
On the Gap between the Complexity of SAT and Minimization
for Certain Classes of Boolean Formulas

Ondřej Čepek and Štefan Gurský

Abstract
It is a wellknown fact that the satisfiability problem (SAT) for
Boolean formulas in a conjunctive normal form (CNF) is NP
complete, i.e. Σ1 complete. It is also known that the decision
version of Boolean minimization for CNF inputs is Σ2 com-
plete. On the other hand there are several subclasses of CNFs
(e.g. Horn CNFs) for which SAT is known to be in P = Σ0

while the minimization problem is Σ1 complete. Thus, for
both the general case and the above mentioned subclasses the
gap between the complexity of SAT and minimization is ex-
actly one level in the polynomial hierarchy. There are also
some subclasses (e.g. quadratic CNFs) for which there is no
gap because both SAT and minimization are in P = Σ0. In
this short note we shall systematically study different classes
of Boolean functions with respect to the size of the mentioned
gap and show that there also exist classes for which the gap
between the complexity of SAT and minimization is the max-
imum possible (two levels in the polynomial hierarchy). To
this end we shall recall a recent result showing that the mini-
mization of the so called matched CNFs is Σ2 complete.

Introduction
In this short note we study two important decision problems:
the satisfialbility problem (SAT) for formulas in conjunctive
normal form (CNF) and the Boolean minimization problem
for CNFs. We focus on the gap between the complexity of
these two problems for several classes of CNFs.

It is widely accepted, that SAT is one of the most im-
portant problems in computer science, both from the theo-
retical point of view, and from the point of view of prac-
tical applications. Boolean minimization, which is a prob-
lem of finding a shortest CNF logically equivalent to the in-
put CNF, is certainly a less known problem but nevertheless
an important one too. By “shortest” CNF we mean a CNF
which is minimal with respect to a given measure which is
usually one of the following two: the number of clauses or
the sum of lengths of all clauses (total number of literal oc-
curences). Sometimes the problem is stated for disjunctive
normal forms (DNFs), in which case the measures are the
number of terms or the sum of term lengths.

It is a wellknown fact that SAT is NP complete, i.e. Σ1

complete (Cook 1971). It is also known that the decision
version of Boolean minimization is Σ2 complete (Umans
2000). Thus the gap between the complexity of SAT and
minimization for general CNFs is exactly one level in the

polynomial hierarchy. There are several classes of CNFs for
which the complexity of SAT and the complexity of Boolean
minimization both drop one level down (i.e. SAT from Σ1

to Σ0 = P and Boolean minimization form Σ2 to Σ1), re-
sulting again in the same gap (one level in the polynomial
hierarchy). Examples of such classes are Horn CNFs and
several its extensions, such as renamable Horn CNFs (As-
pvall 1980) or q-Horn CNFs (Boros, Crama, and Hammer
1990). In fact, as we shall see later in this paper, for any
class with polynomial time SAT which satisfies few addi-
tional simple properties, the Boolean minimization problem
is guaranteed to drop from Σ2 at least to Σ1 (possibly even
to Σ0).

Since for both the general case and the above mentioned
subclasses (Horn CNFs and its extensions) the gap between
the complexity of SAT and the complexity of minimization
is exactly one level in the polynomial hierarchy, it is tempt-
ing to conjecture, that this is usually (or even always) the
case. However, it is not too hard to find exceptions. There
are subclasses of CNFs (e.g. monotone CNFs, quadratic
CNFs, some restrictions of Horn CNFs) for which there is
no gap because both SAT and minimization are in P = Σ0.
So the next logical conjecture is that the gap is always at
most one level in the polynomial hierarchy. However, also
this conjecture is false, as we shall prove later in the paper.

After systematically studying several classes of Boolean
functions for which the mentioned gap is small (at most one
level in the polynomial hierarchy), we proceed to show that
there also exist classes for which the gap between the com-
plexity of SAT and the complexity of minimization is the
maximum possible, i.e. two levels in the polynomial hierar-
chy, which can only happen when SAT is in P = Σ0 while
Boolean minimization is Σ2 complete. An example of such
a class is the class of so called matched CNFs introduced
in (Franco and Gelder 2003). The main result presented
here is the Σ2 completeness of Boolean minimization for
matched CNFs. The same gap also appears for a generaliza-
tion of matched CNFs called var-satisfiable CNFs defined
in (Szeider 2005).

Preliminaries
Boolean variables x1, x2, . . . are variables that can get either
value true or value false. A literal is a variable or its nega-
tion. A clause is a disjunction of literals and hence the value



of a clause is true, if any of its literals is true. The value of
an empty clause is false. A conjunctive normal form (CNF)
is a conjunction of clauses and it evaluates to true if all its
clauses evaluate to true. An empty CNF evaluates to true.
The dual objects to clauses and CNFs are terms and DNFs.
A term is a conjunction of literals and hence the value of a
term is false, if any of its literals is false. The value of an
empty term is true. A disjunctive normal form (DNF) is a
disjunction of terms and it evaluates to false if all its terms
evaluate to false. An empty DNF evaluates to false.

A Boolean function is a mapping from {0, 1}n (where n
is the number of Boolean variables) to {0, 1}. It is a well
known fact, that any Boolean function can be represented
by both CNF and DNF, usually in more than one way. Well
studied problems associated with CNFs and DNFs are the
following:

Problem: SAT
Input: CNF ϕ
Question: Is ϕ satisfiable, i.e. is there an assignment of
truth values to variables for which ϕ evaluates to true?

Problem: FALS
Input: DNF ϕ
Question: Is ϕ falsifiable, i.e. is there an assignment of
truth values to variables for which ϕ evaluates to false?

These two problems are of course equivalent in the sense,
that each of them can be trivially reduced to the other one
in polynomial time, since a negation of a CNF is a DNF and
vice versa.

Now we are ready to define the decision versions of the
Boolean minimization problem. We need just one more def-
inition: two formulas ϕ and ψ are said to be equivalent if
they represent the same Boolean function.

Problem: MINCNFCLAUSES
Input: CNF ϕ and integer k
Question: Is there a CNF ψ equivalent to ϕ that has at most
k clauses?

Problem: MINDNFTERMS
Input: DNF ϕ and integer k
Question: Is there a DNF ψ equivalent to ϕ that has at most
k terms?

The problems MINCNFCLAUSES and MINDNFTERMS
are equivalent, that is each one can be reduced to the other
in polynomial time. The reason is again the same as in the
case of equivalnce of SAT and FALS, namely the fact that a
negation of a CNF is a DNF and vice versa.

Problem: MINCNFLIT
Input: CNF ϕ and integer k
Question: Is there a CNF ψ equivalent to ϕ that has at most
k occurences of literals?

Problem: MINDNFLIT
Input: DNF ϕ and integer k

Question: Is there a DNF ψ equivalent to ϕ that has at most
k occurences of literals?

Again, the problems MINCNFLIT and MINDNFLIT are
clearly equivalent. It follows, that we can choose either the
CNF or the DNF variant of the above minimization prob-
lems, find its complexity and then apply the result to the
other normal form.
Remark 1. All six decision problems defined above also
make sense if the input is restricted to some class C of
CNFs or a class D of DNFs. Note, that the reduction argu-
ments used for the complexity equivalence then work only
if the negations of CNFs from C constitute the class D and
vice versa. Fortunately, this is in fact a quite common phe-
nomenon for many wellknown classes as we shall see in the
following section.

The gap for particular classes of CNFs
In this section we shall study the gap between the complex-
ity of SAT and both versions of MinCNF by recalling known
results about SAT (or FALS) and MinCNF (or MinDNF) for
several classes of formulas. We will mostly try to stick to
the CNF versions of the results because SAT is a much more
common problem in literature than FALS and the complex-
ity results are usualy proved for SAT not FALS. On the other
hand, for some reason the minimization results appear more
frequently in the DNF notation, so we will sometimes switch
back and forth between the two notations.

General CNFs
The fact that SAT is NP-complete (i.e. Σ1 complete) for
a general CNF input is wellknown. In fact, SAT was the
very first problem that was proved to be NP-complete in
the ground-breaking paper by S.A.Cook (Cook 1971). The
complexity of minimization for general CNF inputs was
proved by C.Umans (Umans 2000) almost 30 years later.
The proof originally appeared in a DNF version.
Theorem 1 ((Umans 2000)). The problems MIND-
NFTERMS and MINDNFLIT are both Σ2 complete.
Corollary 1. Problems MINCNFCLAUSES and MINCN-
FLIT are also Σ2 complete.

Thus the gap between the complexity of SAT and the com-
plexity of minimization for general CNF inputs is exactly
one level in the polynomial hierarchy. Let us now turn our
attention to several classes of CNFs for which this gap van-
ishes.

Monotone CNFs
A CNF is positive if it contains only positive literals and it is
negative if it contains only negative literals. A CNF is mono-
tone if it is positive or negative. Similar definitions apply to
DNFs. Note, that a negation of a positive CNF is a negative
DNF and a negation of a negative CNF is a positive DNF, so
a negation of a monotone CNF is always a monotone DNF
and vice versa. Thus the correspondence between the com-
plexity of CNF and DNF problems described in Remark 1
works here.



Monotone CNFs are of course always satisfiable, so the
SAT problem is trivial. It is easy to see that also the min-
imization problems MINCNFCLAUSES and MINCNFLIT
are easy. Any monotone CNF explicitely contains the canon-
ical CNF of the represented function which is the unique
minimal CNF with respect to both the number of clauses
and the number of literals. To obtain the canonical CNF
from a monotone input, it therefore suffices to check for
every clause whether it is absorbed by some other clause
which is obviously possible to do in polynomial time with
respect to the length of the input CNF. In fact, a stronger re-
sult holds: it was proved in (Goldsmith, Hagen, and Mund-
henk 2008) that the monotone CNF minimization problem
is in Logspace (the result was shown for DNFs).

Quadratic CNFs
A CNF is quadratic if every clause in it contains at most
two literals and a DNF is quadratic if every term in it con-
tains at most two literals. Clearly, a negation of a quadratic
CNF is a quadratic DNF and vice versa, so Remark 1 applies
again. Both SAT and minimization problems are again solv-
able in polynomial time for quadratic CNFs (in fact in linear
time with respect to the length of the input CNF), although
the problems are not as trivial as in the monotone case. Both
linear time algorithms are based on some preprocessing after
which the core of the Boolean problem is transformed into
a directed graph problem. The SAT algorithm (known as a
2-SAT algorithm in the literature (Aspvall, Plass, and Tar-
jan 1979)) detects the strongly connected components of the
constructed directed graph and from these components ei-
ther detects unsatisfiability or constructs a satisfying assign-
ment. The minimization algorithm (which constructs a CNF
with both the minimum number of clauses and the minimum
number of literals) is based on finding a transitive reduction
of the underlying directed graph. This linear time algorithm
is considered a folklore and the authors of this note would be
grateful for any citations pointing to the original publication
of this result.

Restrictions of Horn CNFs
The last classes that we study in this note where both SAT
and MINCNF problems are solvable in polynomial time are
several subclasses of Horn CNFs. A CNF is Horn if every
clause in it contains at most one positive literal. A DNF is
Horn if every term in it contains at most one negative literal.
Hence, a negation of a Horn CNF is a Horn DNF and vice
versa, so these definitions fit Remark 1 perfectly (and this
carries over to the subclasses defined below), and thus we
can restrict our attention to CNFs only.

It is a wellknown fact that SAT for Horn CNFs is solvable
by unit propagation and several linear time implementations
of this algorithm exist (Dowling and Gallier 1984; Itai and
Makowsky 1987; Minoux 1988). On the other hand, the
minimization problem for Horn CNFs is NP-hard as we shall
see in the following subsection. However, there are several
nested subclasses of Horn CNFs which admit polynomial
time minimization. The definitions of these subclasses rest
on the notion of the CNF digraph.

Definition 1 (CNF digraph). For Horn CNF ϕ, the CNF di-
graphGϕ is a directed graph, where vertices are the Boolean
variables and every clause C in ϕ with exactly one positive
literal (called a head of C) generates directed edges from
variables corresponding to negative literals in C (called sub-
goals of C) to the head of C. Note that clauses having only
negative literals generate no edges in Gϕ.

Horn CNF ϕ is acyclic if Gϕ is acyclic (or equivalently
if every strong component of Gϕ is a singleton). It is quasi-
acyclic if every directed edge inside a strong component of
Gϕ comes from a quadratic prime implicate of ϕ. In such
a case all variables inside a strong component of Gϕ are
logically equivalent thanks to a cycle of implications (corre-
sponding to the cycle of directed edges), and thus we can
view quasi-acyclic CNFs as acyclic ones where the same
variable may have several names. Finally, Horn CNF ϕ is
CQ-Horn (short for “component-wise quadratic Horn”) if
every prime implicateC ofϕ has at most one subgoal ofC in
the same strong component of Gϕ as the head of C. Clearly,
acyclic Horn CNFs form a strict subset of quasi-acyclic
Horn CNFs, which in turn form a strict subset of CQ-Horn
CNFs. Polynomial time algorithms solving both MINCNF-
CLAUSES and MINCNFLIT problems appeared in (Ham-
mer and Kogan 1992) for acyclic Horn CNFs, in (Ham-
mer and Kogan 1995) for quasi-acyclic Horn CNFs, and
in (Boros et al. 2009) for CQ-Horn CNFs. The first algo-
rithm is quite easy, it suffices to transform the input CNF
into an irredundant and prime one to obtain the unique min-
imum CNF. The second algorithm uses some of the tricks
known from the minimization of quadratic CNFs (in par-
ticular the algorithm for a transitive reduction of a directed
graph), while the third algorithm is quite complex.

Horn CNFs and their generalizations
As stated in the previous subsection, SAT for Horn CNFs
is solvable in linear time and thus it is in P = Σ0. On
the other hand, both MINCNF problems are long known
to be NP-complete (Σ1-complete). The complexity of the
MINCNFCLAUSES problem for Horn CNFs was first ad-
dressed in (Ausiello, D’Atri, and Saccá 1986) where its NP-
hardness was established. However, the paper does not use
Boolean terminology; the result is stated for directed hy-
pergraphs, which are in some sense isomorphic objects to
Horn CNFs. The same result was later independently proved
in (Hammer and Kogan 1993), this time using Boolean
terms. First complexity results for the MINCNFLIT prob-
lem for Horn CNFs are even older than the clause mini-
mization ones. The first NP-hardness proof for the prob-
lem appeared in a paper dealing with minimum covers in a
relational database (Maier 1980). Although strictly speak-
ing the measure defined in (Maier 1980) is slightly differ-
ent from the sum of clause lengths, the proof can be easily
modified to work also for this measure. A simpler proof
(this time really using the number of literals as the minimal-
ity measure) then appeared in (Hammer and Kogan 1993).
Recently, a proof that works for both measures simultane-
ously and moreover strengthens the result from general Horn
CNFs to cubic Horn CNFs (every clause has at most three



literals) appeared in (Boros, Čepek, and Kučera 2013).
We see, that the gap between the complexity of SAT

and minimization for Horn CNFs (and even for cubic Horn
CNFs) is one level in the polynomial hierarchy. An interest-
ing question is, whether this gap grows larger for generaliza-
tions of Horn CNFs which maintain polynomial time SAT,
i.e. whether the complexity of minimization grows for such
classes. Good candidates to look at are the classes of renam-
able Horn CNFs (Aspvall 1980) and q-Horn CNFs (Boros,
Crama, and Hammer 1990; Boros, Hammer, and Sun 1994).
A CNF is renamable Horn if it can be turned into a Horn
CNF by complementing some subsets of variables (negative
literals are switched to positive and vice versa for the vari-
ables in the selected subset). The class of q-Horn CNFs gen-
eralizes both renamable Horn and quadratic CNFs. For both
classes it is not difficult to prove that the complexity of both
MINCNF problems stays in NP = Σ1, so the gap stays the
same. The principal reason for this fact is that both classes
are closed under partial assignment. In fact, we can make
a much more general observation here. Let X be a class of
CNFs satisfying the following three properties:

• Satisfiability: Given an arbitrary CNF ϕ ∈ X it is possi-
ble to decide in polynomial time with respect to the size
of ϕ whether ϕ is satisfiable.

• Partial assignment: Given an arbitrary CNF ϕ ∈ X , if ψ
is produced from ϕ by fixing some variables to 0 or 1 and
substituting these values into ϕ, then ψ ∈ X .

• Prime representations: Given an arbitrary CNF ϕ ∈ X , if
ϕ represents a function f then all prime CNF representa-
tions of f belong to X .

Classes of CNFs satisfying all of the above properties are
called tractable (sometimes also polynomial time recogni-
tion of CNFs fromX is required forX to be called tractable,
see e.g. (Čepek, Kučera, and Savický 2012)). Note, that
Horn, renamable Horn, and q-Horn CNFs are all tractable
classes of CNFs. It is easy to see, that given a CNF ϕ from
a tractable class, we can decide in polynomial time whether
a given clause C is an implicate of ϕ by substituting the
appropriate values (which make C zero) into ϕ and testing
the satisfiablility of the resulting formula (which is guaran-
teed to be in X due to the second property). This property
of tractable classes has two important consequences (Čepek,
Kučera, and Savický 2012).

Lemma 1. Let ϕ and ψ be two CNFs from a tractable class.
Then it is possible to test in polynomial time whether ϕ and
ψ represent the same Boolean function (are logically equiv-
alent) or not.

Proof. It suffices to test for each clause C in ϕ whether it is
an implicate of ψ and for each clause C in ψ whether it is
an implicate of ϕ. The two CNFs are logically equivalent if
and only if none of these tests fails.

Lemma 2. Let X be a tractable class of CNFs. Then both
MINCNFCLAUSES and MINCNFLIT problems for CNFs
from X belong to NP = Σ1.

Proof. Let ϕ, k be a positive instance of MINCNFCLAUSES
(or MINCNFLIT respectively), where ϕ ∈ X . Let f be the
Boolean function represented by ϕ. Then a prime CNF ψ,
which represents f and consists of at most k clauses (lit-
erals) is a polynomial size certificate for ϕ, k being a pos-
itive instance. Note that we may assume that ψ is a prime
representation since the existence of any CNF representing
f and consisting of at most k clauses (literals) clearly im-
plies the existence of a prime CNF with the same property.
Moreover, the tractability of X (namely the third property)
implies ψ ∈ X . The fact that ψ is a polynomially verifi-
able certificate now follows from the fact that both ϕ and ψ
belong to the tractable class X , and hence using Lemma 1
we get, that it is possible to test in polynomial time that they
both represent the same function f .

The above Lemma shows that if we want to find a class
of CNFs where the complexity gap between SAT and mini-
mization is larger than one level in the polynomial hierarchy
we have to search among classes where SAT is in P but the
class is not tractable. Therefore one of the other two proper-
ties establishing tractability (other than the polynomiality of
SAT) must be violated. As we shall see in the next section,
a good candidate is the second property, i.e. the class we are
looking for should not be closed under partial assignment.

Matched formulas
In this section we study the class of matched CNFs and show
that while SAT is in P for this class (which is a trivial ob-
servation) both minimization problems for this class are Σ2

complete. Let us start with the definition of the class.

Definition 2 (Incidence graph). For CNF ϕ, the incidence
graphG is a bipartite graph, where vertices of one partity are
clauses of ϕ and vertices of the other partity are its variables.
A clause is connected to variables that it contains (that is
clause C is connected to variable x if and only if it contains
either literal x or literal x).

Definition 3 (Matched CNF). CNF is called matched if its
incidence graph has matching that covers all clauses. That
is every clause can be assigned its own variable.

Matched DNFs can be defined in an analogous way (terms
take the role of clauses). Note that obviously a negation of
a matched CNF is a matched DNF and vice versa, so Re-
mark 1 applies again for matched formulas. The following
simple observation is immediately obvious.

Observation 1 ((Franco and Gelder 2003)). Every matched
CNF is satisfiable.

Proof. For clause C take its matched variable x. If C con-
tains literal x, set x to true, othervise set it to false. This way
all clauses can be satisfied.

It is easy to see, that the class of matched CNFs is not
closed under partial assignment. Consider for example a
CNF

(x ∨ y ∨ z) ∧ (x ∨ y ∨ z) ∧ (x ∨ y ∨ z)



which is clearly matched, but after the partial assignment
x← 0 the resulting CNF

(y ∨ z) ∧ (y ∨ z) ∧ (y ∨ z)
is not matched. Thus the class of matched formulas is not
tractable (despite having trivially solvable SAT), and hence
is a good candidate for a large gap between the complexity
of SAT and minimization. So let us now look at the mini-
mization problems for matched formulas. Due to Remark 1
we can use either the CNF or the DNF versions of the prob-
lems establishing the complexity for both. We will follow
the paper (Umans 2000) which uses DNF notation and use
the DNF versions.

Theorem 2. The problems MINDNFTERM and MIND-
NFLIT with inputs restricted to matched DNFs are both Σ2

complete.

Sketch of proof. The proofs of both these statements follow
very closely the original proofs of C. Umans for general
CNFs with certain ammendments. Those proofs for gen-
eral CNFs are quite long and can be found in full in (Umans
2000). The original proof for MINDNFLIT can be found in
(Umans 1998), the proof for MINDNFTERM can be found
in (Umans 1999). Full version of both proofs with ammend-
ments that make the proofs work for matched formulas can
be found in (Gurský 2010). Because of space limitations,
we will only show here what changes have to be made to
modify the proofs for general CNFs to work also for inputs
restricted to matched CNFs.

In both proofs an instance of a certain Σ2 complete prob-
lem is reduced to an instance of the minimization problem at
hand. We present here only the formula in the resulting in-
stance of the minimization problem and the way in which it
can be transformed into a matched formula without destroy-
ing the properties of the formula that make the reduction
work.

Let us first look at MINDNFLIT. In his proof Umans
reduced an instance of a Σ2 complete problem SHORT-
EST IMPLICANT CORE (proof of Σ2 completness pro-
vided therein) to instance of MINDNFLIT. The formula
in the resulting instance of MINDNFLIT is in the form
ϕ′′ = tlw1w2w3 . . . wm′ ∨

∨m
i=1 s

′
i where s′i is in the form

siw1w2 . . . wi−1wi+1 . . . wm′ with wi being variable for all
i and tl and si are terms for all i. An important fact is that
in this formula we can find a matching that matches each of
s′i terms with variable wi+1 (the last one with w1) and the
first term can be matched with any of the variables in tl (it is
not empty). Therefore this formula is matched and problem
MINDNFLIT is Σ2 complete when restricted to matched
DNFs.

In the proof for MINDNFTERM, C. Umans reduces again
problem SHORTEST IMPLICANT CORE (albeit a version
somewhat different from the first one) to an instance of
MINDNFTERM. The resulting instance is in this case a for-
mula that consists of two parts. The first part are terms in
the form s′i = siz1z2 . . . zi−1zi+1 . . . zm with si being term
and zi being variable for each i. Each s′i can be then matched
with zi+1. The second part of the formula has terms in the
form ui,j = (pi)x̄jz1z2 . . . zm, where all parts are variables.

However, we can change pi from being a variable to being
a term of parity function on new set of variables a1, a2 . . .
such that there is enough of a-variables to provide matching
for all terms. The parity is used since it cannot be shortened
in any way. The formula length grows only polynomially
(each term gets a polynomial amount of new variables) and
the resulting formula is again matched. Thus MINDNFLIT
is also Σ2 complete when restricted to matched DNFs.

Corollary 2. Problems MINCNFCLAUSE and MINCN-
FLIT restricted to matched CNFs are also Σ2 complete.

Conclusion
In this short note we have looked at several classes of
Boolean formulas with respect to the complexity ot the satis-
fiability problem and the minimizations problems. We have
seen that for all classes where both the complexity of SAT
and the complexity of minimization are known from the lit-
erature, the gap between these two complexities is at most
one level in the polynomial hierarchy. The main result of this
note shows that the class of matched formulas has the same
complexity of minimization as a general formulas, i.e. the
minimization problem is Σ2 complete. This result is some-
what surprising, since the matched formulas have a very
simple structure and are always satisfiable, which means that
the SAT problem is trivial for them. This altogether implies
that the gap between the complexity of SAT and the com-
plexity of minimization for the class of matched formulas is
two levels in the polynomial hierarchy, which is of course
the maximum possible gap.

Acknowledgments
The first author gratefully acknowledges a support by the
Czech Science Foundation (grant P202/10/1188).

The second author gratefully acknowledges the support of
the Charles University Grant Agency (grant No. 1390213).

References
Aspvall, B.; Plass, M. F.; and Tarjan, R. E. 1979. A linear-
time algorithm for testing the truth of certain quantified
boolean formulas. Information Processing Letters 8(3):121
– 123.
Aspvall, B. 1980. Recognizing disguised NR(1) instances
of the satisfiability problem. Journal of Algorithms 1(1):97–
103.
Ausiello, G.; D’Atri, A.; and Saccá, D. 1986. Minimal
representation of directed hypergraphs. SIAM J. Comput.
15(2):418–431.
Boros, E.; Čepek, O.; Kogan, A.; and Kučera, P. 2009. A
subclass of Horn CNFs optimally compressible in polyno-
mial time. Annals of Mathematics and Artificial Intelligence
57(3-4):249–291.
Boros, E.; Crama, Y.; and Hammer, P. L. 1990. Polynomial-
time inference of all valid implications for horn and related
formulae. Annals of Mathematics and Artificial Intelligence
1:21 – 32.



Boros, E.; Hammer, P. L.; and Sun, X. 1994. Recognition
of q-Horn formulae in linear time. Discrete Applied Mathe-
matics 55(1):1 – 13.
Boros, E.; Čepek, O.; and Kučera, P. 2013. A decomposition
method for CNF minimality proofs. Theoretical Computer
Science. Available online 23 September 2013.
Čepek, O.; Kučera, P.; and Savický, P. 2012. Boolean func-
tions with a simple certificate for CNF complexity. Discrete
Applied Mathematics 160(45):365 – 382.
Cook, S. A. 1971. The complexity of theorem-proving pro-
cedures. In STOC’71: Proceedings of the third annual ACM
Symposium on Theory of Computing, 151–158.
Dowling, W. F., and Gallier, J. H. 1984. Linear-time al-
gorithms for testing the satisfiability of propositional Horn
formulae. The Journal of Logic Programming 1(3):267 –
284.
Franco, J., and Gelder, A. V. 2003. A perspective on certain
polynomial-time solvable classes of satisfiability. Discrete
Applied Mathematics 125(23):177 – 214.
Goldsmith, J.; Hagen, M.; and Mundhenk, M. 2008. Com-
plexity of DNF minimization and isomorphism testing for
monotone formulas. Inf. Comput. 206(6):760–775.
Gurský, Š. 2010. Časová složitost minimalizace
booleovských funkcı́. Master’s thesis, Charles University,
Faculty of Mathematics and Physics, Prague.
Hammer, P. L., and Kogan, A. 1992. Horn functions and
their DNFs. Information Processing Letters 44(1):23 – 29.
Hammer, P. L., and Kogan, A. 1993. Optimal compression
of propositional Horn knowledge bases: complexity and ap-
proximation. Artif. Intell. 64(1):131–145.
Hammer, P., and Kogan, A. 1995. Quasi-acyclic
propositional Horn knowledge bases: optimal compression.
Knowledge and Data Engineering, IEEE Transactions on
7(5):751–762.
Itai, A., and Makowsky, J. 1987. Unification as a complex-
ity measure for logic programming. The Journal of Logic
Programming 4(2):105 – 117.
Maier, D. 1980. Minimum covers in relational database
model. J. ACM 27(4):664–674.
Minoux, M. 1988. Ltur: a simplified linear-time unit resolu-
tion algorithm for Horn formulae and computer implemen-
tation. Information Processing Letters 29(1):1 – 12.
Szeider, S. 2005. Generalizations of matched CNF formu-
las. Annals of Mathematics and Artificial Intelligence 43(1-
4):223–238.
Umans, C. 1998. The minimum equivalent DNF problem
and shortest implicants. In Foundations of Computer Sci-
ence, 1998. Proceedings. 39th Annual Symposium on, 556–
563.
Umans, C. 1999. Hardness of approximating Σp

2 minimiza-
tion problems. In in Proc. 40th IEEE Symp. on Foundations
of Computer Science, 465–474.
Umans, C. 2000. Approximability and completeness in the
polynomial hierarchy. Ph.D. Dissertation, University of Cal-
ifornia, Berkeley. Chair-Papadimitriou, Christos H.


