
SIAM J. COMPUT.
Vol. 25, No. 6, pp. 1305-1317, December 1996

1996 Society for Industrial and Applied Mathematics
010

A LINEAR-TIME ALGORITHM FOR FINDING
TREE-DECOMPOSITIONS OF SMALL TREEWIDTH*

HANS L. BODLAENDERt

Abstract. In this paper, we give for constant k a linear-time algorithm that, given a graph
G (V, E), determines whether the treewidth of G is at most k and, if so, finds a tree-decomposition
of G with treewidth at most k. A consequence is that every minor-closed class of graphs that does
not contain all planar graphs has a linear-time recognition algorithm. Another consequence is that
a similar result holds when we look instead for path-decompositions with pathwidth at most some
constant k.

Key words, graph algorithms, treewidth, pathwidth, partial k-trees, graph minors

AMS subject classifications. 68R10, 05C85, 05C05

1. Introduction.

1.1. Background. The notions of "tree-decomposition" and "treewidth" have
received much attention recently, not in the least due to the important role they
play in the deep results on graph minors by Robertson and Seymour (see, e.g., [27,
28, 29, 30, 31] and many other papers in this series). (See also [21].) Also, many
graph problems, including a very large number of well-known NP-hard problems,
have been shown to be linear-time solvable on graphs that are given together with a
tree-decomposition of treewidth at most k for constant k. (See, among other sources,
[2, 5, 6, 7, 8, 12, 14, 15, 16, 33, 35].)

The first step of algorithms that exploit the small treewidth of input graphs is to
find a tree-decomposition with treewidth bounded by a constant--although possibly
not optimal. Thus far, this step has dominated the running time of most algorithms
since the second step (some kind of "dynamic-programming" algorithm using the tree-
decomposition) usually costs only linear time. The best algorithm known so far for
this "first step" was an algorithm by Reed [26], which costs O(n log n). In this paper,
we improve on this result and give a linear-time algorithm.

The problem "Given a graph G (V, E) and an integer k, is the treewidth of G at
most k?" is NP-complete [3]. Much work has been done on this problem for constant
k. For k 1, 2, 3, linear-time algorithms exist [25]. Recently, Sanders [32] established
a complex linear-time algorithm for the case where k 4. Arnborg et al. [3] showed
that the problem is solvable in O(n+2) time for constant k. Then Robertson and
Seymour gave a nonconstructive proof of the existence of O(n2) decision algorithms
[31]. Actually, this algorithm is of a "two-step" form, as described above. The first
step is to apply an O(n) algorithm that either outputs that the treewidth of G is
larger than k or outputs a tree-decomposition with width at most 4k. (Actually,
the result is stated in [31] in terms of "branchwidth," but this is an unimportant
technical difference.) The second step uses the notion of graph minors. A graph G is
a minor of a graph H if G can be obtained from H by a series of vertex deletions, edge
deletions, and edge contractions. Robertson and Seymour have shown that every class
of graphs G that is closed under the taking of minors has a finite set of graphs, called

Received by the editors June 28, 1993; accepted for publication (in revised form) March 15
1995. This research was partially supported by the EC ESPRIT Basic Research Actions contract
7141 (project ALCOM II).

Department of Computer Science, Utrecht University, P. O. Box 80.089, 3508 TB Utrecht, the
Netherlands (hansb@cs.ruu.nl).

1305

1306 H.L. BODLAENDER

the obstruction set, with the property that a graph belongs to if and only if it has
no graph from the obstruction set as a minor. Since the class of graphs with treewidth
at most k is closed under minors for every fixed value k, a finite characterization in
terms of forbidden minors exists for this class. Hence the second step of the algorithm
checks whether this characterization holds for the input graph. This step can be done
in linear time using dynamic-programming techniques as used, e.g., in [5, 6, 14]. In
[9] (using results from [20]), it was shown that the nonconstructive elements can
be avoided using self-reduction without increasing the running time by more than a

(huge) constant factor.
Both Lagergren [23] and Reed [26] improved on the "first step." Lagergren gave

a sequential algorithm that uses O(n log n) time and a parallel algorithm that uses

O(n) processors and O(log3 n) time. Reed gave a sequential O(nlogn) algorithm
that has a parallel implementation with O(n/log n) processors and O(log2 n) time.
A related probabilistic result (with running time O(nlogn + n log pl), where p is
the probability of error) was found by Matousk and Thomas [25]. Each of these
algorithms either determines that the input graph G has treewidth greater than k
or finds a tree-decomposition of G with treewidth bounded by some constant (linear
in k). They all are based upon finding "balanced separators" in some clever way.
Our algorithm uses a different approach: we reduce the problem in linear time to a
problem on a smaller graph by edge contraction or by removing "simplicial vertices."

Independently, Lagergren and Arnborg [24] and Bodlaender and Kloks [12, 22]
showed that the "second step" can be done without the use of graph minors and
gave explicit algorithms to test in linear time whether G has treewidth at most k
once a tree-decomposition of G with bounded treewidth is available. Moreover, from
these results, it follows that a technique of Fellows and Langston [19] can be used to
compute the obstruction set of the class of graphs with treewidth < k. Bodlaender
and Kloks also showed how, if it exists, a tree-decomposition with width at most k
can be computed in the same time bounds. Results of a similar flavor were obtained
independently by Abrahamson and Fellows [1].

Recognition algorithms for graphs with treewidth < k (k constant) have been
designed by Arnborg et al. [4]. These algorithms use linear time but polynomial--not
linear--memory. (It is allowed that the algorithm consults the contents of memory
that is never written to.) A disadvantage of this approach is that it is not known how
to construct tree-decompositions with small treewidth by the method.

1.2. Main idea of algorithm. The main result in this paper is the following.
THEOREM 1.1. For all k N, there exists a linear-time algorithm that tests

whether a given graph G (V, E) has treewidth at most k and, if so, outputs a tree-
decomposition of G with treewidth at most k.

We now give an outline of how this result is obtained.
We begin by introducing some notation. For a value d to be fixed later, we define

low-degree vertices as vertices of degree at most d and high-degree vertices as vertices
of degree greater than d. A vertex is friendly if it is a low-degree vertex and adjacent
to another low-degree vertex. A vertex is simplicial if its neighbors form a clique. The
improved graph of a graph G is obtained by adding edges between all vertices that
have at least k + 1 common neighbors of degree at most k. A vertex is I-simplicial in
a graph G if it is simplicial in the improved graph of G and has degree at most k in
G.

The algorithm distinguishes between two cases"

1 There are "many" friendly vertices. As shown in 3, any maximal matching

FINDING TREE-DECOMPOSITIONS OF SMALL TREEWIDTH 1307

in G contains in this case "sufficiently many" ((n)) edges. We compute the graph G’
obtained by contracting all edges in a maximal matching. Recursively, we compute
a tree-decomposition of treewidth at most k of G or conclude that the treewidth of
G and hence the treewidth of G is larger than k. From this tree-decomposition, we
can easily build a tree-decomposition of G with treewidth at most 2k + 1. This latter
tree-decomposition is used to solve the problem using the algorithm of Bodlaender
and Kloks [12, 22]: using the tree-decomposition of G with treewidth at most 2k+ 1, it
decides whether the treewidth of G is at most k and, if so, finds a tree-decomposition
of G with treewidth at most k.

2. G has "only few" friendly vertices. In this case, the algorithm starts by
computing the improved graph of G. In 4, it is shown that this improved graph
has treewidth at most k if and only if G has treewidth at most k. Also, in 4, it
is shown that in this case, the improved graph of G has "sufficiently many" (ft(n))
vertices that are I-simplicial (unless the treewidth of G is more than k). Recursively, a

tree-decomposition with treewidth at most k is computed of the graph G obtained by
removing all I-simplicial vertices from the improved graph of G, or we conclude that
the treewidth of G and hence of G is larger than k. Given such a tree-decomposition
of G, a tree-decomposition of G with treewidth at most k is computed as follows:
since the neighbors of an I-simplicial vertex v form a clique in G, a well-known lemma
tells us that there is one node in the tree-decomposition of G with Xi containing
all neighbors of v. Then we add a new node to the tree-decomposition, adjacent to
i, containing v and its neighbors. In this way, we obtain a tree-decomposition of
with treewidth at most k.

In each case, the amount of work of the nonrecursive steps is linear, and each G
has size at most a constant fraction of the size of G. It follows that the algorithm
uses linear time.

The basic algorithm will be given in 5. Some implementation details will be
discussed in 6. Finally, some consequences of the result will be discussed in 7.

2. Definitions and preliminary results. The notion of treewidth was intro-
duced by Robertson and Seymour [27].

DEFINITION. A tree-decomposition of a graph G (V, E) is a pair (X, T), where
T- a and X- a fa n@ of of V,
node of T, such that

(i) U Xi V,
(iN) for all edges (v, w) E E, there exists an I with v Xi and w Xi, and
(iii) for all i, j, k I, if j is on the path from to k in T, then X r-1Xk c_ Xj.

The treewidth of a tree-decomposition ({Xi I},T- (I, F)) is maxix IXil- 1.
The treewidth of a graph G is the minimum treewidth over all possible tree-
decompositions of G.

There are several equivalent notations, e.g., a graph is a partial k-tree if and only
if its treewidth is at most k [34].

LEMMA 2.1. (See, e.g., [13].) Suppose ({Xi I},T (I,F)) is a tree-
decomposition of G (V, E).

(i) If W c_ V forms a clique in G, then there exists an I with W c_ X.
(iN) If each vertex in W1 C_ V is adjacent to each vertex in W2 c_ V, then there

exists an I with W1 c_ Xi or W2 c Xi.
The contraction operation removes two adjacent vertices v and w and replaces

them with one new vertex that is made adjacent to all vertices that were adjacent to
v and w.

1308 H.L. BODLAENDER

We say that a tree-decomposition (X, T) of treewidth k is smooth if for all
I, IXil k+ 1 and for all (i,j) F, IXiOXjl k. Any tree-decomposition of a graph
G can be transformed to a smooth tree-decomposition of G with the same treewidth.
Apply the following operations until none is possible:

(i) If for (i, j) F, Xi

_
Xj, then contract the edge (i, j) in T and take as the

new node Xj, Xj.
(ii) If for (i, j) F, X.i Xj and IXjl < k + 1, then choose a vertex v Xi-Xj

and add v to Xj.
(iii) If for (i,j) F, Ixil- Ixjl- + 1 and IXi Xjl > 1, then subdivide the

edge (i, j) in T; let i’ be the new node; choose a vertex v E X-X. and a vertex

LEMMA 2.2. If (X, T) is a smooth tree-decomposition ofG (V, E) with treewidth
k, then III IvI- k.

Proof. The proof is by induction on I l. If III 1, th n clearly IvI / 1.
Suppose that the lemma holds for II] r- 1. Consider a smooth tree-decomposition
(X,T) ofagraph G (V,E) with treewidth k and III r. Let be aleafofT.
There is a unique vertex v that belongs to X but not to any set XO, j I- {i}. If
we remove node from T, we get a smooth tree-decomposition of G[V {v}] with
treewidth k and with III- 1 nodes. The result now follows by induction.

The following well-known lemma can be easily proved by induction on the number
of vertices, removing vertices as in Lemma 2.2.

LEMMA 2.3. If the treewidth of G (V,E) is at most k, then IEI <_ klV

The set of neighbors of a vertex v in G (V, E) is denoted by Na(v) {w
v

THEOREM 2.4. (See Bodlaender and Kloks [12, 22].) For all k and l, there ezists
a linear-time algorithm that, when given a graph G (V, E) together with a tree-
decomposition (X, T) of G with treewidth at most l, determines whether the treewidth

of G is at most k and, if so, finds a tree-decomposition of G with treewidth at most
k.

Analysis of this algorithm shows that its constant factor is at most -2 ((2/+
3)t+3 (. 2+)t+3)2t-1, i.e., when O(k), exponential in k3. The analysis
leading to this constant is rather crude, however, and a precise analysis should give a
much better and smaller estimate.

3. Friendly, high-degree, and low-degree vertices. In this section, we in-
troduce the concepts of the "friendly," "high-degree," and "low-degree" vertex. We
show that a graph with treewidth at most k has "few" high-degree vertices, and when
it has "many" friendly vertices, then it has a "large" maximal matching.

In the remainder, we assume that k is a given fixed constant. Let

1
C1]2. (It -- 1). (4k2 + 12k + 16)

Note that

1
c2= 8k+24k+32

1
c= 4k+12k+16

Cl]C2 (k-] 1)
2

FINDING TREE-DECOMPOSITIONS OF SMALL TREEWIDTH 1309

Let d 2k3. (k + 1). (4k2 + 12k + 16). Note that d- 2k/cl. We say that a vertex
with degree at most d is a low-degree vertex and a vertex with degree larger than d is
a high-degree vertex. A vertex is said to be friendly if it is a low-degree vertex and is
adjacent to at least one other low-degree vertex.

We show below that cl is an upper bound on the fraction of high-degree vertices.
In this section and the next, we show that c2 is a lower bound on the fraction of
vertices that can be removed in one of the two cases, as mentioned in 1.2.

LEMMA 3.1. There are fewer than c. IVI high-degree vertices in a graph with
treewidth k.

Proof. If there are nt high-degree vertices, then G must contain at least nt. d/2
edges. By Lemma 2.3, nt. d/2 < kIvI.

A maximal matching of a graph G (V, E) is a set of edges M c_ E such that no
two edges in M share an endpoint and every e E E- M shares an endpoint with an

edge in M. We can easily find a maximal matching in O(IV / IEI) time with a greedy
algorithm. Note that by Lemma 2.3, O(IV + IEI) O(IVI) for graphs G (V, E)
with their treewidth bounded by a constant.

LEMMA 3.2. If there are nf friendly vertices in G (V, E), then any maximal
matching of G contains at least nf /(2d) edges.

Proof. Consider a maximal matching M. Any friendly vertex must be endpoint
of an edge in M or adjacent to a friendly vertex that is an endpoint of an edge in
M. With each edge e of M, we associate the at most 2d friendly vertices that are

endpoints of e or adjacent to friendly (and hence low-degree) endpoints of e. If a

friendly vertex has not been associated with at least one edge in M, then M is not
maximal. Hence IMI >_ nf/(2d). D

Let M be a maximal matching in G (V, E), and let G’ (V’, E’) be the graph
obtained by contracting all edges in M. Define fM V --. V by fM(v) v if v is
not an endpoint of an edge in M, and let fM(v) fM(W) be the vertex that the
contraction of the edge (v, w) E M results in.

LEMMA 3.3. Let M, G, G, and fM be as above. If (X, T) is a tree-decomposition
of G’ with treewidth k, then (Y, T) defined by Y {v V fM(v) Xi} is a tree-
decomposition of G with treewidth at most 2k + 1.

Proof. This easily follows from the definitions. D
LEMMA 3.4. (See, e.g., [27].) If G’ is a minor of G, then the treewidth of G’ is

at most the treewidth of G.

4. Sirnplicial vertices. In this section, we introduce the improved graph of a

graph G. We show that a graph G has treewidth at most k if and only if its improved
graph has treewidth at most k. The main result of this section is Theorem 4.3, which
states that every graph of treewidth at most k contains "many" friendly vertices or
"many" I-simplicial vertices.

For a graph G (V, E), let the improved graph G’ (V, E’) of G be the graph
obtained by adding an edge (v, w) to E for all pairs v, w V such that v and w have
at least k + 1 common neighbors of degree at most k in G.

LEMMA 4.1. If the treewidth of G is at most k, then the treewidth of the improved
graph of G is at most k. Moreover, any tree-decomposition of G with treewidth at most
k is also a tree-decomposition of the improved graph with treewidth at most k, and vice
versa.

Proof. Suppose that (X, T) is a tree-decomposition of G (V, E) with treewidth
at most k. Consider vertices v and w with at least k + 1 common neighbors. By
Lemma 2.1(ii), there exists either an I with v,w E X or an I with X

1310 H.L. BODLAENDER

containing the set W of all common neighbors of v and w. In the latter case, (X, T) is
also a tree-decomposition of the graph G" obtained from G by adding edges between
all vertices in W. However, G" contains a clique with at least k + 2 vertices (namely,
W O {v}) and has treewidth at most k. This contradicts Lemma 2.1(i).

Therefore, for all v and w that have k + 1 common neighbors, there exists an E I
with v, w E Xi. Hence (X, T) is also a tree-decomposition of the improved graph of
G. The lemma now follows directly.

We say that a vertex v is simplicial in G if its neighbors form a clique in G. We
say that v is I-simplicial if it is simplicial in the improved graph of G and is of degree
at most k in G.

We now derive via a series of lemmas the following result, which states that if
we have "few" friendly vertices and the treewidth of G is at most k, then we have
"many" I-simplicial vertices.

THEOREM 4.2. For every graph G (V, E) with treewidth at most k, at least one

of the following properties holds:
(i) G contains at least IVl/(4k2 + 12k + 16) friendly vertices.
(ii) The improved graph of G contains at least c2lVI I-simplicial vertices.

Proof. The proof of Theorem 4.2 will be given with help of several lemmas.
A vertex v V is said to be T-simplicial with respect to some tree-decomposition

(X, T) if it is not friendly and there exists a node I such that all neighbors of v
belong to Xi. A T-simplicial vertex has degree at most k since all of its neighbors
belong to a set Xi, Ixil _< k + 1.

LEMMA 4.3. For a smooth tree-decompositions (X,T) of G (V,E) with
treewidth k, the following conditions hold:

(i) We can associate with every leaf of T a low-degree vertex v Xi that is
friendly or T-sirnplicial with respect to (X, T), and there does not exist a j I, j i,
with v

(ii) We can associate with every path io, il, ik+ak+a in T with il,
nodes of degree 2 in T at least one vertex v Xil U... U Xik+3k+ that is friendly or

T-simplicial with respect to (X, T) such that v does not belong to a set Xj with j I
a node not on this path.

Proof. (i) Let j be the neighbor of leaf in T. Let v be the unique vertex in

Xi Xj. v is adjacent to only vertices in X. Either all neighbors of v are of high
degree, in which case v is T-simplicial with respect to (X, T), or a neighbor of v is of
low degree, in which case v is friendly.

(ii) Note that IXo U..-t2 Xik+ak+al k’ + 4k + 4 < d. Hence all vertices in

Xil t2... t2 Xi.+a+ (Xio t2 X.+3+a) are of low degree. Suppose that neither of
them is friendly, i.e., they are adjacent to only high-degree vertices in Xi t2 Xi+a+a.
Suppose that Xi contains r high degree vertices, say Wl,..., w. Clearly, r < IXiol
k + 1. For each s, where 1 _< s <_ r, assume that w belongs to successive sets
Xio, Xi,..., Xi. Suppose w.l.o.g, i _< iw <_-.. _< i. If some low-degree vertex
v belongs to exactly one set Xi, 1 < j < k2 + 3k + 2, then it must be T-simplicial
with respect to (X, T). If some low-degree vertex v belongs only to (a subset of) sets

Xiw+,... Xiw+l, then all neighbors of v belong to Xiw+ hence v is T-simplicial
with respect to (X,T). All vertices in Xi U.-. U Xik.+a+. that are not of one of
these two types must belong to at least one of the sets Xio, Xi,..., Xi, Xi+a+3.
These are, in total, at most (k + 1)(k + 3) k + 4k + 3 vertices. Therefore, at least
one vertex in Xi t2... U Xi.+a+ Xi Xik.+a+a must be T-simplicial with respect
to (X, T).

FINDING TREE-DECOMPOSITIONS OF SMALL TREEWIDTH 1311

A leaf-path collection of a tree T is a collection of leaves in T plus a collection of
paths of length k2 + 3k + 4 in T where all nodes on a path that are not endpoints of
a path have degree 2 in T and do not belong to any other path in the collection. The
size of the collection is the total number of leaves plus the total number of paths in
the collection.

LEMMA 4.4. Each tree with r nodes contains a leaf-path collection of size at least
+ + s).

proofLet rb be the number of nodes of degree at least 3, r be the number of leaves,
and r2 be the number of nodes of degree 2. Clearly, rb < rt. All nodes of degree 2
belong to < rt +rb connected components of the forest, obtained by removing all leaves
and all nodes with degree 3 or larger from the tree. Each such component contains at
most k2 + 3k + 3 nodes that are not part of a leaf-path collection of maximum size.
Therefore, there are fewer than (rb + rz)(k + 3k + 3) nodes of degree 2 that are not
on a path in the collection. Hence there are at least

r2 (rb -t- r/)(]2 - 3] -- 3)
k + 3k + 4

paths in a leaf-path collection of maximum size. It follows that the maximum size of
a leaf-path collection is at least

(r (rb + r)(k2 + 3k + 3)) l r
max r,

k+3k+4 +r _>-2" k+3k+4"

COROLLARY 4.5. If (X, T) is a smooth tree-decomposition of G (V, T) with
treewidth k, then G contains at least IVI/(2k + 6k + 8) 1 vertices that are friendly
or T-simplicial with respect to (X, T).

Proof. T contains IVI- k nodes (Lemma 2.2). Now apply Lemmas 4.3 and
4.4.

A set Y

_
V of high-degree vertices is said to be serniimportant with respect to

the tree-decomposition (X, T) of G (V, E) if there exists an E I with Y C_ Xi. A
set Y is said to be important if it is semiimportant with respect to (X, T) and not
contained in any larger semiimportant set with respect to (X, T).

LEMMA 4.6. Let (X, T) be a tree-decomposition of G- (V, E) with treewidth k.
The number of different important sets with respect to (X, T) is at most the number
of high-degree vertices in G.

Proof. Let L be the set of high-degree vertices in G. ({XiNLli I},T) is a tree-
decomposition of GILl. Each important set Y is a set Xi C L that is not contained in
another set Xi, C L. Repeatedly contract edges (i, t) in T with Xi C? L _D Xi, L with
the newly formed node containing all vertices in Xi. The resulting tree-decomposition
of GILl contains the same maximal sets X and will have at most [LI nodes.

A function f that maps each T-simplicial (with respect to some tree-decom-
position (X,T)) vertex v to an important (with respect to (X,T)) set Y with
Nc(v) C_ Y is called a T-simplicial-to-important function for (X, T). By definition, a
T-simplicial-to-important function always exists.

LEMMA 4.7. Let f be a T-simplicial-to-important function for a smooth tree-
decomposition (X, T) of G- (V, E) with treewidth k. Let Y be an important set with

k(k + 1) T-simplicial vertices with respect to (X, T)respect to (X, T). Then at most -(a e
Proof. Assign each non-I-simplicial T-simplicial vertex v to a pair of neighbors

of v, that are nonadjacent in the improved graph. To each pair of vertices, there

1312 H.L. BODLAENDER

cannot be assigned more than k vertices since otherwise they would have at least
k + 1 common neighbors of degree at most k and there would be an edge between
them in the improved graph.

It follows that the number of non-I-simplicil T-simplicil vertices v with f(v) Y
is at most 1/2]Y[-([YI- 1) _< 1/2k2(k + 1). [:l

We can now prove Theorem 4.2. Suppose that G contains fewer than
12k + 16) friendly vertices and that the treewidth of G is at most k. By Lemma
3.1, there are at most cl. IV[high-degree vertices in G, and hence, by Lemma 4.6,
the number of important sets with respect to an arbitrary smooth tree-decomposition
(X, T) of G with treewidth <_ k is at most cl. IV I. Using both the fact that a T-
simplicial-to-important function always exists and Lemma 4.7, it follows that at most
1/2k2(k+ 1). (c. IV[-1) W-simplicial vertices with respect to (X, T) are not I-simplicial.
Using Corollary 4.5, it follows that [Y[/(2k2 + 6k + 8) 1 -IYl/(4k2 + 12k + 16)
-k2(k + 1). (c. IV[- 1) > c2. IVI vertices are I-simplicial. This completes the proof2
of Theorem 4.2.

LEMMA 4.8. Let (X,T) be a tree-decomposition of treewidth at most k of the
graph G obtained by removing all I-simplicial vertices (and adjacent edges) from the
improved graph of graph G (V, E). Then for all I-simplicial vertices v, there exists
an E I with Na(v) C_ Xi.

Proof. Note that, by definition, I-simplicial vertices are nonadjacent in G, and
their neighborhood forms a clique in the improved graph of G. The result now follows
directly from Lemma 2.1(i).

5. Main algorithm. We now give a recursive description of our main algorithm.
Some details will be discussed in 6. Our algorithm, when given a graph G (V, E),
either

(i) outputs that the treewidth of G is larger than k or
(ii) outputs a tree-decomposition of G with treewidth at most k.

For "very small graphs" (i.e., with at most some constant number of vertices),
any other finite algorithm is used to solve the problem. Otherwise, the following
algorithm is used:

First, check whether IEI <_ k. IV 1/2k(k / 1). If this is not the case, we know by
Lemma 2.3 that the treewidth of G is larger than k: stop.

Now count the number of friendly vertices. If there are at least IVI/(4k2 /12k+ 16)
friendly vertices, do the following:

(i) Find a maximal matching M C_ E in G.
(ii) Compute the graph G’ -- (V’, E’) obtained by contracting every edge in M.
(iii) Recursively apply the algorithm to G.
(iv) If G has treewidth larger than k, stop. The treewidth of G is also larger

than k. (See Lemma 3.4.)
(v) Suppose that the recursive call yielded a tree-decomposition (X, T) of

with treewidth k. Construct a tree-decomposition (Y, T) of G with treewidth at most
2k + 1, as in Lemma 3.3.

(vi) Use the algorithm of Theorem 2.4 to compute whether the treewidth of G
is at most k and, if so, compute a tree-decomposition of G of treewidth at most k.
If there are fewer than IVI/(4k2 + 12k + 16) friendly vertices, do the following:

(i) Compute the improved graph of G. (See 6.)
(ii) If there exists an I-simplicial vertex with degree at least k / 1, then stop:

the improved graph of G contains a clique with k + 2 vertices; hence the treewidth of
G is more than k.

FINDING TREE-DECOMPOSITIONS OF SMALL TREEWIDTH 1313

(iii) Put all I-simplicial vertices in some set SL. Compute the graph G obtained
by removing all I-simplicial vertices and adjacent edges from G.

(iv) If ISLI < c21VI, then stop: the treewidth of G is larger than k. (See
Theorem 4.2.)

(v) (Now ISLI >_ c21Yl.) Recursively apply the algorithm on G’.
(vi) If the treewidth of G is larger than k, then stop: since G is a subgraph of

G, we also have that the treewidth of G is larger than k.
(vii) Suppose that the recursive call yielded a tree-decomposition (X, T) of G’

with treewidth k. For all v E SL, find an iv V with No(v) C_ X,, add a new node
jv to T with Xj. {v} t No(v), and make Jv adjacent to iv in T. (Such a node iv
exists by Lemma 4.8.) The result is a tree-decomposition of G with treewidth at most
k.

The correctness of the algorithm follows from results given in 2 and 4,

The running time of the algorithm can be estimated as follows. We recursively
apply the algorithm on either a graph with (1 1/(2d(4k + 12k + 6))). IVI vertices
(Lemma 3.2) or a graph with (1 -c2)lVI vertices. Write

c3= 8k6+32ka+56k3+32k3
=max 1-c2, 1-

2d. (4k2 + 12k + 16)

Since all nonrecursive steps have a linear-time implementation (see also 6), we have
that if the algorithm takes T(n) time on a graph with n vertices in the worst case,
then T(n) <_ T(c3. n) + O(n); hence T(n) O(n). It also follows that the algorithm
uses linear memory.

6. Some details of the algorithm. In this section, we show that the steps
of the algorithm given in 5 can be implemented in linear time and linear memory.
Most steps are either rather straightforward and thus left to the reader or follow from
earlier results. Note that we may always assume that the number of edges that we
are working with is linear in the number of vertices. All graphs that we work with
will be represented by their adjacency lists.

When we contract the edges in a matching M, we directly get an implicit rep-
resentation of G by a bag of edges, where some edges of G may appear twice. By
bucket sorting this bag of edges twice, we can remove all multiple copies of edges and
easily obtain an adjacency list representation of G.

Computing the improved graph and the I-simpliciaI vertices. Number the vertices
vl, v2,..., Vn. We use a queue Q that contains triples of the form ((v, w), x) with
v, w,x V or of the form ((v, w),--), v, w V. Also, we use an array S with, for
each v V,.a list Siva] containing pairs of vertices. For all (v, vj) E with i <: j,
put ((vi, vj),--) on Q. For all vertices v E V with degree at most k, for all pairs
of neighbors vi, vy NG(v) with <: j, put ((vi, vj), v) on Q. Now "bucket sort" Q
twice, once to the first-vertex entries and once to the second-vertex entries. After
this double bucket sort, all pairs of the form.((vi, vj),...) for fixed vi and vj will be
in consecutive positions in Q. By inspecting Q, we can directly see what pairs of
vertices have at least k + 1 common neighbors of degree at most k. (If at least k + 1
entries ((vi, vj), v) are adjacent in Q for some pair vi, vj, (vi, vj) must be present in
the improved graph.) For each such pair (vi, vj) and if a triple ((vi, vj),--) is in Q,
add the pair (vi, vy) to all lists S[v] for vertices v with ((vi, vy), v) in Q. This all can
be done in linear time using the consecutiveness of the pairs of the form ((vi, vy),...).

1314 H.L. BODLAENDER

Checking whether a vertex v of degree at most k is I-simplicial can be done by
inspecting Sly]. S[v] will consist precisely of all edges between neighbors of v. Since
v has degree at most k, S[v] is of size, bounded by a constant.

Addin9 I-simplicial vertices back in the tree-decomposition. Suppose that we have
a tree-decomposition (X, T) of G[V- SL] and we want to add all I-simplicial vertices
in SL. For all _< k, we take a queue Qz, in which we place all pairs ((vii,..., vi), i)
for vi,...,vi E Xi, E I, il < i2 <... < iz, and all pairs ((vil,...,vi),v) with v
I-simplicial and No(v)= {Vil,...,viz, il < i2 <." < iz}.

For each l, 1 _< _< k, bucket sort Q times, once for each of the positions in the
/-tuple. All entries of the form ((vii,..., vi,),...) will be at successive positions in Q
after this operation. By a simple scan of Qz, we can find for each entry ((vii, vii), v)
an entry of the form ((Vie,..., %), i) for some I. This node is a node that the
new node j. with Xjv {v} t2 No(v) can be made adjacent to.

Analysis of the constant factor. We now analyze the constant factor of the algo-
rithm somewhat more precisely. (In the following analysis, k is no longer considered
a constant.) There are two nonrecursive steps that take time with a constant fac-
tor that is not polynomial in k" the application of the algorithm of Theorem 2.4
and the addition of I-simplicial vertices back in the tree-decomposition. One di-
rectly sees that the former constant is largest. Note that Theorem 2.4 is applied
with 2k+l. Now, since 1-ca O(k-5), T(n) <_ T(can)+(2k+l)2k+1-2.
((2(2k + 1) + 3)2(2k+l)+a (22+2)2(2+1)+a)2(+)-1 .n, we have that T(n)
O(k. (2k + 1) (e+i)- ((2(2k + 1)+ 3)(+l)+a (-. 22k+2)2(2k+l)+3) 2(2k+1)-1"
i.e., linear with a constant factor that is exponential in/ca.

7. Final remarks. A consequence of the result in this paper is that all results
that state that certain problems are solvable in linear time for graphs that are given
together with a tree-decomposition of width bounded by a constant are turned into
results that state that these problems can be solved in linear time on graphs with
treewidth bounded by a constant. One of the most notable of such results is the
following.

THEOREM 7.1. Every class of graphs that does not contain all planar graphs and
is closed under the taking of minors has a linear-time recognition algorithm.

Proof. See, e.g., [31]. Use the algorithm described in this paper to find a tree-
decomposition of the input graph with treewidth bounded by a constant, and use this
tree-decomposition to test for minor inclusion for all graphs in the obstruction set of
the class. D

Note that the result of Theorem 7.1 is nonconstructive: it relies on the non-
constructively proven fact that every minor-closed class of graphs has a finite charac-
terization in terms of an obstruction set (see [31]). Thus we know that an algorithm
exists, but the algorithm itself is not known. Even worse, even if an obstruction set
and hence the algorithm were known for a certain class of graphs, the algorithm ob-
tained with this method would only produce "yes" and "no" answers and would not
construct any additional desired information. (For example, the result states that
the class of graphs which are subgraphs of a planar graph with diameter at most d is
linear-time recognizable for fixed d. However, such an algorithm would not produce
such planar supergraphs of diameter at most d for "yes" instances.) In [17, 18], several
classes of graphs to which Theorem 7.1 can be applied can be found. For several of
these classes, we expect that constructive linear-time algorithms for recognition and
construction of solutions can be found. Recent research [10] shows that linear-time
algorithms can be constructed that solve minimum-cut linear arrangement, search

FINDING TREE-DECOMPOSITIONS OF SMALL TREEWIDTH 1315

number, and some related problems for constant k and, for "yes" instances, output
the required linear arrangement.

Note that the result shown in this paper is equivalent to stating that (for fixed
partial k-trees can be recognized and embedded in a k-tree (or a chordal graph with
maximum clique size k / I) in linear time. Also, a direct consequence is the following.

THEOREM 7.2. For all k E N, there exists a linear-time algorithm that tests
whether a given graph G (V, E) has pathwidth at most k and, if so, outputs a path-
decomposition of G with pathwidth at most k.

Proof. First, use the algorithm described in this paper. When the treewidth of G
is larger than k, then clearly we also have that the pathwidth of G is larger than k.
Otherwise, use the result from [12, 22] that states that for all constants k and l, there
exists a linear-time algorithm that, when given a graph G and a tree-decomposition
of G with treewidth at most l, decides whether G has pathwidth at most k and, if so,
outputs a path-decomposition of G with pathwidth at most k.

The constant factor of the algorithm as derived above is very large--much too
large for practical purposes. We remark that the analysis used some crude arguments,
and it can be expected that the real constant factor of the algorithm is much smaller.
However, the algorithm in its present form is probably not practical, even for k 4.
An interesting topic for further research is the development of a practical algorithm
for the "treewidth _< k" problem. Ideas and techniques in this paper may help to
develop such algorithms. For instance, finding I-simplicial vertices is done quite fast
and may be a good heuristic.

It is also possible to modify the algorithm such that it uses the algorithm in [12, 22]
only on tree-decompositions with treewidth at most k / 1 at the cost of increasing the
running time to O(n log n). Provided that the algorithm in [12, 22] can be made fast
enough, this modification may well be quite practical for small values of k (like k 4
or k 5). The idea is as follows" instead of using the construction of Lemma 3.3,
first find a set M’ of at least IMI/(k + 1) edges in M such that no two vertices that
are the result of contracting an edge in M belong to a common set X. (Such a set
can be quickly found in O(n) time: the graph H obtained by adding an edge between
every pair of vertices in G that share a common set X is a graph with treewidth k
and hence is (k + 1)-colorable. Hence the set of vertices that are a result of an edge
contraction contains an independent set in H of size at least IMI/(k + 1). Take M’,
the set of edges corresponding to the vertices in this independent set.) Define fM’
as in 2. Now (Y, T) defined by Y {v v fM, X} is a tree-decomposition
of the graph obtained from G by contracting all edges in M with treewidth at most
k + 1. Use the algorithm from [12, 22] to find a tree-decomposition of treewidth at
most k of this graph. Repeat the process with this last tree-decomposition and edge
set M- M until the edge set is empty. These are at most O(log n) iterations. (This
observation was also made by Jens Lagergren.)

It is possible to implement the algorithm such that it runs on a pointer machine
(a correct use of pointers is necessary such that the addressing in the bucket-sort
algorithms can be done) and still uses linear time. We omit the (easy) details.

Very recently, using modifications of the techniques of this paper, parallel algo-
rithms with a linear time-processor product were obtained for the "treewidth _< k"
problem [11].

Acknowledgments. The presentation of these results was improved considably
by comments from Jens Gustedt, Torben Hagerup, Ton Kloks, Dieter Kratsch, Bruce
Reed, and an anonymous referee.

1316 H.L. BODLAENDER

REFERENCES

[1] K. R. ABRAHAMSON AND M. R. FELLOWS, Finite automata, bounded treewidth and well-
quasiordering, in Proc. AMS Summer Workshop on Graph Minors, Graph Structure The-
ory, Contemporary Mathematics, Vol. 147, American Mathematical Society, Providence,
RI, 1993, pp. 539-564.

[2] S. ARNBORG, Efficient algorithms for combinatorial problems on graphs with bounded decom-
posability: A survey, BIT, 25 (1985), pp. 2-23.

[3] S. ARNBORG, D. (. CORNEIL, AND A. PROSKUROWSKI, Complexity of finding embeddings in a

k-tree, SIAM J. Algebraic Discrete Meth., 8 (1987), pp. 277-284.
[4] S. ARNBOPG, B. COUPCELLE, A. PROSKUROWSKI, AND D. SEESE, An algebraic theory of graph

reduction, J. Assoc. Comput. Mach., 40 (1993), pp. 1134-1164.
[5] S. ARNBORG, J. LAGERGREN, AND D. SEESE, Easy problems for tree-decomposable graphs, J.

Algorithms, 12 (1991), pp. 308-340.
[6] S. ARNBORG AND A. PROSKUROWSKI, Linear time algorithms for NP-hard problems restricted

to partial k-trees, Discrete Appl. Math., 23 (1989), pp. 11-24.

[7] H. L. BODLAENDER, Dynamic programming algorithms on graphs with bounded tree-width, in
Proc. 15th International Colloquium on Automata, Languages, and Programming, Lecture
Notes in Comput. Sci. 317, Springer-Verlag, Berlin, 1988, pp. 105-119.

[8] , A tourist guide through treewidth, Acta Cybernetica, 11 (1993), pp. 1-23.

[9] , Improved self-reduction algorithms for graphs with bounded treewidth, Discrete Appl.
Math., 54 (1994), pp. 101-115.

[10] H. L. BODLAENDER, M. R. FELLOWS, AND M. HALLETT, Beyond NP-compIeteness for problems
of bounded width: Hardness for the W hierarchy, in Proc. 26th Annual Symposium on

Theory of Computing, IEEE Computer Society Press, Los Alamitos, CA, New York, 1994,
pp. 449-458.

[11] H. L. BODLAENDER AND T. HAGERUP, Parallel algorithms with optimal speedup for bounded
treewidth, in Proc. 22nd International Colloquium on Automata, Languages, and Program-
ming, Z. FiilSp and F. Gcseg, eds., Lecture Notes in Comput. Sci. 944, Springer-Verlag,
Berlin, 1995, pp. 268-279; SIAM J. Comput., to appear.

[12] H. L. BODLAENDER AND T. KLOKS, Efficient and constructive algorithms for the pathwidth and
treewidth of graphs, J. Algorithms, 1996, to appear.

[13] H. L. BODLAENDER AND R. H. M6HPdNG, The pathwidth and treewidth of cographs, SIAM J.
Discrete Math., 6 (1993), pp. 181-188.

[14] R. B. BOPdE, R. G. PARKER, AND C. A. TOVEY, Automatic generation of linear-time algorithms
from predicate calculus descriptions of problems on recursively constructed graph families,
Algorithmica, 7 (1992), pp. 555-581.

[15] B. COURCELLE, The monadic second-order logic of graphs I: Recognizable sets of finite graphs,
Inform. and Comput., 85 (1990), pp. 12-75.

[16] B. COURCELLE AND M. MOSBAH, Monadic second-order evaluations on tree-decomposable
graphs, Theoret. Comput. Sci., 109 (1993), pp. 49-82.

[17] M. R. FELLOWS AND M. A. LANGSTON, Nonconstructive advances in polynomial-time complex-
ity, Inform. Process. Lett., 26 (1987), pp. 157-162.

[18] , Nonconstructive tools for proving polynomial-time decidability, J. Assoc. Comput.
Mach., 35 (1988), pp. 727-739.

[19] , An analogue of the Myhill-Nerode theorem and its use in computing finite-basis charac-
terizations, in Proc. 30th Annual Symposium on Foundations of Computer Science, IEEE
Computer Society Press, Los Alamitos, CA, 1989, pp. 520-525.

[20] , On search, decision and the efficiency of polynomial-time algorithms, J. Comput. Sys-
tem Sci., 49 (1994), pp. 769-779.

[21] D. S. JOHNSON, The NP-completeness column: An ongoing guide, J. Algorithms, 8 (1987),
pp. 285-303.

[22] T. KLOKS, Treewidth: Computations and Approximations, Lecture Notes in Comput. Sci., 842,
Springer-Verlag, Berlin, 1994.

[23] J. LAGERGREN, Efficient parallel algorithms for graphs of bounded tree-width, J. Algorithms,
20 (1996), pp. 20-44.

[24] J. LAGERGREN AND S. ARNBORG, Finding minimal forbidden minors using a finite congru-
ence, in Proc. 18th International Colloquium on Automata, Languages, and Programming,
Lecture Notes in Comput. Sci. 510, Springer-Verlag, Berlin, 1991, pp. 532-543.

[25] J. MATOUSK AND R. THOMAS, Algorithms finding tree-decompositions of graphs, J. Algorithms,
12 (1991), pp. 1-22.

[26] B. REED, Finding approximate separators and computing tree-width quickly, in Proc. 24th

FINDING TREE-DECOMPOSITIONS OF SMALL TREEWIDTH 1317

Annual Symposium on Theory of Computing, Association for Computing Machinery, New
York, 1992, pp. 221-228.

[27] N. ROBERTSON AND P. D. SEYMOUR, Graph minors II: Algorithmic aspects of tree-width, J.
Algorithms, 7 (1986), pp. 309-322.

[28] , Graph minors V: Excluding a planar graph, J. Combin. Theory Ser. B, 41 (1986),
pp. 92-114.

[29] , Graph minors IV: Tree-width and well-quasi-ordering, J. Combin. Theory Ser. B, 48
(1990), pp. 227’-254.

[30] , Graph minors X: Obstructions to tree-decomposition, J. Combin. Theory Ser. B, 52
(1991), pp. 153-190.

[31] Graph minors XIII: The disjoint paths problem, J. Combin. Theory Ser. B, 63 (1995),
pp. 65-110.

[32] D. P. SANDERS, On linear recognition of tree-width at most four, SIAM J. Discrete Math., 9
(1996), pp. 101-117.

[33] P. SCHEFFLER, Die Baumweite von Graphen als ein Marl fiir die Kompliziertheit algorithmis-
chef Probleme, Ph.D. thesis, Akademie der Wissenschaften der DDR, Berlin, 1989.

[34] J. VAN LEEUWEN, Graph algorithms, in Handbook of Theoretical Computer Science A: Algo-
rithms and Complexity Theory, North-Holland, Amsterdam, 1990, pp. 527-631.

[35] T. V. WIMER, Linear Algorithms on k-Terminal Graphs, Ph.D. thesis, Department of Com-
puter Science, Clemson University, Clemson, SC, 1987.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

