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Tail bounds

The tail bounds of a random variable X are concerned with the probability that it deviates

signficantly from its expected value E[X] on a run of the experiment.
v

Consider the experiment of tossing a fair coin n times. What is the probability that the number of
heads exceeds 3 - n?
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Alternative Form

Let X be a non-negative random variable and let ¢ > 0 be a positive constant. Then,
P(X>c-E[X]) < L.

A\

Example (Application to coin tossing problem)

Px>"y = pxz2.
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Chebyshev'’s theorem is alternatively stated as:

P(X ~ EIX]| > a- E[X]) < 2l
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Let Xi,..., X, be a sequence of independent Poisson trials with P(X;) = p;, X = ¥.7_; X;, and
U= E[X]. Then, for 0 < § < 1:
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v

@ Again, the first bound is stronger.

@ The second is derived from the first.
@ The second is generally easier to use and sufficient.
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Example

Consider the probability of having no more than 7 heads or no fewer than 34—” tails in a sequence
of nindependent fair coin flips and let X be the number of heads.
Chebyshev’s bound:
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