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Babbage’s Vision and Hilbert’s Dream
Universality and Undecidability

Building Blocks: Recursive Functions

Problems

Formulation of an Algorithmic Problem

In a typical algorithmic problem (decision problem), we are given a certain input x , and
we are asked to check if a certain property P is true.

TSP

Given a complete graph Kn, together with an edge-weight function c : E(Kn)→ N and
a bound B, the goal is to check whether there is a Hamiltonian cycle of weight at most
B.
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Babbage’s Vision and Hilbert’s Dream
Universality and Undecidability

Building Blocks: Recursive Functions

Algorithms

An Algorithm solving the Problem

In this course, we have dealt with problems that are solvable with some algorithm.

We have addressed the issue of solving these problems efficiently, or showing that this
kind of algorithms may not exist (NP-completeness, NP-hardness).

What is the algorithm that solves TSP? How many Hamiltonian cycles Kn has?

What is the description of the algorithm that solves the general decision problem?
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Linear Programming

Does the same trick imply that Linear Programming is solvable?

Figure: The feasible region
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Babbage’s Vision and Hilbert’s Dream
Universality and Undecidability

Building Blocks: Recursive Functions

Question

Are there algorithmic problems that are unsolvable?

Definition

An algorithmic problem is decidable or computable or solvable, if there is an algorithm
that solves it in some finite amount of time.

Remark

We place no bounds whatsoever on how long the algorithm takes, we just know that it
will halt eventually.
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Babbage’s ideas

Babbage was probably the first, who attempted to construct a mechanical computer.

A mechanical device that could calculate the value of a polynomial at any point.

Since he was aware of Taylor series, he was expecting to compute the value of any
function approximately.
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The Foundations of Mathematics

Hilbert’s ideas

Mathematicians from Euclid to Gauss have been thinking about algorithms for
millennia.

The idea of algorithms as well-defined mathematical objects, worthy of investigation in
and of themselves, did not emerge until the dawn of the 20th century.

In 1900, David Hilbert delivered an address to the International Congress of
Mathematicians, and asked for the solution of the following problem:

Problem

Specify a procedure which, in a finite number of operations, enables one to determine
whether a given Diophantine equation (a polynomial equation with integer coefficients)
with an arbitrary number of variables has an integer solution.
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An example

A Diophantine equation

3 · x2 · y4 · z6 + 13 · x · y · z2 − 53 · x4 · y3 · z4 + 12 · x + 15 · z − 3 = 0.

A consequence

Were there such an algorithm, we could have asked it to solve Fermat’s Last Theorem
for each fixed value of n ≥ 3:

xn + yn = zn.
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Hilbert’s optimism

Entscheidungsproblem

Hilbert showed even more optimism about the power of algorithms in 1928, when he
challenged his fellow mathematicians with the Entscheidungsproblem (in English, the
decision problem):

Problem

The Entscheidungsproblem is solved if one knows a procedure that allows one to
decide the validity of a given logical expression by a finite number of operations.
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An example

A consequence

Were there such an algorithm, we could have asked it to decide whether Fermat’s Last
Theorem is true:

∃x , y , z ∈ Z\{0}, xn + yn = zn.
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Mathematics and its axioms

Axiomatic Systems

Where one needs to prove this statement? Mathematics?

What are the axioms of Mathematics and what are the inference rules?

Mathematicians have been proving theorems without asking these questions since
Ancient Greek.

Only in the end of 19th, and in the beginning of 20th century, mathematicians started to
think in the direction of building an axiomatic foundation for mathematics.

Their goal was to reduce all of mathematics to set theory and logic, creating a formal
system powerful enough to prove all the mathematical facts we know.

At the turn of the century, several paradoxes shook these foundations, showing that a
naive approach to set theory could lead to contradictions.
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Paradoxes in Mathematics

Russell’s paradox

Sets can be elements of other sets, for instance, consider the set of all intervals on the
real line, each of which is a set of real numbers.

So, it seems reasonable to ask which sets are elements of themselves, and which are
not.

Consider the set R defined as follows:

R = {S : S /∈ S}.

Remark

It can be easily seen that
R ∈ R if and only if R /∈ R.
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Paradoxes in Mathematics

A number theoretic paradox

In order to specify a natural number n ≥ 1, we need some number of words in English.

For each n ≥ 1, there exists a smallest number h(n), so that any specification of n
requires at least h(n) words in English.

Consider the smallest number k which requires at least 1000 words for its specification.
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Universal Programs

The most basic fact about modern computers is their universality.

They can carry out any program we give to them.

In particular, there are programs that run other programs.

A computer’s operating system is a program that runs and manages many programs at
once.

Interpreters

In any programming language, one can write an interpreter or universal program, a
program that takes the source code of another program as input, and runs it
step-by-step, keeping track of its variables and which instruction to perform next.

Symbolically, we can define this universal program like this:

U(Π, x) = Π(x).
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Diagonalization and Halting

Some programs cannot halt

Let U(Π, x) be a universal program. Consider the special case where x = Π. Then, we
will have the following:

U(Π,Π) = Π(Π).

Now suppose, for simplicity, that the programs in question returns a Boolean value,
true or false. Then we can define a new program V which runs Π on itself, and negates
the result:

V (Π) = Π(Π).

Now, if we feed V its own source code, an apparent contradiction arises, since

V (V ) = V (V ).

The only way to resolve this paradox is if V (V ) is undefined. In other words, when
given its own source code as input, V runs forever, and never returns any output.
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Diagonalization and Halting

Universality implies non-halting programs

This shows that any programming language powerful enough to express a universal
program possesses programs that never halt, at least when given certain inputs.

In brief, universality implies non-halting programs.

Thus any reasonable definition of computable functions includes partial functions,
which are undefined for some values of their input, in addition to total ones, which are
always well-defined.
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always well-defined.
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Definition

Two sets A and B are said to be equicardinal, if there is a one-to-one mapping between
the elements of these sets.

Equicardinal Sets

Natural numbers and even numbers are equicardinal.

Natural numbers and odd numbers are equicardinal.

Definition

If C is a set, let 2C denote its power set, that is,

2C = {D : D ⊆ C}.
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Diagonalization and Cantor

Theorem

The set of natural numbers, N and its power set 2N are not equicardinal.

Proof

Assume that we have some enumeration f of 2N .

Consider C = {x ∈ N : x /∈ f (x)}.

Since C is a subset of N, we have that there is a c ∈ N, such that f (c) = C.

If c ∈ C, then c ∈ f (c), hence c /∈ C.

If c /∈ C, then c /∈ f (c), hence c ∈ C.

We have that c /∈ C if and only if c ∈ C, which is a contradiction.
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Building Blocks: Recursive Functions

The Halting Problem

Idea

Since some programs halt and others do not, it would be nice to be able to tell which is
which. Consider the following problem:

Problem

Given a program Π and an input x, determine whether Π will halt when x is given as
the input.

Theorem

The Halting Problem is undecidable.
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The Halting Problem

Proof

Assume that there is a program A that solves the Halting Problem.

A returns TRUE if Π halts on x , and FALSE, otherwise.

Consider a program B that is defined as follows: if A(Π,Π) = TRUE , then B goes to an
infinite loop, otherwise B returns TRUE.

If B(B) halts, then A(B,B) = FALSE , hence B(B) does not halt.

If B(B) does not halt, then A(B,B) = TRUE , hence B(B) halts.

In both cases we have a contradiction, hence A cannot exist.

The Grand Unified Theory of Computation Computational Complexity



Babbage’s Vision and Hilbert’s Dream
Universality and Undecidability

Building Blocks: Recursive Functions

The Halting Problem

Proof

Assume that there is a program A that solves the Halting Problem.

A returns TRUE if Π halts on x , and FALSE, otherwise.

Consider a program B that is defined as follows: if A(Π,Π) = TRUE , then B goes to an
infinite loop, otherwise B returns TRUE.

If B(B) halts, then A(B,B) = FALSE , hence B(B) does not halt.

If B(B) does not halt, then A(B,B) = TRUE , hence B(B) halts.

In both cases we have a contradiction, hence A cannot exist.

The Grand Unified Theory of Computation Computational Complexity



Babbage’s Vision and Hilbert’s Dream
Universality and Undecidability

Building Blocks: Recursive Functions

The Halting Problem

Proof

Assume that there is a program A that solves the Halting Problem.

A returns TRUE if Π halts on x , and FALSE, otherwise.

Consider a program B that is defined as follows: if A(Π,Π) = TRUE , then B goes to an
infinite loop, otherwise B returns TRUE.

If B(B) halts, then A(B,B) = FALSE , hence B(B) does not halt.

If B(B) does not halt, then A(B,B) = TRUE , hence B(B) halts.

In both cases we have a contradiction, hence A cannot exist.

The Grand Unified Theory of Computation Computational Complexity



Babbage’s Vision and Hilbert’s Dream
Universality and Undecidability

Building Blocks: Recursive Functions

The Halting Problem

Proof

Assume that there is a program A that solves the Halting Problem.

A returns TRUE if Π halts on x ,

and FALSE, otherwise.

Consider a program B that is defined as follows: if A(Π,Π) = TRUE , then B goes to an
infinite loop, otherwise B returns TRUE.

If B(B) halts, then A(B,B) = FALSE , hence B(B) does not halt.

If B(B) does not halt, then A(B,B) = TRUE , hence B(B) halts.

In both cases we have a contradiction, hence A cannot exist.

The Grand Unified Theory of Computation Computational Complexity



Babbage’s Vision and Hilbert’s Dream
Universality and Undecidability

Building Blocks: Recursive Functions

The Halting Problem

Proof

Assume that there is a program A that solves the Halting Problem.

A returns TRUE if Π halts on x , and FALSE, otherwise.

Consider a program B that is defined as follows: if A(Π,Π) = TRUE , then B goes to an
infinite loop, otherwise B returns TRUE.

If B(B) halts, then A(B,B) = FALSE , hence B(B) does not halt.

If B(B) does not halt, then A(B,B) = TRUE , hence B(B) halts.

In both cases we have a contradiction, hence A cannot exist.

The Grand Unified Theory of Computation Computational Complexity



Babbage’s Vision and Hilbert’s Dream
Universality and Undecidability

Building Blocks: Recursive Functions

The Halting Problem

Proof

Assume that there is a program A that solves the Halting Problem.

A returns TRUE if Π halts on x , and FALSE, otherwise.

Consider a program B that is defined as follows:

if A(Π,Π) = TRUE , then B goes to an
infinite loop, otherwise B returns TRUE.

If B(B) halts, then A(B,B) = FALSE , hence B(B) does not halt.

If B(B) does not halt, then A(B,B) = TRUE , hence B(B) halts.

In both cases we have a contradiction, hence A cannot exist.

The Grand Unified Theory of Computation Computational Complexity



Babbage’s Vision and Hilbert’s Dream
Universality and Undecidability

Building Blocks: Recursive Functions

The Halting Problem

Proof

Assume that there is a program A that solves the Halting Problem.

A returns TRUE if Π halts on x , and FALSE, otherwise.

Consider a program B that is defined as follows: if A(Π,Π) = TRUE , then B goes to an
infinite loop,

otherwise B returns TRUE.

If B(B) halts, then A(B,B) = FALSE , hence B(B) does not halt.

If B(B) does not halt, then A(B,B) = TRUE , hence B(B) halts.

In both cases we have a contradiction, hence A cannot exist.

The Grand Unified Theory of Computation Computational Complexity



Babbage’s Vision and Hilbert’s Dream
Universality and Undecidability

Building Blocks: Recursive Functions

The Halting Problem

Proof

Assume that there is a program A that solves the Halting Problem.

A returns TRUE if Π halts on x , and FALSE, otherwise.

Consider a program B that is defined as follows: if A(Π,Π) = TRUE , then B goes to an
infinite loop, otherwise B returns TRUE.

If B(B) halts, then A(B,B) = FALSE , hence B(B) does not halt.

If B(B) does not halt, then A(B,B) = TRUE , hence B(B) halts.

In both cases we have a contradiction, hence A cannot exist.

The Grand Unified Theory of Computation Computational Complexity



Babbage’s Vision and Hilbert’s Dream
Universality and Undecidability

Building Blocks: Recursive Functions

The Halting Problem

Proof

Assume that there is a program A that solves the Halting Problem.

A returns TRUE if Π halts on x , and FALSE, otherwise.

Consider a program B that is defined as follows: if A(Π,Π) = TRUE , then B goes to an
infinite loop, otherwise B returns TRUE.

If B(B) halts,

then A(B,B) = FALSE , hence B(B) does not halt.

If B(B) does not halt, then A(B,B) = TRUE , hence B(B) halts.

In both cases we have a contradiction, hence A cannot exist.

The Grand Unified Theory of Computation Computational Complexity



Babbage’s Vision and Hilbert’s Dream
Universality and Undecidability

Building Blocks: Recursive Functions

The Halting Problem

Proof

Assume that there is a program A that solves the Halting Problem.

A returns TRUE if Π halts on x , and FALSE, otherwise.

Consider a program B that is defined as follows: if A(Π,Π) = TRUE , then B goes to an
infinite loop, otherwise B returns TRUE.

If B(B) halts, then A(B,B) = FALSE ,

hence B(B) does not halt.

If B(B) does not halt, then A(B,B) = TRUE , hence B(B) halts.

In both cases we have a contradiction, hence A cannot exist.

The Grand Unified Theory of Computation Computational Complexity



Babbage’s Vision and Hilbert’s Dream
Universality and Undecidability

Building Blocks: Recursive Functions

The Halting Problem

Proof

Assume that there is a program A that solves the Halting Problem.

A returns TRUE if Π halts on x , and FALSE, otherwise.

Consider a program B that is defined as follows: if A(Π,Π) = TRUE , then B goes to an
infinite loop, otherwise B returns TRUE.

If B(B) halts, then A(B,B) = FALSE , hence B(B) does not halt.

If B(B) does not halt, then A(B,B) = TRUE , hence B(B) halts.

In both cases we have a contradiction, hence A cannot exist.

The Grand Unified Theory of Computation Computational Complexity



Babbage’s Vision and Hilbert’s Dream
Universality and Undecidability

Building Blocks: Recursive Functions

The Halting Problem

Proof

Assume that there is a program A that solves the Halting Problem.

A returns TRUE if Π halts on x , and FALSE, otherwise.

Consider a program B that is defined as follows: if A(Π,Π) = TRUE , then B goes to an
infinite loop, otherwise B returns TRUE.

If B(B) halts, then A(B,B) = FALSE , hence B(B) does not halt.

If B(B) does not halt,

then A(B,B) = TRUE , hence B(B) halts.

In both cases we have a contradiction, hence A cannot exist.

The Grand Unified Theory of Computation Computational Complexity



Babbage’s Vision and Hilbert’s Dream
Universality and Undecidability

Building Blocks: Recursive Functions

The Halting Problem

Proof

Assume that there is a program A that solves the Halting Problem.

A returns TRUE if Π halts on x , and FALSE, otherwise.

Consider a program B that is defined as follows: if A(Π,Π) = TRUE , then B goes to an
infinite loop, otherwise B returns TRUE.

If B(B) halts, then A(B,B) = FALSE , hence B(B) does not halt.

If B(B) does not halt, then A(B,B) = TRUE ,

hence B(B) halts.

In both cases we have a contradiction, hence A cannot exist.

The Grand Unified Theory of Computation Computational Complexity



Babbage’s Vision and Hilbert’s Dream
Universality and Undecidability

Building Blocks: Recursive Functions

The Halting Problem

Proof

Assume that there is a program A that solves the Halting Problem.

A returns TRUE if Π halts on x , and FALSE, otherwise.

Consider a program B that is defined as follows: if A(Π,Π) = TRUE , then B goes to an
infinite loop, otherwise B returns TRUE.

If B(B) halts, then A(B,B) = FALSE , hence B(B) does not halt.

If B(B) does not halt, then A(B,B) = TRUE , hence B(B) halts.

In both cases we have a contradiction, hence A cannot exist.

The Grand Unified Theory of Computation Computational Complexity



Babbage’s Vision and Hilbert’s Dream
Universality and Undecidability

Building Blocks: Recursive Functions

The Halting Problem

Proof

Assume that there is a program A that solves the Halting Problem.

A returns TRUE if Π halts on x , and FALSE, otherwise.

Consider a program B that is defined as follows: if A(Π,Π) = TRUE , then B goes to an
infinite loop, otherwise B returns TRUE.

If B(B) halts, then A(B,B) = FALSE , hence B(B) does not halt.

If B(B) does not halt, then A(B,B) = TRUE , hence B(B) halts.

In both cases we have a contradiction,

hence A cannot exist.

The Grand Unified Theory of Computation Computational Complexity



Babbage’s Vision and Hilbert’s Dream
Universality and Undecidability

Building Blocks: Recursive Functions

The Halting Problem

Proof

Assume that there is a program A that solves the Halting Problem.

A returns TRUE if Π halts on x , and FALSE, otherwise.

Consider a program B that is defined as follows: if A(Π,Π) = TRUE , then B goes to an
infinite loop, otherwise B returns TRUE.

If B(B) halts, then A(B,B) = FALSE , hence B(B) does not halt.

If B(B) does not halt, then A(B,B) = TRUE , hence B(B) halts.

In both cases we have a contradiction, hence A cannot exist.

The Grand Unified Theory of Computation Computational Complexity



Babbage’s Vision and Hilbert’s Dream
Universality and Undecidability

Building Blocks: Recursive Functions

The 42 Problem

Idea

We have one undecidable problem. We can prove that other problems are undecidable
by reducing The Halting Problem to them. Consider the following problem:

Problem

Given a program Π. Is there an input x, such that Π(x) halts and returns 42?

Theorem

The 42 Problem is undecidable.
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Given a program Π and an input x , we can convert them to a program Π′ which ignores
its input, runs Π(x) instead, and returns 42 if it halts.

If Π(x) halts, then Π′(x ′) returns 42.

If Π(x) does not halt, then neither does Π′, no matter what input x ′ we give it.

Thus, if the 42 Problem were decidable, the Halting Problem would be too.

But we know that the Halting Problem is undecidable, hence the 42 Problem must be
undecidable as well.
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Reductions

The idea

The mapping that we have just constructed, maps the instances of the Halting Problem
to those of the 42 Problem, so that the answers are the same.

It shows that the 42 Problem is at least hard as the Halting Problem, that is

The Halting Problem ≤ The 42 problem.

The reductions that we used in the proof are computable reductions.

That is, a reduction can be any function from instances of A to instances of B that we
can compute in finite time.

In this case, A ≤ B implies that if B is decidable then A is decidable, and conversely, if
A is not decidable, then B is undecidable, too.
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Recursive Enumerability

The idea

While the Halting Problem is undecidable, it has kind of one-sided decidability.

If the instance (Π, x) is a YES instance, then we can learn this fact in a finite amount of
time, by simulating Π until it halts.

In other words, the Halting Problem can be represented as:

Halts(Π, x) = ∃t : HaltsInTime(Π, x , t),

where HaltsInTime(Π, x , t) is the property that Π, given x as input, halts on its t th step.

HaltsInTime(Π, x , t) is decidable? Simulate Π for t steps.

Thus Halts(Π, x) is a combination of a decidable problem with a single ∃.
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Recursive Enumerability

More analogy with P and NP

Recall that coNP stands for the class of problems for which NO instances have
witnesses, whose validity can be verified in polynomial time.

Similarly, the class coRE stands for the class of problems, whose NO instances are in
RE.
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Recursive Enumerability and the P vs. NP Problem

Some relations among the classes

Unlike the polynomial world, where the P vs. NP question remains unsolved, we know
that RE, coRE and Decidable are different.

Show that
Decidable = RE ∩ coRE.

In other words, if both S and S̄ are in RE, then S is decidable.

From this one can conclude that RE6=coRE.

In contrast, the questions whether NP6=coNP and P=NP∩coNP are still open.
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Building Blocks: Recursive Functions

Polynomial Hierarchy

Definition

Let D be a class of problems.

A problem L is in PD, if there exists a problem L′ ∈ D,
such that L can be solved in polynomial time by an oracle program using an L′ oracle.
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Building Blocks: Recursive Functions

Polynomial Hierarchy

Definition

The polynomial hierarchy is the following sequence of classes:
1 ∆0P = Σ0P = Π0P = P
2 ∆i+1P = PΣi P

3 Σi+1P = NPΣi P

4 Πi+1P = coNPΣi P

For all i ≥ 0. We also define the collective class PH =
S

i≥0 Σi P.

Observations

Note that because Σ0P = P, we have that Σ1P = NP, ∆1P = P, and Π1P = coNP.

At each level the classes are believed to be distinct and are known to hold the same
relationship as P, NP and coNP.

Also, each class at each level includes all classes at the previous levels.
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4 Πi+1P = coNPΣi P

For all i ≥ 0. We also define the collective class PH =
S

i≥0 Σi P.

Observations

Note that because Σ0P = P, we have that Σ1P = NP, ∆1P = P, and Π1P = coNP.

At each level the classes are believed to be distinct and are known to hold the same
relationship as P, NP and coNP.

Also, each class at each level includes all classes at the previous levels.

The Grand Unified Theory of Computation Computational Complexity



Babbage’s Vision and Hilbert’s Dream
Universality and Undecidability

Building Blocks: Recursive Functions

Polynomial Hierarchy

Definition

The polynomial hierarchy is the following sequence of classes:
1 ∆0P = Σ0P = Π0P = P
2 ∆i+1P = PΣi P

3 Σi+1P = NPΣi P

4 Πi+1P = coNPΣi P

For all i ≥ 0. We also define the collective class PH =
S

i≥0 Σi P.

Observations

Note that because Σ0P = P, we have that Σ1P = NP, ∆1P = P, and Π1P = coNP.

At each level the classes are believed to be distinct and are known to hold the same
relationship as P, NP and coNP.

Also, each class at each level includes all classes at the previous levels.

The Grand Unified Theory of Computation Computational Complexity



Babbage’s Vision and Hilbert’s Dream
Universality and Undecidability

Building Blocks: Recursive Functions

Arithmetical Hierarchy

Definition

The arithmetical hierarchy is the following sequence of classes:
1 ∆0D = Σ0P = Π0P = Decidable
2 ∆i+1D = DecidableΣi D

3 Σi+1D = REΣi D

4 Πi+1D = coREΣi D

For all i ≥ 0. We also define the collective class AH =
S

i≥0 Σi D.

What’s Known

Unlike the polynomial hierarchy, it is known that the levels of the arithmetical hierarchy
are distinct.
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Formal Systems

The idea

A formal system has a finite set of axioms including rules of inference such as modus
ponens. A and A→ B implies B.

A theorem is a statement that can be proved, with some finite chain of reasoning, from
the axioms.

A formal system is consistent, if there is no statement T such that both T and T̄ are
theorems.

A formal system is complete, if for each statement T , at least one of T and T̄ is a
theorem.

We can define a statement as true or false, by interpreting the symbols of the formal
system in some standard way. ∃ - there exists, ∧- and, so on, and assuming that its
variables refer to a specific set of mathematical objects such as integers.
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David Hilbert and Kurt Gödel

David Hilbert

The ideal system would be consistent and complete, in that all its theorems are true,
and all true statements are theorems.

Such a system would fulfill Hilbert’s dream of an axiomatic foundation for mathematics.

It would be powerful enough to prove all truths, and yet be free from paradoxes.

Kurt Gödel

In 1931 Gödel dashed Hilbert’s hopes.

He proved that no sufficiently powerful system is both consistent and complete.

He did this by constructing a self-referential statement, which can be interpreted as:

This statement cannot be proved.
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Proof of Gödel’s Theorem

Idea

If this statement is false, then it can be proved, hence it would violate the consistency.

Thus, it must be true, hence unprovable, therefore there are truths that cannot be
proved.

Remark

What we did demonstrates that the problem is in English.

Gödel did something more, he showed that one can get similar statements in
mathematics.

Below we derive this theorem, as a consequence of the undecidability of the Halting
Problem.
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mathematics.

Below we derive this theorem, as a consequence of the undecidability of the Halting
Problem.
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Gödel did something more, he showed that one can get similar statements in
mathematics.

Below we derive this theorem, as a consequence of the undecidability of the Halting
Problem.

The Grand Unified Theory of Computation Computational Complexity



Babbage’s Vision and Hilbert’s Dream
Universality and Undecidability

Building Blocks: Recursive Functions
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Gödel did something more, he showed that one can get similar statements in
mathematics.

Below we derive this theorem, as a consequence of the undecidability of the Halting
Problem.

The Grand Unified Theory of Computation Computational Complexity



Babbage’s Vision and Hilbert’s Dream
Universality and Undecidability

Building Blocks: Recursive Functions
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Proof of Gödel’s Theorem

Proof

Let Theorem(T ) be the property that a statement T is provable.

Then it can be written as:

Theorem(T ) = ∃P : Proof (P,T ),

where Proof (P,T ) is the property that P is a valid proof of T .

Proof (P,T ) is decidable, because we can check the proof line by line.

Thus, the set of theorems is in RE.

We assume that our formal system is powerful enough to talk about computation.

We assume that it includes quantifiers like ∀ and ∃.

We assume that the theory can express statements like Halts(Π, x).

We assume that the axioms of the theory are strong enough to derive each step of a
computation from the previous one.
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Proof

We will get a truth about halting and non-halting programs that cannot be proved.

If Π(x) halts on its t-th step, then its computation is a proof of this fact, about t lines
long.

Thus,

if Halts(Π, x) is true, then it is provable.

What if Π does not hold? Assume that all statements of the form Halts(Π, x) are
provable.

Then we can solve the Halting Problem by doing two things in parallel: run Π(x) to see
if it halts, and looking for the proof that it will not.

Since the Halting Problem is undecidable, there must exist a statement of the form
Halts(Π, x) that is not provable.

In this case, neither Halts(Π, x) nor Halts(Π, x) is a theorem. It is independent of the
axioms.
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Proof of Gödel’s Theorem

Proof

We will get a truth about halting and non-halting programs that cannot be proved.

If Π(x) halts on its t-th step, then its computation is a proof of this fact, about t lines
long.

Thus,

if Halts(Π, x) is true, then it is provable.

What if Π does not hold?

Assume that all statements of the form Halts(Π, x) are
provable.

Then we can solve the Halting Problem by doing two things in parallel: run Π(x) to see
if it halts, and looking for the proof that it will not.

Since the Halting Problem is undecidable, there must exist a statement of the form
Halts(Π, x) that is not provable.

In this case, neither Halts(Π, x) nor Halts(Π, x) is a theorem. It is independent of the
axioms.

The Grand Unified Theory of Computation Computational Complexity



Babbage’s Vision and Hilbert’s Dream
Universality and Undecidability

Building Blocks: Recursive Functions
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Possible Remedy

Idea

How about adding Halts(Π, x) to our list of axioms?

Then the fact that Π does not hold on input x becomes, trivially, a theorem of the
system.

But then there will be another program Π′ and an input x ′, such that Halts(Π′, x ′) is
true, but not provable in the new system, and so on.

No finite set of axioms captures all the non-halting programs.

For any formal system, there will be some truth that it cannot prove.
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Building Blocks: Recursive Functions

Clear definition of the notion of algorithm

What is an algorithm?

How can we give a clear definition of the algorithm?

Intuitively, a function is computable if it can be defined in terms of simpler functions,
which are computable, too.

These simpler functions are defined in turn in terms of even simpler ones, and so on.

With this we reach a set of basic functions, for which no further explanation is
necessary.

These basic functions form the atoms of computation.

In terms of programming, they are the elementary operations that we can carry out in a
single step.
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Basic functions

The constant 0 and the successor function

The first basic function is:
0(x) = 0.

The second basic function is:

S(x) = x + 1.

Remark

Strictly speaking, in order to use x on the right-side we also need to include the identity
function I(x) = x.
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Schemes

Generating new functions

We need some schemes by which we can construct new functions from old ones.

Composition

If f and g are already defined, we can define a new function h = f ◦ g by

h(x1, ..., xn) = f (g(x1, ..., xn)).

More generally, we allow functions to access each of their variables. For instance, if

f (x1, x2), g(x1, x2) and m(x1, x2) are already defined, we can define

h(x1, x2, x3) = f (g(x1, x2),m(x3, x1)).

Remark

In terms of programming, composition lets us call previously defined functions as
subroutines, using the output of one as the input of the other.
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Schemes

Primitive recursion

If f (x1, ..., xn) and g(x1, ..., xn, y , z) are already defined, we can define a new function
h(x1, ..., xn, y) as follows:

h(x1, ..., xn, 0) = f (x1, ..., xn), and h(x1, ..., xn, y + 1) = g(x1, ..., xn, y , h(x1, ..., xn, y)).

Remark

In terms of programming, this corresponds to a for loop, when one iterates through the
values of y.
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Examples

The addition function is computable

add(x , 0) = x and add(x , y + 1) = S(add(x , y)).

In standard language this will look as follows:

x + 0 = x and x + (y + 1) = (x + y) + 1.

The multiplication function is computable

mult(x , 0) = 0 and mult(x , y + 1) = add(mult(x , y), x).
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Building Blocks: Recursive Functions

Primitive recursive functions

Definition

Functions that can be obtained from basic functions 0(x) and S(x) by using
composition and primitive recursion are called primitive recursive.

Many functions are primitive recursive

Addition, multiplication, subtraction, and even prime(x) are primitive recursive.

Are all computable functions primitive recursive?

One may wonder whether any computable function is primitive recursive? The answer
is NO!

Basic functions are defined everywhere.

The schemes for construction of new functions do not change this property.

The universal function, which is computable, is not defined everywhere.

Hence it cannot be primitive recursive.
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Building Blocks: Recursive Functions

Explicit example

Ackerman’s function

A1(x , y) = x + y ,An(x , 0) = 1 and An(x , y) = An−1(x ,An(x , y − 1)) if y > 0.

Small values of n

It can be shown that:
A2(x , y) = x · y ,A3(x , y) = xy .

Theorem

For any primitive recursive function f (y), there is an n, such that

f (y) < An(2, y) for all y ≥ 3.
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Building Blocks: Recursive Functions

What is missing?

Definition

Given a function f (x1, ..., xn, y), which is already defined, µ-recursion lets us define a
new function h(x1, ..., xn) as follows:

h(x1, ..., xn) = µy f (x1, ..., xn, y) = min{y : f (x1, ..., xn, y) = 0}.

Remark

h(x1, ..., xn) returns the smallest solution y to the equation f (x1, ..., xn, y) = 0.

Remark

In programming, this corresponds to the while loop.
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Building Blocks: Recursive Functions

Partial Recursive Functions

Definition

Functions that can be obtained from basic functions 0(x) and S(x) by using
composition, primitive recursion and µ-recursion are called partial recursive.

Definition

Partial recursive functions that are defined everywhere are called total recursive.

Three types of recursion

primitive recursive ⊂ total recursive ⊂ partial recursive.
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Kleene’s Normal Form Theorem

Number of µ-recursions

What is the maximum number of µ-recursions that one needs to get an arbitrary partial
recursive function?

Theorem

There exist primitive recursive functions f and g, such that for every partial recursive
function h there exists p, such that

h(x1, ..., xn) = g(x1, ..., xn, µy f (p, x1, ..., xn, y)).

Remark

Any partial recursive function can be written with a single use of µ-recursion.
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