
Information and Computation 217 (2012) 71–83
Contents lists available at SciVerse ScienceDirect

Information and Computation

www.elsevier.com/locate/yinco

Restricted space algorithms for isomorphism on bounded treewidth
graphs ✩

Bireswar Das a, Jacobo Torán b,∗, Fabian Wagner b,1

a Indian Institute of Technology, Gandhinagar, India
b Institut für Theoretische Informatik, Universität Ulm, Germany

a r t i c l e i n f o a b s t r a c t

Article history:
Received 3 December 2010
Revised 3 May 2012
Available online 29 May 2012

Keywords:
Complexity
Algorithms
Graph Isomorphism problem
Treewidth
LogCFL

The Graph Isomorphism problem restricted to graphs of bounded treewidth or bounded
tree distance width are known to be solvable in polynomial time. We give restricted space
algorithms for these problems proving the following results:

• Isomorphism for bounded tree distance width graphs is in L and thus complete for
the class. We also show that for this kind of graphs a canon can be computed within
logspace.

• For bounded treewidth graphs, when both input graphs are given together with a tree
decomposition, the problem of whether there is an isomorphism which respects the
decompositions (i.e. when only isomorphisms are considered, mapping bags in one
decomposition blockwise onto bags in the other decomposition) is in L.

• For bounded treewidth graphs, when one of the input graphs is given with a tree
decomposition the isomorphism problem is in LogCFL.

• As a corollary the isomorphism problem for bounded treewidth graphs is in LogCFL.
This improves the known TC1 upper bound for the problem given by Grohe and
Verbitsky.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

The Graph Isomorphism problem consists in deciding whether two given graphs are isomorphic, or in other words,
whether there exists a bijection between the vertices of both graphs preserving the edge relation. Graph Isomorphism is
a well studied problem in NP because of its many applications and also because it is one of the few natural problems in
this class not known to be solvable in polynomial time nor known to be NP-complete (see [12]). Although for the case of
general graphs no efficient algorithm for the problem is known, the situation is much better when certain parameters in the
input graphs are bounded by a constant. For example the isomorphism problem for graphs of bounded degree [14], bounded
genus [16], bounded color classes [15], or bounded treewidth [2] is known to be in P. Recently some of these upper bounds
have been improved with the development of space efficient techniques, most notably Reingold’s deterministic logarithmic

✩ A preliminary version of this paper has appeared at the conference STACS 2010.

* Corresponding author.
E-mail addresses: bireswar@iitgn.ac.in (B. Das), jacobo.toran@uni-ulm.de (J. Torán), fabian.wagner@uni-ulm.de (F. Wagner).

1 Supported by DFG grant TO 200/2-2.
0890-5401/$ – see front matter © 2012 Elsevier Inc. All rights reserved.
http://dx.doi.org/10.1016/j.ic.2012.05.003

http://dx.doi.org/10.1016/j.ic.2012.05.003
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/yinco
mailto:bireswar@iitgn.ac.in
mailto:jacobo.toran@uni-ulm.de
mailto:fabian.wagner@uni-ulm.de
http://dx.doi.org/10.1016/j.ic.2012.05.003

72 B. Das et al. / Information and Computation 217 (2012) 71–83
space algorithm for connectivity in undirected graphs [17]. In some cases logarithmic space algorithms have been obtained.
For example graph isomorphism for trees [13], planar graphs [5] or k-trees [11] is known to be in the class L. In other cases
the problem has been classified in some other small complexity classes below P. The isomorphism problem for graphs of
bounded treewidth is known to be in TC1 [9] and the problem restricted to graph with bounded color classes is known to
be in the #L hierarchy [1].

In this paper we address the question of whether the isomorphism problem restricted to graphs of bounded treewidth
and bounded tree distance width can be solved in logarithmic space. Intuitively speaking, the treewidth of a graph mea-
sures how much it differs from a tree. This concept has been used very successfully in algorithmics and fixed-parameter
tractability (see e.g. [3,4]). For many complex problems, efficient algorithms have been found for the cases when the input
structures have bounded treewidth. As mentioned above Bodlaender showed in [2] that graph isomorphism can be solved
in polynomial time when restricted to graphs of bounded treewidth. More recently Grohe and Verbitsky [9] improved this
upper bound showing that the isomorphism problem for this kind of graphs can be solved by a uniform family of threshold
circuits of logarithmic depth and polynomial size and lies therefore in the class TC1.

In this paper we improve this result, showing that the isomorphism problem for bounded treewidth graphs lies in LogCFL,
the class of problems logarithmic space reducible to a context free language. LogCFL can be alternatively characterized as the
class of problems computable by a uniform family of polynomial size and logarithmic depth circuits with bounded AND and
unbounded OR gates, and is therefore a subclass of TC1. LogCFL is also the best known upper bound for computing a tree
decomposition of a graph of bounded treewidth [19,8], which is one bottleneck in our isomorphism algorithm. We prove
that if tree decompositions of both graphs are given as part of the input, the question of whether there is an isomorphism
respecting the vertex partition defined by the decompositions can be solved in logarithmic space. Our proof techniques are
based on methods from recent isomorphism results [5,6] and are very different from those in [9].

The notion of tree distance width, a stronger version of the treewidth concept, was introduced in [20]. There it is shown
that for graphs with bounded tree distance width the isomorphism problem is fixed-parameter tractable, something that
is not known to hold for the more general class of bounded treewidth graphs. We prove that for graphs of bounded tree
distance width it is possible to obtain a tree distance decomposition within logspace. Using this result we show that graph
isomorphism for bounded tree distance width graphs can also be solved in logarithmic space. Since it is known that the
question is also hard for the class L under AC0 reductions [10], this exactly characterizes the complexity of the problem.
We show that in fact a canon for graphs of bounded tree distance width, i.e. a fixed representative of the isomorphism
equivalence class, can be computed in logspace.

2. Preliminaries

We introduce the complexity classes used in this paper. L is the class of decision problems computable by deterministic
logarithmic space Turing machines. LogCFL consists of all decision problems that can be Turing reduced in logarithmic space
to a context free language. There are several alternative more intuitive characterizations of LogCFL. Problems in this class
can be computed by uniform families of polynomial size and logarithmic depth circuits over bounded fan-in AND gates and
unbounded fan-in OR gates. We will also use the characterization of LogCFL as the class of decisional problems computable
by non-deterministic auxiliary pushdown machines (NAuxPDA). These are Turing machines with a logarithmic space work-
tape, an additional pushdown and a polynomial time bound [18]. The class TC1 contains the problems computable by
uniform families of polynomial size and logarithmic depth threshold circuits. The known relationships among these classes
are

L ⊆ LogCFL ⊆ TC1.

In this paper we consider undirected simple graphs with no self loops. For a graph G = (V , E) and two vertices u, v ∈ V ,
dG(u, v) denotes the distance between u and v in G (number of edges in the shortest path between u and v in G). For
a set S ⊆ V , and a vertex u ∈ V , dG(S, u) denotes minv∈S dG(v, u). Γ (S) denotes the set of neighbors of S in G .

In a connected graph G , a separating set is a set of vertices such that deleting the vertices in S (and the edges connected
to them) produces more than one connected component.

For G = (V , E) and two disjoint subsets U , W of v we use the following notion for an induced bipartite subgraph
BG [U , W] of G on vertex set U ∪ W with edge set {{u, w} ∈ E | u ∈ U , w ∈ W }. Let G[U] be the induced subgraph of G
on vertex set U .

Definition 2.1. A tree decomposition of a graph G = (V , E) is a pair ({Xi | i ∈ I}, T = (I, F)), where {Xi | i ∈ I} is a collection
of subsets of v called bags, and T is a tree with node set I and edge set F , satisfying the following properties:

i)
⋃

i∈I Xi = V ,
ii) for each {u, v} ∈ E , there is an i ∈ I with u, v ∈ Xi , and

iii) for each v ∈ V , the set of nodes {i | v ∈ Xi} forms a subtree of T .

The width of a tree decomposition of G , ({Xi | i ∈ I}, T = (I, F)) is defined as max{|Xi| | i ∈ I} − 1. The treewidth of
a graph G is the minimum width over all possible tree decompositions of G .

B. Das et al. / Information and Computation 217 (2012) 71–83 73
Definition 2.2. A tree distance decomposition of a graph G = (V , E) is a triple ({Xi | i ∈ I}, T = (I, F), r), where {Xi | i ∈ I} is
a collection of subsets of v called bags, Xr = S a set of vertices and T is a tree with node set I , edge set F and root r,
satisfying the following properties:

i)
⋃

i∈I Xi = V and for all i �= j, Xi ∩ X j = ∅,
ii) for each v ∈ V , if v ∈ Xi then dG(Xr, v) = dT (r, i), and

iii) for each {u, v} ∈ E(G), there are i, j ∈ I with u ∈ Xi , v ∈ X j and i = j or {i, j} ∈ F (for every edge in G its two endpoints
belong to the same or to adjacent bags in T).

Let D = ({Xi | i ∈ I}, T = (I, F), r) be a tree distance decomposition of G . Xr is the root bag of D . The width of D is the
maximum number of elements of a bag Xi . The tree distance width of a graph G is the minimum width over all possible tree
distance decompositions of G .

The tree distance decomposition D is called minimal if for each i ∈ I , the set of vertices in the bags with labels in the
subtree rooted at i in T induce a connected subgraph in G . In [20] it is shown that for every root set S ⊆ V there is
a unique minimal tree distance decomposition of G with root set S . The width of such a decomposition is minimal among
the tree distance decompositions of G with root set S .

An isomorphism from G onto H respects their tree decompositions D , D ′ if vertices in a bag of D in G are mapped
blockwise onto vertices in a bag of D ′ in H . Not every isomorphism has this property. In the case of tree distance decom-
positions the situation is different. Suppose that D is a minimal tree distance decomposition of G with root bag Xr and let
ϕ be an isomorphism between G and H mapping the vertex set Xr in G blockwise to a set X ′

r′ in H . Since there is only
one minimal tree distance decomposition D ′ of H with root bag X ′

r′ , ϕ respects the minimal tree distance decompositions
of G and H with respect to the root bags Xr and X ′

r′ .
Sym(V) is the symmetric group on a set V . For two permutations σ , φ, the notation σφ(X) means that the permutations

are applied to X from right to left, this is σ(φ(X)).

3. Graphs of bounded tree distance width

3.1. Tree distance decomposition in L

We describe an algorithm that on input a graph G and a subset S ⊂ V produces the minimal tree distance decomposition
D = ({Xi | i ∈ I}, T = (I, F), r) of G with root set Xr = S . The algorithm works within space c · k log n for some constant c,
where k is the width of the minimal tree distance decomposition of G with root set S . The output of the algorithm is
a sequence of strings of the form (bag label, bag depth, vi1 , vi2 , . . . , vil), indicating the number of the bag, the distance of
its elements to S and the list of the elements in the bag.

The algorithm basically performs a depth-first traversal of the tree T in the decomposition while constructing it. Starting
at S the algorithm uses three functions for traversing T . These functions perform queries to a logspace subroutine computing
reachability [17].

Parent(Xi): On input the elements of a bag Xi the function returns the elements of the parent bag in T . These are the
vertices v ∈ V with the following two properties: v ∈ Γ (Xi) \ Xi and v is reachable from S in G \ Xi . For a vertex v these
two properties can be tested in space O (log n) by an algorithm with input G , S and Xi . In order to find all the vertices in
the parent set, the algorithm searches through all the vertices in v .

First Child(Xi): This function returns the elements of the first child of i in T . This is the child with the vertex v j ∈ V
with the smallest index j. v j satisfies that v j ∈ Γ (Xi) \ Xi and that v j is not reachable from S in G \ Xi . It can be found
cycling through the vertices of G (in order as they are given on the input tape) until the first one satisfying the properties
is found. The other elements w ∈ Xi must satisfy the same two properties as v j and additionally, they must be in the same
connected component in G \ Xi where v j is contained. In case Xi does not have any children, the function outputs some
special symbol.

Next Sibling(Xi): This function first computes X p := Parent(Xi) and then searches for the child of P in T next to Xi . Let
vi be the vertex with the smallest label in Xi . This is done similarly as the computation of First Child. The next sibling is
the bag containing the unique vertex v j with the following properties: v j is the vertex with the smallest label in this bag,
label(v j) > label(vi) and there is no other bag which has a vertex with a label between vi and v j . The vertex v j is not
reachable from S in G \ X p . The other elements in the bag are the vertices satisfying these properties and which are in the
same connected component of G \ X p where v j is contained.

With these three functions the algorithm performs a depth-first traversal of T . It only needs to remember the initial
bag X0 = S which is part of the input, and the elements of the current bag. On a bag Xi it searches for its first child. If
it does not exist then it searches for the next sibling. When there are no further siblings, the next move goes up in the

74 B. Das et al. / Information and Computation 217 (2012) 71–83
tree T . The algorithm finishes when it returns to S . It also keeps two counters in order to be able to output the number
and depth of the bags. The three mentioned functions only need to keep at most two bags (Xi and the root S) in memory
and work in logarithmic space. On input a graph G with n vertices and a root set S , the space used by the algorithm is
therefore bounded by c · k log n, for a constant c, and k being the minimum width of a tree distance decomposition of G
with root set S . When considering how the three functions are defined it is clear that the algorithm constructs a tree
distance decomposition with root set S . Also they make sure that for each i the subgraph corresponding to the subtree of T
rooted at i (i.e. the subgraph induced by the vertices of the bags in this subtree) is connected, thus producing a minimal
decomposition. As observed in [20], this is the unique minimal tree distance decomposition of G with root set S .

3.2. Isomorphism algorithm for bounded tree distance width graphs

For our isomorphism algorithm we use a structure called the augmented tree which is based on the underlying tree of
a minimal tree distance decomposition. This augmented tree, apart from the bags, contains information about the separating
sets which separate bags.

Definition 3.1. Let G be a graph with a minimal tree distance decomposition D = ({Xi | i ∈ I}, T = (I, F), r). The augmented
tree T(G,D) = (I(G,D), F(G,D), r) corresponding to G and D is a tree defined as follows:

• The set of nodes of T(G,D) is I(G,D) which contains two kinds of nodes, namely I(G,D) = I ∪ J . Those in I form the
set of bag nodes in D , and those in j the separating set nodes. For each bag node a ∈ I and each child b of a in T
we consider the set Xa ∩ Γ (Xb), i.e. the minimum separating set in Xa which separates Xb from the root bag Xr in G .
Let Msa

1
, . . . , Msa

l(a)
be the set of all minimum separating sets in Xa , free of duplicates. There are nodes for these sets

sa
1, . . . , sa

l(a)
, the separating set nodes. We define J = ⋃

a∈I {sa
1, . . . , sa

l(a)
}. The node r ∈ I is the root in T(G,D) .

• The set of edges F(G,D) contains edges between bag nodes a ∈ I and the separating set nodes sa
1, . . . , sa

l(a)
∈ J (edges

between bag nodes and their children in the augmented tree). It also contains edges between nodes b ∈ I and sa
j if a is

the parent node of b in I and Msa
j

is the minimum separating set in Xa which separates Xb from Xr (edges between

bag nodes and their parents).

To simplify notation, we will say for example that s1, . . . , sl are the children of a bag node a if the context is clear. To
each separating set node si , we will address the set of vertices by Xsi . The odd levels of the augmented tree correspond to
bag nodes and the even levels correspond to separating set nodes.

Observe that for each node in the augmented tree, we associate a bag to a bag node and a minimum separating set to
a separating set node. Hence, every vertex v in the original graph occurs in at least one associated component and it might
occur in more than one, e.g. if v is contained in a bag and in a minimum separating set.

Let T(G,D) be an augmented tree of some minimal tree distance decomposition D of a graph G . Let a be a node of T(G,D) .
The subtree of T(G,D) rooted at a is denoted by Ta . Note that T(G,D) = Tr where Xr is the bag corresponding to the root
of the tree distance decomposition D . We define size(Ta) as sum of the sizes of the components (bags and separating sets)
associated to the nodes of Ta . We also define graph(Ta) as the induced graph in G of the vertices associated to nodes
in Ta .

When given a tree distance decomposition, the augmented tree can be computed in logspace. Using the result in Sec-
tion 3.1 we immediately get:

Lemma 3.2. There is a function f and an algorithm that on input of a graph G with n vertices and of tree distance width k, computes
an augmented tree for G in space O (f (k) log n).

Isomorphism order of augmented trees. We describe an isomorphism order procedure for comparing two augmented trees
S(G,D) and T(H,D ′) corresponding to the graphs G and H and their minimal tree distance decompositions D and D ′ , respec-
tively. This isomorphism order is an extension of the one for trees given by Lindell [13]. The trees S(G,D) and T(H,D ′) are
rooted at bag nodes r and r′ . The rooted trees are denoted then Sr and Tr′ as shown in Fig. 1. We will show that two
graphs of bounded tree distance width are isomorphic if and only if for some root nodes r and r′ the augmented trees
corresponding to the minimal tree distance decompositions have the same isomorphism order.

The isomorphism order is defined recursively based on the two order procedures <T and ≺T . The first one <T will be
used for comparing augmented subtrees rooted at bag nodes, while ≺T compares augmented subtrees rooted at separating
set nodes.

We introduce some notation needed for the definition of the isomorphism order. For sets of structures {A1, . . . , Ak}
and {B1, . . . , Bk} and a total order < between such structures the notation (A1, . . . , Ak) < (B1, . . . , Bk) represents that the
structures are ordered within the tuples according to � and that for some i ∈ {1, . . . ,k}: Ai < Bi and for all j ∈ {1, . . . , i −1}:
A j = B j .

The isomorphism order procedure compares first the sets of vertices Xr and X ′
r′ where r and r′ are the root nodes

in the decompositions D and D ′ . For this we consider pairs of permutations (σ ,σ ′) ∈ Sym(Xr) × Sym(X ′ ′). The notation
r

B. Das et al. / Information and Computation 217 (2012) 71–83 75
Fig. 1. The augmented trees Sr and Tr′ rooted at bag nodes r and r′ . Node r has separating set nodes s1, . . . , sl as children. The children of s1 are again bag
nodes a1,1, . . . ,a1,k1 . Sai, j is the subtree rooted at ai, j . Bag nodes and separating set nodes alternate in the tree.

σ(G[Xr]) and σ ′(H[X ′
r′]) describes a fixed labeling of the vertices of the corresponding induced subgraphs, given by the

permutations. We say σ(G[Xr]) < σ ′(H[X ′
r′]) if |Xr | < |X ′

r′ | or if the adjacency matrix of the induced subgraph G[Xr] with
its vertices ordered according to σ is lexicographically smaller than that of the induced subgraph H[X ′

r′] ordered according
to σ ′ .

Furthermore, we need a function posr : Xr �→ {1, . . . , |Xr |} which gives labels to vertices according to their order in V .
For example if Xr = {v1, v5, v7} then posr(v1) = 1, posr(v5) = 2 and posr(v7) = 3. Accordingly, we define pos′

r′ : X ′
r′ �→

{1, . . . , |X ′
r′ |}.

Recall that for a graph G = (V , E) and two disjoint vertex sets U , W ⊆ V , BG [U , W] denotes the bipartite graph with
vertices U ∪ W and edge set {{u, w} ∈ E(G) | u ∈ U , w ∈ W }. For σ ∈ Sym(U) and φ ∈ Sym(W), σφ(BG [U , W]) describes
the adjacency matrix of BG [U , W] with the vertices in U ordered according to σ and those in W ordered according
to φ.

For two permutations (σ ,σ ′) ∈ Sym(Xr) × Sym(Xr′) we define now the order Sσ
r <T T σ ′

r′ .

Definition 3.3. For two augmented trees rooted at bag nodes r and r′ we will say Sr <T Tr′ if there exists a permutation
σ ∈ Sym(Xr) such that for all σ ′ ∈ Sym(Xr′): Sσ

r <T T σ ′
r′ .

We say, Sσ
r <T T σ ′

r′ is true if one of the following holds:

1) σ(G[Xr]) < σ ′(H[X ′
r′]), or

2) σ(G[Xr]) = σ ′(H[X ′
r′]) but size(Sr) < size(Tr′), or

3) σ(G[Xr]) = σ ′(H[X ′
r′]) and size(Sr) = size(Tr′) but #r < #r′ where #r and #r′ is the number of children of r and r′ ,

respectively, or
4) σ(G[Xr]) = σ ′(H[X ′

r′]) and size(Sr) = size(Tr′) and #r = #r′ = l but (Sσ
s1

, . . . , Sσ
sl
) ≺T (T σ ′

t1
, . . . , T σ ′

tl
). The order ≺T for

subtrees rooted at separating set nodes is defined as in the following way, Sσ
si

≺T T σ ′
t j

if:

i) σ(Xsi) < σ ′(X ′
t j
), i.e. for Xsi = {vi1 , . . . , vih }, X ′

t j
= {v ′

j1
, . . . , v ′

jh′ }: (posr σ(vi1), . . . ,posr σ(vih)) < (pos′
r′ σ ′(v ′

j1
), . . . ,

pos′
r′ σ ′(v ′

jh′)), or

ii) σ(Xsi) = σ ′(X ′
t j
) but ki < k′

j , where ki and k′
j are the number of children of si and t j , respectively, or

iii) σ(Xsi) = σ ′(X ′
t j
), ki = k′

j = m but (BG [Xsi , Xai,1]σ , . . . , BG [Xsi , Xai,m]σ) < (B H [X ′
t j
, X ′

a′
j,1

]σ ′
, . . . , B H [X ′

t j
, X ′

a′
j,m

]σ ′
)

where BG [Xsi , Xai,i′]σ < B H [X ′
t j
, X ′

a′
j, j′

]σ ′
if there exists φ ∈ Sym(Xai,i′) such that for all φ′ ∈ Sym(X ′

a′
j, j′

), σφ(BG [Xsi ,

Xai,i′]) < σ ′φ′(B H [X ′
t j
, X ′

a′
j, j′

]) via lexicographical comparison of the adjacency matrices of both induced bipartite

subgraphs where all vertices are ordered according to σ , φ and σ ′ , φ′ respectively, or
iv) σ(Xsi) = σ ′(X ′

t j
), ki = k′

j = m, (BG [Xsi , Xai,1]σ , . . . , BG [Xsi , Xai,m]σ) = (B H [X ′
t j
, X ′

a′
j,1

]σ ′
, . . . , B H [X ′

t j
, X ′

a′
j,m

]σ ′
), but

there exists q ∈ {1, . . . ,m} such that for every p ∈ {1, . . . ,q − 1}:[∀φp ∈ Sym(Xai,p) ∃φ′
p ∈ Sym

(
X ′

a′
j,p

)
: σφp

(
BG [Xsi , Xai,p]

) = σ ′φ′
p

(
B H

[
X ′

t j
, X ′

a′
j,p

])
and S

φp
ai,p

=T T
φ′

p

a′
j,p

]
and

[∃φq ∈ Sym(Xai,q) ∀φ′
q ∈ Sym

(
X ′

a′
j,q

)
if σφq

(
BG [Xsi , Xai,q]

) = σ ′φ′
q

(
B H

[
X ′

t j
, X ′

a′
j,q

])
then S

φq
ai,q

<T T
φ′

q

a′
j,q

]
.

We say that two augmented trees Sr and Tr′ are equal according to the isomorphism order, denoted Sr =T Tr′ , if neither
Sr <T Tr′ nor Tr′ <T Sr holds.

Correctness of the isomorphism order. It is not hard to see that the isomorphism order defines a total order on augmented
trees. We show now that it is a good tool for testing graph isomorphism since two graphs are isomorphic if and only if for

76 B. Das et al. / Information and Computation 217 (2012) 71–83
some choice of the root bags, the augmented trees associated with the corresponding minimal tree distance decompositions
have the same order under =T .

Theorem 3.4. Let G = (V 1, E1) and H = (V 2, E2) be two graphs and Xr ⊆ V 1 and X ′
r′ ⊆ V 2 root bags producing minimal tree

distance decompositions of the graphs G and H with augmented trees Sr and Tr′ respectively.
There is an isomorphism between G and H mapping setwise Xr to X ′

r′ if and only if for some permutations σ ,σ ′ ∈ Sym(Xr) ×
Sym(X ′

r′), Sσ
r =T T σ ′

r′ .

Proof. From left to right, let G and H be isomorphic graphs with an isomorphism Π mapping Xr to X ′
r′ . Let us denote by π

the restriction from Π to the domain Xr and let σ ∈ Sym(Xr) be a permutation minimizing σ(G[Xr]). Define σ ′ = πσπ−1.
σ ′ is a permutation in Sym(X ′

r′) and σ(G[Xr]) = σ ′(H[X ′
r′]). Since G and H are isomorphic with an isomorphism map-

ping Xr to X ′
r′ and since the minimal tree distance decomposition is unique, the augmented trees of G and H with respect

to the root bags Xr and X ′
r′ are also isomorphic and we have σ(G[Xr]) = σ ′(H[X ′

r′]), size(Sr) = size(Tr′) and #r = #r′ = l for

some l. The isomorphism also implies (Sσ
s1

, . . . , Sσ
sl
) =T (T σ ′

t1
, . . . , T σ ′

tl
) (where the equality refers here to the order ≺T de-

fined between subtrees rooted at separating set nodes) and for all i ∈ {1, . . . , l}, σ(Xsi) = σ ′(X ′
ti
), the number of children of

Ssi , ki , coincide with that of Tti , and for all j ∈ {1, . . . ,ki}, BG [Xsi , Xai, j]σ = B H [X ′
ti
, X ′

a′
i, j

]σ ′
and the subtree Sai, j is isomor-

phic to Ta′
i, j

via an isomorphism ϕi, j mapping Xai, j to X ′
a′

i, j
. For any permutation φi, j ∈ Sym(Xai, j) consider φ′

i, j = ϕi, jφi, jϕ
−1
i, j .

φ′
i, j ∈ Sym(X ′

a′
i, j

) and φ′
i, j(H[X ′

a′
i, j

]) = φi, j(G[Xai, j]) which implies S
φi, j
ai, j

=T T
φ′

i, j

a′
i, j

. Since this is true for every i and j, by the

definition of the isomorphism order we have Sσ
r =T T σ ′

r′ .
The direction from right to left is proven by induction on the number of levels with bag nodes in the augmented tree.

The base case is when there is only one bag node in each of the augmented trees, i.e. all vertices in G and H are associated
to the single bags Xr and X ′

r′ respectively.

By hypothesis there exists a pair of permutations (σ ,σ ′) ∈ Sym(Xr) × Sym(X ′
r′) with Sσ

r = T σ ′
r′ . This means σ(G[Xr]) =

σ ′(H[X ′
r′]) and since G = G[Xr] and H = H[X ′

r′], both graphs are isomorphic, with isomorphism σ ′−1σ .

For the induction step, since Sσ
r =T T σ ′

r′ , it holds σ(G[Xr]) = σ ′(H[X ′
r′]), size(Sr) = size(Tr′) and #r = #r′ = l for some l.

Moreover (Sσ
s1

, . . . , Sσ
sl
) =T (T σ ′

t1
, . . . , T σ ′

tl
). This means that for all i ∈ {1, . . . , l}, σ(Xsi) = σ ′(X ′

ti
), the number of children

of Ssi , ki , coincide with that of Tti , and for all j ∈ {1, . . . ,ki}, BG [Xsi , Xai, j]σ = B H [X ′
ti
, X ′

a′
i, j

]σ ′
. Let φ j be any permutation

in Sym(Xai, j) and let φ′
j ∈ Sym(X ′

ai, j
) satisfying σφ j(BG [Xsi , Xai, j]) = σ ′φ j(B H [X ′

ti
, X ′

a′
i, j

]). Such a permutation φ′
j always

exists since BG [Xsi , Xai, j]σ = B H [X ′
ti
, X ′

a′
i, j

]σ ′
. For all j ∈ {1, . . . ,ki}, we have S

φ j
ai, j

=T T
φ′

j

a′
i, j

and by induction hypothesis for

all j ∈ {1, . . . ,ki}, graph(Sai, j) is isomorphic to graph(Ta′
i, j

) with an isomorphism that maps Xai, j to X ′
a′

i, j
. Observe that since

the nodes ai, j are bag nodes, for j �= j′ the graph vertices associated to Sai, j are disjoint from those associated to Sai, j′ . All

these isomorphisms between subgraphs of G and H are consistent each other and also with σ ′−1σ and can therefore be
extended to an isomorphism between G and H mapping Xr to X ′

r′ via σσ ′−1. �
Corollary 3.5. Two graphs G and H are isomorphic if and only if there is a pair of root sets producing minimal tree distance decompo-
sitions of the graphs with augmented trees Sr and Tr′ with Sr =T Tr′ .

We describe now an algorithm for computing the isomorphism order. After this, we analyze the complexity of the
algorithm showing that if the tree distance width is constant then the isomorphism order of the corresponding augmented
trees can be computed in logarithmic space.

Isomorphism of two subtrees rooted at bag nodes r and r′ . We are interested in finding the mappings σ and σ ′ which lead to
the minimum isomorphism order of the trees Sr and Tr′ . For this we define a set of permutation pairs Θ(r,r′) ⊆ Sym(Xr) ×
Sym(X ′

r′) related to the pair of nodes (r, r′). The order procedure cycles through all permutation pairs contained in Θ(r,r′) .
Initially Θ(r,r′) = Sym(Xr) × Sym(X ′

r′). We will see, if r and r′ are not the root of the overall tree, the set Θ(r,r′) may be
restricted to a subset. The algorithm sets up a table for Θr,r′ which contains at most (k!)2 entries. The algorithm records for
each entry (σ ,σ ′) ∈ Θr,r′ the result of the comparison of Sσ

r with T σ ′
r′ .

In Step 1, we have constant size components associated to the bag nodes. We simply compare the adjacency matrices
of G[Xr] and H[X ′

r′] bitwise, where the elements are arranged in rows and columns in increasing order according to the
permutations σ and σ ′ .

Steps 2 and 3 can be done in logspace by comparing the tree size and the number of children of r and r′ . In Step 4
the subtrees rooted at separating set nodes are compared. This requires similar arguments as in [13]. We run through the
children of r and r′ in a fixed order using the functions FirstChild and NextSibling. First, we find the minimum subtrees Ssi

and Tt j according to ≺T . If they are ≺T-equal then we compute the number of ≺T-equal siblings for si and t j , by running

B. Das et al. / Information and Computation 217 (2012) 71–83 77
through all children of Sr and Tr′ . If the numbers are equal, then we proceed with the minimum subtrees larger than Ssi

and Tt j according to ≺T . If they are not equal, then we know that Sσ
r <T T σ ′

r′ (or T σ ′
r′ <T Sσ

r). If all the tests are equal then

we know that Sσ
r =T T σ ′

r′ and proceed with the next entry in Θr,r′ . In Θr,r′ , the permutation σ is the smallest if Sσ
r �T T σ ′

r′
for all σ ′ .

In the next paragraph we consider one such comparison of two subtrees rooted at two separating set nodes.

Isomorphism of two subtrees rooted at separating set nodes si and t j . In Step 4i), we compare si with t j only if the vertices of Xsi

can be mapped onto X ′
t j

blockwise. In order to compute the relation ≺T , we have to decide whether σ(Xsi) < σ ′(X ′
t j
) for

pairs Xsi and X ′
t j

. We explain the definition of the ordering σ(Xsi) < σ ′(X ′
t j
) here in more detail with an example. Let Xr =

{v1, v3, v5, v7} and σ ∈ Sym(Xr) the permutation (v3, v5, v7, v1) (written in cyclic notation). For Xsi = {v3, v7} ⊆ Xr , σ(Xsi)

is defined as σ(Xsi) = {posr σ(v3),posr σ(v7)} = {1,3}. Analogously, let X ′
r′ = {v ′

6, v ′
7, v ′

8, v ′
9} and Xt j = {v ′

6, v ′
7} ⊆ X ′

r′ and
σ ′ ∈ Sym(X ′

r′) be the identity permutation. σ ′(X ′
t j
) = {posr′ σ ′(v ′

6),posr′ σ ′(v ′
7)} = {1,2}. Since (1,2) < (1,3) (lexicographical

comparison of the sets with the entries arranged in increasing order) we have σ(X ′
t j
) < σ(Xsi).

In Step 4ii), we compare ki with k j , the number of children of si and of t j . To compute ki , we can use the functions
FirstChild(si) and count how often NextSibling returns a further child of si and increment this number once at the end.

In Step 4iii), assume ki = k j = m. We consider the induced bipartite subgraphs BG [Xsi , Xai,1], . . . , BG [Xsi , Xai,m] and
B H [X ′

t j
, X ′

a′
j,1

], . . . , B H [X ′
t j
, X ′

a′
j,m

]. Intuitively, we partition the children of si and t j into classes where the bipartite sub-

graphs are isomorphic. Again we use similar arguments as in [13]. We run through the children of si and t j in a fixed
order, using the functions FirstChild and NextSibling. We find the bipartite subgraph, say BG [Xsi , Xai,1]σ which is the small-
est, i.e. for which there exists a mapping φ ∈ Sym(Xai,1) such that for all j′ ∈ {1, . . . ,m} and φ′ ∈ Sym(X ′

a′
j, j′

) it holds

σφ(BG [Xsi , Xai,1]) � σ ′φ′(B H [X ′
t j
, X ′

a′
j, j′

]). Via cross comparisons, the algorithm runs through all bipartite subgraphs (of si

with all siblings of ai,1) in increasing order (and also through all bipartite subgraphs of t j and all its children a j, j′).
This is done as follows: When comparing BG [Xsi , Xai,1] and B H [X ′

t j
, X ′

a′
j, j′

] for some j′ , the algorithm records all that

mappings φ and φ′ , where σφ(BG [Xsi , Xai,1]) and σ ′φ′(B H [X ′
t j
, X ′

a′
j, j′

]) become minimal. This builds the set Θai,1,a′
j, j′

. If the

set is empty, then both bipartite subgraphs are not isomorphic and we proceed with the next pair of bipartite subgraphs in
the cross comparison procedure. Thereby, the algorithm compares the number of bipartite subgraphs which are found to be
isomorphic to the current one. For example, if BG [Xsi , Xai,1] has less isomorphic siblings than the isomorphic bipartite sub-
graph B H [X ′

t j
, X ′

a′
j, j′

], then we return Ssi ≺T Tt j . If the numbers are equal then we invoke Step 4iv) for all these isomorphic

siblings. After this, we proceed with the next class of isomorphic bipartite subgraphs larger than BG [Xsi , Xai,1]σ .
In Step 4iv), we start with two isomorphic bipartite subgraphs BG [Xsi , Xai,1] and B H [X ′

t j
, X ′

a′
j, j′

]. For both of them, we

consider all the siblings which have an isomorphic bipartite subgraph. Thereby, we traverse the children of node si in a fixed
order. Namely, we can reach all these siblings of ai,1 with the function NextSibling. Again, this is done via cross comparisons.
Consider one such pair, say ai,1 and a′

j, j′ . We recompute the set Θai,1,a′
j, j′

and go into recursion at the corresponding subtrees

Sai,1 and Ta′
j, j′

with the set Θai,1,a′
j, j′

. We compute the number of siblings of ai,1 which are equal up to Step 4iv) and if this

number is equal to the number of siblings of a′
j, j′ then we proceed with the next test. We run through all the siblings and

we do this test for all classes of isomorphic bipartite subgraphs and return Ssi =T Tt j .

Complexity of the isomorphism order algorithm. We show that the isomorphism order between two augmented trees of
bounded tree distance width graphs can be computed in logspace.

Steps 1, 2 and 3 of the isomorphism order can be done in logspace, as we compute the size of subgraphs, the number
of children and check the correctness of a partial isomorphism. Because we have a tree distance decomposition where bags
have constant size, the whole graph is partitioned into separating sets of constant size. Hence, for a partial isomorphism
from bag Xr onto bag X ′

r′ we store the current mappings σ and σ ′ with O (1) bits on the work-tape. We also store Θ(r,r′)
in O (1) bits. Thereby, we rename the vertices according to the lexicographical order of their labels from the input. The
mapping from Xr onto X ′

r′ is given by σσ ′−1. Whether this is a partial isomorphism which fits to the partial isomorphism
of the parents of Xr and X ′

r′ (if we are in recursion, having a look at the work-tape contents stored one level up in recursion)
can be checked with constant effort.

For this task, in Step 4 we have counters on the work-tape. For the partitioning in Step 4i), we need O (1) bits on the
work-tape, because there are at most O (1) different separating sets only. For the partitioning in Step 4ii), we need O (log k)

bits when considering nodes like si with � k children. We can recompute these numbers and do not keep them after the
comparison. For the partitioning in Step 4iii), we need O (1) bits, because the bipartite graphs (like e.g. B[si,ai,i′]) are of
constant size and therefore there are at most O (1) different bipartite graphs only. For the partitioning in Step 4iv), we need
O (log k) bits when considering an isomorphism class with members, say like ai,i′ , of size |Sai,i′ | = n/k. Note, there are � k
such members in that class.

In order to have only a logarithmic number of recursive calls there is one special situation in which we have to diverge
from the isomorphism order procedure.

78 B. Das et al. / Information and Computation 217 (2012) 71–83
Definition 3.6. In an augmented tree of size n, a large child of a node is a subtree rooted at a child, which is of size � n/2.

It is important for the logspace bound not to store bits on the work-tape before going into recursion on such a large
child. Each node can have only one large child. Say s1 and t1 are large children of r and r′ , respectively (accordingly, we can
have a and a′ as large children of s1 and t1). Before doing any computation we directly go into recursion. When returning
from the recursion we return a constant size table Θ0 of all the partial isomorphisms from Xs1 onto X ′

t1
which correspond to

the minimal isomorphism order. If the table is not empty then we recompute Θ(r,r′) and update it, i.e. Θ(r,r′) ← Θ(r,r′) ∩Θ0.
If there is no partial isomorphism from Xs1 onto X ′

t1
then there is no isomorphism from Xa onto X ′

a′ and we return one
further level up in recursion.

We summarize, when going into recursion at bag nodes we only store O (1) bits, i.e. the current mapping σ (or a table
of mappings of the large child) of the bag node r. This order also gives an order on the children of r. Note, r can have only
O (1) children because the children correspond to minimum separating sets, i.e. different subgraphs of Xr and there are only
O (1) possibilities for this.

When going into recursion at a separating set node s1, there can be many children. Let |Ts1 | = n. To partition these
children into isomorphism classes we keep counters on the work-tape. First, we distinguish them by the fixed order of the
parent bag node, we can recompute this primary order. Second, we distinguish them by the size of their subtrees. Hence,
in one isomorphism class are only children of equal size. Therefore we keep counters on the work-tape to distinguish the
children in the current isomorphism class. With cross comparisons, as done by Lindell in [13], we can compute and check
the number of isomorphic children in each class. For these counters we need O (log k j) bits if the j-th isomorphism class
has k j members. Since in an isomorphism class the members have equal size, the subtrees have size � N/k j , where N be
the size of the augmented tree. We conclude that we get the same recurrence for the space S(N) as Lindell:

S(N) � max
j

S
(

N

k j

)
+ O (log k j),

where k j � 2 for all j. Thus S(N) = O (log N). Note that the number n of vertices of G is in general smaller than N , because
the vertices of the separating sets (of a separating set node) occur also in the bag associated to the parent node in the
augmented tree. Since there are only a constant number of children for a bag node, the size of the augmented tree is
polynomial in the size of the associated graph. This proves the theorem.

Theorem 3.7. The isomorphism problem for graphs of bounded tree distance width is in L.

Canonization of bounded tree distance width graphs. We use the isomorphism order algorithm as a subroutine for the canon-
ization of the augmented tree S . We traverse S while computing the tree isomorphism order as in Lindell [13] to output
the canon of each of the nodes along with delimiters. That is, we output a ‘[’ while going down a subtree, and ‘]’ while
going up a subtree.

We need to choose a bag node as root for the tree. Since there is no distinguished bag, we simply cycle through all of
them in logspace, determining the set which, when chosen as the root, leads to the lexicographically minimum canon of
the augmented tree S . We describe the canonization procedure for a fixed root r.

The canonization procedure has two steps. In the first step we compute what we call a canonical list for Sr . Assume,
that we can pre-compute a table where we have for each graph of size � k its canon. We can use this for example, if the
isomorphism order algorithm reaches a leaf in the augmented tree. This canon is given by arranging the edges of the graphs
in a unique order. In the second step we compute the final canon from the canonical list.

For the canon of a subtree rooted at a bag node r, we compute the minimal mapping σ for r, invoking the isomorphism
order algorithm. The canon begins with σ . According to the order of σ we order the children and output their canons in
increasing isomorphism order.

For the canon of a subtree rooted at a separating set node s1, we invoke the isomorphism order algorithm to arrange
the children of s1. This is done via cross comparisons of the subtrees rooted at these children. The canon begins with σ |s1

(i.e. the order of σ restricted to the vertices of s1), followed by the canons of the subtrees in increasing isomorphism order.
We give an example: Consider the canonical list l(S, r) of edges for the tree Sr of Fig. 1. Let σi, j be the minimum

mapping of the subtree rooted at bag node ai, j .

l(S, r) = [
(σ) l(Ss1 , s1) . . . l(Ssl , sl)

]
, where

l(Ss1 , s1) = [
(σ |s1) l(σ1,1,a1,1) . . . l(σ1,k1 ,a1,k1)

]
,

...

l(Ssl , sl) = [
(σ |sl) l(σl,kl ,al,kl)

]
.

Canon for the original graph of bounded tree distance width. This list is now almost the canon, except that the names of the
vertices are still the ones they have in G . Clearly, a canon must be independent of the original names of the nodes. The

B. Das et al. / Information and Computation 217 (2012) 71–83 79
Fig. 2. The figure shows the situation where Xi and X j are copied. For the vertices u, u′ , v and wi the new edges from Step 2 and Step 3 are drawn.

final canon for Sr can be obtained by a logspace transducer which relabels the vertices in the order of their first occurrence
in this canonical list and outputs the list using these new labels.

To get the canon for G , we remove the delimiters ‘[’ and ‘]’ in the canon for Sr and order the edges of G in lexico-
graphical order using the new labels. This is sufficient, because we describe here a bijective function f which transforms an
automorphism φ of Sr into an automorphism f (φ) for G with Xr fixed. This proves the theorem.

Theorem 3.8. A graph of bounded tree distance width can be canonized in logspace.

4. Graphs of bounded treewidth

In this section we consider several isomorphism problems for graphs of bounded treewidth. We are interested in isomor-
phisms respecting the decompositions (i.e. vertices are mapped blockwise from a bag to another bag). We show first that if
the tree decomposition of both input graphs is part of the input then the decomposition respecting isomorphism problem
can be decided in L. We then show that if a tree decomposition of only one of the two given graphs is part of the input,
then the isomorphism problem is in LogCFL. It follows that the isomorphism problem for graphs of bounded treewidth is
also in LogCFL.

Assume first the decompositions of both input graphs are given. In order to prove that this problem is in L, we show
that given tree decompositions together with designated bags as roots for G and H the question of whether there is an
isomorphism between the graphs mapping root to root and respecting the decompositions can be reduced to the isomor-
phism problem for graphs of bounded tree distance width. We argued in the previous section that this problem belongs
to L.

Theorem 4.1. The isomorphism problem for bounded treewidth graphs with given tree decompositions reduces to isomorphism for
bounded tree distance width graphs under AC0 many-one reductions.

Proof. Let (G, D, r), (H, D ′, r′) be two graphs together with tree decompositions D and D ′ of width k with root bags Xr
and X ′

r′ . We describe a function which transforms (G, D, r) into (Ĝ, S) where Ĝ is a graph of bounded tree distance width k
and S is a root set for a minimum tree distance decomposition of width k of Ĝ . This function also transforms (H, D ′, r′)
into (Ĥ, S ′). We will show that this happens in such a way that (Ĝ, S) is isomorphic to (Ĥ, S ′) if and only if there is an
isomorphism between G and H respecting the decompositions D and D ′ and mapping the vertices in the root bag r to
vertices in the root bag r′ .

Let D = ({Xi | i ∈ I}, T = (I, F), r) be the given tree decomposition of G . W.l.o.g. we can assume that every bag in D
includes at least two vertices. We define S := Xr . Ĝ is defined as follows (see Fig. 2):

1. For each bag Xi in D and each vertex v in Xi , we define the vertex (v, i) in V (Ĝ). If u, v ∈ Xi and there is an edge
{u, v} ∈ E(G) then we define the edge {(u, i), (v, i)} ∈ E(Ĝ).

2. For all {i, j} ∈ F , u ∈ Xi and v ∈ X j with u �= v , we define an edge between (u, i) and (v, j).
3. For all i, we define a vertex wi ∈ V (Ĝ) which is connected to (v, i), for all v ∈ Xi .

From H , the graph Ĥ is defined in the same way. We consider the minimal tree distance decomposition D̂ of Ĝ with
root set S . For each bag Xi in D , in Step 1 the vertices of this bag are copied in Ĝ . By considering these bags as a tree
distance decomposition of Ĝ , the distance from the root set S to such a bag is equal to the distance of r to i in T . This is,
because if (i, j) is an edge in T then for every vertex (u, i) in Ĝ there is an edge to at least one vertex (v, j). It also holds
that the minimal tree distance decomposition of Ĝ with root S has width k.

If G is isomorphic to H with an isomorphism respecting the decompositions and mapping the vertices from the root
bag Xr of G to the root bag of H , then clearly Ĝ is isomorphic to Ĥ . For the other direction, observe that the edges
connecting the vertices inside each bag are kept by Step 1 in the definition of Ĝ and Ĥ . By Step 3, we guarantee, that in
an isomorphism between Ĝ and Ĥ the vertices in one bag are all mapped blockwise to vertices in some bag, i.e. they are
not split and mapped onto vertices of two or more bags. In Step 2, we distinguish between vertices in Xi ∩ X j and the
other vertices. That is, for an edge (i, j) ∈ T , every vertex (u, i) is connected to every vertex (v, j) except to (u, j) (in case u
belongs to Xi ∩ X j in D). Since all the copies of vertex u (all the vertices (u, i) for some i in Ĝ) belong to a connected
subtree, this implies that in a possible isomorphism between Ĝ and Ĥ all copies of vertex u in Ĝ have to be mapped
blockwise to copies of the same vertex in Ĥ .

80 B. Das et al. / Information and Computation 217 (2012) 71–83
It follows that there is an isomorphism between Ĝ and Ĥ if and only if there is an isomorphism between G and H
which respects the bags in the decompositions D and D ′ together with r and r′ , accordingly. �

From Theorem 4.1 we get the following corollary.

Corollary 4.2. For every k � 1 there is a logarithmic space algorithm that, on input a pair of graphs together with a tree decompositions
of width k for each of them, decides whether there is an isomorphism between the graphs, respecting the decompositions.

Proof. The result follows from the previous reduction and Theorem 4.1. Thereby we fix a root in D and run through all
possibilities for bags as roots in D ′ . As there are only polynomially many bags in D ′ this can be done by a logspace
machine. �

In the previous reduction, we have transformed a graph G given together with a tree decomposition D of width k and
with root bag r into a new graph Ĝ and a root set S such that the minimal tree distance decomposition of Ĝ has width k.
As done in Section 3 we can compute within logspace an augmented tree for Ĝ . Moreover we can use the defined total
isomorphism order on augmented trees to compare in this way graphs of bounded treewidth given together with tree
decompositions.

Corollary 4.3. For any k > 1 there is a total order <T defined on the set of tuples (G, D, r) where G is a graph of treewidth k, and D
a tree decomposition of G with root set r. <T can be computed in logarithmic space and (G, D, r) =T (H, D ′, r′) if and only if there is
an isomorphism between G and H respecting the decompositions and mapping the root set of r to that of r′ (i.e. Xr to X ′

r′ blockwise).

This result will be used in the next section for computing an isomorphism when just one of the decompositions is given.

4.1. A LogCFL algorithm for isomorphism

We consider now the more difficult situation in which only one of the input graphs is given together with a tree
decomposition.

Theorem 4.4. Isomorphism testing for two graphs of bounded treewidth, when a tree decomposition for one of them is given, can be
done in LogCFL.

Proof. We describe an algorithm which runs on a non-deterministic auxiliary pushdown automaton (NAuxPDA). Besides
a read-only input tape and a finite control, this machine has access to a stack of polynomial size and an O (Ln) space
bounded work-tape. On the input tape we have two graphs G , H of treewidth k and a tree decomposition D = ({Xi | i ∈ I},
T = (I, F), r) for G . For j ∈ I we define G j to be the subgraph of G induced on the vertex set {v | v ∈ Xi, i ∈ I and i = j
or i a descendant of j in T }. That is, G j contains the vertices which are separated by the bag X j from Xr and those in X j .
We define D j = ({Xi | i ∈ I j}, T j = (I j, F j), j) as the tree decomposition of G j corresponding to T j , the subtree of T rooted
at j. We also consider a way to order the children of a node in the tree decomposition:

Definition 4.5. Given a graph G together with a tree decomposition D , let 1, . . . , l be the children of a node r in the
decomposition tree T . We define the lexicographical subgraph order, as the order among the subgraphs G1, . . . , Gl which is
given by: Gi < G j iff there is a vertex w ∈ V (Gi) \ Xr which has a smaller label than every vertex in V (G j) \ Xr .

The algorithm non-deterministically guesses two main structures. On the one hand it guesses a tree decomposition of
width k for H . This is done in a similar way as in the LogCFL algorithm from Wanke [19] for testing that a graph has
bounded treewidth. We briefly sketch this method which is the basis of our algorithm. Second, we guess an isomorphism φ

from G to H by extending partial mappings from bag to bag.

Algorithm for tree decomposition testing. For completeness we include here a sketch of Wanke’s algorithm [19] for testing
whether a graph has treewidth k. On input a graph G the algorithm guesses non-deterministically the bags in the decom-
position using the pushdown to test that these bags fulfill the properties of a tree decomposition and that every edge in G
is included in some bag. If the guessed bags determine a tree decomposition of width k the algorithms accepts.

Let G be the connected input graph. P and Q denote vertex sets of size � k + 1 in G which are additionally separating
sets and play the role of bags in the tree decomposition. For a separating set P in G and a vertex v /∈ P , let ΦG(P , v) be
the split component of P in G containing v . For technical reasons initially we extend G defining an extra vertex v0 and
connecting it arbitrarily to a vertex u with the property that {u} is not an articulation point in G . We will assume that v0
has a label with smaller number than all the original vertices in G . We also consider arbitrarily some other vertex w �= u
in G . The algorithm is started with the initial bag P = {v0, u} and the initial vertex w , representant of the unique split
component of P . Then it guesses non-deterministically a new bag Q in the decomposition and goes in recursion with each

B. Das et al. / Information and Computation 217 (2012) 71–83 81
Algorithm 1 Tree decomposition testing Decompose(G, v0, P , v).
Input: Graph G , vertex v0, separating set P with |P | � k + 1, vertex v in a split component of P
Output: Accept iff the graph induced by P ∪ ΦG (P , v) has a tree decomposition of width k

1: Non-deterministically choose Q of size � k + 1 in ΦG (P , v) ∪ P
2: if Q ⊆ P or P ⊆ Q or

∃{u1, u2} ∈ E(G): u1 ∈ ΦG (P , v) ∧ u2 /∈ ΦG (P , v) ∪ Q
then halt and reject

3: for all w having smallest number in a split component of Q except v0

4: go into recursion with Decompose(G, v0, Q , w)

5: end for
6: if the stack is not empty then go one level up in recursion
7: halt and accept

of the split components defined by Q . This is done with the procedure Decompose(G, v0, P , v) where G is the original
graph, v0 the extra vertex, P the actual separating set (bag) and v a representant of a split component of P . The initial call
is Decompose(G, v0, {v0, u}, w) where u and w are chosen arbitrarily, where u is not an articulation point in G and w �= u.

P and the sequence of bags Q defined in an accepting non-deterministic computation define a tree decomposition of G
(once the vertex v0 is deleted from them).

In every iteration the algorithm chooses Q , a neighbor bag of P in a tree decomposition of G . In Line 2 it is required
that Q is not contained in P nor P in Q and Q must separate its split components in the subgraph ΦG(P , v) from the
vertices in P \ Q . This requirement guarantees that the new bag fulfills condition iii) in the definition of tree decomposition.
In Line 3 the algorithm goes into recursion at each split component of Q , except the one which contains v0. The algorithm
recursively chooses separating sets this way from the root through the whole graph.

Algorithm for isomorphism testing. We modify the algorithm of Wanke in a way that we can test isomorphism in parallel.
Namely, our algorithm simulates Wanke’s algorithm as a subroutine. In the description of the new algorithm we concentrate
on the isomorphism testing part and hide the details of how to choose the bags. For simplicity the sentence “guess a bag X j
in H according to Wanke’s algorithm” means that we simulate the guessing steps from Wanke, checking at the same time
that the constructed structure is in fact a tree decomposition. Note, if the bags were not chosen appropriately, then the
algorithm would halt and reject.

The algorithm starts guessing a root bag X ′
r′ of size � k+1 for a decomposition of H . With X ′

r′ as root bag it guesses step
by step the tree decomposition D ′ of H which corresponds to D and its root r. It also constructs a mapping φ describing
a partial isomorphism from the vertices of G onto the vertices of H . At the beginning, φ is the empty mapping and the
algorithm guesses an extension of φ from Xr onto X ′

r′ that is stored on the top of the stack. In general when dealing with
a set of vertices from a bag Xa in D , the algorithm cycles through all possible subsets S of Xa and considers the children i
of a in D with Xa ∩ Xi = S . Note, S is the separating set of minimum size which separates Xi \ Xa from the root bag Xr .
The corresponding subgraphs Gi of G are then partitioned in isomorphism classes respecting the decomposition Di given
in the input. This is done considering the total isomorphism order of (Gi, Di, Xi) as defined in Corollary 4.3. The algorithm
compares the children of a with separating set S with guessed children of a′ (with separating set φ(S)) testing that for
each isomorphism class there is the same number of isomorphic subgraphs with root a′ in H . For this the algorithm uses
the lexicographical subgraph order (Definition 4.5) to go through the isomorphic siblings from left to right, just keeping a
pointer to the current child on the work-tape, so that no child is counted twice. For two such children, say s1 of a and t1
of a′ , the algorithm checks then recursively that (G1, D1) is isomorphic to the corresponding subgraph of t1 in H , by an
extension of φ. Inside an isomorphism class the subgraphs have the same intersection with Xa and are isomorphic to each
other. Because of this, they are interchangeable and could be mapped to subgraphs in the corresponding isomorphism class
from X ′

a′ in any order. The isomorphism computed by the algorithm maps these subgraphs to subgraphs in the isomorphism
class from X ′

a′ in lexicographical subgraph order.
When the algorithm goes into recursion, it pushes on the stack O (log n) bits for a description of Xa and X ′

a′ as well as
a description of the partial mapping φ from Xa onto X ′

a′ and the description of S .
In general, not all the information about φ is kept on the stack. We only have the partial isomorphism φ : {v | v ∈

Xr ∪ · · · ∪ Xa} → {v | v ∈ X ′
r′ ∪ · · · ∪ X ′

a′ }, where r, . . . ,a (r′, . . . ,a′ , respectively) is a simple path in T from the root to
the node at the current level of recursion. After the algorithm runs through all children of some node (going through
all its subsets S) it goes one level up in recursion and recomputes all the other information which is given implicitly
by the subtrees from which it returned. Suppose the control of the algorithm returned to the bag Xa , from a child Xi
with Xa ∩ Xi = S after checking that the partial isomorphism can be extended to map Xi to X ′

i′ . It then has to do the
following:

• Copy from the top of the stack into the work-tape the partial isomorphism φ of the bags Xa onto X ′
a′ .

• Compute the lexicographical next isomorphic sibling of Xi with minimum sized separating set S and guess the lex-
icographical next isomorphic sibling of X ′

i′ with minimum sized separating set φ(S). Check that the guessed sibling
satisfies the decomposition properties that the isomorphism can be extended to include the new subgraphs.

82 B. Das et al. / Information and Computation 217 (2012) 71–83
Algorithm 2 Isomorphism testing with one tree decomposition TWIso(G, H, D, Xa, X ′
a′).

Input: Graphs G , H , tree decomposition D for G , bags Xa in G and X ′
a′ in H

Top of Stack: Partial isomorphism φ mapping the vertices in the parent bag of Xa onto the vertices in the parent bag of X ′
a′

Output: Accept, iff Ga is isomorphic to Ha by an extension of φ

1: Guess an extension of φ to a partial isomorphism from Xa onto X ′
a′

2: if φ cannot be extended to a partial isomorphism which maps Xa onto X ′
a′

then halt and reject
3: for each subset S ⊆ Xa do
4: Let 1, . . . , l be the children of a in T with Xa ∩ Xi = S partition the subgraphs corresponding to the subtrees of T rooted at 1, . . . , l into (decompo-

sition respecting) isomorphism classes E1, . . . , E p

5: for each class E j from j = 1 to p do
6: for each subtree Ti ∈ E j (in lexicographical subgraph order) do
7: guess a bag X ′

i′ in H in increasing lexicographical subgraph order of Hi′
8: if X ′

i′ is not a correct child bag of X ′
a′ (see Wanke’s algorithm)

then halt and reject
9: Invoke TWIso(Gi , Hi′ , Di , Xi , X ′

i′) recursively and push Xa , X ′
a′ and the partial isomorphism φ on the stack

10: After recursion pop these informations from the stack
11: end for
12: end for
13: end for
14: if the stack is not empty then go one level up in recursion
15: halt and accept

Fig. 3. The figure illustrates the setting of TWIso(G, H, D, Xa, X ′
a′) in Algorithm 2. Let T be the tree of tree decomposition D , where Xa and X ′

a′ are root
bags. The connection to their parents is indicated by dashed lines. Exemplarily, on the left side a subset S of Xa is shown which induces children 1, . . . , l
as computed in Algorithm 1. The children are partitioned into isomorphism classes E1, . . . , E p . Correspondingly, the extension of φ induces on the right
side φ(S), a subset of X ′

a′ .

• If there is no such sibling then look for the next isomorphism class (Corollary 4.3) of a subtree with minimum sized
separating set S and look for the lexicographical first child of Xa inside this class.

• If there is no higher isomorphism class of subtrees with intersection S then go to the next subset S ′ ⊆ Xa .
• If there is no further subset S ′ then the algorithm has visited all children of Xa and it is ready to further return one

level up in the recursion.

Algorithm 2 summarizes the above considerations. In Line 1, it guesses an extension of the partial isomorphism φ to
include a mapping from Xa onto X ′

a′ . We the partial isomorphism of their parent bags can be found on the top of the stack.
In Line 3 the algorithm cycles through all the subsets of Xa . The partition in Line 4 can be obtained in logspace by

decomposition respecting isomorphism tests of the tree structures. Two subtrees rooted at Xi and X j are in the same
isomorphism class if and only if (Gi, Di, S) =T (G j, D j, S).

In Lines 7 to 10, the algorithm guesses the bag X ′
i′ in H which corresponds to Xi and tests recursively whether the

corresponding subgraphs Gi and Hi′ are isomorphic with an extension of the partial isomorphism φ. Observe that the
algorithm cannot guess the same bag X ′

i′ in H for two different bags Xi and X j in G . This is because if the corresponding
subgraphs Gi and G j are isomorphic the bags in H are chosen in increasing lexicographical order (Line 7) and must be
different. On the other hand if Gi and G j are not isomorphic then the subgraph of H defined by X ′

i′ cannot be isomorphic
to both of them.

In Line 8, the algorithm checks whether X ′
i′ fulfills the properties of a correct tree decomposition as in Wanke’s algorithm

(i.e. X ′
i′ must be a separating set which separates its split components from the vertices inX ′

a′ \ X ′
i′) (see Fig. 3).

To show that the algorithm correctly computes an isomorphism, we make the following observation. A bag Xa and
a subset S ⊆ Xa constitute a separating set defining the connected subgraphs G1, . . . , Gl . These subgraphs do not contain

B. Das et al. / Information and Computation 217 (2012) 71–83 83
the root Xr and V (Gi)∩ V (G j) = S since we have a tree decomposition D . The algorithm guesses and keeps from the partial
isomorphism φ exactly those parts which correspond to the path from the roots Xr and X ′

r′ to the current bags Xa and X ′
a′ .

Once it verified a partial isomorphism from one child component (e.g. Gi) of Xa onto a child component (e.g. Hi′) of X ′
a′ ,

for the other child components it suffices to know the partial mapping of φ from Xa onto X ′
a′ .

Observe that for each v in G in a computation path from the algorithm there can only be a value for φ(v), since in
the decomposition all the appearances of vertex v belong to bags from a connected subtree in D . Clearly, if G and H are
isomorphic then the algorithm can guess the decomposition of H which fits to D , and the extensions of φ correctly. In
this case the NAuxPDA has some accepting computation. On the other hand, if the input graphs are non-isomorphic then
in every non-deterministic computation either the guessed tree decomposition of H does not fulfill the conditions of a tree
decomposition (and would be detected) or the partial isomorphism φ cannot be extended at some point. �

Wanke’s algorithm decides in LogCFL whether the treewidth of a graph is at most k by guessing all possible tree de-
compositions. Using a result from [8] it follows that there is also a (functional) LogCFL algorithm that on input a bounded
treewidth graph computes a particular tree decomposition for it. Since LogCFL is closed under composition, from this result
and Theorem 4.4 we get:

Corollary 4.6. The isomorphism problem for bounded treewidth graphs is in LogCFL.

5. Conclusions and open problems

We have shown that the isomorphism problem for graphs of bounded treewidth is in the class LogCFL and that for
the more restricted case of bounded tree distance width graphs the problem is complete for L. Moreover for this second
class of graphs we also give a logspace algorithm for the canonization problem. By using standard techniques in the area
it can be shown that the same upper bounds apply for other problems related to isomorphism on these graph classes.
For example the problem of deciding whether a given graph has a non-trivial automorphism or the functional versions of
automorphism and isomorphism can be done within the same complexity classes. The main question remaining is whether
the LogCFL upper bound for isomorphism of bounded treewidth graphs can be improved. No LogCFL-hardness result for the
isomorphism problem is known, so maybe the result can be improved. Proving a logspace upper bound for the isomorphism
problem of bounded treewidth graphs requires more than the computation of tree decompositions within logarithmic space,
a result that has been recently obtained [7]. Another interesting open question is whether bounded treewidth graphs can
be canonized in LogCFL.

References

[1] V. Arvind, P. Kurur, T.C. Vijayaraghavan, Bounded color multiplicity graph isomorphism is in the #L hierarchy, in: Proc. 20th IEEE CCC, 2005, pp. 13–27.
[2] H.L. Bodlaender, Polynomial algorithms for graph isomorphism and chromatic index on partial k-trees, Journal of Algorithms 11 (1990) 631–643.
[3] H.L. Bodlaender, A partial k-arboreum of graphs with bounded treewidth, Theoretical Computer Science 209 (1998) 1–45.
[4] H.L. Bodlaender, A. Koster, Combinatorial optimization of graphs of bounded treewidth, The Computer Journal (2007) 631–643.
[5] S. Datta, N. Limaye, P. Nimbhorkar, T. Thierauf, F. Wagner, Planar graph isomorphism is in Logspace, in: Proc. 24th IEEE CCC, 2009, pp. 203–214.
[6] S. Datta, P. Nimbhorkar, T. Thierauf, F. Wagner, Isomorphism of K3,3-free and K5-free graphs is in Logspace, in: Proc. 29th FSTTCS, 2009, pp. 145–156.
[7] M. Elberfeld, A. Jakoby, Till Tantau, Logspace versions of the theorems of Bodlaender and Courcelle, in: Proceedings of the 51st Annual Symposium on

Foundations of Computer Science (FOCS), 2010.
[8] G. Gottlob, N. Leone, F. Scarcello, Computing LOGCFL certificates, Theoretical Computer Science 270 (2002) 761–777.
[9] M. Grohe, O. Verbitsky, Testing graph isomorphism in parallel by playing a game, in: Proc. 33rd ICALP, 2006, pp. 3–14.

[10] B. Jenner, J. Köbler, P. McKenzie, J. Torán, Completeness results for graph isomorphism, Journal of Computer and System Sciences 66 (2003) 549–566.
[11] J. Köbler, S. Kuhnert, The isomorphism problem of k-trees is complete for Logspace, in: Proc. 34th MFCS, 2009, pp. 537–448.
[12] J. Köbler, U. Schöning, J. Torán, The Graph Isomorphism Problem, Birkhäuser, 1993.
[13] S. Lindell, A Logspace algorithm for tree canonization, in: Proc. 24th ACM STOC, 1992, pp. 400–404.
[14] E. Luks, Isomorphism of graphs of bounded valence can be tested in polynomial time, Journal of Computer and System Sciences 25 (1982) 42–65.
[15] E. Luks, Parallel algorithms for permutation groups and graph isomorphism, in: Proc. 27th IEEE FOCS, 1986, pp. 292–302.
[16] G. Miller, Isomorphism testing for graphs of bounded genus, in: Proc. 12th ACM STOC, 1980, pp. 225–235.
[17] O. Reingold, Undirected connectivity in logspace, Journal of the ACM 55 (4) (2008).
[18] I. Sudborrough, Time and tape bounded auxiliary pushdown automata, Mathematical Foundations of Computer Science (1977) 493–503.
[19] E. Wanke, Bounded tree-width and LOGCFL, Journal of Algorithms 16 (1994) 470–491.
[20] K. Yamazaki, H.L. Bodlaender, B. de Fluiter, D.M. Thilikos, Isomorphism for graphs of bounded distance width, Algorithmica 24 (1999) 105–127.

	Restricted space algorithms for isomorphism on bounded treewidth graphs
	1 Introduction
	2 Preliminaries
	3 Graphs of bounded tree distance width
	3.1 Tree distance decomposition in L
	3.2 Isomorphism algorithm for bounded tree distance width graphs

	4 Graphs of bounded treewidth
	4.1 A LogCFL algorithm for isomorphism

	5 Conclusions and open problems
	References

