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Abstract

This paper examines the Stochastic Boolean Function Evaluation (SBFE) problem for classes of DNF formulas. Al-
though the SBFE problem is inapproximable for general DNF formulas, exact and approximate algorithms for monotone
k-DNF and monotone k-term DNF formulas are presented. The SBFE problem for DNF formulas involves sequential tests
to determine the value a DNF formula on an initially unknown input, x = (x1, ..., xn), where cost, ci, associated with
obtaining the value of independent bits, xi, is given; and the probability, pi, that each xi = 1 is known. The goal is to
minimize expected cost. Also presented is a proof on a lower bound result for evaluation of monotone CDNF formulas.

1 Introduction
Stochastic Boolean Function Evaluation (SBFE) is the problem of determining the value of a given Boolean function, φ,
on an unknown input, x, such that each bit xi of x can only be determined by paying an associated cost, ci. The unknown
input, x, is randomly generated such that the bits are independent, and the probability that xi = 1, denoted pi, is known.
The goal is to minimize the expected cost of evaluation.

This paper studies the complexity of the SBFE problem, and considers both exact and approximate versions of the
problem for k-DNF and k-term DNF formulas. It is known that the general SBFE problem is NP-hard for arbitrary DNF
formulas since satisfiability is NP-hard [Gre06]. To show that the SBFE problem for k-DNF is NP-hard, even for k = 2, a
simple reduction is used. A 4

ρ

k factor algorithm for evaluating monotone k-DNF is presented, along with a proof showing
that the SBFE problem for monotone k-term DNF is solvable in polynomial time for some constant k.

Additionally, an approximation algorithm solving the SBFE problem for CDNF formulas (and decision trees) for the
special case of unit costs, the uniform distribution, and monotone CDNF formulas is given [Kap05]. For k terms of the
DNF, and d clauses in the CNF, the algorithm achieves an approximation guarantee of O(log kd) on the value of the
expected certificate cost–a lower bound on the optimal solution. The algorithm alternates between two processes; one
process attempts to achieve a 0-certificate, while the other attempts to achieve a 1-certificate. This ”round robin” technique
is modified to handle arbitrary costs with no change in the approximation factor, as the original algorithm handles only unit
costs.

Finally, it is shown that the approximation guarantee of O(log kd), is close to optimal. The approximation factor must
be Ω((log kd)ε), for 0 < ε < 1; which also implies that the (optimal) average depth of a decision tree computing a Boolean
function can be exponentially larger than the average certificate size for that function, while the depth complexity of a
decision tree for a function (worst-case) is at most quadratic [Buh02].

2 Statement of Problem
The Stochastic Boolean Function Evaluation (SBFE) problem is defined as follows. We are given a boolen formula
φ(x1, . . . , xn), the costs c1, . . . , cn ≥ 0 of determining the value of each xi, and the probabilities 0 < p1, . . . , pn < 1
that each xi is True. The goal of the problem is to determine, at minimum cost, the value of φ(x) for an unknown value
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of x. This x is randomly generated so that each xi is independent and P [xi = True] = pi. While x remains initially
unknown the value of each xi value can be revealed at a cost of ci.

The order in which variables are revealed can vary depending on the values of the already revealed variables. The
revealed variables are enough to determine the value of φ(x). Thus we have that for every y which agrees with x on the
revealed variables, φ(y) = φ(x). This automatically leads us to the inapproximability of the general case. For example if
φ(x) is an unsatisfiable CNF formula or a universal DNF formula then optimally no queries would be necessary. This is
because in these cases the value of φ is constant over all values of x. Any constant factor approximation has to yield the
exact result in these cases and thus solve either an NP or coNP complete problem.

3 Motivation and Related Work
Stochastic Boolean Function Evaluation is applicable in the field of medicine. In this case the xis correspond to medical
tests performed on a given patient, and the boolean function φ(x) evaluates to True is the patient has a certain disease.
SBFE can also be applied to query optimization in databases, where all stored values of x that satisfy φ(x) need to be
located.

Certain special cases of the SBFE problem can be solved exactly in polynomial time. These include including read-once
DNF formulas and k-of-n formulas [Ünl04]. An approximation factor of n can be obtained for arbitrary boolean formulas
by testing the variables in increasing order of their costs. [Kap05]

Deshpande et al. explored a generic approach to developing approximation algorithms for SBFE problems, called the
Q-value approach. It involves reducing the problem to an instance of Stochastic Submodular Set Cover. They proved that
the Q-value approach does not yield a sublinear approximation bound for evaluating k-DNF formulas, even for k = 2. They
also developed a new algorithm for solving Stochastic Submodular Set Cover, called Adaptive Dual Greedy, and used it to
obtain a 3-approximation algorithm solving the SBFE problem for linear threshold formulas. [Des13]

The main application of the problem is in the optimization of database queries. In this we are in which databases a query
φ evaluates to true. [Ibra84]

4 Critique
The introduction thoroughly outlines the contents of the paper. Included is a statement of the SBFE problem, and the goal
of the problem. There is also a mention of areas like Operations Research and Learning Theory in which the SBFE problem
is often studied. It is made clear that the focus of the paper is on the complexity of the SBFE problem for specific classes
of DNF formulas with details about those classes, algorithms, and proofs that will be presented. Following is a discussion
about how the Kaplan et al. algorithm is modified to obtain a near optimal approximation bound. Additionally, a statement
referring readers to the omitted proofs of the results is also included in the introduction.

The second section, appropriately titled “Stochastic Boolean Function Evaluation,” restates the SBFE problem by offer-
ing a more formal definition. Also given in this section, is a sufficient outline of a worst-case running time algorithm for
the problem. Since the SBFE problem arises in many different application areas, it was nice to see a brief mention of two
areas of application including medical diagnosis and query optimization. Also noted were a few algorithms which solve
the SBFE problem exactly for a small number of classes of Boolean formulas, as well as the generic approach explored by
Deshpande et al. to develop approximation algorithms for this problem.

The Preliminaries section succinctly defines many of the terms relevant to the SBFE problem, including but not limited
to: literal, term, clause, size of a term or clause, DNF, CNF, k-term DNF, k-DNF, size of a DNF (CNF) formula, etc. This
section is helpful, particularly for those not familiar with the SBFE problem. They also state the set cover problem, which
is relevant given the reduction used to show that the SBFE problem for k-DNF and k-term DNF is NP-hard.

Next is a discussion of the hardness of the exact SBFE problem, given in the section “Hardness of the SBFE problem
for monotone DNF”. [Gre06] is cited for showing how the SBFE problem for CNF formulas is NP-hard. It is subsequently
shown that if P 6= NP , the SBFE problem for DNF cannot be approximated to within any factor ρ > 1. Finally, this section
presents an approach used by [Cox89] to show that the SBFE problem for DNF is still NP-hard whether or not the DNF is
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monotone. While it is stated that Cox reduced from Knapsack, and the reduction presented is from Vertex-Cover, neither
the Knapsack problem nor Vertex-Cover problem is stated or defined in the Preliminaries section.

The fifth section of the paper introduces the approximation algorithms used for the SPFE problem in the case of monotone
k-DNF and k-term DNF formulas. This is achieved by alternating between two separate algorithms, one which tests for
1-certificates and the other which tests for 0-certificates. No pseudocode for these algorithms is given, nor is any given for
the alternation procedure. Instead the paper provides descriptions of each of the necessary procedures.

The next section describes an exact polynomial time algorithm for the SBFE problem when restricted to k-term DNF.
Similarly to the preceding section no pseudocode is provided and only outlines are given. The algorithm generalizes the
work of [Gre06] general monotone DNF formulas instead of just those formulas with read-once refutations.

The final section of the paper describes the difference between the two measures of approximation bounds for the SBFE
problem. The first of these is the optimal expected cost that can be achieved by a particular strategy while the other is the
minimum expected evaluation cost of a given formula. The paper shows that this ration can be extremely large even when
both evaluation cost and probability are uniform.

5 Conclusions
Thorough reduction to tautology of DNF formulas the general case of the SBFE problem is inapproximable unless P = NP.
However when dealing with monotone k-DNF formulas the SBFE problem can be approximated in polynomial time with
an approximation bound of 4

ρ

k. Monotone k-term DNF formulas also have a polynomial time approximation algorithm,
however, this algorithm has an approximation factor of max{2 · k, 2

ρ · (1 + ln k)}. While the general cases of the SBFE
problem for CNF and DNF formulas are inapproximable for constant factor approximations this result stems from the case
when the optimal solution to the SBFE problem is 0. This situation might be overcome if we look at an α · OPT + c
approximation. Thus focusing of this type of approximation may generate approximations for more general forms of the
SPFE problem.
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