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Form is a Function: the λ-Calculus
Turing’s Applied Philosophy

Computation Everywhere

Alonzo Church and the λ-Calculus

The λ-Calculus

The logician Alonzo Church has come up with another definition of a computation and
a computable function. The system he has invented is called λ-Calculus.

Getting used to the new format

Instead of writing f (x) = x2, we will write f = λx .x2.

In other words, λx .x2 is a function that takes a variable x and returns x2.

If we replace a number to the right of this function, it substitutes that number for the
variable x :

(λx .x2)7 = 49

So far, this is just a strange shift in notation.
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The λ-Calculus

The way, the λ-Calculus treats the process of computation is different.

Consider the addition function, which we write

λxy .x + y .

We will apply this to 3 and 5. Rather than writing

(λxy .x + y)(3, 5)

we write
((λxy .x + y)3)5 = (λy .3 + y)5 = 8.

This is already a computation. We have the object λy .3 + y . In other words, having
fixed x = 3, we have a function on the other variable y , which adds 3 to it.
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The λ-Calculus

This is a powerful shift in how we think about performing a computation.

Rather than modifying variables and passing their values up to functions, we evaluate
functions from the top down, modifying what they will do with the rest of their data
when they get it.

The notation λxy is really a shorthand, which works like this:

λxy .x + y = λx .(λy .x + y).

Thus addition is a function on one variable x , which, when given x , returns the function
that adds that x to its input y .
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Combinators

Strings or Combinators

The purest form of the λ-calculus does not have arithmetic operations, or even the
concept of integers.

The basic objects in the λ-calculus are strings, or combinators, which take the next
string to their right and substitute it for each appearance of the first variable marked
with λ.

In other words, if x is a variable, and U and V are strings, then

(λx .U)V = U[x → V ],

where U[x → V ] denotes the string we get from U by replacing each appearance of x
with V .

Each such step is called a reduction.
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Computation Everywhere

Combinators

Strings or Combinators

A computation then consists of a chain of reductions, such as

(λxy .yxy)ab = (λy .yay)b = bab.

We evaluate strings from left to right, and that in the absence of parentheses, we
interpret the string zab as (za)b.

The operation of reduction is non-associative, meaning that z(ab) 6= (za)b in general.

For example, grouping a and b together in this example gives

(λxy .yxy)(ab) = λy .y(ab)y .
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Computation Everywhere

Combinators

Feeding one combinator to another

Assume that T = λxy .x , F = λxy .y , and I = λx .x .

The combinators T and F take two inputs and return the first or second one.

Since I is the identity, IT = T and IF = F .

Now, we have

TI = (λxy .x)(λx .x)

= (λxy .x)(λz.z)

= λy .(λz.z)

= λyz.z

= F .
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Form is a Function: the λ-Calculus
Turing’s Applied Philosophy

Computation Everywhere

Combinators

Feeding one combinator to another

Some products, such as TI, reach a final state, or normal form, in which no more
reductions are possible.

Either there are no λs left, or there are no strings to the right of the first combinator to
plug into it.

However, this is not true for all expressions.

Consider Q = λx .xx , which takes x as input and returns xx .

If we feed Q to itself, we get

QQ = (λx .xx)(λx .xx) = (λx .xx)(λx .xx)

= (λx .xx)(λx .xx)

= ...

The chain of the reductions never halts.
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Combinators

Feeding one combinator to another

Even worse is the following expression, which grows without bounds as we try to
reduce it:

(λx .xx)(λy .yyy) = (λy .yyy)(λy .yyy)

= (λy .yyy)(λy .yyy)(λy .yyy)

= (λy .yyy)(λy .yyy)(λy .yyy)(λy .yyy)

= ...

These are examples of infinite loops in the λ-calculus.

Like partial recursive functions, λ-expressions may never return an answer, and the
functions they compute may be undefined for some values of their input.
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Feeding one combinator to another: Boolean expressions

Consider the combinators T and F defined above.

We will interpret them as true and false, respectively.

Show that we can represent the well-known Boolean functions as follows:

not = λpxy .pyx ,

and = λpq.pqp,

or = λpq.ppq.

One can also show that
andTF = (andT )F = IF = F .
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How about arithmetic?

One can represent the natural numbers 0, 1, 2, 3, ... in λ-calculus.

We will use the Church numerals, defined as follows:

0̄ = λfx .x ,

1̄ = λfx .fx ,

2̄ = λfx .f (fx),

3̄ = λfx .f (f (fx)).

Given a function f , the Church numeral n̄ returns the function f n, that is, f iterated n
times:

n̄f = λx .f nx .
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How about arithmetic?

One can define combinators that carry out arithmetic operations on these numerals.

succ = λmfx .f (mfx)

If m̄ is a numeral, succm̄ applies f one more time than m̄ would. Thus succ acts as the
successor function.

Let’s check this, reducing one step at a time:

succn̄ = (λmfx .f (mfx))(λgy .gny)

= λfx .f ((λgy .gny)fx)

= λfx .f ((λy .f ny)x)

= λfx .f (f nx)

= λfx .f n+1x

= n + 1.
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How about arithmetic? The addition

Combinators allow us to write inductive definitions of functions very compactly.

For instance, suppose we want a combinator add that adds two numerals together.
One way to do this is:

add = λnmfx .nf (mfx).

Since f m(f n(x)) = f m+n(x), we have

addm̄n̄ = m + n.

Alternatively, we can describe adding n as iterating the successor function n times. We
could have written:

add ′ = λn.nsucc.

One can show that add and add ′ are equivalent, when applied to Church numerals.
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Alternatively, we can describe adding n as iterating the successor function n times. We
could have written:

add ′ = λn.nsucc.

One can show that add and add ′ are equivalent, when applied to Church numerals.
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Combinators

How about arithmetic? More arithmetic combinators

For multiplication, we use the fact that if we iterate f n m times, we get (f n)m = f n·m.
Thus if

mult = λnmf .n(mf ),

we have
multm̄n̄ = m · n.

One can show that if
exp = λnm.mn,

then
expn̄m̄ = mn.
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The power of λ

λ-definable functions

A function f : N → N is λ-definable, if there is a combinator Φ, such that

Φn̄ = f (n),

for any Church numeral n̄, as long as f (n) is defined.

Can we characterize the class of λ-definable functions?

How expressive is the λ-calculus compared to the recursive functions?

Are all partial recursive functions λ-definable, or vice versa?

How one can prove that the two classes coincide?
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The power of λ

λ-definable functions

Recall that the partial recursive functions are defined inductively from zero and the
successor function using composition, primitive recursion and µ-recursion.

We already have zero and the successor.

We can compose two functions with the following combinator,

comp = λfgx .f (gx),

which takes two functions f , g as input and returns f ◦ g.

Similarly, one can handle primitive recursion by treating it as a for loop.
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The power of λ

Checking conditions

One can show that if
iszero = λn.n(λx .F )T ,

where F and T are defined above, then

iszeron̄xy =

(
x , if n = 0
y , if n > 0.
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The power of λ

Modeling the µ-recursion

Recall that if f (x , y) is a partial recursive function, we can define a function h(x) as the
smallest y such that f (x , y) = 0:

h(x) = µy f (x , y) = min{y : f (x , y) = 0},

assuming that f (x , y) is defined for all y ≤ h(x).

First let Φ be a function which takes a pair (x , y) as input. It explores larger and larger
values of y until it finds one such that f (x , y) = 0, which is its return:

Φ(x , y) =

(
y , if f (x , y) = 0
Φ(x , y + 1), otherwise.

Then we can write h(x) = Φ(x , 0).
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The power of λ

Modeling the µ-recursion

It can be checked that
h = λx .Φx 0̄, where Φ = YH,

and
Y = λR.(λx .R(xx))(λx .R(xx)),H = λΦxy .iszero(fxy)y(Φx(succy)).

This shows that all partial recursive functions are λ-definable.

One can also show that the converse is also true.

Thus the class of partial recursive functions coincides with that of λ-definable functions.
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Turing machines

Definition of a Turing machine

A Turing machine has a ”head”, which can be in finite number of internal states, and a
”tape”, where each square contains a symbol drawn from a finite alphabet.

In each step of computation, it observes the symbol at its current location on the tape.

Based on this symbol and its internal state, it then

updates the symbol at its current location on the tape,

updates its internal state, and

moves one step left or right on the tape.
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Turing machines

Definition of a Turing machine

If A is the set of symbols that can appear on the tape, and S is the set of internal
states, we can write the machine’s behavior as a transition function:

F : A× S → A× S × {±1}.

For instance, F (a, s) = (a′, s′,+1) would mean that if the machine sees the symbol a
on the tape when it is in state s, then it changes the tape symbol to a′, changes its
state to s′, and moves to the right.

We start the machine by writing the input string x on the tape, with a special blank
symbol Λ written on the rest of the tape stretching left and right to infinity.

We place the head at one end of the input, and start it in some specific initial state.

The machine uses the tape as its workspace, reading and writing symbols representing
its intermediate results until the output is all that remains.

At that point, it enters a special HALT state to announce that it’s done.
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Turing machines

Definition of a Turing machine

We can think of a Turing machine’s transition function as its ”source code”.

We can write out a table of its values as a finite string of symbols.

Example: The Successor Function

Let A = {Λ, 1}, and let n be represented with (n + 1) 1s. Design a Turing machine that
computes the successor function, that is, S(x) = x + 1. Repeat the same with
diagrams.

Example: The parity function

Let A = {Λ, 0, 1}. Design a Turing machine that halts in the state SYES , if in the input
string the number of 1s is even, and halts in the state SNO-otherwise. Repeat the same
with diagrams.
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string the number of 1s is even, and halts in the state SNO-otherwise. Repeat the same
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Turing machines

Turing-computable functions

We say that a partial function f : N → N is Turing-computable, if there is a
Turing-machine that, given input x , halts with f (x) on its input tape if f (x) is defined,
and runs forever if f (x) is undefined.

The Grand Unification

It can be shown that the class of Turing-computable functions coincides with that of
partial recursive functions.
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Church-Turing thesis

The thesis

Any two definitions of computability will result to the same class of computable
functions.
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A counter machine

Restricting the memory and the window

If a machine has only a finite number of states, with no access to anything but its own
thoughts, then it is doomed to halt or fall into a periodic loop after a finite number of
states.

However, if we give it access to a memory with an infinite number of possible states,
then it is capable of universal computation.

Turing showed that this is the case even if this memory has a simple structure, and the
machine can only observe and modify it through a very narrow window - namely the
symbol and its current location on the tape.

Can we make the memory even simpler, and this window even narrower?
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A counter machine

Restricting the memory and the window

A counter machine has a finite number of internal states, and access to a finite number
of integer counters.

The only thing it can do to these counters is increment, or decrement them, and the
only question it can ask about them is whether they are zero.

The machine receives its input through the initial state of one of these counters, and
like the Turing machine, it enters a HALT state when it is done.
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A counter machine

Restricting the memory and the window

We can think of a counter machine as a flowchart or a program in a miniature
programming language.

Each internal state corresponds to a node in the flowchart or a line of the program, and
the only allowed instructions are inc (increment), dec (decrement), and conditionals
like if x = 0.

One can show that there is a way of simulating a Turing machine arithmetically.

Specifically, we can transform any Turing machine into a counter machine with just
three counters.

Thus the Halting Problem for three-counter machines is undecidable.

Moreover, three-counter machines can compute any partial recursive function f , by
starting with x in one counter and ending with f (x) in that counter when they halt.
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Multiplicative counter machines

Reducing the number of counters

We can reduce the number of counters even further.

Consider multiplicative counter machines, where each step can multiply or divide a
counter by a constant, or check to see whether a counter is a multiple of some
constant.

Now even a single counter suffices. This is because we can encode three additive
counters as a single multiplicative one:

w = 2x · 3y · 5z .

We can increment or decrement y , say by multiplying or dividing w by 3. Similarly, we
can test whether y 6= 0 by asking whether w is a multiple of 3.
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Multiplicative counter machines

Reducing the number of counters

But a one-counter multiplicative machine, in turn, can be simulated by a two-counter
additive one.

If we have an additional counter u, we can multiply or divide w by 2, 3 or 5, or check to
see whether w is a multiple of any of these using loops.

For instance, in order to divide w by 3, we decrement w three times for each time we
increment u. If w becomes zero partway though a group of three decrements, we know
that w is not a multiple of 3.

Thus even two counters suffice for universal computation. Specifically, for any partial
recursive function f , there is a two-counter-machine which, given the initial value
w = 2x , ends with w = 3f (x), or runs forever if f (x) is undefined.
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Fantastic Fractions

Programs as fractions

Here is a program written in a rather odd programming language called FRACTARAN,
consisting of a list of fractions:

17
91
,

78
85
,

19
51
,

23
38
,

29
33
,

77
29
,

95
23
,

77
19
,

1
17
,

11
13
,

13
11
,

15
14
,

15
2
,

55
1
.

The state of the computer consists of an integer n.

At each step, we run through the list until we find the first fraction p
q , such that p

q · n is
an integer (that is, the first one whose denominator q divides n).

Then we multiply n by p
q , and start again at the beginning of the list. If there is no such

p
q in the list, the program halts.

The program mentioned above never halts, If we start it with n = 2, this program
produces the prime numbers x , in increasing order, in the form 2x .
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Fantastic Fractions

Programs as fractions

The program mentioned above is kind of a multiplicative counter machine. In this case,
we can write the state in the form

n = 2a · 3b · 5c · 7d · 11e · 13f · 17g · 19h · 23i · 29j

since these are the primes appearing in the fractions’ denominators.

Thus we have 10 counters, which we can increment and decrement by multiplying n by
fractions.

For instance, the first fraction in the program is 17
91 . So if both d and f are nonzero, we

decrement them and increment g.
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Fantastic Fractions

Programs as fractions

We already know that additive counters can simulate Turing machines.

With a bit more work, one can covert such a machine into a FRACTARAN program.
Thus FRACTARAN is computationally universal.

For any computable function f (x) there is a program that, if given 2x as input, returns
3f (x) as output whenever f (x) is well-defined.
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Fantastic Fractions and Collatz Conjecture

The Collatz Conjecture

FRACTARAN is related to a deep problem in number theory.

Consider the function

g(x) =

(
x
2 , if x is even
3 · x + 1, if x is odd.

The Collatz Conjecture states that for each n, there is a k , such that gk (n) = 1.

This conjecture has been verified for all n up to 1018, and there are convincing heuristic
arguments for it. However, there is still no proof, and resolving it seems quite difficult.
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The Collatz Conjecture

The 3 · x + 1 function belongs to a family of functions whose behavior depends on x
mod q for some q:

g(x) =
ai

q
· (x − i) + bi , where x = i mod q.

Here ai and bi are integer coefficients for 0 ≤ i < q.

For any function of this form, we can ask whether a given initial x will reach some y
after certain number of iterations:

Problem

Collatz: Given x, y and q, and integer coefficients ai , bi for 0 ≤ i < q. Check whether
there is an integer t such that gt (x) = y?

Remark

It can be shown that HALTING ≤ Collatz. Thus Collatz is undecidable.
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The Game of Tag

Tag Systems

Emil Post showed that the axioms of the Principia can be reduced to a single initial
string, and that its rules of inference can be replaced with the rules of the following
normal form:

gs ⇒ sh,

where g and h are fixed strings and s is arbitrary.

In other words, for any string that begins with g, we can remove g from its head and
append h to its tail.

Post was hoping to solve the Entscheidungsproblem by finding an algorithm to
determine whether a given string can be produced from an initial string, representing
system’s axioms, using a given set of rules {(gi , hi )} in normal form.

In general, the result of such a computation might be non-deterministic, since we might
have a choice of which rule to apply to a given string.

For instance with the rules {(a, b), (ab, c)}, we could change abc to either bcb or cc.
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In general, the result of such a computation might be non-deterministic, since we might
have a choice of which rule to apply to a given string.

For instance with the rules {(a, b), (ab, c)}, we could change abc to either bcb or cc.
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The Game of Tag

Tag Systems

As a start, Post considered the case where all the gi have the same length ν for some
constant ν, and where each hi is determined by gi ’s first symbol a.

Thus, at each step, if a string begins with the symbol a, we remove its first ν symbols
including a, and append the string h(a).

This process is deterministic, so each initial string leads to a fixed sequence. If this
sequence reaches a string whose length is less than ν, it halts.
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The Game of Tag

Tag Systems

These are called tag systems.

Post initially expected them to be an easy special case.

Later, he was able to prove that Collatz can be reduced to this problem, hence it is
undecidable.

This negative result can be applied in order to derive the undecidability of the following
two problems:

Problem

Tag System Halting: Given an integer ν, a finite alphabet A, a string h(a) for each
a ∈ A, and an initial string x, the goal is to check whether x leads to a string of length
less than ν.

Problem

Normal Form Halting: Given a list of string pairs {(g, h)} and an initial string x, the
goal is to check whether starting from x and applying the rules gs ⇒ sh, it is possible
to derive a string y to which no rule can be applied, that is, which does not begin with
any g in the list.
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The Correspondence Problem

Post’s Correspondence Problem

Finally, Post was able to prove that the following problem is also undecidable:

Problem

Correspondence: Given a list of pairs of strings (s1, t1), ..., (sk , tk ), the goal is to check
whether there is a finite sequence i1, i2, ..., il with l ≥ 1, such that si1 si2 ...sil = ti1 ti2 ...til .
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