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Tail bounds
Markov’s inequality

Chebyshev’s Inequality
Chernoff Bounds

Tail bounds

Note

The tail bounds of a random variable X are concerned with the probability that it deviates
signficantly from its expected value E[X ] on a run of the experiment.

Example

Consider the experiment of tossing a fair coin n times. What is the probability that the number of
heads exceeds 3

4 ·n?
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Markov’s inequality

Theorem

Let X be a non-negative random variable and let c > 0 be a positive constant. Then,
P(X ≥ c)≤ E[X ]

c .

Proof.

E[X ] = ∑
x

x ·P(X = x)

= ∑
0≤x<c

x ·P(X = x)+ ∑
x≥c

x ·P(X = x)

≥ ∑
x≥c

x ·P(X = x)

≥ ∑
x≥c

c ·P(X = x)

= c ·P(X ≥ c)

⇒ P(X ≥ c) ≤ E[X ]

c
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Markov’s Inequality (contd.)

Alternative Form

Let X be a non-negative random variable and let c > 0 be a positive constant. Then,
P(X ≥ c ·E[X ])≤ 1

c .

Example (Application to coin tossing problem)

P(X ≥ 3n
4
) = P(X ≥ 3

2
· n

2
)

≤ 1
3
2

=
2
3
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Chebyshev’s Inequality

Theorem

Let X be a random variable (not necessarily positive). Then, P(|X −E[X ]| ≥ a)≤ Var[X ]
a2 .

Proof.

P(|X −E[X ]| ≥ a) = P(|X −E[X ]|2 ≥ a2)

≤ E[(X −E[X ])2]

a2 ], Markov’s inequality

=
Var[X ]

a2

Note

Chebyshev’s theorem is alternatively stated as:
P(|X −E[X ]| ≥ a ·E[X ])≤ Var[X ]

(a·E[X ])2 .
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Chebyshev’s inequality (contd.)

Example (Application to coin tossing problem)

P(X ≥ 3n
4
) = P(X − n

2
≥ n

4
)

≤ P(|X − n
2
| ≥ n

4
)

= P(|X −E[X ]| ≥ 1
2

E[X ])

≤
n
4

( 1
2 )

2 · ( n
2 )

2

=
4
n
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Chernoff Bounds

Theorem - Chernoff Bounds

Let X1, . . . ,Xn be a sequence of independent Poisson trials with P(Xi) = pi , X = ∑
n
i=1 Xi , and

µ = E[X ].

Then:

1 for any δ > 0,

P(X ≥ (1+δ)µ)< (
eδ

(1+δ)(1+δ)
)µ

2 for any 0 < δ ≤ 1,

P(X ≥ (1+δ)µ)≤ e−
µδ2

3

3 for R ≥ 6µ ,
P(X ≥ R)≤ 2−R
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Chernoff Bounds

Note

The first bound is the strongest.

We derive the other two from the first one.

The other two are easier to compute in many situations.
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Theorem - Chernoff Bounds - Deviation below the mean

Let X1, . . . ,Xn be a sequence of independent Poisson trials with P(Xi) = pi , X = ∑
n
i=1 Xi , and

µ = E[X ]. Then, for 0 < δ < 1:

1 P(X ≤ (1−δ)µ)≤ ( e−δ

(1−δ)(1−δ) )
µ

2 P(X ≤ (1−δ)µ)≤ e−
µδ2

2

Note

Again, the first bound is stronger.

The second is derived from the first.

The second is generally easier to use and sufficient.
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Chernoff Bounds - Coin Flips

Example

Consider the probability of having no more than n
4 heads or no fewer than 3n

4 tails in a sequence
of n independent fair coin flips

and let X be the number of heads.
Chebyshev’s bound:

P(|X −E[X ]| ≥ α)≤ Var [X ]

α2

Recall that Var [X ] = n
4 .

P(|X − n
2
| ≥ n

4
) ≤ Var [X ]

( n
4 )

2

=
n
4

( n
4 )

2

=
4
n
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Chernoff Bounds - Coin Flips

Example

Applying the Chernoff bound P(|X −µ| ≥ δ µ)≤ 2e−
µδ2

3 for δ = 1
2 :

P(|X − n
2
| ≥ n

4
) ≤ 2e−

1
3

n
2

1
4

=
2

e
n
24

Chernoff’s inequality gives a bound that is exponentially smaller than the bound obtained using
Chebyshev’s inequality.

Note

Hence, whether we use Markov’s, Chebyshev’s or Chernoff bounds depends on the information
we have available:

1 If we only know the expectation of X (i.e., E[X ]), we use Markov’s bound.

2 If we also know the variation of X (i.e., Var [X ]), we use Chebyshev’s bound.
3 If we also know that the variables are independent, we use Chernoff bound.
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