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1. INTRODUCTION

Many problems in science and engineering require the solution of
systems of linear equations. As the problems get larger, it becomes
important to exploit the fact that many such systems are sparse. Often
each equation only involves a few of the variables. By taking advantage of
sparsity it is often possible to solve substantially larger linear systems.

To solve the symmetric positive definite linear system Ax =5b via
Cholesky factorization, one first computes the Cholesky factor L such that
A = LL", and then solves the triangular systems Ly = b and LTx = y. If
A is sparse, one may first permute the rows and columns of the matrix
symmetrically, thus solving (PAPT)Px = Pb for some permutation matrix
P. the permutation is typically chosen to try to make the factorization
more efficient according to several measures of complexity. The permuta-
tion matrix corresponds to a reordering of the vertices of the graph G(A)
of the matrix.

Several different parameters of the graph G(A) dictate how efficiently
we can solve the linear system. Among these parameters are treewidth,
minimum front size, minimum maximum clique, and minimum elimination
tree height. Small front size is important in the multifrontal algorithm [8,
22]; front size is related to the amount of fast memory needed for
factorization. Elimination tree height measures the parallel time needed to
factor 4 by Gaussian elimination with unlimited processors. All these
parameters depend on the ordering on the rows and columns of A.
Unfortunately, determining the orderings that give the optimal values of
these parameters is NP-complete [2, 9, 25]. Therefore we have to be
content with approximations.

The main point of this paper is that minimum front size and elimination
tree height are intimately related to three other graph parameters, namely
treewidth, pathwidth, and the size of separators in subgraphs of the graph,
and that all these parameters can be approximated within a polylogarith-
mic factor of optimal in polynomial time. Treewidth has several other
applications to graph algorithms and to graph minor theory [1]. Pathwidth
has important applications in the theory of VLSI layout, and is equivalent
to several other graph parameters, including minimum chromatic number
of a containing interval graph and node search number. The pathwidth
problem is also equivalent to the gate matrix layout problem. See [24] for
an overview.

In Section 3 we show that optimal treewidth, pathwidth, elimination
tree height, front size, minimax clique, and separator number are all
within O(log n) of each other. In Section 5 we show that all these
parameters can be approximated efficiently by using a recent result of
Leighton et al. (see Lemma 4.1 in [16], and also [19]) on approximating
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graph separators. The approximations are no more than O(log n) or
O(log? n) times the optimal values. (Some of these results have been
obtained independently by Klein er al. [16].) Finally, we show in Section 6
that none of these parameters can be approximated within an additive
constant of optimal in polynomial time unless P = NP.

2. DEFINITIONS

In this section we define the various graph parameters which we relate
to each other in Section 3 and approximate in Section 5. Table 1 lists the
parameters. We assume that the reader is familiar with standard graph
theoretic notation (see Harary [14], for example). The subgraph of G =
(V, E) induced by W C V is denoted by G{W]. Logarithms are taken to
base 2 unless otherwise specified.

The first set of definitions concern parameters of graphs that have been
studied in graph minor theory [29].

The class of k-trees is defined recursively as follows. The complete
graph on k vertices is a k-tree. A k-tree with n + 1 vertices (n > k) can
be constructed from a k-tree with n vertices by adding a vertex adjacent to
all vertices of one of its k-vertex complete subgraphs, and only to these
vertices. A partial k-tree is a graph that contains all the vertices and a
subset of the edges of a k-tree. The smallest k& such that G is a partial
k-tree is its k-tree number.

A tree decomposition of a graph G = (V, E) is a pair ({X,]i € I}, T =
(1, F)), where T is a tree and {X}} is a collection of subsets of ¥, such that

c U,/ Xi=V.
* For all (v,w) € E, there exists an i € I with v,w € X,.

e For all i,j,k €, if j is on the path from / to k in 7, then
X, NX, cX,.

TABLE 1
Parameters of Graph G = (V, E) or Symmetric Sparse Matrix A

k-tree number Smallest k such that G is a subgraph of a k-tree
Treewidth Minimum width of a tree decomposition of G
Pathwidth Minimum of a path decomposition of G
Separator number Max (over subsets of V') of smallest }-vertex separator
Min etree height Min (over elimination orders for A4) elimination tree height
Min frontsize Min (over elimination orders for 4) of largest frontal matrix

Min max clique Min (over chordal completions of G) of largest clique in G*
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The third condition can be replaced by the equivalent condition that
{i € Ilv € X} forms a connected subtree of T for all v € V.

The treewidth of a tree decomposition ({X;}, T) is max|X;| — 1. The
treewidth of a graph is the minimum treewidth over all possible tree
decompositions of that graph. The problem of finding the treewidth of a
given graph G is NP-complete [2]. However, many NP-complete graph
problems can be solved in polynomial and even linear time if restricted to
graphs with constant treewidth (see, e.g., [3, 4]). For any fixed k, determin-
ing whether the treewidth of G is at most k (and finding a corresponding
tree decomposition) can be done in O(n) time [6].

A path decomposition of a graph G = (V, E) is a tree decomposition
({X.}, T) such that T is a path. The pathwidth of such a path decomposi-
tion is max|X;| ~ 1. The pathwidth of a graph is the minimum pathwidth
over all possible path decompositions of that graph. The notion of path-
width has several important applications, for example in VLSI layout
theory [24].

The next few definitions measure the difficulty of splitting a graph
approximately in half by deleting edges or vertices.

Let a be a constant between 0 and 1. An «-vertex separator of a graph
G =(V,E) is a set § CV of vertices such that every connected compo-
nent of the graph G[IV — S] obtained by removing § from G has at most
a - |V] vertices. An a-edge separator of G is a set § € E of edges such
that every connected component of the graph (V, E — §) obtained by
removing S from G has at most « - | V] vertices.

For W C V, an a-vertex separator of W in G = (V,E)isaset S C V of
vertices such that every connected component of the graph G[V — §]
contains at most « - |W| vertices of W. An a-edge separator of W in G is
defined similarly.

The following definition is not standard, but is useful for our purposes.
The separator number of a graph G = (V, E) is the maximum over all
subsets W of V of the size of the smallest }-vertex separator of W in G.
Thus the separator number measures the difficulty of separating the
“hardest” subset of the vertices of G. Every subgraph of G has a %-vertex
separator of size at most the separator number of G.

Our final set of definitions concern a graph-theoretic model of symmet-
ric Gaussian elimination that has been used extensively in sparse matrix
computation [11].

The elimination game on a graph G repeats the following step until
every vertex of G has been chosen (or “eliminated”). Choose a vertex v,
and add edges to make adjacent all of the neighbors of v that have not yet
been chosen. These added edges are called fill edges. The result of playing
the elimination game is called the filled graph and written G™; if 7 is the
order in which the vertices were chosen, we sometimes write G,f. The
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elimination game models symmetric Gaussian elimination (or Cholesky
factorization) on a matrix 4 whose graph is G(A) = G; the filled graph
G?* is the nonzero structure of the triangular factor. In this setting,
choosing an order 7 for the vertices corresponds to choosing a permuta-
tion P for the rows and columns of the matrix A4, and performing
Gaussian elimination on PAPT. The number of edges in G, is called the
fill due to ordering i, and measures the storage needed to hold the
triangular factor; thus, choosing m to decrease fill is one goal in sparse
factorization.

The filled graph G is a perfect elimination graph, which means that the
elimination game can be played on G without causing any additional fill
(using the order i, in fact). Perfect elimination graphs are the same as
chordal graphs, which are graphs with no induced subgraphs that are
cycles of at least four vertices [30). A chordal graph obtained by adding
edges to G is called a chordal completion of G; for all G and =, the graph
G} is a chordal completion of G, and every minimal chordal completion
of G is G} for some = [31].

Let C_(v) be the set of neighbors of vertex v that are still unchosen
when v is eliminated; in other words, the set of neighbors of v in G} that
are higher-numbered than v according to . The elimination tree T, has
the same vertices as G, and has a parent relation defined as follows
[23, 32]: the parent of vertex i is the lowest-numbered vertex of C_(i), or
equivalently the smallest of the higher-numbered neighbors of i in G .
The elimination tree is a depth-first spanning forest of G, with one
connected component for each connected component of G (or equiva-
lently of G)[23). The elimination tree of G(A) describes the dependen-
cies between the columns of the matrix A during Cholesky factorization:
the children of a vertex must be computed before their parent. The height
of the elimination tree is thus a measure of the parallel time to factor A
with unlimited processors. Generally, different permutations = give trees
T, of different heights. Thus one goal in parallel Cholesky factorization is
to reorder the rows and columns of A to reduce the height of the
elimination tree. The height of the shortest elimination tree (over all
choices of ) is the min etree height.

The front size of G, is the maximum size of C, (v) over all v. Like
elimination tree height, front size depends on the choice of ordering 7.
The smallest front size of G over all 7 is the min front size. Reordering to
decrease front size is important for the mudtifrontal algorithm [8, 22]. The
multifrontal algorithm computes the Cholesky factorization of a sparse
matrix by doing sequence of partial factorizations of small dense matrices,
the goal being to make better use of hierarchical storage, vector floating-
point hardware, or sometimes parallelism. Figure 1 shows one elimination
step of the method: here v is only the nonzeros below the diagonal in the
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Fic. 1. A step in the multifrontal algorithm.

column being eliminated, and the frontal matrix F contains only the rows
and columns corresponding to nonzeros in the column being eliminated.
The update matrix B — w"/d is dense, and is saved for use in later
elimination steps. Many such matrices may be saved at the same time, but
only enough main memory for one frontal matrix is needed. The front size
of A is the dimension of the largest update matrix in the multifrontal
factorization of A, or equivalently one less than the dimension of the
largest frontal matrix. The front size of A can also be characterized as the
largest number of nonzeros below the diagonal in any column of its
Cholesky factor.

Finally, we define the min max clique of a graph G to be the minimum,
over all elimination orders 7, of the size of the largest clique in the filled
graph G . Equivalently, it is the smallest clique number of any chordal
completion of G.

3. RELATIONSHIPS

In this section we prove several lemmas showing that the parameters
listed in Table 1 are closely related. Theorem 12 at the end of the section
summarizes these relationships. Some of the results are known, but we
present them all here in order to show how closely linked these parame-
ters are, and to demonstrate how a separator approximation algorithm can
be used to approximate all the different parameters. The results relating
elimination tree height to treewidth, pathwidth, and separator number are
new. Several of the other relationships were already known, often only as
“folklore,” and are often hard to trace to their origins.

LemmA 1. For k > 1, the treewidth of G is at most k if and only if G is a
partial k-tree; thus, treewidth is equal to k-tree number.

Proof. See, for example, van Leeuwen [34]. &

LemMa 2. The treewidth of G is equal to the minimum, over all
elimination orders w, of the maximum, over all vertices v, of the number of
higher-numbered neighbors of v in G} .

Proof. See, for example, Arnborg [1]. &
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Lemma 3. If a is a symmetric positive definite matrix and G = G(A),
then the treewidth of G is equal to the min front size of A.

Proof. This is just a restatement of Lemma 2. B

LemMA 4. Graph G has treewidth k iff the minimum over all elimination
orders m of the size of the largest clique in G} is k + 1. Thus, treewidth =
min max clique — 1.

Proof. Let G have treewidth k. By Lemma 2, for every elimination
order 7 there is a vertex v such that the set C,(v) of higher-numbered
neighbors of v has size at least k. In the elimination game, the set
C_(v)U{vHwhich has size k + 1) becomes a clique in G . Therefore min
max clique > treewidth + 1.

Conversely, if min max clique is k + 1, then for every elimination order
m there is a clique of size at least k + 1 in G,/. The lowest-numbered
vertex in that clique has at least & higher-numbered neighbors in G,
so the front size is at least k. By Lemma 3, then, min max clique <
treewidth + 1. &

Now we show that separators are related to the other parameters. The
following lemma is probably the oldest separator theorem; a version is due
to C. Jordan in 1869 [15, 17], and Lewis et al. [20] rediscovered it in the
early 1960s.

LEMMA 5. Let T be a tree with n vertices, and let W be a subset of the
vertices. There is a vertex v in T such that every component of T — v contains
at most |W| vertices of W. Such a vertex can be found in O(n) time.

Proof. Let & = 2|W|. The following algorithm finds v. Choose v
arbitrarily to start. If no component of T — v contains more than §
vertices of W, we are done. Otherwise, let v’ be the neighbor of v in the
component of 7 — v that contains more than & vertices of W. Replace v
by ¢’ and repeat. Note that the component of T — ¢’ containing v has
less than & vertices of W, so the algorithm never repeats a choice of v and
eventually terminates. B

In our terminology, this says that the separator number of a tree is 1.
The next result generalizes from trees to partial k-trees. Several state-
ments equivalent to Lemma 6 have appeared [13, 29]; this short proof is
similar to one due to Liu [23].

LemMmA 6. Let G = (V, E) be a graph with treewidth at most k. Let
W C V. Then there exists a 3-vertex separator of W in G of size at most
k+1.

Proof. Consider an elimination order 7 such that G has front size at
most k. Use Lemma 5 to find vertex v which is a -vertex separator of W
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in the elimination tree 7. Because the elimination tree is a depth-first
search tree of G} [23], every edge of G joins an ancestor to a descendant
in T_. Let §' be the set of proper ancestors of v in 7, that are adjacent
(in G) to descendants of v in 7. Then S = §’ U {vlis a }-vertex separator
of W in G (and, in fact, in G;). We see that §’ is equal to C_(v), and

hence § has size at most Kk + 1. B

The next pair of lemmas relates min etree height to vertex separator
number. The construction in Lemma 7 is from Gilbert [12], where it was
used to prove bounds on fill.

LemMma 7. If G and its subgraphs have a-vertex separators of size at
most s, then some ordering gives an elimination tree of height at most
slog, . n.

Proof. Let m be George’s nested dissection ordering [10] for G: find
an «-vertex separator S of size at most s, order the vertices of the
separator last, and order the connected components of G — § recursively
by nested dissection. If the successive vertices of some path in G} have
monotone increasing values in the ordering =, then the path can only
include vertices from one separator on each level of recursion. There are
at most log, ,, n levels, so the longest such path is at most s log, ,, n. Any
path from a leaf to the root of the elimination tree is monotone, so the
lemma follows. ®

Taking a = % in Lemma 7, we conclude that min etree height is at most
log n times separator number. Now we can show that separator number is
at most min etree height.

LemMMa 8. If G has a elimination tree of height h > 0, then every subset
W of vertices of G has a 3-vertex separator of size at most h.

Proof. Let S be the j-vertex separator for W in G that is found in
Lemma 6. All the vertices of S lie on a path from a leaf to the root of the
tree. Thus the size of S is at most 4 + 1. If S has h + 1 vertices, then it
includes all the vertices on a path from some leaf v to the root. In this
case either S — v is a 3-vertex separator for W, or W = {v} and W itself is
the desired separator. B

Next we relate the minimum elimination tree height to the minimum
size of the maximum clique in G*.

LeEMMA 9. The separator number of G is less than or equal to min max
clique.

Proof. This follows directly from Lemma 4 and Lemma 6. B
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Lemma 10, If the minimum maximum clique of G has size k, then the
shortest elimination tree of G is lower than k log n.

Proof. This is immediate from Lemma 7 and Lemma 9. ®m

Now we relate pathwidth to the other parameters. As path decomposi-
tions are a special case of tree decompositions, the treewidth of a graph is
never larger than the pathwidth. We also have the following interesting
relationship.

Lemma 11.  If G has an elimination tree with height k, then the path-
width of G is at most k.

Proof. Let m be an ordering such that the elimination tree T, has
height k. Number the leaves of T as v,,...,v,, from left to right. For
l<j<rletX i consist of U; and all ancestors of v; in T_. Let P be the
path ({1,2, ..., rL,{(i,i + D|1 <i < r}). Then ({X}}, P) is a path decompo-
sition of the filled graph G, and hence of G, with pathwidth k. B

As a direct consequence, the treewidth of G is no larger than the height
of an elimination tree and the minimum maximum clique of G* is no
larger than the height plus one.

Finally, we summarize all these relationships in a theorem.

THEOREM 12. Let G be a graph with at least one edge, and let A be a
symmetric positive definite matrix with G(A) = G. The minimum front size
of A is equal to the tree width of G and to the smallest k that G is a partial
k-tree, and this number is one less than the smallest clique number of any
chordal completion of G. The minimum elimination tree height of A is no less
than these three parameters, and is at most log n times them. The pathwidth
of G lies between treewidth and minimum elimination tree height. Minimum
etree height is also between the separator number of G and log n times the
separator number, but the separator number can be up to a factor of logn
less or more than tree width, minimum front size and minimum maximum
clique. In other words,

* treewidth = min partial k-tree = min frontsize = min max clique — 1.

* separator number — 1 < treewidth < pathwidth < min etree height <
separator number - log n.

4. APPROXIMATION OF VERTEX SEPARATORS
Leighton and Rao [19] have obtained approximation algorithms for

various separator problems, including the problem of finding minimum
size balanced edge separators. Using these results, Leighton and Rao
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obtained similar results for vertex separators, including the following
result, upon which our algorithms depend heavily.

THEOREM 13 [19]. There exists a polynomial algorithm that, given a
graph G = (V, E) and a set W C V, finds a 3-vertex separator S C V of W
in G of size O(w - logn), where w is the minimum size of a j-vertex
separator of Win G.

When we now apply Lemma 6, we get the following result, which is the
fundamental step in our approximation algorithm.

Tueorem 14. There exist a constant B > 1 and a polynomial time
algorithm that, given a graph G = (V, E) and a set W C V, finds a %-vertax
separator of W in G of size B -logn -k, where n = |V| and k is the
treewidth of G.

Proof. Lemma 6 implies that there exists a 3-vertex separator of W in
G of size k + 1. The result follows by using the algorithm of Theorem 13,
taking B8 to be enough larger than the constant hidden in the O of
Theorem 13 to account for the factor (k + 1)/k. ®

In the remainder of the paper, we take B8 to be the constant from this
theorem.

5. APPROXIMATION ALGORITHMS

In this section we give a polynomial time approximation algorithm for
the treewidth problem that is at most a factor of O(log n) off optimal.
From the analysis in Section 3, this directly implies polynomial time
approximations for minimum maximum cliques and minimum front size
that are a factor of O(log n) off optimal, and for minimum height
elimination trees that are a factor of O(log?n) off optimal. Readers
familiar with the approximation algorithms for constant treewidth of
Lagergren [18)], of Reed [26], or of Robertson and Seymour [28] may note
some similarities. Our algorithm also has some resemblance to Lipton
et al.’s version of nested dissection [21].

Our approximation algorithm consists of calling makedec(V, &), where
makedec is the recursive procedure shown in Fig. 2

Lemma 15, If Z and W are disjoint sets of vertices of G, then makedec
(Z,W) returns a tree decomposition of G[Z U W such that the root node
of the tree decomposition contains all vertices in W. If |W| < 6Bk log n,
where k is the treewidth of G and n = |V |, then the treewidth of this tree
decomposition is at most 8Bk log n.



248 BODLAENDER ET AL.

procedure makedec(Z, W);
(Comment: Z and W are disjoint sets of vertices.)
if 3-|Z| £ |W]|vaen
Return a tree decomposition with one single node, containing Z U W;
else
Find a 2/3-vertex separator S§ of W in G[Z U W],
using the algorithm of Theorem 14;
Find a 2/3-vertex separator S’ of ZUW in G[Z U W],
using the algorithm of Theorem 14;
Let Gy, ...,G; be the connected components of G[ZUW - (SU §')};
for i — 1ltotdo
Let Z; — the vertices of G; in Z;
Let W; « the vertices of G; in W;
call makedec(Z;,W; U SU §');
end for
Return the following tree decomposition:
Take a new root node rz w, containing vertices W U S U §';
Then add all tree decompositions returned by the recursive calls,
with an edge from the root of each to rz w;
end if
end procedure

Fic. 2. Algorithm to compute tree decomposition.

Proof. We prove this by induction on the recursive structure of the
makedec procedure. Clearly the claim is true when 3 - {Z| < [W].

We first show that for all edges (v,w) € E with v,w € Z U W, there
exists a node i in the tree decomposition with v,w € X,. Suppose this is
not the case. First consider an edge (v,w) € E with v, we ZUW. If v
and w both are in the set W, then v, w € X, Y Otherwise, v and w both
belong to a set Z, U W, U S U §'. By mductmn there is a set X; in the
tree decomposmon returned by makedec(Z, W, U S U §') with v,w € X,

We now show that {i € Ilv € X} forms a connected subtree in the
decomposition-tree for all v € ZU W. If v & X’z.w’ then this holds by
induction, as v then belongs to exactly one set Z,. Otherwise, for each of
the subtrees under r, ,,, either v does not appear in any of the nodes in
this subtree, or the nodes containing v form, by induction, a connected
subtree of this subtree, and include the root of this subtree, i.e., the child
of r, y that is in this subtree. The result now follows. Therefore the
procedure indeed outputs a tree decomposition of G{Z U W ].

We now have to show that the tree width of the tree decomposition is at
most 8Bk log n. By induction, it is sufficient to show that IX,z o<
8Bk log n, and that |W, U S U §’| < 6Bklog n. The first inequality fol-
lows by using the assumption on the size of W, and then using Theorem 14
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to bound the size of § and §'. The second inequality follows because
SuSisa % separator of W in G[Z U V'], and hence each W, is of size at
most 2/3|W| < 4Bk log n, whence |W, U S U §'| < 6Bklogn. B

Thus, we have obtained the following result:

THEOREM 16. There exists a polynomial time algorithm that, given a
graph G = (V,E) with |V | =n, finds a tree decomposition of G with
treewidth at most O(klog n), where k is the treewidth of G.

This resuit implies approximation algorithms for the other parameters
discussed in this chapter. Clearly, by Lemmas 3 and 4 we have also a
polynomial time algorithm that, given a graph G, solves the minimum
maximum clique problem and the minimum front size problem within
O(log n) times optimal. We also have:

THEOREM 17. There exists a polynomial time algorithm that, given a
graph G = (V, E) with |V| = n, finds an elimination tree of G with height
at most O(hlog? n), where h is the minimum height of an elimination tree
of G.

Proof. Find a tree decomposition of G with the algorithm of Theorem
16. Then construct an elimination order as in Lemma 7. We obtain an
elimination tree of G with height at most log n - O(log n) - k, where k is
the treewidth of (. Observe that k is smaller than or equal to the
pathwidth of G; hence, by Lemma 11, & is at most #. B

Similarly we can obtain:

THEOREM 18. There exists a polynomial algorithm that, given a graph
G = (V, E) with |V| = n, finds a path decomposition of G with pathwidth
at most OCk log? n), where k is the pathwidth of G.

6. ABSOLUTE APPROXIMATIONS

In this section we show that if P # NP, then no absolute approximation
algorithms exist for the minimum height elimination tree problem, for
treewidth (and hence for minimum front size and min max clique), or for
pathwidth.

Given an approximation algorithm %7 for a minimization problem, we
can distinguish between three kinds of performance guarantees. First, in
an absolute approximation, the approximation solution .27([) is within an
additive constant of the optimal solution £ (I). Second, the approxi-
mate solution can be within a multiplicative constant of the optimal one.
Finally, the ratio between the optimal and approximate solutions can grow
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with the size of the problem. The algorithms we have presented above all
have performance guarantees of the third kind, with ratios of O(log n) or
O(log? n). The hardest of these bounds to achieve is the absolute bound;
few NP-complete problems have absolute approximation algorithms. We
first prove that the minimum height elimination tree problem has no
absolute approximation algorithm unless P = NP.

THeoREM 19, If P # NP then no polynomial time approximation algo-
rithm 7 for the minimum height elimination tree problem can guarantee
A(I) — OPT ) < K for any constant K.

Proof. Assume we have a polynomial time absolute approximation
algorithm &, so that o7 always gives an elimination tree with height at
most K more than optimal. We will show that then we can solve the
mutual independent set problem (MUS) in polynomial time. The MUS
problem is the following: Given a bipartite graph B = (P, Q, E), are there
sets ¥, € P and V, ¢ Q with |Vl = |V,| = k, such that no edge joins a
vertex in V, to a vertex in V,? Pothen [25] shows that this problem is
NP-complete.

Let B =(P,Q, E) be a bipartite graph, with vertex sets P and Q and
edge set E. Graph B is a chain graph if the adjacency of vertices in P
form a chain: that is, if the vertices of P can be ordered so that

Adj(v,) 2 Adj(vz) 2 -+ 2 Adj(1,).

The biclique C = (P, Q, E U P? U Q%) of B is the graph that results from
adding edges to B to make each of P and @ into cliques.

Yannakakis [35] has shown that if we add edges to the bipartite graph B
to make it a chain graph B’, then adding the same edges to B’s corre-
sponding biclique C makes it chordal graph C’. The graph C’ is called a
chordal completion of the biclique C. Pothen [25] has proved that B has
mutually independent sets of size k iff there exists a chordal completion
C’ of B with elimination tree of height n — k — 1, or, in other words, iff
the min etree height of B" is n — k — 1. )

Let B =(P,Q, E) be given. Construct a new bipartite graph B =
(PLU - UP ), QU - UQg,y, E) that contains K + 1 copies of B
and additional edges between the copies. If tpere is an edge between
vertices v and w in B (v € P, w € ), then B has an edge between v,
and w; (v; € P, and w,€ Q) for i,j=1,...,K+ 1. The new gfaph B
has (K + 1)n vertices and (K + 1)*’m edges. In Fig. 3 we show B when
K=1

Let B’ be the biclique of B. Now B has mutyally independent sets of
size (K + 1)k iff the minimum etree height of B’ is at most (K + 1)(n —
k)Y -1,
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Fic. 3. The graph B when K = 1.

Now, if B has a mutual independent set of size k, then B has a mutual
independent set of size (K + 1)k, so the minimum etree height of B’ is at
most (K + Dn — (K + Dk — 1. If every mutual independent set of B has
size < k — 1, then every mutual independent set of B has size at most
(K + 1)(k — 1) (we can choose at most 2 X (k — 1) vertices in each pair
(P, Q,)); hence the minimum etree height of B’ is at least (K + 1)n —
(K + 1)(k — 1) — 1. So, B has a mutual independent set of size k, if and
only if algorithm &7 outputs that B’ has minimum etree height at most
(K+ Dn — (K + 1)k — 1 + K. So, we have a polynomial time algorithm
for the NP-complete MUS problem, contradicting our assumption that
P<NP. B

A similar result can be proven for the treewidth problem. We need the
following lemma.

LemMa 20. Let ({(X,lieI},T =(I,F)) be a tree decomposition of
G =(V,E). Let W CV be a clique in G. Then there exists an i € I with
WX,

Proof. See, for example, Bodlaender and Méhring [5].

THeOREM 21. If P # NP then no polynomial time approximation algo-
rithm &7 for the treewidth problem (and hence for minimum front size, and
minimum maximum clique) can guarantee W(G) — OPT(G) <K for a
fixed constant K.

Proof. Assume we have a polynomial time algorithm &7 that, given a
graph G = (V, E), finds a tree decomposition of G with treewidth at most
K larger than the treewidth of G. Let a graph G = (V, E) be given. Let
G' = (V', E') be the graph obtained by replacing every vertex of G by a
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clique of K + 1 vertices, and adding edges between every pair of adjacent
vertices in G. Thus V' ={ylv € V,1 <i<K+ 1} and E' =
{(v,wdllo=wAni#j)Vv (v,w) € E}. We examine the relationship be-
tween the treewidth of G and the treewidth of G'.

Suppose we have a tree decomposition ({X,[i € I}, T =(I,F)) of G
with treewidth L. One easily checks that ({Y;li € I}, T = (I, F)) with
Y,={ylveX,1 <j<K+1} is a tree decomposition of G’ with
treewidth (L + 1)K + 1) — 1. It follows that treewidth (G') <
(treewidth(G) + 1) - (K + 1) — 1.

Next suppose we have a tree decomposition ({Y;|i € 1}, T = (I, F)) of
G’ with treewidth M. Let X, = {v € Vi{v, vy, ..., 0,1} € Y). We claim
that ({X;li € I}, T = (I, F)) is a tree decomposition of G with treewidth
(M+1)/(K+1)—1. Let (v,w)e E. Note that v,,v,,...,Ug,1, Wy,
Wy, ...,Wg, form a clique in G'. Hence, by Lemma 20 there exists an
ielwth{v,...,v6,,Wp,...,Wx,} €Y, and thus v,w € X,. Let j € I
be on the path in T from i€l to kel If veX,NX, then
{v),..., vk} €Y, NY,, and hence by definition of tree decomposition
{vy,...,0k} €Y, so v €X,. Clearly, max,.,|X;| - (K+ 1) <
max; . ,Y;|. This finishes the proof of our claim. It follows that treewidth
(G’) = (treewidth(G) + 1) - (K + 1) — 1, and hence that treewidth
(G") = (treewidth(G) + 1) - (K + 1) — 1.

Now we can describe the polynomial time algorithm for the treewidth
problem. Let G be the input graph. Form G', and apply algorithm .7 to
G'. Apply the construction described above to form a tree decomposition
of G. This must be a tree decomposition with minimum treewidth: if the
treewidth of G is k, then the treewidth of G" is (k + IXK + 1) — 1.
Hence, &7 outputs a tree decomposition of G’ with treewidth at most
(k +1XK+1)—1+ K, and the algorithm described above outputs a
tree decomposition of G with treewidth at most [((k + IXK + 1) +
K)/(K + 1) — 1} = k. Thus we would have a polynomial time algorithm
for treewidth. =

In the same way we can prove the following theorem. This result was
also proved (with different terminology) by Deo et al. [7].

TueoreM 22. If P # NP then no polynomial time approximation algo-
rithm & for the pathwidth problem can guarantee Z/(G) — €PT(G) < K
for a fixed constant K.

It is possible to strengthen these results slightly.

THEOREM 23. If P # NP then no polynomial time approximation
algorithm & for the minimum height elimination tree, treewidth, or path-
width problem can guarantee Z(G) — 6P T(G) < n®, where € is a con-
stant with 0 < g < 1, and n denotes the number of vertices of G.
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Proof. Suppose ¢ < (¢ — 1)/c. Basically, we use the same proofs as for
the case that the additive term was a constant. Instead of taking K + 1
copies of G, or replacing vertices by cliques of K + 1 vertices, we now
take n° copies of G (min etree height) or replace vertices by cliques of size
n¢ (treewidth, pathwidth). &

7. CONCLUSIONS

We have presented algorithms to find bounded approximations to
various parameters of graphs and sparse matrices. More specifically, for
treewidth, minimum front size, and minimum clique, we get approxima-
tions that are never more than O(log n) times optimal; for pathwidth and
minimum height elimination tree we get approximations that are never
more than O(log? n) times optimal. The key insight is that all these
measures are tightly related to the size of separators in the graph.

An open problem is to find polynomial algorithms that give solutions
that are only a constant times optimal for any of the parameters discussed
in this paper. We have shown that none of the parameters can be
approximated within an additive constant or term of the form n* for ¢ < 1
of optimal unless P = NP.

Two other parameters of interest in sparse matrix computation are the
minimum fill (or number of edges in chordal completion) over all elimina-
tion orders, and the minimum operation count. Klein et al. [16] use a
nested dissection algorithm somewhat similar to ours to give approxima-
tion algorithms for these measures that get within O(log* n) and O(log® n)
times optimal (respectively) provided that the degree of the input graph is
bounded by a constant.

Recently, Seymour and Thomas [33] have obtained a polynomial algo-
rithm for the related notion of branchwidth, when restricted to planar
graphs. As the branchwidth and treewidth of a graph differ by at most a
factor of 1.5 [27], this gives a polynomial time approximation algorithm for
treewidth of planar graphs with performance ratio 1.5, and polynomial
time approximation algorithms for pathwidth and shortest elimination tree
of planar graphs with performance ratio O(log n). An interesting question
is whether a polynomial time algorithm exists that solves treewidth exactly
on planar graphs.
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