear in complemented form in clause Cj .

2 The MaxSAT problem can then be modeled through the following integer program:

max∑
m
j=1 zi

subject to ∑i∈C+
j

yi + ∑i∈C−j
(1− yi )≥ zj

yi ,zj ∈ {0,1} ∀i, j

3 Relax the above integer program to a linear program and solve it.

4 Let ŷ and ẑ denote the values of the variables at the optimum solution.
5 Independently set each yi to 1, with probability ŷi .
6 Output the number of satisfied clauses.



MAX-SAT

The randomized rounding algorithm

Randomized Rounding

The LP-based approach

1 Let C+
j denote the set of literals that appear in uncomplemented form in clause Cj .

Likewise, let C−j denote the set of literals that appear in complemented form in clause Cj .

2 The MaxSAT problem can then be modeled through the following integer program:

max∑
m
j=1 zi

subject to ∑i∈C+
j

yi + ∑i∈C−j
(1− yi )≥ zj

yi ,zj ∈ {0,1} ∀i, j

3 Relax the above integer program to a linear program and solve it.

4 Let ŷ and ẑ denote the values of the variables at the optimum solution.
5 Independently set each yi to 1, with probability ŷi .
6 Output the number of satisfied clauses.



MAX-SAT

The randomized rounding algorithm

Randomized Rounding

The LP-based approach

1 Let C+
j denote the set of literals that appear in uncomplemented form in clause Cj .

Likewise, let C−j denote the set of literals that appear in complemented form in clause Cj .

2 The MaxSAT problem can then be modeled through the following integer program:

max∑
m
j=1 zi

subject to ∑i∈C+
j

yi + ∑i∈C−j
(1− yi )≥ zj

yi ,zj ∈ {0,1} ∀i, j

3 Relax the above integer program to a linear program and solve it.

4 Let ŷ and ẑ denote the values of the variables at the optimum solution.
5 Independently set each yi to 1, with probability ŷi .
6 Output the number of satisfied clauses.



MAX-SAT

The randomized rounding algorithm

Randomized Rounding

The LP-based approach

1 Let C+
j denote the set of literals that appear in uncomplemented form in clause Cj .

Likewise, let C−j denote the set of literals that appear in complemented form in clause Cj .

2 The MaxSAT problem can then be modeled through the following integer program:

max∑
m
j=1 zi

subject to ∑i∈C+
j

yi + ∑i∈C−j
(1− yi )≥ zj

yi ,zj ∈ {0,1} ∀i, j

3 Relax the above integer program to a linear program and solve it.

4 Let ŷ and ẑ denote the values of the variables at the optimum solution.

5 Independently set each yi to 1, with probability ŷi .
6 Output the number of satisfied clauses.



MAX-SAT

The randomized rounding algorithm

Randomized Rounding

The LP-based approach

1 Let C+
j denote the set of literals that appear in uncomplemented form in clause Cj .

Likewise, let C−j denote the set of literals that appear in complemented form in clause Cj .

2 The MaxSAT problem can then be modeled through the following integer program:

max∑
m
j=1 zi

subject to ∑i∈C+
j

yi + ∑i∈C−j
(1− yi )≥ zj

yi ,zj ∈ {0,1} ∀i, j

3 Relax the above integer program to a linear program and solve it.

4 Let ŷ and ẑ denote the values of the variables at the optimum solution.
5 Independently set each yi to 1, with probability ŷi .

6 Output the number of satisfied clauses.



MAX-SAT

The randomized rounding algorithm

Randomized Rounding

The LP-based approach

1 Let C+
j denote the set of literals that appear in uncomplemented form in clause Cj .

Likewise, let C−j denote the set of literals that appear in complemented form in clause Cj .

2 The MaxSAT problem can then be modeled through the following integer program:

max∑
m
j=1 zi

subject to ∑i∈C+
j

yi + ∑i∈C−j
(1− yi )≥ zj

yi ,zj ∈ {0,1} ∀i, j

3 Relax the above integer program to a linear program and solve it.

4 Let ŷ and ẑ denote the values of the variables at the optimum solution.
5 Independently set each yi to 1, with probability ŷi .
6 Output the number of satisfied clauses.



MAX-SAT

The randomized rounding algorithm

Analysis

Lemma

Let βk = 1− (1− 1
k )k . For any clause Cj with k literals, the probability that it is satisfied by the

LP-rounding assignment is at least βk ẑj .

Proof.

1 Focus on a specific clause Cj with k literals.

2 Without loss of generality, we can assume that Cj = (x1,x2, . . . ,xk ).
3 Since the LP was solved optimally, we must have,

ŷ1 + ŷ2 + . . . ŷk ≥ ẑj .

4 The probability that clause Cj remains unsatisfied after the rounding, is precisely the
probability that each yi , i = 1,2, . . .k was set to 0. This probability is clearly Πk

i=1(1− ŷi ).
5 We thus need to show that

1−Πk
i=1(1− ŷi )≥ βk · ẑj .



MAX-SAT

The randomized rounding algorithm

Analysis

Lemma

Let βk = 1− (1− 1
k )k . For any clause Cj with k literals, the probability that it is satisfied by the

LP-rounding assignment is at least βk ẑj .

Proof.

1 Focus on a specific clause Cj with k literals.

2 Without loss of generality, we can assume that Cj = (x1,x2, . . . ,xk ).
3 Since the LP was solved optimally, we must have,

ŷ1 + ŷ2 + . . . ŷk ≥ ẑj .

4 The probability that clause Cj remains unsatisfied after the rounding, is precisely the
probability that each yi , i = 1,2, . . .k was set to 0. This probability is clearly Πk

i=1(1− ŷi ).
5 We thus need to show that

1−Πk
i=1(1− ŷi )≥ βk · ẑj .



MAX-SAT

The randomized rounding algorithm

Analysis

Lemma

Let βk = 1− (1− 1
k )k .

For any clause Cj with k literals, the probability that it is satisfied by the
LP-rounding assignment is at least βk ẑj .

Proof.

1 Focus on a specific clause Cj with k literals.

2 Without loss of generality, we can assume that Cj = (x1,x2, . . . ,xk ).
3 Since the LP was solved optimally, we must have,

ŷ1 + ŷ2 + . . . ŷk ≥ ẑj .

4 The probability that clause Cj remains unsatisfied after the rounding, is precisely the
probability that each yi , i = 1,2, . . .k was set to 0. This probability is clearly Πk

i=1(1− ŷi ).
5 We thus need to show that

1−Πk
i=1(1− ŷi )≥ βk · ẑj .



MAX-SAT

The randomized rounding algorithm

Analysis

Lemma

Let βk = 1− (1− 1
k )k . For any clause Cj with k literals, the probability that it is satisfied by the

LP-rounding assignment is at least βk ẑj .

Proof.

1 Focus on a specific clause Cj with k literals.

2 Without loss of generality, we can assume that Cj = (x1,x2, . . . ,xk ).
3 Since the LP was solved optimally, we must have,

ŷ1 + ŷ2 + . . . ŷk ≥ ẑj .

4 The probability that clause Cj remains unsatisfied after the rounding, is precisely the
probability that each yi , i = 1,2, . . .k was set to 0. This probability is clearly Πk

i=1(1− ŷi ).
5 We thus need to show that

1−Πk
i=1(1− ŷi )≥ βk · ẑj .



MAX-SAT

The randomized rounding algorithm

Analysis

Lemma

Let βk = 1− (1− 1
k )k . For any clause Cj with k literals, the probability that it is satisfied by the

LP-rounding assignment is at least βk ẑj .

Proof.

1 Focus on a specific clause Cj with k literals.

2 Without loss of generality, we can assume that Cj = (x1,x2, . . . ,xk ).
3 Since the LP was solved optimally, we must have,

ŷ1 + ŷ2 + . . . ŷk ≥ ẑj .

4 The probability that clause Cj remains unsatisfied after the rounding, is precisely the
probability that each yi , i = 1,2, . . .k was set to 0. This probability is clearly Πk

i=1(1− ŷi ).
5 We thus need to show that

1−Πk
i=1(1− ŷi )≥ βk · ẑj .



MAX-SAT

The randomized rounding algorithm

Analysis

Lemma

Let βk = 1− (1− 1
k )k . For any clause Cj with k literals, the probability that it is satisfied by the

LP-rounding assignment is at least βk ẑj .

Proof.

1 Focus on a specific clause Cj with k literals.

2 Without loss of generality, we can assume that Cj = (x1,x2, . . . ,xk ).
3 Since the LP was solved optimally, we must have,

ŷ1 + ŷ2 + . . . ŷk ≥ ẑj .

4 The probability that clause Cj remains unsatisfied after the rounding, is precisely the
probability that each yi , i = 1,2, . . .k was set to 0. This probability is clearly Πk

i=1(1− ŷi ).
5 We thus need to show that

1−Πk
i=1(1− ŷi )≥ βk · ẑj .



MAX-SAT

The randomized rounding algorithm

Analysis

Lemma

Let βk = 1− (1− 1
k )k . For any clause Cj with k literals, the probability that it is satisfied by the

LP-rounding assignment is at least βk ẑj .

Proof.

1 Focus on a specific clause Cj with k literals.

2 Without loss of generality, we can assume that Cj = (x1,x2, . . . ,xk ).

3 Since the LP was solved optimally, we must have,

ŷ1 + ŷ2 + . . . ŷk ≥ ẑj .

4 The probability that clause Cj remains unsatisfied after the rounding, is precisely the
probability that each yi , i = 1,2, . . .k was set to 0. This probability is clearly Πk

i=1(1− ŷi ).
5 We thus need to show that

1−Πk
i=1(1− ŷi )≥ βk · ẑj .



MAX-SAT

The randomized rounding algorithm

Analysis

Lemma

Let βk = 1− (1− 1
k )k . For any clause Cj with k literals, the probability that it is satisfied by the

LP-rounding assignment is at least βk ẑj .

Proof.

1 Focus on a specific clause Cj with k literals.

2 Without loss of generality, we can assume that Cj = (x1,x2, . . . ,xk ).
3 Since the LP was solved optimally, we must have,

ŷ1 + ŷ2 + . . . ŷk ≥ ẑj .

4 The probability that clause Cj remains unsatisfied after the rounding, is precisely the
probability that each yi , i = 1,2, . . .k was set to 0. This probability is clearly Πk

i=1(1− ŷi ).
5 We thus need to show that

1−Πk
i=1(1− ŷi )≥ βk · ẑj .



MAX-SAT

The randomized rounding algorithm

Analysis

Lemma

Let βk = 1− (1− 1
k )k . For any clause Cj with k literals, the probability that it is satisfied by the

LP-rounding assignment is at least βk ẑj .

Proof.

1 Focus on a specific clause Cj with k literals.

2 Without loss of generality, we can assume that Cj = (x1,x2, . . . ,xk ).
3 Since the LP was solved optimally, we must have,

ŷ1 + ŷ2 + . . . ŷk ≥ ẑj .

4 The probability that clause Cj remains unsatisfied after the rounding, is precisely the
probability that each yi , i = 1,2, . . .k was set to 0. This probability is clearly Πk

i=1(1− ŷi ).
5 We thus need to show that

1−Πk
i=1(1− ŷi )≥ βk · ẑj .



MAX-SAT

The randomized rounding algorithm

Analysis

Lemma

Let βk = 1− (1− 1
k )k . For any clause Cj with k literals, the probability that it is satisfied by the

LP-rounding assignment is at least βk ẑj .

Proof.

1 Focus on a specific clause Cj with k literals.

2 Without loss of generality, we can assume that Cj = (x1,x2, . . . ,xk ).
3 Since the LP was solved optimally, we must have,

ŷ1 + ŷ2 + . . . ŷk ≥ ẑj .

4 The probability that clause Cj remains unsatisfied after the rounding, is precisely the
probability that each yi , i = 1,2, . . .k was set to 0.

This probability is clearly Πk
i=1(1− ŷi ).

5 We thus need to show that

1−Πk
i=1(1− ŷi )≥ βk · ẑj .



MAX-SAT

The randomized rounding algorithm

Analysis

Lemma

Let βk = 1− (1− 1
k )k . For any clause Cj with k literals, the probability that it is satisfied by the

LP-rounding assignment is at least βk ẑj .

Proof.

1 Focus on a specific clause Cj with k literals.

2 Without loss of generality, we can assume that Cj = (x1,x2, . . . ,xk ).
3 Since the LP was solved optimally, we must have,

ŷ1 + ŷ2 + . . . ŷk ≥ ẑj .

4 The probability that clause Cj remains unsatisfied after the rounding, is precisely the
probability that each yi , i = 1,2, . . .k was set to 0. This probability is clearly

Πk
i=1(1− ŷi ).

5 We thus need to show that

1−Πk
i=1(1− ŷi )≥ βk · ẑj .



MAX-SAT

The randomized rounding algorithm

Analysis

Lemma

Let βk = 1− (1− 1
k )k . For any clause Cj with k literals, the probability that it is satisfied by the

LP-rounding assignment is at least βk ẑj .

Proof.

1 Focus on a specific clause Cj with k literals.

2 Without loss of generality, we can assume that Cj = (x1,x2, . . . ,xk ).
3 Since the LP was solved optimally, we must have,

ŷ1 + ŷ2 + . . . ŷk ≥ ẑj .

4 The probability that clause Cj remains unsatisfied after the rounding, is precisely the
probability that each yi , i = 1,2, . . .k was set to 0. This probability is clearly Πk

i=1(1− ŷi ).

5 We thus need to show that

1−Πk
i=1(1− ŷi )≥ βk · ẑj .



MAX-SAT

The randomized rounding algorithm

Analysis

Lemma

Let βk = 1− (1− 1
k )k . For any clause Cj with k literals, the probability that it is satisfied by the

LP-rounding assignment is at least βk ẑj .

Proof.

1 Focus on a specific clause Cj with k literals.

2 Without loss of generality, we can assume that Cj = (x1,x2, . . . ,xk ).
3 Since the LP was solved optimally, we must have,

ŷ1 + ŷ2 + . . . ŷk ≥ ẑj .

4 The probability that clause Cj remains unsatisfied after the rounding, is precisely the
probability that each yi , i = 1,2, . . .k was set to 0. This probability is clearly Πk

i=1(1− ŷi ).
5 We thus need to show that

1−Πk
i=1(1− ŷi )≥ βk · ẑj .



MAX-SAT

The randomized rounding algorithm

Analysis

Lemma

Let βk = 1− (1− 1
k )k . For any clause Cj with k literals, the probability that it is satisfied by the

LP-rounding assignment is at least βk ẑj .

Proof.

1 Focus on a specific clause Cj with k literals.

2 Without loss of generality, we can assume that Cj = (x1,x2, . . . ,xk ).
3 Since the LP was solved optimally, we must have,

ŷ1 + ŷ2 + . . . ŷk ≥ ẑj .

4 The probability that clause Cj remains unsatisfied after the rounding, is precisely the
probability that each yi , i = 1,2, . . .k was set to 0. This probability is clearly Πk

i=1(1− ŷi ).
5 We thus need to show that

1−Πk
i=1(1− ŷi )≥

βk · ẑj .



MAX-SAT

The randomized rounding algorithm

Analysis

Lemma

Let βk = 1− (1− 1
k )k . For any clause Cj with k literals, the probability that it is satisfied by the

LP-rounding assignment is at least βk ẑj .

Proof.

1 Focus on a specific clause Cj with k literals.

2 Without loss of generality, we can assume that Cj = (x1,x2, . . . ,xk ).
3 Since the LP was solved optimally, we must have,

ŷ1 + ŷ2 + . . . ŷk ≥ ẑj .

4 The probability that clause Cj remains unsatisfied after the rounding, is precisely the
probability that each yi , i = 1,2, . . .k was set to 0. This probability is clearly Πk

i=1(1− ŷi ).
5 We thus need to show that

1−Πk
i=1(1− ŷi )≥ βk · ẑj .



MAX-SAT

The randomized rounding algorithm

Analysis (contd.)

Proof.

1 The expression 1−Πk
i=1(1− ŷi ) is minimized at ŷi =

ẑj
k .

2 It therefore suffices to show that (1− (1− z
k )k )≥ βk · z, for all integers k and all z ∈ [0,1].

3 Observe that f (x) = 1− (1− x
k )k is a concave function.

4 It therefore suffices to verify the inequality f (x)≥ βk · x at x = 0 and x = 1.
5 Note that f (0) = 0≥ βk ·0 and f (1) = βk ≥ βk ·1.
6 We apply the same logic to the linear function g(z) = βk · z and the lemma follows.



MAX-SAT

The randomized rounding algorithm

Analysis (contd.)

Proof.

1 The expression 1−Πk
i=1(1− ŷi ) is minimized at ŷi =

ẑj
k .

2 It therefore suffices to show that (1− (1− z
k )k )≥ βk · z, for all integers k and all z ∈ [0,1].

3 Observe that f (x) = 1− (1− x
k )k is a concave function.

4 It therefore suffices to verify the inequality f (x)≥ βk · x at x = 0 and x = 1.
5 Note that f (0) = 0≥ βk ·0 and f (1) = βk ≥ βk ·1.
6 We apply the same logic to the linear function g(z) = βk · z and the lemma follows.



MAX-SAT

The randomized rounding algorithm

Analysis (contd.)

Proof.

1 The expression 1−Πk
i=1(1− ŷi ) is minimized at ŷi =

ẑj
k .

2 It therefore suffices to show that (1− (1− z
k )k )≥ βk · z, for all integers k and all z ∈ [0,1].

3 Observe that f (x) = 1− (1− x
k )k is a concave function.

4 It therefore suffices to verify the inequality f (x)≥ βk · x at x = 0 and x = 1.
5 Note that f (0) = 0≥ βk ·0 and f (1) = βk ≥ βk ·1.
6 We apply the same logic to the linear function g(z) = βk · z and the lemma follows.



MAX-SAT

The randomized rounding algorithm

Analysis (contd.)

Proof.

1 The expression 1−Πk
i=1(1− ŷi ) is minimized at ŷi =

ẑj
k .

2 It therefore suffices to show that

(1− (1− z
k )k )≥ βk · z, for all integers k and all z ∈ [0,1].

3 Observe that f (x) = 1− (1− x
k )k is a concave function.

4 It therefore suffices to verify the inequality f (x)≥ βk · x at x = 0 and x = 1.
5 Note that f (0) = 0≥ βk ·0 and f (1) = βk ≥ βk ·1.
6 We apply the same logic to the linear function g(z) = βk · z and the lemma follows.



MAX-SAT

The randomized rounding algorithm

Analysis (contd.)

Proof.

1 The expression 1−Πk
i=1(1− ŷi ) is minimized at ŷi =

ẑj
k .

2 It therefore suffices to show that (1− (1− z
k )k )≥ βk · z, for all integers k and all z ∈ [0,1].

3 Observe that f (x) = 1− (1− x
k )k is a concave function.

4 It therefore suffices to verify the inequality f (x)≥ βk · x at x = 0 and x = 1.
5 Note that f (0) = 0≥ βk ·0 and f (1) = βk ≥ βk ·1.
6 We apply the same logic to the linear function g(z) = βk · z and the lemma follows.



MAX-SAT

The randomized rounding algorithm

Analysis (contd.)

Proof.

1 The expression 1−Πk
i=1(1− ŷi ) is minimized at ŷi =

ẑj
k .

2 It therefore suffices to show that (1− (1− z
k )k )≥ βk · z, for all integers k and all z ∈ [0,1].

3 Observe that f (x) = 1− (1− x
k )k is a concave function.

4 It therefore suffices to verify the inequality f (x)≥ βk · x at x = 0 and x = 1.
5 Note that f (0) = 0≥ βk ·0 and f (1) = βk ≥ βk ·1.
6 We apply the same logic to the linear function g(z) = βk · z and the lemma follows.



MAX-SAT

The randomized rounding algorithm

Analysis (contd.)

Proof.

1 The expression 1−Πk
i=1(1− ŷi ) is minimized at ŷi =

ẑj
k .

2 It therefore suffices to show that (1− (1− z
k )k )≥ βk · z, for all integers k and all z ∈ [0,1].

3 Observe that f (x) = 1− (1− x
k )k is a concave function.

4 It therefore suffices to verify the inequality f (x)≥ βk · x at x = 0 and x = 1.

5 Note that f (0) = 0≥ βk ·0 and f (1) = βk ≥ βk ·1.
6 We apply the same logic to the linear function g(z) = βk · z and the lemma follows.



MAX-SAT

The randomized rounding algorithm

Analysis (contd.)

Proof.

1 The expression 1−Πk
i=1(1− ŷi ) is minimized at ŷi =

ẑj
k .

2 It therefore suffices to show that (1− (1− z
k )k )≥ βk · z, for all integers k and all z ∈ [0,1].

3 Observe that f (x) = 1− (1− x
k )k is a concave function.

4 It therefore suffices to verify the inequality f (x)≥ βk · x at x = 0 and x = 1.
5 Note that f (0) = 0≥ βk ·0 and f (1) = βk ≥ βk ·1.

6 We apply the same logic to the linear function g(z) = βk · z and the lemma follows.



MAX-SAT

The randomized rounding algorithm

Analysis (contd.)

Proof.

1 The expression 1−Πk
i=1(1− ŷi ) is minimized at ŷi =

ẑj
k .

2 It therefore suffices to show that (1− (1− z
k )k )≥ βk · z, for all integers k and all z ∈ [0,1].

3 Observe that f (x) = 1− (1− x
k )k is a concave function.

4 It therefore suffices to verify the inequality f (x)≥ βk · x at x = 0 and x = 1.
5 Note that f (0) = 0≥ βk ·0 and f (1) = βk ≥ βk ·1.
6 We apply the same logic to the linear function g(z) = βk · z and the lemma follows.



MAX-SAT

The randomized rounding algorithm

Approximation bound

Theorem

Let expected number of clauses satisfied by the randomized rounding algorithm is at least
(1− 1

e ) ·OPT.

Proof.

1 Let Xi be 1, if clause Ci is satisfied, and 0 otherwise.

2 Let X = ∑
m
j=1 Xi .

3 Let ki be the number of literals in clause Ci and let pi denote the probability that clause Ci
is satisfied.



MAX-SAT

The randomized rounding algorithm

Approximation bound

Theorem

Let expected number of clauses satisfied by the randomized rounding algorithm is at least
(1− 1

e ) ·OPT.

Proof.

1 Let Xi be 1, if clause Ci is satisfied, and 0 otherwise.

2 Let X = ∑
m
j=1 Xi .

3 Let ki be the number of literals in clause Ci and let pi denote the probability that clause Ci
is satisfied.



MAX-SAT

The randomized rounding algorithm

Approximation bound

Theorem

Let expected number of clauses satisfied by the randomized rounding algorithm is at least
(1− 1

e ) ·OPT.

Proof.

1 Let Xi be 1, if clause Ci is satisfied, and 0 otherwise.

2 Let X = ∑
m
j=1 Xi .

3 Let ki be the number of literals in clause Ci and let pi denote the probability that clause Ci
is satisfied.



MAX-SAT

The randomized rounding algorithm

Approximation bound

Theorem

Let expected number of clauses satisfied by the randomized rounding algorithm is at least
(1− 1

e ) ·OPT.

Proof.

1 Let Xi be 1, if clause Ci is satisfied, and 0 otherwise.

2 Let X = ∑
m
j=1 Xi .

3 Let ki be the number of literals in clause Ci and let pi denote the probability that clause Ci
is satisfied.



MAX-SAT

The randomized rounding algorithm

Approximation bound

Theorem

Let expected number of clauses satisfied by the randomized rounding algorithm is at least
(1− 1

e ) ·OPT.

Proof.

1 Let Xi be 1, if clause Ci is satisfied, and 0 otherwise.

2 Let X = ∑
m
j=1 Xi .

3 Let ki be the number of literals in clause Ci and let pi denote the probability that clause Ci
is satisfied.



MAX-SAT

The randomized rounding algorithm

Approximation bound

Theorem

Let expected number of clauses satisfied by the randomized rounding algorithm is at least
(1− 1

e ) ·OPT.

Proof.

1 Let Xi be 1, if clause Ci is satisfied, and 0 otherwise.

2 Let X = ∑
m
j=1 Xi .

3 Let ki be the number of literals in clause Ci and let pi denote the probability that clause Ci
is satisfied.



MAX-SAT

The randomized rounding algorithm

Final Steps (contd.)

Proof.

1 As discussed before,

E[X ] = E[
m

∑
j=1

Xi ]

=
m

∑
j=1

E[Xi ]

=
m

∑
j=1

pi

≥
m

∑
j=1

βki · ẑj



MAX-SAT

The randomized rounding algorithm

Final Steps (contd.)

Proof.

1 As discussed before,

E[X ] = E[
m

∑
j=1

Xi ]

=
m

∑
j=1

E[Xi ]

=
m

∑
j=1

pi

≥
m

∑
j=1

βki · ẑj



MAX-SAT

The randomized rounding algorithm

Final Steps (contd.)

Proof.

1 As discussed before,

E[X ] = E[
m

∑
j=1

Xi ]

=
m

∑
j=1

E[Xi ]

=
m

∑
j=1

pi

≥
m

∑
j=1

βki · ẑj



MAX-SAT

The randomized rounding algorithm

Final Steps (contd.)

Proof.

1 As discussed before,

E[X ] = E[
m

∑
j=1

Xi ]

=
m

∑
j=1

E[Xi ]

=
m

∑
j=1

pi

≥
m

∑
j=1

βki · ẑj



MAX-SAT

The randomized rounding algorithm

Final Steps (contd.)

Proof.

1 As discussed before,

E[X ] =

E[
m

∑
j=1

Xi ]

=
m

∑
j=1

E[Xi ]

=
m

∑
j=1

pi

≥
m

∑
j=1

βki · ẑj



MAX-SAT

The randomized rounding algorithm

Final Steps (contd.)

Proof.

1 As discussed before,

E[X ] = E[
m

∑
j=1

Xi ]

=
m

∑
j=1

E[Xi ]

=
m

∑
j=1

pi

≥
m

∑
j=1

βki · ẑj



MAX-SAT

The randomized rounding algorithm

Final Steps (contd.)

Proof.

1 As discussed before,

E[X ] = E[
m

∑
j=1

Xi ]

=
m

∑
j=1

E[Xi ]

=
m

∑
j=1

pi

≥
m

∑
j=1

βki · ẑj



MAX-SAT

The randomized rounding algorithm

Final Steps (contd.)

Proof.

1 As discussed before,

E[X ] = E[
m

∑
j=1

Xi ]

=
m

∑
j=1

E[Xi ]

=
m

∑
j=1

pi

≥
m

∑
j=1

βki · ẑj



MAX-SAT

The randomized rounding algorithm

Final Steps (contd.)

Proof.

1 As discussed before,

E[X ] = E[
m

∑
j=1

Xi ]

=
m

∑
j=1

E[Xi ]

=
m

∑
j=1

pi

≥
m

∑
j=1

βki · ẑj



MAX-SAT

The randomized rounding algorithm

Final Steps (contd.)

Proof.

1 As discussed before,

E[X ] = E[
m

∑
j=1

Xi ]

=
m

∑
j=1

E[Xi ]

=
m

∑
j=1

pi

≥
m

∑
j=1

βki · ẑj



MAX-SAT

The randomized rounding algorithm

Final Steps (contd.)

Proof.

E[X ] ≥
m

∑
j=1

(1− 1
e

) · ẑj , since βk = 1− (1− 1
k

)k ≥ (1− 1
e

), for all positive integers k

= (1− 1
e

) ·
m

∑
j=1

ẑj

≥ (1− 1
e

) ·OPT .



MAX-SAT

The randomized rounding algorithm

Final Steps (contd.)

Proof.

E[X ] ≥
m

∑
j=1

(1− 1
e

) · ẑj ,

since βk = 1− (1− 1
k

)k ≥ (1− 1
e

), for all positive integers k

= (1− 1
e

) ·
m

∑
j=1

ẑj

≥ (1− 1
e

) ·OPT .



MAX-SAT

The randomized rounding algorithm

Final Steps (contd.)

Proof.

E[X ] ≥
m

∑
j=1

(1− 1
e

) · ẑj , since βk = 1− (1− 1
k

)k ≥ (1− 1
e

), for all positive integers k

= (1− 1
e

) ·
m

∑
j=1

ẑj

≥ (1− 1
e

) ·OPT .



MAX-SAT

The randomized rounding algorithm

Final Steps (contd.)

Proof.

E[X ] ≥
m

∑
j=1

(1− 1
e

) · ẑj , since βk = 1− (1− 1
k

)k ≥ (1− 1
e

), for all positive integers k

= (1− 1
e

) ·
m

∑
j=1

ẑj

≥ (1− 1
e

) ·OPT .



MAX-SAT

The randomized rounding algorithm

Final Steps (contd.)

Proof.

E[X ] ≥
m

∑
j=1

(1− 1
e

) · ẑj , since βk = 1− (1− 1
k

)k ≥ (1− 1
e

), for all positive integers k

= (1− 1
e

) ·
m

∑
j=1

ẑj

≥ (1− 1
e

) ·OPT .



MAX-SAT

A 3
4 factor algorithm

A 3
4 factor algorithm

Combination Algorithm

1 Run the variable flipping algorithm. Let n1 be the number of clauses satisfied by this
algorithm.

2 Run the LP-based randomized rounding algorithm. Let n2 be the number of clauses
satisfied by this algorithm.

3 return(max(n1,n2)).



MAX-SAT

A 3
4 factor algorithm

A 3
4 factor algorithm

Combination Algorithm

1 Run the variable flipping algorithm. Let n1 be the number of clauses satisfied by this
algorithm.

2 Run the LP-based randomized rounding algorithm. Let n2 be the number of clauses
satisfied by this algorithm.

3 return(max(n1,n2)).



MAX-SAT

A 3
4 factor algorithm

A 3
4 factor algorithm

Combination Algorithm

1 Run the variable flipping algorithm.

Let n1 be the number of clauses satisfied by this
algorithm.

2 Run the LP-based randomized rounding algorithm. Let n2 be the number of clauses
satisfied by this algorithm.

3 return(max(n1,n2)).



MAX-SAT

A 3
4 factor algorithm

A 3
4 factor algorithm

Combination Algorithm

1 Run the variable flipping algorithm. Let n1 be the number of clauses satisfied by this
algorithm.

2 Run the LP-based randomized rounding algorithm. Let n2 be the number of clauses
satisfied by this algorithm.

3 return(max(n1,n2)).



MAX-SAT

A 3
4 factor algorithm

A 3
4 factor algorithm

Combination Algorithm

1 Run the variable flipping algorithm. Let n1 be the number of clauses satisfied by this
algorithm.

2 Run the LP-based randomized rounding algorithm.

Let n2 be the number of clauses
satisfied by this algorithm.

3 return(max(n1,n2)).



MAX-SAT

A 3
4 factor algorithm

A 3
4 factor algorithm

Combination Algorithm

1 Run the variable flipping algorithm. Let n1 be the number of clauses satisfied by this
algorithm.

2 Run the LP-based randomized rounding algorithm. Let n2 be the number of clauses
satisfied by this algorithm.

3 return(max(n1,n2)).



MAX-SAT

A 3
4 factor algorithm

A 3
4 factor algorithm

Combination Algorithm

1 Run the variable flipping algorithm. Let n1 be the number of clauses satisfied by this
algorithm.

2 Run the LP-based randomized rounding algorithm. Let n2 be the number of clauses
satisfied by this algorithm.

3 return(max(n1,n2)).



MAX-SAT

A 3
4 factor algorithm

Analysis

Algorithm performance and clause width

k (1− 1
2k ) βk

1 0.5 1.0
2 0.75 0.75
3 0.875 0.704
4 0.938 0.684
5 0.969 0.672

Lemma

max(n1,n2)≥ 3
4
·OPT .



MAX-SAT

A 3
4 factor algorithm

Analysis

Algorithm performance and clause width

k (1− 1
2k ) βk

1 0.5 1.0
2 0.75 0.75
3 0.875 0.704
4 0.938 0.684
5 0.969 0.672

Lemma

max(n1,n2)≥ 3
4
·OPT .



MAX-SAT

A 3
4 factor algorithm

Analysis

Algorithm performance and clause width

k (1− 1
2k ) βk

1 0.5 1.0

2 0.75 0.75
3 0.875 0.704
4 0.938 0.684
5 0.969 0.672

Lemma

max(n1,n2)≥ 3
4
·OPT .



MAX-SAT

A 3
4 factor algorithm

Analysis

Algorithm performance and clause width

k (1− 1
2k ) βk

1 0.5 1.0
2 0.75 0.75

3 0.875 0.704
4 0.938 0.684
5 0.969 0.672

Lemma

max(n1,n2)≥ 3
4
·OPT .



MAX-SAT

A 3
4 factor algorithm

Analysis

Algorithm performance and clause width

k (1− 1
2k ) βk

1 0.5 1.0
2 0.75 0.75
3 0.875 0.704

4 0.938 0.684
5 0.969 0.672

Lemma

max(n1,n2)≥ 3
4
·OPT .



MAX-SAT

A 3
4 factor algorithm

Analysis

Algorithm performance and clause width

k (1− 1
2k ) βk

1 0.5 1.0
2 0.75 0.75
3 0.875 0.704
4 0.938 0.684

5 0.969 0.672

Lemma

max(n1,n2)≥ 3
4
·OPT .



MAX-SAT

A 3
4 factor algorithm

Analysis

Algorithm performance and clause width

k (1− 1
2k ) βk

1 0.5 1.0
2 0.75 0.75
3 0.875 0.704
4 0.938 0.684
5 0.969 0.672

Lemma

max(n1,n2)≥ 3
4
·OPT .



MAX-SAT

A 3
4 factor algorithm

Analysis

Algorithm performance and clause width

k (1− 1
2k ) βk

1 0.5 1.0
2 0.75 0.75
3 0.875 0.704
4 0.938 0.684
5 0.969 0.672

Lemma

max(n1,n2)≥ 3
4
·OPT .



MAX-SAT

A 3
4 factor algorithm

Analysis

Algorithm performance and clause width

k (1− 1
2k ) βk

1 0.5 1.0
2 0.75 0.75
3 0.875 0.704
4 0.938 0.684
5 0.969 0.672

Lemma

max(n1,n2)≥ 3
4
·OPT .



MAX-SAT

A 3
4 factor algorithm

Analysis

Algorithm performance and clause width

k (1− 1
2k ) βk

1 0.5 1.0
2 0.75 0.75
3 0.875 0.704
4 0.938 0.684
5 0.969 0.672

Lemma

max(n1,n2)≥ 3
4
·OPT .



MAX-SAT

A 3
4 factor algorithm

Analysis (contd.)

Proof.

1 We will show that n1+n2
2 ≥ 3

4 ·∑j ẑj .

2 Let Sk denote the set of clauses that contain k literals.
3 As per the variable rounding algorithm,

n1 = ∑
k

∑
Cj∈Sk

(1−2−k )

≥ ∑
k

∑
Cj∈Sk

(1−2−k ) · ẑj .

4 As per the LP-based randomized rounding algorithm,

n2 ≥ ∑
k

∑
Cj∈Sk

βk · ẑj .



MAX-SAT

A 3
4 factor algorithm

Analysis (contd.)

Proof.

1 We will show that n1+n2
2 ≥ 3

4 ·∑j ẑj .

2 Let Sk denote the set of clauses that contain k literals.
3 As per the variable rounding algorithm,

n1 = ∑
k

∑
Cj∈Sk

(1−2−k )

≥ ∑
k

∑
Cj∈Sk

(1−2−k ) · ẑj .

4 As per the LP-based randomized rounding algorithm,

n2 ≥ ∑
k

∑
Cj∈Sk

βk · ẑj .



MAX-SAT

A 3
4 factor algorithm

Analysis (contd.)

Proof.

1 We will show that n1+n2
2 ≥ 3

4 ·∑j ẑj .

2 Let Sk denote the set of clauses that contain k literals.
3 As per the variable rounding algorithm,

n1 = ∑
k

∑
Cj∈Sk

(1−2−k )

≥ ∑
k

∑
Cj∈Sk

(1−2−k ) · ẑj .

4 As per the LP-based randomized rounding algorithm,

n2 ≥ ∑
k

∑
Cj∈Sk

βk · ẑj .



MAX-SAT

A 3
4 factor algorithm

Analysis (contd.)

Proof.

1 We will show that n1+n2
2 ≥ 3

4 ·∑j ẑj .

2 Let Sk denote the set of clauses that contain k literals.

3 As per the variable rounding algorithm,

n1 = ∑
k

∑
Cj∈Sk

(1−2−k )

≥ ∑
k

∑
Cj∈Sk

(1−2−k ) · ẑj .

4 As per the LP-based randomized rounding algorithm,

n2 ≥ ∑
k

∑
Cj∈Sk

βk · ẑj .



MAX-SAT

A 3
4 factor algorithm

Analysis (contd.)

Proof.

1 We will show that n1+n2
2 ≥ 3

4 ·∑j ẑj .

2 Let Sk denote the set of clauses that contain k literals.
3 As per the variable rounding algorithm,

n1 = ∑
k

∑
Cj∈Sk

(1−2−k )

≥ ∑
k

∑
Cj∈Sk

(1−2−k ) · ẑj .

4 As per the LP-based randomized rounding algorithm,

n2 ≥ ∑
k

∑
Cj∈Sk

βk · ẑj .



MAX-SAT

A 3
4 factor algorithm

Analysis (contd.)

Proof.

1 We will show that n1+n2
2 ≥ 3

4 ·∑j ẑj .

2 Let Sk denote the set of clauses that contain k literals.
3 As per the variable rounding algorithm,

n1 =

∑
k

∑
Cj∈Sk

(1−2−k )

≥ ∑
k

∑
Cj∈Sk

(1−2−k ) · ẑj .

4 As per the LP-based randomized rounding algorithm,

n2 ≥ ∑
k

∑
Cj∈Sk

βk · ẑj .



MAX-SAT

A 3
4 factor algorithm

Analysis (contd.)

Proof.

1 We will show that n1+n2
2 ≥ 3

4 ·∑j ẑj .

2 Let Sk denote the set of clauses that contain k literals.
3 As per the variable rounding algorithm,

n1 = ∑
k

∑
Cj∈Sk

(1−2−k )

≥ ∑
k

∑
Cj∈Sk

(1−2−k ) · ẑj .

4 As per the LP-based randomized rounding algorithm,

n2 ≥ ∑
k

∑
Cj∈Sk

βk · ẑj .



MAX-SAT

A 3
4 factor algorithm

Analysis (contd.)

Proof.

1 We will show that n1+n2
2 ≥ 3

4 ·∑j ẑj .

2 Let Sk denote the set of clauses that contain k literals.
3 As per the variable rounding algorithm,

n1 = ∑
k

∑
Cj∈Sk

(1−2−k )

≥

∑
k

∑
Cj∈Sk

(1−2−k ) · ẑj .

4 As per the LP-based randomized rounding algorithm,

n2 ≥ ∑
k

∑
Cj∈Sk

βk · ẑj .



MAX-SAT

A 3
4 factor algorithm

Analysis (contd.)

Proof.

1 We will show that n1+n2
2 ≥ 3

4 ·∑j ẑj .

2 Let Sk denote the set of clauses that contain k literals.
3 As per the variable rounding algorithm,

n1 = ∑
k

∑
Cj∈Sk

(1−2−k )

≥ ∑
k

∑
Cj∈Sk

(1−2−k ) · ẑj .

4 As per the LP-based randomized rounding algorithm,

n2 ≥ ∑
k

∑
Cj∈Sk

βk · ẑj .



MAX-SAT

A 3
4 factor algorithm

Analysis (contd.)

Proof.

1 We will show that n1+n2
2 ≥ 3

4 ·∑j ẑj .

2 Let Sk denote the set of clauses that contain k literals.
3 As per the variable rounding algorithm,

n1 = ∑
k

∑
Cj∈Sk

(1−2−k )

≥ ∑
k

∑
Cj∈Sk

(1−2−k ) · ẑj .

4 As per the LP-based randomized rounding algorithm,

n2 ≥ ∑
k

∑
Cj∈Sk

βk · ẑj .



MAX-SAT

A 3
4 factor algorithm

Analysis (contd.)

Proof.

1 We will show that n1+n2
2 ≥ 3

4 ·∑j ẑj .

2 Let Sk denote the set of clauses that contain k literals.
3 As per the variable rounding algorithm,

n1 = ∑
k

∑
Cj∈Sk

(1−2−k )

≥ ∑
k

∑
Cj∈Sk

(1−2−k ) · ẑj .

4 As per the LP-based randomized rounding algorithm,

n2 ≥

∑
k

∑
Cj∈Sk

βk · ẑj .



MAX-SAT

A 3
4 factor algorithm

Analysis (contd.)

Proof.

1 We will show that n1+n2
2 ≥ 3

4 ·∑j ẑj .

2 Let Sk denote the set of clauses that contain k literals.
3 As per the variable rounding algorithm,

n1 = ∑
k

∑
Cj∈Sk

(1−2−k )

≥ ∑
k

∑
Cj∈Sk

(1−2−k ) · ẑj .

4 As per the LP-based randomized rounding algorithm,

n2 ≥ ∑
k

∑
Cj∈Sk

βk · ẑj .



MAX-SAT

A 3
4 factor algorithm

Final Steps

Proof.

1 It follows that

n1 + n2

2
≥ ∑

k
∑

Cj∈Sk

(1−2−k ) + βk

2
· ẑj .

2 It is not hard to verify that ((1− 1
2k ) + βk )≥ 3

2 , for all k .

3 Therefore,

n1 + n2

2
≥ ∑

k
∑

Cj∈Sk

(
3
2

2
) · ẑj

=
3
4
·∑

k
∑

Cj∈Sk

ẑj

=
3
4
·∑

j
ẑj

≥ 3
4
·OPT .



MAX-SAT

A 3
4 factor algorithm

Final Steps

Proof.

1 It follows that

n1 + n2

2
≥ ∑

k
∑

Cj∈Sk

(1−2−k ) + βk

2
· ẑj .

2 It is not hard to verify that ((1− 1
2k ) + βk )≥ 3

2 , for all k .

3 Therefore,

n1 + n2

2
≥ ∑

k
∑

Cj∈Sk

(
3
2

2
) · ẑj

=
3
4
·∑

k
∑

Cj∈Sk

ẑj

=
3
4
·∑

j
ẑj

≥ 3
4
·OPT .



MAX-SAT

A 3
4 factor algorithm

Final Steps

Proof.

1 It follows that

n1 + n2

2
≥ ∑

k
∑

Cj∈Sk

(1−2−k ) + βk

2
· ẑj .

2 It is not hard to verify that ((1− 1
2k ) + βk )≥ 3

2 , for all k .

3 Therefore,

n1 + n2

2
≥ ∑

k
∑

Cj∈Sk

(
3
2

2
) · ẑj

=
3
4
·∑

k
∑

Cj∈Sk

ẑj

=
3
4
·∑

j
ẑj

≥ 3
4
·OPT .



MAX-SAT

A 3
4 factor algorithm

Final Steps

Proof.

1 It follows that

n1 + n2

2
≥

∑
k

∑
Cj∈Sk

(1−2−k ) + βk

2
· ẑj .

2 It is not hard to verify that ((1− 1
2k ) + βk )≥ 3

2 , for all k .

3 Therefore,

n1 + n2

2
≥ ∑

k
∑

Cj∈Sk

(
3
2

2
) · ẑj

=
3
4
·∑

k
∑

Cj∈Sk

ẑj

=
3
4
·∑

j
ẑj

≥ 3
4
·OPT .



MAX-SAT

A 3
4 factor algorithm

Final Steps

Proof.

1 It follows that

n1 + n2

2
≥ ∑

k
∑

Cj∈Sk

(1−2−k ) + βk

2
· ẑj .

2 It is not hard to verify that ((1− 1
2k ) + βk )≥ 3

2 , for all k .

3 Therefore,

n1 + n2

2
≥ ∑

k
∑

Cj∈Sk

(
3
2

2
) · ẑj

=
3
4
·∑

k
∑

Cj∈Sk

ẑj

=
3
4
·∑

j
ẑj

≥ 3
4
·OPT .



MAX-SAT

A 3
4 factor algorithm

Final Steps

Proof.

1 It follows that

n1 + n2

2
≥ ∑

k
∑

Cj∈Sk

(1−2−k ) + βk

2
· ẑj .

2 It is not hard to verify that

((1− 1
2k ) + βk )≥ 3

2 , for all k .

3 Therefore,

n1 + n2

2
≥ ∑

k
∑

Cj∈Sk

(
3
2

2
) · ẑj

=
3
4
·∑

k
∑

Cj∈Sk

ẑj

=
3
4
·∑

j
ẑj

≥ 3
4
·OPT .



MAX-SAT

A 3
4 factor algorithm

Final Steps

Proof.

1 It follows that

n1 + n2

2
≥ ∑

k
∑

Cj∈Sk

(1−2−k ) + βk

2
· ẑj .

2 It is not hard to verify that ((1− 1
2k ) + βk )≥ 3

2 , for all k .

3 Therefore,

n1 + n2

2
≥ ∑

k
∑

Cj∈Sk

(
3
2

2
) · ẑj

=
3
4
·∑

k
∑

Cj∈Sk

ẑj

=
3
4
·∑

j
ẑj

≥ 3
4
·OPT .



MAX-SAT

A 3
4 factor algorithm

Final Steps

Proof.

1 It follows that

n1 + n2

2
≥ ∑

k
∑

Cj∈Sk

(1−2−k ) + βk

2
· ẑj .

2 It is not hard to verify that ((1− 1
2k ) + βk )≥ 3

2 , for all k .

3 Therefore,

n1 + n2

2
≥ ∑

k
∑

Cj∈Sk

(
3
2

2
) · ẑj

=
3
4
·∑

k
∑

Cj∈Sk

ẑj

=
3
4
·∑

j
ẑj

≥ 3
4
·OPT .



MAX-SAT

A 3
4 factor algorithm

Final Steps

Proof.

1 It follows that

n1 + n2

2
≥ ∑

k
∑

Cj∈Sk

(1−2−k ) + βk

2
· ẑj .

2 It is not hard to verify that ((1− 1
2k ) + βk )≥ 3

2 , for all k .

3 Therefore,

n1 + n2

2
≥

∑
k

∑
Cj∈Sk

(
3
2

2
) · ẑj

=
3
4
·∑

k
∑

Cj∈Sk

ẑj

=
3
4
·∑

j
ẑj

≥ 3
4
·OPT .



MAX-SAT

A 3
4 factor algorithm

Final Steps

Proof.

1 It follows that

n1 + n2

2
≥ ∑

k
∑

Cj∈Sk

(1−2−k ) + βk

2
· ẑj .

2 It is not hard to verify that ((1− 1
2k ) + βk )≥ 3

2 , for all k .

3 Therefore,

n1 + n2

2
≥ ∑

k
∑

Cj∈Sk

(
3
2

2
) · ẑj

=
3
4
·∑

k
∑

Cj∈Sk

ẑj

=
3
4
·∑

j
ẑj

≥ 3
4
·OPT .



MAX-SAT

A 3
4 factor algorithm

Final Steps

Proof.

1 It follows that

n1 + n2

2
≥ ∑

k
∑

Cj∈Sk

(1−2−k ) + βk

2
· ẑj .

2 It is not hard to verify that ((1− 1
2k ) + βk )≥ 3

2 , for all k .

3 Therefore,

n1 + n2

2
≥ ∑

k
∑

Cj∈Sk

(
3
2

2
) · ẑj

=

3
4
·∑

k
∑

Cj∈Sk

ẑj

=
3
4
·∑

j
ẑj

≥ 3
4
·OPT .



MAX-SAT

A 3
4 factor algorithm

Final Steps

Proof.

1 It follows that

n1 + n2

2
≥ ∑

k
∑

Cj∈Sk

(1−2−k ) + βk

2
· ẑj .

2 It is not hard to verify that ((1− 1
2k ) + βk )≥ 3

2 , for all k .

3 Therefore,

n1 + n2

2
≥ ∑

k
∑

Cj∈Sk

(
3
2

2
) · ẑj

=
3
4
·∑

k
∑

Cj∈Sk

ẑj

=
3
4
·∑

j
ẑj

≥ 3
4
·OPT .



MAX-SAT

A 3
4 factor algorithm

Final Steps

Proof.

1 It follows that

n1 + n2

2
≥ ∑

k
∑

Cj∈Sk

(1−2−k ) + βk

2
· ẑj .

2 It is not hard to verify that ((1− 1
2k ) + βk )≥ 3

2 , for all k .

3 Therefore,

n1 + n2

2
≥ ∑

k
∑

Cj∈Sk

(
3
2

2
) · ẑj

=
3
4
·∑

k
∑

Cj∈Sk

ẑj

=

3
4
·∑

j
ẑj

≥ 3
4
·OPT .



MAX-SAT

A 3
4 factor algorithm

Final Steps

Proof.

1 It follows that

n1 + n2

2
≥ ∑

k
∑

Cj∈Sk

(1−2−k ) + βk

2
· ẑj .

2 It is not hard to verify that ((1− 1
2k ) + βk )≥ 3

2 , for all k .

3 Therefore,

n1 + n2

2
≥ ∑

k
∑

Cj∈Sk

(
3
2

2
) · ẑj

=
3
4
·∑

k
∑

Cj∈Sk

ẑj

=
3
4
·∑

j
ẑj

≥ 3
4
·OPT .



MAX-SAT

A 3
4 factor algorithm

Final Steps

Proof.

1 It follows that

n1 + n2

2
≥ ∑

k
∑

Cj∈Sk

(1−2−k ) + βk

2
· ẑj .

2 It is not hard to verify that ((1− 1
2k ) + βk )≥ 3

2 , for all k .

3 Therefore,

n1 + n2

2
≥ ∑

k
∑

Cj∈Sk

(
3
2

2
) · ẑj

=
3
4
·∑

k
∑

Cj∈Sk

ẑj

=
3
4
·∑

j
ẑj

≥

3
4
·OPT .



MAX-SAT

A 3
4 factor algorithm

Final Steps

Proof.

1 It follows that

n1 + n2

2
≥ ∑

k
∑

Cj∈Sk

(1−2−k ) + βk

2
· ẑj .

2 It is not hard to verify that ((1− 1
2k ) + βk )≥ 3

2 , for all k .

3 Therefore,

n1 + n2

2
≥ ∑

k
∑

Cj∈Sk

(
3
2

2
) · ẑj

=
3
4
·∑

k
∑

Cj∈Sk

ẑj

=
3
4
·∑

j
ẑj

≥ 3
4
·OPT .


	Outline
	Main Talk
	Preliminaries
	The variable setting algorithm
	The randomized rounding algorithm
	A 34 factor algorithm


