
1

Piotr’s Writeup

Piotr Wojciechowski
LCSEE,

West Virginia University,
Morgantown, WV

{pwojciec@mix.wvu.edu}

May 29, 2014

1 May 5, 2014

Looked into methods of reducing the bound in Nelson’s paper to reduce the upper limit on the number of break points.

2 April 28, 2014

Focused on work for other classes, no progress.

3 April 21, 2014

Focused on work for other classes, no progress.

Grade: I.

4 April 14, 2014

Nelson’s paper describes a O(m · ndlog2 ne+3 · log n) time algorithm for solving systems of TVPI constraints. While not as
efficient as Hochbaum’s algorithm this algorithm keeps track of all generated constraints, except those which are redundant.
This makes it more useful to our problem since we are generating the complete upper and lower envelopes for each pair of
variables. Thus, we know that the bounds obtained by this algorithm can be applied to our problem.

While the general algorithm is not polynomial, any sub-case where there are a fixed number of coefficients can be solved
in polynomial time. Since out problem is simpler than TVPI constraints, we are only dealing with monotone constraints, it
may be possible to obtain a more efficient bound. If such a bound is found then our method for pre-computing closure can
run in polynomial time.

Grade: C



5 April 7, 2014

Fell ill, no progress.

Grade: I

6 March 31, 2014

Read Hochbaum’s paper to determine how to prevent the number of breakpoints from growing exponentially. Hochbaum’s
for eliminating a variable xi compares the breakpoints derived from existing constraints involving xi to try and find a
breakpoint inside the feasible range of xi. If there is a breakpoint in that range then xi is assigned the value it takes at that
breakpoint. Otherwise, two adjacent breakpoints are found such that the entire feasible range of xi lies between their xi

values. In this case, for each xj there are at most two non-redundant xi, xj constraints over xis feasible range. This is
because if there were more then there would be a breakpoint inside that range.

Hochbaum’s algorithm correctly simplifies the Fourier Motzkin elimination procedure to polynomial time. However this
simplification is of no use to our problem because only one breakpoint is kept even if multiple breakpoints lie in the feasible
interval of xi.

Grade: C

7 March 24, 2014

The method shown in the March, 17 section only runs in polynomial time if the Fourier-Motzkin elimination procedure
can be modified to run in polynomial time for generalized difference constraints. Hochbaum does this by only keeping the
non-redundant constraints at each elimination step. We can constantly maintain the sequences of breakpoints for each pair
of variables xi, xj and then use this sequence to determine which constraints are redundant after each elimination step.

In our sequence of breakpoints if a newly derived xi, xj constraint creates new breakpoints then it must also eliminate at
least one existing breakpoint. If the constraint did not, then every existing breakpoint would satisfy it and so the constraint
would be redundant and not need to be added to the system. Thus since adding a constraint results in at most two new
breakpoints (one at each end of where it it the bounding constraint in the xi, xj plane) the number of breakpoints wil
increase by at most one.

If adding the constraint removes more than one existing breakpoint then the breakpoints removed must be adjacent.
Thus at least one of the existing constraints in the system will loose both of its associated breakpoints and so become
redundant. This means that it can be safely removed from the system without affecting feasibility. In these cases adding the
new constraint will not increase, but might decrease, both the number of breakpoints and non-redundant constraints in the
system.

Thus from the list of breakpoints for xi and xj we can easily determine which constraints are made redundant by the
addition of a new xi, xj constraint.

The only constraints added to the system which result in an overall increase in both the number of breakpoints and the
number of non-redundant constraints are those that result in the removal of exactly one existing breakpoint.

Grade: C
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8 March 17, 2014

For a given system of generalized difference constraints, A · x ≥ b let us focus on studying the change in min a ·xi−b ·xj ,
given xj as a goes from 0 to∞. We will start with a� b and study how the optimum value changes as a decreases. Thus
we will study how the optimum changes as we increase the slope of the objective function.

Since our current objective function contains only xi and xj we can use Fourier-Motzkin elimination to collapse the orig-
inal polytope onto the xi, xj plane. Let A′ · x′ ≥ b′ be the result of this elimination process with all redundant constraints
removed.

Each constraint bounding A′ · x′ ≥ b′ from below has the following form aj · xi − bj · xj ≥ cj . We can order these
constraints by their slope, bj

aj
in the xi, xj plane. Thus we will have that b1

a1
< b2

a2
< . . . < bm

am
. We are guaranteed strict

inequalities because re removed all redundant constraints.
From these constraint we can define the points d1, . . . ,dm as follows:

1. d1 is the least element of A′ · x′ ≥ b′

2. for each k = 2, . . . ,m, dk is the intersection of ak−1 · xj − bk−1 · xj = ck−1 and ak · xj − bk · xj = ck

Thus, the lower boundary of the solution space to A′ · x′ ≤ b′ will look something like this.

xj

xi

d1

d2

. .
.

dm

When a� b, so that b
a < b1

a1
, we have that the optimum solution to

min a · xi + b · xj

A′ · x′ ≥ b′

occurs at the least element of that polytope, d1. As we decrease a, thus increasing the slope of the optimization function we
have that as long as b

a ≤
b1
a1

then the optimum solution still occurs at d1. When b
a = b1

a1
then the optimum solution occurs

at all points between d1 and d2. When b1
a1

< b
a ≤

b2
a2

then the optimum point occurs at d2. We actually have that while
bk−1

ak−1
< b

a ≤
bk
ak

then the optimum solution occurs at dk. If b
a > bm

am
and the polytope is bounded then the optimum solution

will occur at the greatest? element of A′ · x′ ≤ b′ which we will call dm+1. However if the polytope is unbounded then no
optimum solution will exist.

Grade: B
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9 March 10, 2014

9.1 Relation to generalized flows

We have that the constraint ai ·xi− bj ·xj ≤ c is equivalent to the constraint xi− bj
ai
·xj ≤ c

ai
. Thus the entire generalized

difference constraint system, A · x ≤ b, can be re written as A′ · x ≤ b′ where each constraint has the form xi−a ·xj ≤ b,
where a ∈ Q+ and b ∈ Q.

Such a system of constraints is similar to a generalized flow network. In a generalized flow network an input of s into
a pipe does not guarantee the output to also be s. In such a network each pipe outputs either a fraction or multiple of the
amount put in. However, The linear program associated with a generalized flow network is not a system of generalized
difference constraints.

9.2 Relation to Meggido’s paper

Meggido’s paper presents two algorithms for solving systems of TVPI constraints. The first of these algorithms is determin-
istic and runs in O(m ·n2 ·(logm+log2 n)) time and can run in parallel on O(m ·n) processors with O(n ·(logm+log2 n))

time on each processor. The second algorithm is randomized and has an expected running time of

O(n3 · log n+m · n · (log5 n+ logm · log3 n))

This algorithm can be run in parallel on O(n2+m) processors with O(n · (log5 n+logm · log3 n)) time on each. However,
neither of these algorithms is for the closure problem.

9.3 Answering Chandra’s query

The method proposed by Dr. Chandrasekaran is a way to convert certain forms of optimization problems over a generalized
version of horn constraints into finding the least element of a related system of constraints.

Finding

min ai · xi − bj · xj

A′ · x ≥ b′

where A · x ≥ b is a system of generalized difference constraints, is a problem of the form required for the method to work.
However, the method proposed requires the value x∗j which is the value assumed by xj in the optimal solution to

min ai · xi − bj · xj

A′ · x ≥ b′

Grade: C

10 March 3, 2014

10.1 Specification of closure problem

Definition 10.1 A system of generalized difference constraints is a system of constraints A · x ≥ b where each constraint

is of the form ai · xi − bj · xj ≥ c where ai, bj ∈ Z+ and c ∈ Z.
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We can also specify the optimization version of this problem as follows.

Definition 10.2 In the optimization version of a system of generalized difference constraints we are given the system

A · x ≤ b of constraints and asked to find

min ai · xi − bj · xj

A′ · x ≥ b′

for some ai, bj ∈ Z+.

From this we can then specify the definition of the closure of a system of generalized difference constraints.

Definition 10.3 A system A′ · x ≤ b′ is the closure of the generalized difference constraint system A · x ≤ b if

a) ∀ai, bj ∈ Z+ we have that
min ai · xi − bj · xj = min ai · xi − bj · xj

A′ · x ≤ b′ A · x ≤ b
.

b) Finding
min ai · xi − bj · xj

A′ · x ≤ b′
for each ai and bj can be done quickly.

10.2 Relation to Hochbaum’s work

Hochbaum’s work deals with TVPI systems. That is systems of constraints in which each constraint involves two variables.
The problem of generalized difference constraints is a sub-problem of this. Namely a system of generalized difference
constraints is exactly a monotone system of TVPI constraints. A monotone system is one in which each constraint has both
a positive and a negative coefficient. For this problem the algorithm in the paper obtains a running time of O(m ·n2 · logm).

While Hochbaum does not study the optimization or closure problems for the linear case, the paper does mention that the
running time of such optimization algorithms is strongly polynomial when the number of variables in the objective function
is fixed. Since we are only concerned with optimization functions which have two variables we already know that a single
bound can be found in polynomial time.

Thus our work differs from that done by Hochbaum.

10.3 Optimization

Consider the system A · x + c · xj · ai ≤ b. Let x′ = (x′1, . . . , x
′
i, . . . , x

′
n) be a solution to A · x ≤ b. We can construct

the vector x′′ = (x′1, . . . , x
′
i − c · x′j , . . . x′n). Thus for each k 6= i, we have that x′′k = x′k and that x′′i = x′i − c · x′j . When

we plug x′′ into the system A · x+ c · xj · ai ≤ b we get that

A · x′′ + c · x′′j · ai = A · x′ − c · x′j · ai + c · x′j · ai = A · x′ ≤ b

Thus if x′ is a solution to A · x ≤ b then x′′ is a solution to A · x+ c · xj · ai ≤ b. Thus we have that finding

minxi

A · x+ c · xj · ai ≤ b

is equivalent to finding

minxi − c · xj

A · x ≤ b

However, this new system is not necessarily a generalized difference constraint system, or even a TVPI system.

Grade: B.
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11 Feb. 24, 2014

We are interested in the closure problem for systems of generalized difference constraints. A difference constraint is a
constraint of the form xi − xj ≤ cij . A generalized difference constraint is formed when we allow non-unit coefficients on
the variables thus obtaining a constraint of the form a · xi − b · xj ≤ cij where a, b ∈ Z+. To solve the closure problem for
such a system we wish to develop an algorithm that pre-processes a system of generalized difference constraints so that for
any a, b ∈ Z+ and i and j we can efficiently find min a · xi − b · xj and max a · xi − b · xj .

A system of generalized difference constraints is simply a system of monotone TVPI constraints. Thus the problem
we are studying is related to the optimization problem over monotone systems of TVPI constraints. We cannot directly
calculate min and max for all constraints of the form a ·xi−b ·xj , thus we will need to utilize the methods used to solve the
optimization version of monotone TVPI constraints to see how we can modify the original system to accelerate the process
of finding the optimum value of a monotone TVPI objective function.

Grade: C.

12 Feb. 17, 2014

Fell ill, no progress.

Grade: I.

13 Feb. 10, 2014

The Hochbaum paper covers various problems related to systems of two variable per inequality (TVPI) constraints. The
paper covers both the linear and integer cases. In the linear case a modified version of Fourier-Motzkin elimination is used to
provide a O(m ·n2 · logm) algorithm for determining the linear feasibility of a system of TVPI constraints. The paper does
not provide an optimization algorithm for this problem. However, the paper does mention that the best known optimization
algorithms are exponential in the number of variables in the optimization function. For the integer case the Hochbaum paper
provides a pseudo-polynomial algorithm for the optimization problem when the system is monotone.

Grade: D.
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