Bag Connected Tree-Width

Vahan Mkrtchyan
LDCSEE
West Virginia University
Morgantown, WV
{vahan.mkrtchyan@mail.wvu.edu}

Jeffrey Yancey
LDCSEE
West Virginia University
Morgantown, WV
{jayancey@mix.wvu.edu}

March 24, 2014

Abstract

Motivated by some problems that related with Constraint Satisfaction Problems, the authors introduce the notion of a bag-connected tree-decomposition and a bag-connected tree-width. This concepts are analogous to that of tree-decomposition and tree-width. They show that it is **NP-hard** to find a bag-connected tree-decomposition of smallest width. Moreover, they exhibit a polynomial algorithm that finds some bag-connected tree-decomposition of any graphs.

1 Introduction

2 Statement of Problem

Definition 2.1 A tree-decomposition of a graph G = (X, C) is a pair (E, T), where T = (I, F) is a tree, and $E = \{E_i : i \in I\}$ is a family of subsets of X such that

- $\bigcup_{i \in I} E_i = X$,
- for each edge $(x, y) \in C$, there is $i \in I$, such that $\{x, y\} \subseteq E_i$,
- for all $i, j, k \in I$ if k is on a unique i j path of T, then $E_i \cap E_j \subseteq E_k$.

The width of the tree-decomposition (E,T) is equal to $\max_{i\in I} |E_i| - 1$. The tree-width w(G) of a graph G is the minimum width over all tree-decompositions of G.

In the paper of Jegou and Terrioux the notion of Bag-Connected Tree-width of a graph is introduced.

Definition 2.2 A bag-connected tree-decomposition of a graph G = (X, C) is a pair (E, T), where T = (I, F) is a tree, and $E = \{E_i : i \in I\}$ is a family of subsets of X such that

- $\bullet \cup_{i \in I} E_i = X$,
- for all $i \in I$ the subgraph of G induced by E_i is a connected graph,
- for each edge $(x,y) \in C$, there is $i \in I$, such that $\{x,y\} \subseteq E_i$,

• for all $i, j, k \in I$ if k is on a unique i - j path of T, then $E_i \cap E_j \subseteq E_k$.

The width of the tree-decomposition (E,T) is equal to $\max_{i\in I} |E_i| - 1$. The bag-connected tree-width $w_c(G)$ of a graph G is the minimum width over all bag-connected tree-decompositions of G.

Clearly, for any connected graph G the parameter $w_c(G)$ is well-defined (simply put all vertices into one cluster). Moreover, $w_c(G) \leq |V| - 1$.

The Statement of the Main Problem: For an input graph G, construct a bag-connected tree-decomposition of width $w_c(G)$.

3 Results

It is known that the problem of calculation of the tree-width of a graph is an **NP-hard** problem. In the paper the authors show that the same result can be obtained for bag-connected tree-width.

Theorem 3.1 The problem of calculation of bag-connected tree-width of a graph is an NP-hard problem.

Proof: The reduction is from the problem of calculation of tree-width. \Box

The second result of the paper presents an algorithm that constructs some bag-connected tree-decomposition of a graph.

Theorem 3.2 There exists an algorithm, which for any input graph G = (V, E) with n vertices and m edges, constructs a bag-connected tree-decomposition in time $O(n \cdot (n+m))$.

4 Critiques