Reversing the Classification of Weighted Rule Ensembles

Tibérius O. Bonates
Federal University of Ceara
Fortaleza, CE, Brazil
tb@ufc.br

Abstract

We introduce the problem of classification reversal of
weighted rule ensembles, i.e., classifiers consisting of a set
of weighted decision rules. Given a set of decision rules R,
built for a two-class classification task on a binary data set,
and a non-negative real weight w(r) for each rule r € R, the
weighted rule ensemble classifier /' = (R, w) classifies an
observation x according to a linear function of the weights of
the rules satisfied by x. The problem of classification rever-
sal of F' on observation x can be briefly described as find-
ing a smallest set of features of x such that their simultane-
ous modification is enough to bring about the reversal of the
classification of x by F'. We show the problem to be N'P-
hard, describe an optimization model for finding such a set of
features and discuss variants of the model. Our preliminary
computational tests based on publicly available data suggest
that the model can be solved for data sets of moderate size,
warranting further investigation regarding its application to
real-life data sets.

1 Introduction

Let D = {(x',9'),(x%,5?),...,(xP,yP)} be a data set,
where each x* € {0,1}" is a binary n-vector correspond-
ing to an observation and y* € {—1,+1} corresponds to
the class to which x’ belongs. We shall refer to the fea-
tures of D, i.e., the coordinates of the observations in D, as
X1, Xo,..., X,

A decision rule (or, simply, a rule) consists of a set of tests
involving a subset of the features. Any test in a rule corre-
sponds to checking whether the value of a feature X; equals
avalue v € {0, 1}. In other words, a decision rule r is a con-
junction of tests of the type (X; =v;),i € A C{1,...,n},
v; € {0,1},Vi. Given an observation x = (x1,...,2,) €
{0,1}", we shall write r(x) = /. 4(%; = v;) and say that
r is satisfied by x if and only if the value of the Boolean
conjunction 7(x) is true.

Consider a set R of decision rules induced from D. We
shall say that a rule r is active on x if r satisfied by x, i.e., if
r(x) is true. By assuming that decision rule r of R is asso-
ciated with exactly one of the classes, we can define sign(r)
as follows: sign(r) = —1 if r is associated with class —1,
and sign(r) = +1 if r is associated with class +1. We shall

Copyright (© 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

José W.V. Morais Neto
Federal University of the Semi-Arid
Mossord, RN, Brazil
moraisneto_@hotmail.com

also say that a rule r is positive (negative) if sign(r) = +1
(respectively, sign(r) = —1). Thus, each rule will provide,
by itself, a classification decision regarding any given obser-
vation.

In rule ensemble classifiers, such as LAD (Boros et al.
1997; 2000) and Random Forests (Breiman 2001; Ho 1998),
multiple decision rules are evaluated in order to classifiy a
single observation. Therefore, there might be conflicting de-
cisions of the members of the ensemble regarding the very
same observation. A commonly used way of combining the
decisions of a set IR of rules on the classification of an ob-
servation X is to take the majority vote among them: x is
classified according to the class with the largest number of
classification decisions in its favor (Breiman 2001).

A more general way of reaching such a combined decision
in two-class classification tasks is to define a weight function
w : R — R and to consider the sum of the weights of the
rules satisfied by x (see, e.g., (Boros et al. 2000)). Let us
define A(R, w,x) as the difference between the sum of the
weights of the positive rules that are active on x and the sum
of the weights of the negative rules that are active on x, given
by the pseudo-Boolean function:

A(R,w,x) = Z w(r) sign(r) r(x). (1)

reR

Whenever the rule set R and the weight function w are clear
from the context, we shall simply write A(x) to denote
A(R,w,x). If A(x) # 0, then observation x is classified as
belonging to class sign(A(x)); otherwise, the observation is
not classified by F'.

We shall refer to a set of decision rules R, trained on a
two-class data set of binary vectors, along with a weight
function w : R — R., as a weighted rule ensemble
F = (R,w). From now on we shall refer to the classifi-
cation decision of such an ensemble F' on an observation x
as F'(x), and define it as

Fx) :{ sign(A(x)), if A(x) # 0;)

0, otherwise.

In this paper, we shall be concerned with the problem
of, given a weighted rule ensemble F' and an observation
x, with A(x) # 0, selecting a minimum-size set S C
{1,...,n} of feature indices of x such that if the values of
the features indexed by S are reversed in x, then the sign of

F(x) is also reversed. Formally, we are interested in find-
ing a smallest set .S such that if we define an observation
x' €{0,1}" as

X/i _ { 1- Xi,
X,

then we have F'(x) # F(x’).
The remainder of the paper is organized as follows. In
Sections 2 and 3 we discuss the problem of classification re-
versal and review previous related work. In Section 4 we
show that the classification reversal of a weighted rule en-
semble is N"P-complete. In Sections 5 and 6 we introduce
a binary optimization model for the problem and discuss
some of its variants. Preliminary computational results are
reported in Section 7 for the case of a majority vote clas-

sifier. Finally, Section 8 concludes the paper outlining the
results and pointing out directions for future work.

if ieS,
otherwise,

3

2 Classification Reversal

As with many other classification methods, there is no sim-
ple way of determining the relative influence of individual
features in the final classification of a given observation by a
decision rule ensemble, in general. Indeed, such classifiers
are typically composed of a number of rules, each possibly
involving a different subset of features, combined in differ-
ent ways (Ho 1998). Any individual feature might appear in
several rules and participate in more than one type of test.

For instance, a random forest (RF) classifier built on a
data set containing gene expression levels of cancer pa-
tients and controls will typically consist of hundreds deci-
sion trees. Each tree can be understood as a set of decision
rules; a decision forest consists of a weighted rule ensemble,
in which each rule is assigned a weight equal to 1. Each test
in such a RF classifier verifies whether the expression level
of a specific gene is above or below a certain threshold (see,
e.g., (Statnikov and Aliferis 2007)). A gene that is highly in-
fluential for the classification decision of such a decision for-
est can be considered a biomarker, i.e., a biochemical char-
acteristic of an organism that is associated with the presence
or severity of a medical condition. Discovering a biomarker
— or sets of genes which, collectively, act as a biomarker —
associated with a specific disease can lead to improved me-
thods for detecting such a condition and to novel treatment
options (Chin et al. 2011).

A particular form of therapy derived from the knowledge
of genomic information is called gene therapy and involves
the delivery of genetic material to an individual’s cells, in
some cases with the aim of replacing modified genes that
are involved in the underlying mechanism of a certain type
of cancer. The development of personalized gene therapies
based on genomic data analyses is intrinsically linked to
the identification of biomarkers, and constitutes a promis-
ing area in cancer research, as suggested in (Chin et al.
2011): “it [is] increasingly clear that the ability to perform
prospective and comprehensive molecular profiling of tu-
mors will (...) enable genome-informed personalized cancer
medicine”.

In view of this, a natural question concerning the im-
portance of features is: “Given an observation x =

(21,...,z,)and a weighted rule ensemble classifier F', with
rule set R and weight function w, is there a single fea-
ture X; with the property that if we change the value of
X; in x, then we also change the classification given by
F(x)?” In other words, is there j such that if we define
x' = (a1,...,2-1,1 — j,2j41,...,2n), then we have
F(x) # F(x')? This is a simple question that can be ans-
wered in polynomial time by inspection.

In general, however, there is no such feature X;. There-
fore, we consider a modified version of the question in which
we ask for a minimum-size subset S C {1, ..., n} of feature
indices such that, if the values of the features indexed by S
are all simultaneously switched in x, then the sign of F'(x)
is changed. Since we are dealing with a binary classification
task, we shall call the operation of changing the classifica-
tion of an observation x “reversing the classification of x by

Clearly, F'(x) # F(x') implies that modifying the com-
ponents of x specified by S causes some of the rules in
R to classify the modified observation x’ differently from
how they classify x. For each rule » € R, we either have
r(x') = r(x) or r(x') # r(x).

The scenario r(x’) = r(x) corresponds to rules that clas-
sify x’ the same way they classify x, i.e., the changes in the
S-features do not affect the classification decision of such
rules. On the other hand, the r(x’) # r(x) scenario cor-
responds to those rules whose classification are affected by
the changes in S. It is the net effect of occurrences of this
second scenario on the value of A(x) that can realize the
intended classification reversal.

3 Review of Previous Work

In (Axelrod et al. 2004) a LAD classifier — i.e., a classifier
based on a weighted set of decision rules (Boros et al. 1997)
— was used for building a proof of concept of the idea of
modifying a given observation’s classification by means of
feature changes. In that work the set of rules was derived by
a specialized algorithm (Alexe and Hammer 2006) and a lin-
ear program was used to determine the rule weights (Boros
et al. 2000).

An optimization model was developed in (Axelrod et al.
2004) for the purpose of finding a set of feature changes
that minimized a so-called discriminant function § : R™ —
R, similar to the A function introduced in Section 1, but
defined over R™. Assuming that j(x) > 0, the objective
was to obtain from x a modified observation x’ satisfying
d(x’) < 0and having |§(x")| as large as possible. The model
included constraints that retained the active/inactive status
of certain rules: each negative rule r that was active on x
should remain active on x’. Conversely, no positive rule r
that was inactive on x should be active on x’. In other words,
one was only allowed to activate rules of negative weight
and/or deactivate positively weighted rules.

Moreover, since in (Axelrod et al. 2004) features were as-
sumed to be real-valued, each feature of a given observa-
tion could have its value modified in a number of different
ways: changes could vary in sign (i.e., increase/decrease)
and absolute value. A natural way of comparing two sets
A and B of feature changes was to verify if the following

conditions held simultaneously: (i) the modified features in
A were a subset of those in B; (ii) the modifications in A
had the same sign as their counterparts in B; and (iii) the
modifications in A were at most as large (in absolute value)
as their counterparts in B. A relation of this type between
two sets of feature changes indicated that one of them (set
B) was at least as demanding as the other (set A) in terms of
the amount of changes effected.

Since an integer linear programming model was used to
obtain an optimal set of features, there was no straight-
forward way of generating all alternative solutions to the
model. Thus, if one was interested in comparing alterna-
tive solutions (as described above) a substantial amount of
manual intervention or additional software was required.

The main differences from the problem discussed in this
paper to the one described in (Axelrod et al. 2004) are that:
(1) the current problem does not involve constraints on the
activity status of rules; and (ii) the current problem does
not take into account rule weights or magnitudes of feature
changes. Thus, the problem introduced here is neither a gen-
eralization nor a particular case of the one discussed in (Ax-
elrod et al. 2004).

4 Complexity of Reversing the Classification
of a Weighted Rule Ensemble

In this section we show that the problem of reversing the
classification of a weighted rule ensemble, as described
above, is N'P-complete.

Firstly, we formally define the decision version of classi-
fication reversal the problem. In our definition, a binary test
in a decision rule is a test that takes either of the two forms:
X; =0o0r X; =1, for some j € {1,...,n}. Moreover,
let x € {0,1}" be an observation and let S C {1,...,n}.
We shall denote by x* the observation obtained by switch-
ing the values of the components of x that are indexed by S,
as shown in Equation 3.

RULE ENSEMBLE CLASSIFICATION REVERSAL

INPUT: A weighted rule ensemble F', with rule set R and
weight function w : R — R, in which each rule involves
only binary tests, an observation x € {0, 1}", and a positive
integer k.

QUESTION: Is there aset S C {1,...,n}, |S| < k, such
that F'(x%) # F(x)?

We now prove the N'P-completeness of RULE ENSEM-
BLE CLASSIFICATION REVERSAL (RECR) by means of a
polynomial-time reduction from HITTING SET, whose defi-
nition we review below.

HITTING-SET

INPUT: A collection C of subsets of a finite set £ and a po-
sitive integer d.

QUESTION: Is there a subset A C E, |A| < d, such that A
contains at least one element from every member of C.

Before proving the main result, we define a construction
that extends a given rule into a decision tree.

Definition 4.1 (Extended Decision Tree) Given a rule r
involving a subset of the binary features {X1,..., X, }, we

shall build a decision tree based on r as follows. Initially,
let us create a tree T(r) containing a single node, which
takes on the simultaneous roles of root and only leaf of T (1).
Then, we inspect the tests in r according to an arbitrary but
fixed order. For each test a branch is added to the current
leaf t of T(r), thereby creating a new node, which becomes
the only leaf of T(r). We proceed in this fashion until all
tests in r have been processed. At this point, we associate
the only leaf of tree T (1) with the class of r. Finally, for each
non-leaf node we add the missing branch, thus creating new
leaves, which are then associated with the opposite class of
r. Figure I illustrates the construction of such a tree from
the negative rule (Xo = 0, X5 = 1, X5 = 1). The white leaf
is associated with the negative class, while the black leaves
are associated with the positive class.

Since each path from the root of a decision tree to one of
its leaves coincides with a decision rule, and the set of rules
obtained from such paths provides the same classification as
the tree itself, we shall identify each tree T'(r) with the set of
rules corresponding to it. It is important to remark that, due
to the inherent structure of a decision tree, exactly one of the
rules in T (r) is satisfied by any given observation.

(@) (b

Figure 1: (a) Intermediate step in extending a decision tree
from negative rule r = (X3 = 0, X35 = 1, X5 = 1). Only
the branches corresponding to tests in are shown; (b) Fully
extended decision tree built from rule r = (X3 = 0, X3 =
1,X5 = 1). The path corresponding to r is highlighted.
The entire set of decision rules corresponding to the tree is
T(T) = {7’, (XQ = 1),(X2 = O,Xg = 0)7(X2 = O,Xg =
1,X5=0)}.

It is important to note that the Extended Decision Tree
corresponding to a rule r can be created in time that is linear
on the number of tests in r.

Theorem 4.2 RULE ENSEMBLE CLASSIFICATION RE-
VERSAL is N'P-complete.

Proof First, let us note that RECR is in A”P. Consider an
instance of RECR consisting of a weighted rule ensemble
F = (R,w), with R being a set of rules and w being a
weight function w : R — Ry, an observation x € {0,1}"
and a positive integer k. We can verify this instance in poly-
nomial time by inspecting a solution P to it: the modified
observation can be computed in time that is linear on n; it
is enough to verify the classification decision by each rule
r € R on both the original and the modified observations

and to compute the values of A(x) and A(x’). Each rule
contains up to n tests. Thus, the entire process can be car-
ried out in O(| R| n)-time.

Second, we consider the N P-hardness of RECR. Let
Iy = (E,C,d) be an instance of HITTING-SET with a n-
element ground set £ = {ey,...,e,}, a collection C =
{C1,...,Cn} of subsets of F, and an upper bound d on
the cardinality of a solution.

Let us define an observation x = (1,...,1) € {0,1}*T™
and associate with each member C; of C a negative decision
rule 12;, which consists exclusively of tests of the type X; =
1, for all elements e; € C;. We shall denote by T'(R;) the
set of rules corresponding to the Extended Decision Tree of
R; (Definition 4.1).

Let us also introduce two additional sets of simple rules,
each of which consists of a single test:

Pzz(XnJrZ:O)aZ:]-avm
Ni:(Xn+i:1)7i:17"'7ma

with each rule P; being positive and each rule N; being ne-
gative.

Let us now define R = {T(R;) : i =1,...,m} U{P; :
i=1,...,m}U{N; :i=1,...,m} as the multiset of rules
defined previously. We define R as a multiset because we
will be interested in taking into account the weight of each
individual rule, regardless of the fact that two or more copies
of a rule might appear in the sets that compose R. Moreover,
let us define w : R — R such that w(r) = 1, for every r €
R. (Note that this particular weighting scheme is equivalent
to using the majority vote among rules.) Now, we can define
a weighted rule ensemble /' = (R, w). By construction,
we have that: (i) the only negative rule from set T'(R;) is

active on x, for each ¢ = 1,...,m; (ii) every positive rule
P; (i = 1,...,m) is inactive on x; and (iii) every negative
rule N; (i = 1,...,m) is active on x. Therefore, A(x) =

—2m, implying F'(x) = —1.

The families of simple rules P; and N; defined above can
be generated in polynomial time on m. Furthermore, each
extended decision tree T'(R;) can be generated in time pro-
portional to n. Thus, then the entire weighted rule ensem-
ble F' can be generated in polynomial time on n and m. By
defining an instance I = (F,x, k) of RECR, with k = d+1
being an upper bound on the number of features modified in
a solution to I, we have effectively exhibited a polynomial-
time procedure to transform a Hitting Set instance [z into
an instance of RECR.

Next, we show that I is a ‘yes’ instance if and only if
the corresponding I instance is also a ‘yes’ one.

Any solution A to Iy (with |[A] < d) can be trans-
formed into a solution B to Ig, with |[B| < k, by sim-
ply augmenting A with an arbitrary element from the set
Q={n+1,...,n+m}. Indeed, A intersects every set C;
from C, and, due to the structure of the rules R;, the set of
changes to x induced by A are enough to deactivate the m
negative rules in the set { Ry, ..., R, }, while activating one
positive rule from each set T'(R;), i = 1,..., m. By modi-
fying the value of an additional feature X;, with j € Q, we
deactivate yet another negative rule (namely, N, ;) and ac-
tivate one positive rule (P, ;), ensuring that the number of

active positive rules exceeds the number of active negative
rules. Thus, the set B = AU{j}, forany j € @, induces the
reversal of the classification of the modified observation x?
by F, using a total of | B| = |A| 4+ 1 < k feature changes.

We now show how aset P C {1,...,n+m}, with |P| <
k = d + 1, which is a solution to I, can be transformed
into a solution to I, with cardinality at most | P| — 1. Note
that, by construction of the rule multiset R, the solution P
specifies changes to observation x which result in at least
m + 1 positive rules becoming active, what means that P
must include at least one element from the set () defined
above. If [PN Q| = 1, then P\ Q is clearly a hitting set for
Iy, with cardinality at most d. If |[PN Q)| > 1, we claim that
it is possible to carry out a polynomial-time transformation
of P into a solution P’ to Iy satisfying [P’ N Q| = 1 and
[P'| <|P].

In order to accomplish that, let us first make sure that P
is minimal with respect to the inclusion of elements from
PN Q (.e., P does not include more elements from () than
necessary to reverse the classification of F'). We can clearly
enforce this in polynomial time, by keeping track of how
many positive rules from the sets T'(Ry),...,T(R,,) are
satisfied by x” and discarding (from P) as many elements
that lie in the intersection P N @ as possible, while preserv-
ing F(x) # F(x").

If we still have |[P N Q| > 1 after simplifying P via this
procedure, then there must exist |P N Q| — 1 members of C
that have no intersection with P (and, therefore, |[PNQ| — 1
active negative rules in {T'(R1),...,T(Rm)}). Then, there
must exist a set Z of at most |P N Q] — 1 elements from
{1,...,n} \ P such that every member of C is intersected
by P’ = (PUZ)\ W, forany set W C PNQ of cardinality
|PNQ|— 1. Indeed, the set Z can be constructed in polyno-
mial time by selecting at most one element from each of the
members of C that have no intersection with P. The set P’
thus obtained is also a solution to Ig, since |P’| < k and the
net effect of removing elements from W on A(x’) is com-
pensated by the introduction of the elements in Z, assuring
F(x) # F(x'). Thus, we obtain a solution P’ to I with
|[P’N@Q| =1,and P"\ Q induces a solution of cardinality
|P'|—1<dtoIp.

The theorem follows. |

Since obtaining a solution to the optimization version of
the problem allows us to solve its decision version, we have
that the optimization version of RECR is NP-hard.

5 An Optimization Model for Classification
Reversal

We now introduce a binary optimization model for the opti-
mization version of RECR.

Let us write the set of rules in the decision ensemble in
question as R = {r1,...,7z/}. Eachrule r; € R will
be regarded as a set of tests such as r; = {(X = vg) :
v, € {0,1}, k € I(r;)}, with I(r;) denoting the index set
of the features involved in rule r;. We shall consider x =
(1,...,2y,) € {0,1}™ to be the observation of interest.

Before introducing the model, let us define the decision
variables involved. Variable zj;, € {0, 1} corresponds to the

decision of whether or not to modify the value of the k-th
feature of observation x, fork = 1,...,n:

_J 1, if the value of z}, is to be modified;
Zk 0, otherwise.

For each rule r; € R, a binary decision variable y; is
associated with the activity status of ; on the modified ob-
servation: y; = 1 if r; is active, and y; = 0 otherwise.

We must ensure that each rule r; can only be active on
the modified observation if the following conditions hold:
() zr = 0, whenever r; contains the test (X3 = xy); and
(ii) z = 1, whenever r; contains the test (X = 1 — x).
In other words, we must ensure that

vi= I =20 II =

keA(x,r;) keC(x,rj)

where A(x,r;) = {k: (Xy = xx) € rj} and C(x,r;) =
{k : (Xx =1 —ay) € r;} are the index sets corresponding
to the components of x which are in agreement (respectively,
in conflict) with the tests in rule r;. Enforcing conditions (i)
and (ii) above can be accomplished by the introduction of
two types of constraints. The first type forces y; to zero if
any of the conditions (i) or (ii) is violated:

Iy <) = > 2= >, (1=z), @)
ke A(x,r;) keC(x,7;)

Indeed, if any of the two summations in the right-hand side
of (4) adds up to a nonzero value, then y; is forced to be
zero; otherwise, y; is free to take either value 0 or 1. The
second type of constraint forces the value of y/; to be 1 when

rule r; is active:
DT D T R 6

keA(x,r;) keC(x,rj)

y; = 1—

Contrary to the case of constraint (4), if both summations in
the right-hand side of (5) have zero value, then the constraint
forces y; to take the value 1. Clearly, constraints (4) and
(5) are enough to assign the appropriate 0-1 value to each
variable y;, with j = 1,...,|R)|.

Alternatively, if the problem is being modeled as an in-
teger linear program, a tighter formulation can be obtained
by expressing constraints (4) in the following disaggregated
form, as shown in (Crama and Hammer 2011):

Yy <1—2z, VkeA(x,r))
y; < 2k, VkGC(X,Tj).

We shall refer to x’ as the observation obtained after the
feature changes prescribed by the zj, variables are applied
to x. Since we want to make sure that F'(x) # F(x), a
constraint is needed to enforce that the set of active rules is
changed in such a way that sign(A(x’)) # sign(A(x)). The
constraint depends on the value of F'(x) and on the value of
a positive real-valued parameter U, which reflects a lower
bound on the value of |A(x’)|, and shall take the following
form:

|R|
F(x) Y w(r;) sign(r;) y; < —U. (6)
j=1

Finally, the objective function is simply

3.)

k=1

Thus, we can formulate the optimization model for rever-
sal of the classification of x by F" as follows:

(CR) minimize (7), subject to: (4)-(6),
2z, €4{0,1}, k=1,...,n,
y; €{0,1}, 7=1,...,|R|

An optimal solution to model (CR) clearly corresponds
to a minimum-size set of feature changes that is enough to
reverse the classification of x by F. The model can be for-
mulated as an integer linear program or as a constraint pro-
gramming model and solved via a standard solver. In the
next section we show how the model can be modified in or-
der to account for a secondary optimization criterion, as well
as some practical side constraints.

6 Variants of the Basic Model

In this section, we discuss some variants of model (CR) and
describe a partial order on its set of feasible solutions.

As previously discussed, we assume that the given obser-
vation x satisfies A(x) # 0. Thus, we can write F'(x) =
sign(A(x)). In what follows, whenever we refer to x’ we
are actually referring to the modified observation that is ob-
tained after the feature changes prescribed by a solution to
(CR) are applied to x.

The margin of an ensemble classifier F' on an observation
x corresponds to a concept of distance from x to the deci-
sion boundary defined by F'. According to one of the usual
definitions (see, e.g., (Schapire et al. 1998)), the margin of
classifier F' on observation x can be expressed as

_ A
m(F,x) = S _w() (®)

The margin is commonly associated with the confidence
level of the classification of x provided by F' (Schapire et
al. 1998). The larger the absolute value of A(x) the higher
the confidence in the classification of x by F. Indeed, if
we assume that each individual rule is a relatively accurate
classifier on its own, then a large margin corresponds to a
large body of evidence in favor of the classification of x by
F'. In our case, the denominator of (8) is constant. Thus,
if we assume that F'(x) # F(x’), we might simply use the
absolute value of A(x’) as a measure of confidence on, or
effectiveness of the reversal of the classification of x by F'.
Consequently, as a secondary objective to the one of find-
ing a minimum-size set of feature changes that realize the
classification reversal, it is desirable that |A(x")| be made
as large as possible. In particular, given two or more opti-
mal solutions to model (CR), it is reasonable to break the
tie by selecting a solution that achieves the largest absolute
value of A(x’). Model (CR) can be easily modified to ac-
count for this secondary objective (i.e., the number of fea-
ture changes being equal, select a solution whose value of

|A(x")| is largest). First, we replace constraint (6) by the
following two constraints:

|R|

vo=) w(ry) sign(r;) y; ©
=1

Fx)v < -U, (10)

where v is a continuous decision variable unconstrained in
sign and whose value is A(x’) (see Equation (1)). Then, we
replace objective function (7) by

n

sz - ZF(X)U, (11)

k=1 TERw(T)

which is also to be minimized. Note that
F(x)v/>, cpw(r) € (—=1,0); therefore, this penalty
term does not interfere in the optimization of the original
objective function (7).

Moreover, while the value of U can be adjusted in order
to reflect a more adequate minimum confidence level on the
classification F'(x’) (see Equation (6)), we can also impose
an upper bound on the value of |A(x’)|. Imposing such a
bound might be a sensible choice, since a large value of
|A(x")| will likely require changing the values of several
features, resulting in an unrealistic scenario for certain ap-
plications, such as the gene therapy scenario described in
Section 2. Thus, one might replace constraint (10) by

—T < F(x)v<-U, (12)

for some positive real value ' > U.

In light of this discussion, it is possible to define a partial
order relation between feasible solutions of an instance of
model (CR) based on their sets of feature changes and their
corresponding values of A(x’). Let us define E as the set
of all pairs (.5, Vi), where the set of feature indices .S corre-
sponds to a feasible solution to (CR), i.e., to the z; variables
at value 1, and Vg = A(x”) is the A-value corresponding
to solution S. For any two given feasible solutions S7 and
S5 to (CR), a natural order relation < can be defined as

(517‘/5'1) < (527‘/5'2) <~
S1 C Sy and ‘V51| < |V52|.

The pair P = (E, <) defines a strict partial order (Trotter
2001). Note thatif S; C Sz and |Vs, | = |Vs,|, then Sz does
not represent any actual gain with respect to S; (if anything,
solution S5 can be regarded as inefficient with respect to S7,
since it uses more features than S7, but does not achieve a
larger value of |A(x')|). This poset structure is similar to
the one proposed in (Axelrod et al. 2004).

Among the minimal elements of P are the optimal solu-
tions of (CR). The maximal elements of P are the solutions
of (CR) satisfying the property that no other solution with a
superset of feature changes achieves a larger absolute value
of A(x’). A chain in P is a sequence of solutions to (CR)
that defines a family of nested sets of features, along which
the absolute value of A(x’) (and, therefore, the confidence
level of the classification reversal) is non-decreasing.

By analyzing the structure of poset P one might be able
to more accurately decide about which solutions are more

adequate for implementation in a practical context, given:
(i) the maximum acceptable number of feature changes; (ii)
our ability/willingness to simultaneously carry out certain
groups of feature changes; and (iii) the most appropriate ra-
tio between |A(x®)| and the size of the set S.

7 Preliminary Experiments

In this section we present computational results based on
the solution of model (CR) for a particular type of RECR
instance derived from a random forest classifier. The set of
rules was obtained from a decision forest generated from a
binary data set: for every tree 7" in the forest, all paths from
T’s root to a leaf of T" were enumerated, thus giving rise to
a set of decision rules. All rules obtained in this way were
assigned a weight equal to 1, which means that our classifier
employs a majority vote rule for deciding how to classify a
given observation.

The model was implemented in C++ with the use of the
Gecode constraint programming (CP) library (Schulte, Tack,
and Lagerkvist 2010). The reason for selection CP as a so-
lution technique is two-fold. First, since the classifier uses
a majority voting scheme, the decision variable v in con-
straints (9) and (10) is integer-valued and can be handled by
a CP solver with support for variables with integer domains.
Second, CP allows for the systematic enumeration of all fea-
sible solutions of (CR) without an excessive computational
overhead due to re-optimization. In fact, if we constrain the
absolute value of |[A(x’)| to be within a relatively small in-
terval (using a constraint such as (12)), we might be able to
construct the corresponding poset P in a reasonable amount
of time, even for large sets of rules.

The following variant of model (CR) does not contain an
objective function and is amenable to direct solution via a
standard constraint programming solver, such as Gecode:

(CP-CR) find z, y satisfying (4)-(6),
z;€{0,1}, i=1,...,n,
y; €{0,1}, 7 =1,...,|R|

We made use of the data set “Congressional Voting
Records”, from the UCI Machine Learning Repository
(Frank and Asuncion 2011), in order to learn a rule ensem-
ble and carry out the construction of poset P. The data set
consists of a binary classification task, with binary observa-
tion data and some missing attribute values. For additional
information on the data set, we refer the reader to (Frank and
Asuncion 2011).

The decision forest was learned from the data set with the
use of the Random Forest (Breiman 2001) classifier avail-
able in the WEKA software (Hall et al. 2009). A modifica-
tion was applied to the Java source code of WEKA'’s Ran-
domForest classifier, in order to output a description of the
decision trees learned from the data. A post-processed ver-
sion of this description was then fed to model (CP-CR) and
the set of feasible solutions to the model was obtained and
recorded.

Figure 2 illustrates one of the decision trees generated for
the data set. The classifier achieved 96.8% accuracy in a
10-folding experiment, with a total of 30 trees in the forest,
the maximum depth of each tree equal to 5, and the number

| NN Nl RN EEN BN

Figure 2: Decision tree in the random forest learned from
data set Voting. Tests emanating from a node are coded in the
following way. The node itself is labeled X ;. Left branches
correspond to tests of the type X; = 0, while right branches
correspond to X; = 1. As before, black leaves are asso-
ciated with class +1 and white leaves with class —1. This
individual tree corresponds to a set of 11 positive rules and
8 negative rules.

of randomly selected features considered in each node being
[logy(n)] +1 = 5, where n = 16 is the number of features.
The average number of nodes per tree was 47. On the full
data set, the accuracy of the classifier was 97.7%. The total
number of rules derived from the forest was 720. We remark
that, despite the total numer of 720 rules, exactly 30 rules are
active at any given observation, given the inherent structure
of a decision forest classifier: only one rule from each tree
can be active on a given observation.

In order to specify model (CP-CR), an observation x was
selected from the data set. We arbitrarily selected the 411-th
observation from the dataset, which contained no missing at-
tribute values and was classified with a large majority of the
votes from the trees (all but two trees in the forest classified
it as belonging to the “republican” class). In order to con-
fer a high confidence level to the classification reversal, we
made use of constraints (9) and (10), restricting the absolute
value of v to be at least 20 (i.e., out of the 30 trees, at most
5 should classify the observation as belonging to its original
class —i.e.,). Moreover, we limited the number of feature
changes to be at most 6. With such parameters, model (CP-
CR) admitted a total of 74 solutions, out of which 3 were
optimal, with the minimum number of 4 feature changes.

The structure of the resulting poset P is partially shown
in Figure 3. Each element is shown as a rectangle with
two numbers: the left-hand side number informs the value
of |A(x’)| associated with the solution, while the value on
the right is the number of feature changes. The maximal ele-
ments of P had A-values ranging from 22 to 26. This means
that, in order to get a higher A-value (28 or the unanimous
30), it is necesssary to effect more than 6 feature changes.
Note that by definition, the structure of P will be that of
a weak (i.e., non-induced) subposet of the Boolean lattice,
with some of the lowest and highest elements, as well as
some comparability relations, missing.

24,5

Figure 3: Partial Hasse diagram of poset P for data set Con-
gressional Voting.

8 Conclusions

We introduced the problem of reversing the classification of
a binary observation x by a given weighted rule ensemble F’
via modifications on the values of features of x. We showed
the problem to be A/P-complete and proposed a discrete op-
timization model for the solution of its optimization version.

We also presented the results of preliminary computa-
tional tests on a standard classification task from the ma-
chine learning literature. If the rule weights are inte-
ger, model (CP-CR) can be appropriately formulated us-
ing a standard constraint programming engine, allowing the
enumeration of the complete set of solutions. The poset of
solutions thus generated can be used by a decision maker to
guide the selection of an appropriate set of feature modifica-
tions to apply to the given observation.

In addition to the potential use in the identification of
biomarkers and the consequent development of therapies,
the RECR problem described in this paper can be used as
part of feature selection/ranking procedures. It can be ar-
gued that the relevance of a feature to a set of observa-
tions can be estimated on the basis of its relative presence
in small-sized solutions to the corresponding set of RECR
instances.

As another future line of work we suggest applying model
(CP-CR) to a classifier built for a real-life genomic data set.
We believe that the following more general version of RECR
might be of interest: instead of requiring the reversal of the
classification of a single observation x, one can ask for a
smallest subset of features which, once fixed at specific val-
ues, cause the reversal of the classification of a given set of
observations.

9 Acknowledgments

The authors are thankful to Irina Lozina, David Axelrod and
Peter L. Hammer for helpful discussions at a preliminary
stage of this work. The authors also acknowledge the valu-
able input of an anonymous referee that helped improve the
readability of this paper.

The first author was supported by CNPq, the Brazilian
Council for Scientific and Technological Development. The
second author was supported by a Scientific Initiation scho-
larship from the Federal University of the Semi-Arid.

References

Alexe, S., and Hammer, P. L. 2006. Accelerated Algorithm
for Pattern Detection in Logical Analysis of Data. Discrete
Applied Mathematics 154(7):1050-1063.

Axelrod, D.; Bonates, T.; Hammer, P.; and Lozina, I. 2004.
From Diagnosis to Therapy via LAD. [Invited Lecture at
INFORMS Annual Meeting, Denver, CO.

Boros, E.; Hammer, P. L.; Ibaraki, T.; and Kogan, A. 1997.
Logical Analysis of Numerical Data. Mathematical Pro-
gramming 79:163-190.

Boros, E.; Hammer, P. L.; Ibaraki, T.; Kogan, A.; Mayoraz,
E.; and Muchnik, I. 2000. An Implementation of Logical
Analysis of Data. Knowledge and Data Engineering, IEEE
Transactions on 12(2):292-306.

Breiman, L. 2001. Random Forests. Machine Learning
45(1):5-32.

Chin, L.; Hahn, W. C.; Getz, G.; and Meyerson, M. 2011.
Making Sense of Cancer Genomic Data. Genes & Develop-
ment 25(6):534-555.

Crama, Y., and Hammer, P. L. 2011. Boolean Functions:
Theory, Algorithms, and Applications, volume 142. Cam-
bridge University Press.

Frank, A., and Asuncion, A. 2011. UCI Machine Learning
Repository, 2010. URL http://archive. ics. uci. edu/ml 15:22.

Hall, M.; Frank, E.; Holmes, G.; Pfahringer, B.; Reutemann,
P.; and Witten, I. H. 2009. The WEKA Data Mining Soft-
ware: An Update. SIGKDD Explorations 11(1).

Ho, T. K. 1998. The Random Subspace Method for Con-
structing Decision Forests. Pattern Analysis and Machine
Intelligence, IEEE Transactions on 20(8):832—-844.
Schapire, R. E.; Freund, Y.; Bartlett, P.; and Lee, W. S. 1998.
Boosting the margin: A new explanation for the effective-
ness of voting methods. The Annals of Statistics 26(5):1651—
1686.

Schulte, C.; Tack, G.; and Lagerkvist, M. Z. 2010. Modeling
and Programming with Gecode.

Statnikov, A., and Aliferis, C. F. 2007. Are random forests
better than support vector machines for microarray-based
cancer classification? In AMIA Annual Symposium Proceed-
ings, 686—-690. American Medical Informatics Association.
Trotter, W. T. 2001. Combinatorics and Partially Ordered
Sets: Dimension Theory. Johns Hopkins University Press.

