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e Sample problems in NP

o Search, Existence and Non-determinism

e Linear Programming and Primality
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Reductions

Main concept
Comparing problem difficulty through A < B.
When is problem B at least as hard as problem A?

When there is a transformation R, which for every input of A produces an equivalent
input R(x) of B such that x € A< R(x) € B.

To be useful, R should have limitations. (Hamilton Path to Reachability).
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Definition

A language L, is reducible to a language L if there is a function R from strings of L to
strings of L, such that

(Vx € X]) x € Ly + R(x) € Lo.

Furthermore, the function should be computable by an algorithm in O(log n) space, on
strings of length n.

Good old days, we used poly-time reductions.

Proposition

If R is a reduction computed by an algorithm A, then for all x, A halts after a polynomial
number of steps.
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Composition of Reductions

If R is a reduction from L4 to L, and R’ is a reduction from Ly to Lz, then R’ o R is a
reduction from Ly to L3.

Proof.

| A

Trivial for poly-time reductions. Not so obvious for log-space reductions, since output of
R(x) could be larger than log |x|.
Main idea: Dovetail simulations.

O
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Completeness

Definition

A language L in a complexity class C is said to be C-complete, if any language L' € C
can be reduced to L.

Definition

A complexity class C is closed under reductions, if
((Lec)n (' <L) — (L' €0).

Proposition
P, NP, coNP, L, NL, PSPACE and EXP are all closed under reductions.

If two classes C and C’ are both closed under reductions and there exists a language L
that is complete for both C and C’ thenC = C’.
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A decision problem is in NP, if, whenever the answer for a particular instance is “yes”,
there is a simple proof of this fact.

v

@ How to solve the Hamilton path problem efficiently? Don't know.

© Suppose | give you a Hamilton path, can you verify its Hamiltonicity?
© Needle in a haystack analogy.

©Q NP is profoundly asymmetric.

©Q IsP CNP?
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The class NP

A decision problem is in NP, if, whenever the answer for a particular instance is “yes”,
there is a simple proof of this fact.

v

@ How to solve the Hamilton path problem efficiently? Don’t know.

© Suppose | give you a Hamilton path, can you verify its Hamiltonicity?
© Needle in a haystack analogy.

© NP is profoundly asymmetric.

© Is P C NP? What is a short proof for a problem in P?
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SAT

@ A boolean variable is a variable that assumes the values true or false.

@ The complement of a boolean variable x is denoted by x and assumes the value
true if and only if the variable assumes false.

© Aliteral is a boolean variable or its complement.
© A clause is a disjunction of literals.

© A boolean formula is said to be in Conjunctive Normal Form (CNF), if it is a
conjunction of clauses.

Q@ An assignment is a consistent mapping of the literals of a formula to true/false.
@ A formula is said to be satisfiable, if it has a satisfying assignment.

Definition

Given a CNF formula ¢ = Cy A Gy ... Cm over the n boolean variables {x1, X2, ... Xn}
and their complements, the satisfiability problem (or SAT) asks if ¢ is satisfiable.

kSAT is the variant of SAT in which each clause has exactly k variables.
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Variants of SAT

@ Show that 1SAT is in P.

@ Show that the formula (pV @) A (BVT)A(gVr)A(pV q)A(QV r) is unsatisfiable.

© A CNF formula is said to be Horn, if each clause has at most one positive literal.
Argue that HornSAT is in P.

2SAT isinP.

Observation

(avb) < (a—b)A(b— a)
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Implication Graph

From constraints to Digraphs
The implication graph G(¢) corresponding to the formula ¢ is created as follows:
@ Create one vertex for each literal; the vertex is labeled with the literal.

@ Corresponding to the clause (x; \ x;) draw a directed arc from X; to x; and another
directed arc from X; to x;.

© The resultant graph is called the implication graph corresponding to the given
2CNF formula.
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assignment.

© If there is a path from x; to X;, then x; cannot be assigned true in a satisfying
assignment.

© If there is a path from X; to x;, then x; cannot be assigned false in a satisfying
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Reachability Lemmata

Lemma

If there is a variable x in G(¢) such that x is reachable from X and vice versa, then ¢ is
unsatisfiable.

Lemma

If there is no variable x such that x is reachable from X and vice versa, then ¢ is
satisfiable.

<

@ Assume that x is set to true, which means that there is no path from x to x.
@ A contradiction occurs only if x ~~ y and x ~ y for some variable y.

© By the symmetry of G(¢), there must be paths y ~~ X and y ~ Xx.

© This means that there is a path x ~ X, i.e., a contradiction.

The case where x is set to false can be handled similarly. g
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FUNCTION 2SAT-ALGORITHM(G(¢))

1: for (each variable x) do
2. if (x ~ X)
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FUNCTION 2SAT-ALGORITHM(G(¢))
1: for (each variable x) do

2. if (x ~ X) and (X ~ x) then

3 return(false).

4. endif

5: end for

6: for (each variable x) do
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FUNCTION 2SAT-ALGORITHM(G(¢))
1: for (each variable x) do
2. if (x ~ X) and (X ~ x) then

return(false).

end if

: end for

: for (each variable x) do

if (x ~ X) then
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The 2SAT Algorithm

FUNCTION 2SAT-ALGORITHM(G(¢))
1: for (each variable x) do
2. if (x ~ X) and (X ~ x) then
return(false).
end if
: end for
: for (each variable x) do
if (x ~ X) then
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FUNCTION 2SAT-ALGORITHM(G(¢))
1: for (each variable x) do
2. if (x ~ X) and (X ~ x) then
return(false).
end if
: end for
: for (each variable x) do
if (x ~ X) then
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The 2SAT Algorithm

FUNCTION 2SAT-ALGORITHM(G(¢))
1: for (each variable x) do
2. if (x ~ X) and (X ~ x) then
return(false).
end if
: end for
: for (each variable x) do
if (x ~ X) then
x = false.
else
if (x ~ x) then
x = true.
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The 2SAT Algorithm

FUNCTION 2SAT-ALGORITHM(G(¢))
1: for (each variable x) do

if (x ~ X) and (x ~~ x) then

3 return(false).

4. endif

5: end for

6: for (each variable x) do
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if (x ~ X) then

x = false.
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10: if (x ~ x) then
11: x = true.
12: else
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1: for (each variable x) do
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4. endif
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6: for (each variable x) do
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9: else
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FUNCTION 2SAT-ALGORITHM(G(¢))
1: for (each variable x) do
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3 return(false).

4. endif

5: end for

6: for (each variable x) do
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if (x ~ X) then

x = false.
9: else
10: if (x ~ x) then
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12: else
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The 2SAT Algorithm

FUNCTION 2SAT-ALGORITHM(G(¢))
1: for (each variable x) do

if (x ~ X) and (x ~~ x) then

3 return(false).

4. endif

5: end for

6: for (each variable x) do

7

8

if (x ~ X) then

x = false.
9: else
10: if (x ~ x) then
11: x = true.
12: else
13: Set x to true or false.
14: end if
15:  end if
16: end for

Algorithm 4.20: 2CNF satisfiability through Reachability
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Input instance: An unweighted, directed graph G.
Output instance: A CNF formula ¢, such that G has a Hamilton path if and only if ¢ is
satisfiable.
@ Suppose G has n nodes; ¢ has n? variables of the form Xjj, Where x;; represents
the fact that node j is the i node in the Hamilton Path (may or may not be true).
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Output instance: A CNF formula ¢, such that G has a Hamilton path if and only if ¢ is

satisfiable.

@ Suppose G has n nodes; ¢ has n? variables of the form Xjj, Where x;; represents
the fact that node j is the i node in the Hamilton Path (may or may not be true).

Q (xijVXg)...xp), f=1,2,...,n [Cy].
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Reducing Hamilton Path to SAT

Hamilton Path to SAT

Input instance: An unweighted, directed graph G.
Output instance: A CNF formula ¢, such that G has a Hamilton path if and only if ¢ is

satisfiable.
@ Suppose G has n nodes; ¢ has n? variables of the form Xjj, Where x;; represents
the fact that node j is the i node in the Hamilton Path (may or may not be true).
Q (xqjVXy...xp), j=1,2,...,n. [Cq].
Q (—x3V—xq),j=1,2...ni=1,2,....,nk=1,2,...nk#i [C].
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Reducing Hamilton Path to SAT

Hamilton Path to SAT

Input instance: An unweighted, directed graph G.
Output instance: A CNF formula ¢, such that G has a Hamilton path if and only if ¢ is

satisfiable.

@ Suppose G has n nodes; ¢ has n? variables of the form Xjj, Where x;; represents
the fact that node j is the i node in the Hamilton Path (may or may not be true).

o(X1j\/X2/'...an),j:1,2,...,!7. [C1]
Q (—|X,']‘\/—\ij),j:1,24..n,l':1,2,...,n,k:1,2,...[7,[(75['. [Cg]
0(x,»1\/x,-2..4\/x,ﬂ,,),i:1,2...n. [Cg]
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Hamilton Path to SAT

Input instance: An unweighted, directed graph G.
Output instance: A CNF formula ¢, such that G has a Hamilton path if and only if ¢ is

satisfiable.
@ Suppose G has n nodes; ¢ has n? variables of the form Xjj, Where x;; represents
the fact that node j is the i node in the Hamilton Path (may or may not be true).
Q (xqjVXy...xp), j=1,2,...,n. [Cq].
Q (—x3V—xq),j=1,2...ni=1,2,....,nk=1,2,...nk#i [C].
Q (X1 VXo...VXp),i=1,2...n. [C3].
Q (—xV—xi),i=1,2,....nj,k=1,2,....nj#k. [C4].
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Reducing Hamilton Path to SAT

Hamilton Path to SAT

Input instance: An unweighted, directed graph G.
Output instance: A CNF formula ¢, such that G has a Hamilton path if and only if ¢ is
satisfiable.

@ Suppose G has n nodes; ¢ has n? variables of the form Xjj, Where x;; represents
the fact that node j is the i node in the Hamilton Path (may or may not be true).

Q (xijVXg)...xp), f=1,2,...,n [Cy].
0(—|X,'j\/—\ij),j:1,24..n,l':1,2,...,n,k:1,2,...[7,[(75['. [Cg]
0(x,»1\/x,-2..4\/x,ﬂ,,),i:1,2...n. [Cg]
o(_‘Xij\/_\Xjk),i:1,2,..‘,n,j,k:1,2,‘..,n,]‘¢k. [C4]

Q (X vV ~Xky1)) k=1,2,...,n=1,(i,j) € G. [Cs].
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Reducing Hamilton Path to SAT

Hamilton Path to SAT

Input instance: An unweighted, directed graph G.
Output instance: A CNF formula ¢, such that G has a Hamilton path if and only if ¢ is
satisfiable.

@ Suppose G has n nodes; ¢ has n? variables of the form Xjj, Where x;; represents
the fact that node j is the i node in the Hamilton Path (may or may not be true).

Q (xijVXg)...xp), f=1,2,...,n [Cy].
0(—|X,'j\/—\ij),j:1,24..n,l':1,2,...,n,k:1,2,...[7,[(75['. [Cg]
0(x,»1\/x,-2..4\/x,ﬂ,,),i:1,2...n. [Cg]
o(_‘Xij\/_\Xjk),i:1,2,..‘,n,j,k:1,2,‘..,n,]‘¢k. [C4]

Q (X vV ~Xky1)) k=1,2,...,n=1,(i,j) € G. [Cs].
°¢=C1/\Cg/\C3/\C4/\C5.
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@ For each i, there is exactly one j, such that x; is true under T.
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Satisfiability implies Hamilton Path

Let T denote a satisfying assignment to ¢.

We show that there must exist a Hamilton Path in G.

@ For each j, there is exactly one /, such that xj; is true under 7. (Why?)
@ For each i, there is exactly one j, such that x;; is true under 7. (Why?)

© T is thus a permutation of the nodes (7 (1), w(2), ..., w(n)), such that (/) = j if
and only if x;; is set to true under T.
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Satisfiability implies Hamilton Path

Let T denote a satisfying assignment to ¢.

We show that there must exist a Hamilton Path in G.

@ For each j, there is exactly one /, such that xj; is true under 7. (Why?)
@ For each i, there is exactly one j, such that x;; is true under 7. (Why?)

© T is thus a permutation of the nodes (7 (1), w(2), ..., w(n)), such that (/) = j if
and only if x;; is set to true under T.

© The clause system [Cg] guarantees that adjacent elements on the permutation are
connected by an edge in G.
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Completing the argument

Satisfiability implies Hamilton Path

Let T denote a satisfying assignment to ¢.

We show that there must exist a Hamilton Path in G.

@ For each j, there is exactly one /, such that xj; is true under 7. (Why?)
@ For each i, there is exactly one j, such that x;; is true under 7. (Why?)

© T is thus a permutation of the nodes (7 (1), w(2), ..., w(n)), such that (/) = j if
and only if x;; is set to true under T.

© The clause system [Cg] guarantees that adjacent elements on the permutation are
connected by an edge in G.

© It follows that G has a Hamilton path.
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Hamilton Path implies Satisfiability

Assume that the graph G has a Hamilton path p.

We show that ¢ is satisfiable. Observe that,

@ Observe that p can be represented as a permutation © = («(1), 7(2) ... w(n)),
where 7 (i) represents the i vertex on the Hamilton path.
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We show that ¢ is satisfiable. Observe that,

@ Observe that p can be represented as a permutation © = («(1), 7(2) ... w(n)),
where 7 (i) represents the i vertex on the Hamilton path.

@ Consider the following assignment: T(x;) = true if and only if 7(i) = j.
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We show that ¢ is satisfiable. Observe that,

@ Observe that p can be represented as a permutation © = («(1), 7(2) ... w(n)),
where 7 (i) represents the i vertex on the Hamilton path.

@ Consider the following assignment: T(x;) = true if and only if 7(i) = j.
© Itis not hard to see that every clause in ¢ is satisfied.
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Completing the argument (contd.)

Hamilton Path implies Satisfiability

Assume that the graph G has a Hamilton path p.

We show that ¢ is satisfiable. Observe that,

@ Observe that p can be represented as a permutation © = («(1), 7(2) ... w(n)),
where 7 (i) represents the i vertex on the Hamilton path.

@ Consider the following assignment: T(x;) = true if and only if 7(i) = j.
© Itis not hard to see that every clause in ¢ is satisfied.
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Completing the argument (contd.)

Hamilton Path implies Satisfiability

Assume that the graph G has a Hamilton path p.

We show that ¢ is satisfiable. Observe that,

@ Observe that p can be represented as a permutation © = («(1), 7(2) ... w(n)),
where 7 (i) represents the i vertex on the Hamilton path.

@ Consider the following assignment: T(x;) = true if and only if 7(i) = j.

© Itis not hard to see that every clause in ¢ is satisfied.

v

Is the reduction polynomial in the size of the input?
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where i < j.
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Boolean Circuits (Syntax)

@ A boolean circuit C is a DAG G = (V, E).
@ The nodes V = {1,2,...n} are called the gates of C.

© We can assume without loss of generality that the edges are of the form (/, ),
where i < j.

© Each gate i has a sort s(i) associated with it, where
s(i) € {true, false} U {xq,xo,...} U{V,A,—}.

@ If s(i) € {true, false} U {x1, X2, ...}, then its in-degree is 0.
Q If s(i) € {—}, its in-degree is 1.
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Boolean Circuits (Syntax)

@ A boolean circuit C is a DAG G = (V, E).
@ The nodes V = {1,2,...n} are called the gates of C.

© We can assume without loss of generality that the edges are of the form (/, ),
where i < j.

© Each gate i has a sort s(i) associated with it, where
s(i) € {true, false} U {xq,xo,...} U{V,A,—}.

@ If s(i) € {true, false} U {x1, X2, ...}, then its in-degree is 0.
Q If s(i) € {1}, its in-degree is 1.
@ All other gates have in-degree 2.
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s(i) € {true, false} U {xq,xo,...} U{V,A,—}.

@ If s(i) € {true, false} U {x1, Xo, ...}, then its in-degree is 0.
Q If s(i) € {1}, its in-degree is 1.

@ All other gates have in-degree 2.

Q All gates except gate n have out-degree 1.

Non-deterministic Polynomial Time



Boolean Circuits (Syntax)

@ A boolean circuit C is a DAG G = (V, E).
@ The nodes V = {1,2,...n} are called the gates of C.

© We can assume without loss of generality that the edges are of the form (/, ),
where i < j.

© Each gate i has a sort s(i) associated with it, where
s(i) € {true, false} U {xq,xo,...} U{V,A,—}.

@ If s(i) € {true, false} U {x1, Xo, ...}, then its in-degree is 0.
Q If s(i) € {1}, its in-degree is 1.

@ All other gates have in-degree 2.

Q All gates except gate n have out-degree 1.

© Gate n, is called the output gate and has out-degree 0.
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The semantics of circuits specifies a truth value for the circuit, corresponding to each
appropriate assignment.
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The semantics of circuits specifies a truth value for the circuit, corresponding to each
appropriate assignment.

This value can be computed inductively as follows:
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@ If the gate is a variable, then its value is equal to its assignment.
© If the gate has sort —, then its value is the complement of its input.
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Semantics

The semantics of circuits specifies a truth value for the circuit, corresponding to each
appropriate assignment.
This value can be computed inductively as follows:

@ |[f the gate is true or false, then it retains that value.

@ If the gate is a variable, then its value is equal to its assignment.

© If the gate has sort —, then its value is the complement of its input.

Q If the gate has sort Vv, then its value is true if at least one of its two input gates has
value true and is false otherwise.
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The semantics of circuits specifies a truth value for the circuit, corresponding to each
appropriate assignment.
This value can be computed inductively as follows:

@ |[f the gate is true or false, then it retains that value.

@ If the gate is a variable, then its value is equal to its assignment.

© If the gate has sort —, then its value is the complement of its input.

Q If the gate has sort Vv, then its value is true if at least one of its two input gates has
value true and is false otherwise.

© If the gate has sort A, then its value is true if both its two input gates have value
true and is false otherwise.
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Boolean Circuits (Semantics)

Semantics

The semantics of circuits specifies a truth value for the circuit, corresponding to each
appropriate assignment.
This value can be computed inductively as follows:

@ |[f the gate is true or false, then it retains that value.

@ If the gate is a variable, then its value is equal to its assignment.

© If the gate has sort —, then its value is the complement of its input.

Q If the gate has sort Vv, then its value is true if at least one of its two input gates has
value true and is false otherwise.

© If the gate has sort A, then its value is true if both its two input gates have value
true and is false otherwise.

Q@ The value of the circuit is the value of the output gate.
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CIRCUIT-SAT and CIRCUIT-VALUE

Given a circuit C, is there an assignment true/false to the variable gates, so that C
evaluates to true?
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Given a circuit C, is there an assignment true/false to the variable gates, so that C
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CIRCUIT-SAT and CIRCUIT-VALUE

Given a circuit C, is there an assignment true/false to the variable gates, so that C
evaluates to true?

Given a variable-free circuit C, does it evaluate to true?
Argue that CIRCUIT-VALUE is in P.
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Input instance: A circuit C.

Output instance: A CNF formula ¢ such that ¢ is satisfiable if and only if C is.

@ The variables of ¢ will contain all the variables of C. Additionally, for each gate g
in C, we create a new variable in ¢, also denoted by g.

@ If gis a variable gate, corresponding to variable x, add the clauses (g v —x) and
(mg Vv x)to ¢. (g & x.)
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Reduction from CIRCUIT-SAT to SAT

CIRCUIT-SAT to SAT

Input instance: A circuit C.

Output instance: A CNF formula ¢ such that ¢ is satisfiable if and only if C is.

@ The variables of ¢ will contain all the variables of C. Additionally, for each gate g
in C, we create a new variable in ¢, also denoted by g.

@ If gis a variable gate, corresponding to variable x, add the clauses (g v —x) and
(mg Vv x)to ¢. (g & x.)
© If gis a true gate, add (g) to ¢; likewise, if it is a false gate, add (—g).
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in C, we create a new variable in ¢, also denoted by g.
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Input instance: A circuit C.

Output instance: A CNF formula ¢ such that ¢ is satisfiable if and only if C is.

@ The variables of ¢ will contain all the variables of C. Additionally, for each gate g
in C, we create a new variable in ¢, also denoted by g.

@ If gis a variable gate, corresponding to variable x, add the clauses (g v —x) and
(mg Vv x)to ¢. (g & x.)

© If gis a true gate, add (g) to ¢; likewise, if it is a false gate, add (—g).

Q If gis a NOT gate with predecessor h, add the clauses (g V h) and (—g V —h) to ¢.

@ If gis an OR gate with predecessors h and h’, add the clauses (—h V g),
(=h" v g)and (hv h V —g)to ¢.
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CIRCUIT-SAT to SAT

Input instance: A circuit C.

Output instance: A CNF formula ¢ such that ¢ is satisfiable if and only if C is.

@ The variables of ¢ will contain all the variables of C. Additionally, for each gate g
in C, we create a new variable in ¢, also denoted by g.

@ If gis a variable gate, corresponding to variable x, add the clauses (g v —x) and
(mg Vv x)to ¢. (g & x.)

© If gis a true gate, add (g) to ¢; likewise, if it is a false gate, add (—g).

Q If gis a NOT gate with predecessor h, add the clauses (g V h) and (—g V —h) to ¢.

@ If gis an OR gate with predecessors h and h’, add the clauses (—h V g),
(=h"vg)and (hv h Vv —g)too. (g< (hVH).)
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Reduction from CIRCUIT-SAT to SAT

CIRCUIT-SAT to SAT

Input instance: A circuit C.

Output instance: A CNF formula ¢ such that ¢ is satisfiable if and only if C is.

@ The variables of ¢ will contain all the variables of C. Additionally, for each gate g
in C, we create a new variable in ¢, also denoted by g.

@ If gis a variable gate, corresponding to variable x, add the clauses (g v —x) and
(mg Vv x)to ¢. (g & x.)

If g is a true gate, add (g) to ¢; likewise, if it is a false gate, add (—g).

If g is a NOT gate with predecessor h, add the clauses (g V h) and (=g V —h) to ¢.

If g is an OR gate with predecessors h and h’, add the clauses (—hV g),
(=h"vg)and (hv h Vv —g)too. (g< (hVH).)

If g is an AND gate with predecessors h and h’, add the clauses (=g V h),
(=g Vv h)and (-hV -h Vv g)to ¢.
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Output instance: A CNF formula ¢ such that ¢ is satisfiable if and only if C is.

@ The variables of ¢ will contain all the variables of C. Additionally, for each gate g
in C, we create a new variable in ¢, also denoted by g.

@ If gis a variable gate, corresponding to variable x, add the clauses (g v —x) and
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If g is an OR gate with predecessors h and h’, add the clauses (—hV g),
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Reduction from CIRCUIT-SAT to SAT

CIRCUIT-SAT to SAT

Input instance: A circuit C.

Output instance: A CNF formula ¢ such that ¢ is satisfiable if and only if C is.

@ The variables of ¢ will contain all the variables of C. Additionally, for each gate g
in C, we create a new variable in ¢, also denoted by g.

@ If gis a variable gate, corresponding to variable x, add the clauses (g v —x) and
(mg Vv x)to ¢. (g & x.)

If g is a true gate, add (g) to ¢; likewise, if it is a false gate, add (—g).

If g is a NOT gate with predecessor h, add the clauses (g V h) and (=g V —h) to ¢.

If g is an OR gate with predecessors h and h’, add the clauses (—hV g),
(=h"vg)and (hv h Vv —g)too. (g< (hVH).)

If g is an AND gate with predecessors h and h’, add the clauses (=g V h),
(mgV hH)and (mhVv -H vg)too. (g< (hAHK).)

If g is an output gate, add the clause (g).
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Argument

@ If Cis satisfiable, then ¢ is satisfiable.
Q If ¢ is satisfiable, then C is satisfiable.

Non-deterministic Polynomial Time



Graph coloring

Non-deterministic Polynomial Time



Graph coloring

The Graph coloring problem

Non-deterministic Polynomial Time



Graph coloring

The Graph coloring problem

A coloring of an undirected graph G = (V, E) is an assignment V — {1,2,... k}.

Non-deterministic Polynomial Time



Graph coloring

The Graph coloring problem

A coloring of an undirected graph G = (V, E) is an assignment V — {1,2,... k}.

The coloring is said to be valid if no two adjacent vertices have the same color.

Non-deterministic Polynomial Time



Graph coloring

The Graph coloring problem
A coloring of an undirected graph G = (V, E) is an assignment V — {1,2,... k}.
The coloring is said to be valid if no two adjacent vertices have the same color.

In the GRAPH k-COLORING problem, you are given a number k and asked if G can be
colored using k colors.
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Graph coloring

The Graph coloring problem

A coloring of an undirected graph G = (V, E) is an assignment V — {1,2,... k}.
The coloring is said to be valid if no two adjacent vertices have the same color.

In the GRAPH k-COLORING problem, you are given a number k and asked if G can be
colored using k colors.
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Graph coloring

The Graph coloring problem

A coloring of an undirected graph G = (V, E) is an assignment V — {1,2,... k}.
The coloring is said to be valid if no two adjacent vertices have the same color.

In the GRAPH k-COLORING problem, you are given a number k and asked if G can be
colored using k colors.

Exercise

| N

@ Argue that GRAPH 2-COLORING is in P.
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Graph coloring

The Graph coloring problem

A coloring of an undirected graph G = (V, E) is an assignment V — {1,2,... k}.
The coloring is said to be valid if no two adjacent vertices have the same color.

In the GRAPH k-COLORING problem, you are given a number k and asked if G can be
colored using k colors.

Exercise

| N

@ Argue that GRAPH 2-COLORING is in P.
@ Argue that GRAPH 3-COLORING can be reduced to 3SAT.

A\
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3-coloring to 3-SAT

Reduction
Input: An undirected graph G = (V, E).

Output: A CNF formula ¢, such that ¢ is satisfiable if and only if G has a valid
3-coloring.
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Output: A CNF formula ¢, such that ¢ is satisfiable if and only if G has a valid
3-coloring.
Q Let X, 1=1,2,...,n,j=1,2,3 be the boolean variable that is true if vertex i
gets color j, and false otherwise.
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Output: A CNF formula ¢, such that ¢ is satisfiable if and only if G has a valid
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gets color j, and false otherwise.
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3-coloring to 3-SAT

Reduction
Input: An undirected graph G = (V, E).

Output: A CNF formula ¢, such that ¢ is satisfiable if and only if G has a valid
3-coloring.
Q Let X, 1=1,2,...,n,j=1,2,3 be the boolean variable that is true if vertex i
gets color j, and false otherwise.

@ Every vertex should get at least one color.

(X1 VX2V X3), i=1,2,...,n

© Every vertex should get at most one color.

(X1 A Xp2)
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3-coloring to 3-SAT

Reduction
Input: An undirected graph G = (V, E).

Output: A CNF formula ¢, such that ¢ is satisfiable if and only if G has a valid
3-coloring.
Q Let X, 1=1,2,...,n,j=1,2,3 be the boolean variable that is true if vertex i
gets color j, and false otherwise.
@ Every vertex should get at least one color.

(X1 VX2V X3), i=1,2,...,n

© Every vertex should get at most one color.

(X1 A Xp2)
(X1 A Xi3)
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3-coloring to 3-SAT

Reduction
Input: An undirected graph G = (V, E).
Output: A CNF formula ¢, such that ¢ is satisfiable if and only if G has a valid
3-coloring.
Q Let X, 1=1,2,...,n,j=1,2,3 be the boolean variable that is true if vertex i
gets color j, and false otherwise.
@ Every vertex should get at least one color.

(X1 VX2V X3), i=1,2,...,n

© Every vertex should get at most one color.

(X1 A Xp2)
(X1 A Xi3)
(X2 A Xa),
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3-coloring to 3-SAT

Reduction
Input: An undirected graph G = (V, E).

Output: A CNF formula ¢, such that ¢ is satisfiable if and only if G has a valid
3-coloring.
Q Let X, 1=1,2,...,n,j=1,2,3 be the boolean variable that is true if vertex i
gets color j, and false otherwise.
@ Every vertex should get at least one color.

(X1 VX2V X3), i=1,2,...,n

© Every vertex should get at most one color.

(X1 A Xp2)
(X1 A Xi3)
_‘(Xi2 A Xf3)7i:1727"'7n
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Completing the reduction

Connectivity requirements

If (u,v) € E, then u and v should get different colors.

(Xt A Xy1)
ﬁ(Xu2 A Xv2)

Non-deterministic Polynomial Time



Completing the reduction

Connectivity requirements

If (u,v) € E, then u and v should get different colors.
(Xt A Xu1)
ﬁ(Xu2 A Xv2)
ﬁ(Xu3 A Xv3)
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Completing the reduction

Connectivity requirements

If (u,v) € E, then u and v should get different colors.

(Xt A Xn1)

ﬁ(Xu2 A Xv2)

ﬁ(Xu3 A Xv3)
VY(u,v) € E
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Integer Partitioning and Subset Sum

Integer Partitioning

Given a list S = {x1, X2, ..., Xn} of integers, is there a set A C S, such that
ZX,EA W = Zx,-eA xi?
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Integer Partitioning

Given a list S = {x1, X2, ..., Xn} of integers, is there a set A C S, such that
ZX,EA W = Zx,-eA xi?

v

A\

Non-deterministic Polynomial Time



Integer Partitioning and Subset Sum

Integer Partitioning

Given a list S = {x1, X2, ..., Xn} of integers, is there a set A C S, such that
ZX,EA W = Zx,-eA xi?

| N

Subset Sum
Given alist S = {x1, X2, ..., Xn} of integers and a target ¢, is there a set A C S, such
that ZX,'EA x; = t?
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Integer Partitioning

Given a list S = {x1, X2, ..., Xn} of integers, is there a set A C S, such that
ZX,EA W = Zx,-eA xi?

| N

Subset Sum

Given alist S = {x1, X2, ..., Xn} of integers and a target ¢, is there a set A C S, such
that ZX,'EA x; = t?
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Integer Partitioning and Subset Sum

Integer Partitioning

Given a list S = {x1, X2, ..., Xn} of integers, is there a set A C S, such that
ZX,EA W = Zx,-eA xi?

Subset Sum

Given alist S = {x1, X2, ..., Xn} of integers and a target ¢, is there a set A C S, such
that ZX,'EA x; = t?

| N

v

Reduce INTEGER PARTITIONING fo SUBSET SUM
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© You are also given a knapsack of weight capacity W.

© The goal is to select a subset of the objects which does not violate the capacity
constraint of the knapsack while maximizing the profit of the objects selected.
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© You are also given a knapsack of weight capacity W.

© The goal is to select a subset of the objects which does not violate the capacity
constraint of the knapsack while maximizing the profit of the objects selected.
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@ Object o; has weight w; and profit p;.
© You are also given a knapsack of weight capacity W.

© The goal is to select a subset of the objects which does not violate the capacity
constraint of the knapsack while maximizing the profit of the objects selected.

Q@ Profits are additive.

Q@ The integer programming formulation is:
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Binary Knapsack

Binary Knapsack

@ You are given n objects O = {01, 0, . . ., 0n}-
@ Object o; has weight w; and profit p;.
© You are also given a knapsack of weight capacity W.

© The goal is to select a subset of the objects which does not violate the capacity
constraint of the knapsack while maximizing the profit of the objects selected.

Q@ Profits are additive.

Q@ The integer programming formulation is:

n
max Dok P X

Non-deterministic Polynomial Time



Binary Knapsack

Binary Knapsack

@ You are given n objects O = {01, 0, . . ., 0n}-
@ Object o; has weight w; and profit p;.
© You are also given a knapsack of weight capacity W.

© The goal is to select a subset of the objects which does not violate the capacity
constraint of the knapsack while maximizing the profit of the objects selected.

Q@ Profits are additive.

Q@ The integer programming formulation is:

n
max E i—1 Pi * Xj
g Wi X =w
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Binary Knapsack

Binary Knapsack

@ You are given n objects O = {01, 0, . . ., 0n}-
@ Object o; has weight w; and profit p;.
© You are also given a knapsack of weight capacity W.

© The goal is to select a subset of the objects which does not violate the capacity
constraint of the knapsack while maximizing the profit of the objects selected.

Q@ Profits are additive.

Q@ The integer programming formulation is:
max P X
S Wi X <w
xi={0,1} Vi=1,2,...,n
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Demonstrate through a counterexample that the greedy strategy used for fractional
knapsack does not work in the binary knapsack case.

Non-deterministic Polynomial Time



Binary Knapsack (contd.)

Exercise

Demonstrate through a counterexample that the greedy strategy used for fractional
knapsack does not work in the binary knapsack case.

V.

A\
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Binary Knapsack (contd.)

Exercise

Demonstrate through a counterexample that the greedy strategy used for fractional
knapsack does not work in the binary knapsack case.

V.

@ Consider three objects 01, 0, and o3 with weights 10 units, 20 units and 30 units
respectively and profits $60, $100 and $120 respectively.

A\
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Binary Knapsack (contd.)

Exercise

Demonstrate through a counterexample that the greedy strategy used for fractional
knapsack does not work in the binary knapsack case.

V.

@ Consider three objects 01, 0, and o3 with weights 10 units, 20 units and 30 units
respectively and profits $60, $100 and $120 respectively.

© Let the knapsack have weight capacity 50 units.

A\
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Binary Knapsack (contd.)

Exercise

Demonstrate through a counterexample that the greedy strategy used for fractional
knapsack does not work in the binary knapsack case.

V.

@ Consider three objects 01, 0, and o3 with weights 10 units, 20 units and 30 units
respectively and profits $60, $100 and $120 respectively.

© Let the knapsack have weight capacity 50 units.
© The greedy solution is

A\
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Binary Knapsack (contd.)

Exercise

Demonstrate through a counterexample that the greedy strategy used for fractional
knapsack does not work in the binary knapsack case.

V.

@ Consider three objects 01, 0, and o3 with weights 10 units, 20 units and 30 units
respectively and profits $60, $100 and $120 respectively.

© Let the knapsack have weight capacity 50 units.
© The greedy solution is {01, 02}

A\
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Binary Knapsack (contd.)

Exercise

Demonstrate through a counterexample that the greedy strategy used for fractional
knapsack does not work in the binary knapsack case.

V.

@ Consider three objects 01, 0, and o3 with weights 10 units, 20 units and 30 units
respectively and profits $60, $100 and $120 respectively.

© Let the knapsack have weight capacity 50 units.
© The greedy solution is {01, 02}
© The optimal solution is

A\
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Binary Knapsack (contd.)

Exercise

Demonstrate through a counterexample that the greedy strategy used for fractional
knapsack does not work in the binary knapsack case.

V.

@ Consider three objects 01, 0, and o3 with weights 10 units, 20 units and 30 units
respectively and profits $60, $100 and $120 respectively.

© Let the knapsack have weight capacity 50 units.
© The greedy solution is {01, 02}
@ The optimal solution is {02, 03}.

A\
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@ Let KNAP(n, W) denote the given instance of the problem.
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Principle of optimality

@ Let KNAP(n, W) denote the given instance of the problem.
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Formulating the recurrence

The Recurrence

@ Let V[i, w] denote the optimal solution for the subset {0y, 0, . .., 0;}, assuming
that the Knapsack has a capacity w.

@ Which entry of the table are we interested in? Clearly, V[n, W].
© As per the discussion above,

V[i—1,w —wj] +p; (0;isincluded)
V[i—1,w] (o is excluded)

Vii,w] = max{

© |Initial conditions:

Viow] = 0, 0<w<W
pauseV[i,w] = —oco, w<0
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Final observations

Observation

@ The running time of the DP-based algorithm for binary knapsack is O(n - W).
@ s the running time polynomial?

© The Subset Sum problem can be easily reduced to binary knapsack. How?
© We thus have, INTEGER PARTITION < SUBSET SUM < BINARY KNAPSACK.
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only if they are non-adjacent in G.
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@ Show that if a graph is k-colorable, then it has an independent set of size at least
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Observation relating the three problems

Let G= (V, E) denote a graph and letS C V.

The following statements are equivalent:
@ S is a vertex cover.
@ V — Sis an independent set.

© V — Sisaclique in G° = (V, E°), where two vertices are adjacent in G¢ if and
only if they are non-adjacent in G.

@ Argue that VC < IS < CQ.

@ Show that if a graph is k-colorable, then it has an independent set of size at least
%. Is the converse true.
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X is a yes-instance of A if and only if there exists a w, such that (x, w) is
is a yes-instance of B,

where B is a decision problem in P regarding pairs (x, w) and |w| = poly(|x|).

Observations

@ w is a witness of the fact that x is a yes-instance. It is called a certificate.

@ B is the problem of checking whether x is a genuine needle. For instance, if A is
HAMILTON-PATH, then x is a graph, w is a path, and B is the problem of checking
whether w is a valid Hamilton path for x.

© w is required to be polynomially balanced.
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First Formal Definition

NP is the class of problems A of the following form:

X is a yes-instance of A if and only if there exists a w, such that (x, w) is
is a yes-instance of B,

where B is a decision problem in P regarding pairs (x, w) and |w| = poly(|x|).

Observations

@ w is a witness of the fact that x is a yes-instance. It is called a certificate.

@ B is the problem of checking whether x is a genuine needle. For instance, if A is
HAMILTON-PATH, then x is a graph, w is a path, and B is the problem of checking
whether w is a valid Hamilton path for x.

© w is required to be polynomially balanced. This ensures that B runs in time
polynomial in |x|.
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First Formal Definition

NP is the class of problems A of the following form:

X is a yes-instance of A if and only if there exists a w, such that (x, w) is
is a yes-instance of B,

where B is a decision problem in P regarding pairs (x, w) and |w| = poly(|x|).

Observations

@ w is a witness of the fact that x is a yes-instance. It is called a certificate.

@ B is the problem of checking whether x is a genuine needle. For instance, if A is
HAMILTON-PATH, then x is a graph, w is a path, and B is the problem of checking
whether w is a valid Hamilton path for x.

© w is required to be polynomially balanced. This ensures that B runs in time
polynomial in |x|.

©Q NP C EXP, where EXP=TIME(2r°¥(n)),
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Another definition for NP

Definition

NP is the class of properties A of the form
A(x) = 3w : B(x, w)

where Bis in P and where |w| = poly(|x|).
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Some observations

@ We have associated with the decision problem A, the property A(x), where A(x) is
true if and only if x is a yes-instance of A.

For instance, if x is a graph and A(x) is the property that x has a Hamilton path,
then B(x, w) is the polynomial time property that w is a Hamilton path for x.

@ Algorithmically, the quantifier 3 represents the process of searching for the
witness w.

© Prover-Verifier conversation.
© Are the complements of P properties in P?

© How about complements of NP properties? These properties belong to the class
coNP; they have easy to check no instances, but no known method of verifying
yes-instances in polynomial time.
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Exercise

© /s coNP the complement of NP ?
@ /s NP n coNP identical to P ?
© Show that if P = NP then NP = coNP. /s the converse true?
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Nondeterministic Computation

Fundamentals

@ A computer program is deterministic in that given the initial state and input, the
execution trace is fixed, i.e., there are no choices for the program to make.

@ A nondeterministic program can make several possible choices at each step. For
instance, consider the instruction:
goto both line, lines.

© The computation then becomes a tree instead of a straight line.

© The output of a nondeterministic program is “yes”, if any of the computations in the
tree leads to a an accepting state and “no” otherwise.

© The running time of a nondeterministic program is the height of its computation
tree.
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Nondeterministic Computation

Fundamentals

@ A computer program is deterministic in that given the initial state and input, the
execution trace is fixed, i.e., there are no choices for the program to make.

@ A nondeterministic program can make several possible choices at each step. For
instance, consider the instruction:
goto both line, lines.

© The computation then becomes a tree instead of a straight line.

© The output of a nondeterministic program is “yes”, if any of the computations in the
tree leads to a an accepting state and “no” otherwise.

© The running time of a nondeterministic program is the height of its computation
tree.

Write a nondeterministic program for 3SAT.
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Final definition of NP

Definition

NP is the class of problems for which a nondeterministic program exists that runs in

time poly(n), on instances of length n, such that the input is a yes-instance if and only
if there exists a computation path that returns “yes.”

Definition

| 5\

NTIME(f(n)) is the class of problems for which a nondeterministic program exists that
runs in time O(f(n)), on instances of length n,
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Final definition of NP

NP is the class of problems for which a nondeterministic program exists that runs in

time poly(n), on instances of length n, such that the input is a yes-instance if and only
if there exists a computation path that returns “yes.”

Definition

| 5\

NTIME(f(n)) is the class of problems for which a nondeterministic program exists that
runs in time O(f(n)), on instances of length n, such that the input is a yes-instance if
and only if there exists a computation path that returns “yes.”
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>
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Linear Programming

The Problem (LP)

Ix A-x <
>

v

@ /s LP inNP? Does Guess and Verify work?
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Linear Programming

The Problem (LP)

Ix A-x <
>

v

@ /s LP inNP? Does Guess and Verify work?
@Q IsLP incoNP?
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© Assume that A has m rows and n columns.

© Observe that with the introduction of slack variables, we can rewrite the Linear
programming problem as:

dx A-Xx

X

v
o T

where m<n
© A basis of the above system is a collection of m linearly independent columns.
© A basic solution is obtained by solving the system B - xg + N - xy = b, x5y = 0.
© The basic solution is feasible if every element of xg is non-negative.
Q The above system is feasible if and only if it has a basic feasible solution.
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Complexity

Fundamentals

© Assume that A has m rows and n columns.

© Observe that with the introduction of slack variables, we can rewrite the Linear
programming problem as:

dx A-Xx

X

v
o T

where m<n
© A basis of the above system is a collection of m linearly independent columns.
© A basic solution is obtained by solving the system B - xg + N - xy = b, x5y = 0.
© The basic solution is feasible if every element of xg is non-negative.
Q The above system is feasible if and only if it has a basic feasible solution.

@ So all that we have to do now is to show that the basic solutions are polynomial in
the size of the input.
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Linear Programming theorem

Letx = [xq,X2,...,Xm,0,0,... ,O]T be a basic solution of the system
Ix A-x = b
x > 0
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Linear Programming theorem

Theorem
Letx = [xq,X2,...,Xm,0,0,... ,O]T be a basic solution of the system
Ix A-x = b
x > 0
Then,

x| <m-a™ "8

where,
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Linear Programming theorem

Theorem
Letx = [xq,X2,...,Xm,0,0,... ,O]T be a basic solution of the system
Ix A-x = b
x > 0
Then,
x| <m-a™ "8
where,
a = max|al
i
g = max|b
J
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Either,

Ix A-Xx
X

IV IA

or (mutually exclusively)
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Farkas’ Lemma

Either,
x A-x < b
x > 0
or (mutually exclusively)
Jyy-A > 0
y > 0
y-b < 0
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@ Show that PRIMES is in coNP.
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Primality testing

PRIMES

Given a number N, determine whether it is a prime number, i.e., divisible only by one
and itself.

<

Exercise

@ Show that PRIMES is in coNP.
© Show that PRIMES is in NP.
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Notations

Logarithms and natural numbers

Normally, when taking a logarithm, we get a real number. In order to work with natural
numbers, we adopt the following convention:

log x = [log, X].
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Can you design a nondeterministic algorithm for PRIMES ?
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Can you design a nondeterministic algorithm for PRIMES ?

We have to bound the number of prime divisors.
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Can you design a nondeterministic algorithm for PRIMES ?
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The Lucas test for primality

Theorem

A number p > 1 is prime if and only if and only If there exists a numberr,1 < r < p,
such that r°P=' = 1 mod p and furthermore, r a % 1 mod p for all prime divisors q of

(p—1).

Exercise

| A\

Can you design a nondeterministic algorithm for PRIMES ?
We have to bound the number of prime divisors.

How many prime divisors can p have? At mostlog p.
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FUNCTION PRIMALITY CHECKING(p)
1: Guess r.

2. if (=1 %1 mod p) then

3:  return(“no”).

4: else
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FUNCTION PRIMALITY CHECKING(p)
1: Guess r.
if ("' %1 mod p) then
return(“no”).
. else
Guess g1, Qo, - - - gk as the prime divisors of (p — 1).

P

Non-deterministic Polynomial Time



FUNCTION PRIMALITY CHECKING(p)
1: Guess r.
if ("' %1 mod p) then
return(“no”).
: else
Guess g1, Qo, - - - gk as the prime divisors of (p — 1).
if (any g; is not a prime divisor of (p — 1)) then
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FUNCTION PRIMALITY CHECKING(p)
1: Guess r.
2. if (=1 %1 mod p) then
3:  return(“no”).
: else
Guess g1, Qo, - - - gk as the prime divisors of (p — 1).
if (any g; is not a prime divisor of (p — 1)) then
return(“no”).

N o a s
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FUNCTION PRIMALITY CHECKING(p)

1: Guess r.

2. if (=1 %1 mod p) then

3:  return(“no”).

: else

Guess g1, Qo, - - - gk as the prime divisors of (p — 1).

if (any g; is not a prime divisor of (p — 1)) then
return(“no”).

end if

o NS gk
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2. if (=1 %1 mod p) then

3:  return(“no”).

4: else
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6: if (any g; is not a prime divisor of (p — 1)) then
7 return(“no”).
8 endif
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FUNCTION PRIMALITY CHECKING(p)

1: Guess r.

2. if (=1 %1 mod p) then

3:  return(“no”).

4: else

5:  Guess gy, Qo, - - - gk as the prime divisors of (p — 1).
6: if (any g; is not a prime divisor of (p — 1)) then

7 return(“no”).

8 endif

9: end if

o: for (i=1to k) do
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FUNCTION PRIMALITY CHECKING(p)

1: Guess r.

2. if (=1 %1 mod p) then

3:  return(“no”).

: else

Guess g1, Qo, - - - gk as the prime divisors of (p — 1).

if (any g; is not a prime divisor of (p — 1)) then
return(“no”).

end if

: end if

: for (i

S © o N a bk

=1to k) do
p—1

11:  if(r ¢ =1 mod p) then
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FUNCTION PRIMALITY CHECKING(p)
1: Guess r.

2. if (=1 %1 mod p) then

3:  return(“no”).

4: else

5:  Guess gy, Qo, - - - gk as the prime divisors of (p — 1).
6: if (any g; is not a prime divisor of (p — 1)) then

7: return(“no”).

8: endif

9: end if

0

: for (i=1to k)do

—1
11: if (rpT =1 mod p) then
return(“no”).
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FUNCTION PRIMALITY CHECKING(p)
1: Guess r.

2. if (=1 %1 mod p) then

3:  return(“no”).

4: else

5:  Guess gy, Qo, - - - gk as the prime divisors of (p — 1).
6: if (any g; is not a prime divisor of (p — 1)) then

7: return(“no”).

8: endif

9: end if

0

: for (i=1to k)do

—1
11: if (rpT =1 mod p) then
return(“no”).
3 endif

N
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2. if (=1 %1 mod p) then

3:  return(“no”).

4: else

5:  Guess gy, Qo, - - - gk as the prime divisors of (p — 1).
6: if (any g; is not a prime divisor of (p — 1)) then

7: return(“no”).

8 endif

9: end if

o: for (i=1to k) do

=1
11: if (rpT =1 mod p) then

12: return(“no”).
13:  end if
14: end for
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FUNCTION PRIMALITY CHECKING(p)

1: Guess r.

2. if (=1 %1 mod p) then

3:  return(“no”).

4: else

5:  Guess gy, Qo, - - - gk as the prime divisors of (p — 1).
6: if (any g; is not a prime divisor of (p — 1)) then

7: return(“no”).

8 endif

9: end if

o: for (i=1to k) do

=1
11: if (rpT =1 mod p) then

12: return(“no”).
13:  end if
14: end for

15: return(“yes”).

Algorithm 6.17: A nondeterministic algorithm for PRIMES
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@ How do we check that the g; represent all the divisors of p? Repeated division.

© How do we check that the g;s are prime? Recursively! Guess their certificates as
well.

© Accordingly, the certificate for p, will have the following form:
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@ How do we check that the g; represent all the divisors of p? Repeated division.

© How do we check that the g;s are prime? Recursively! Guess their certificates as
well.

© Accordingly, the certificate for p, will have the following form:

(r
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Hidden details

@ How do we check that the g; represent all the divisors of p? Repeated division.

© How do we check that the g;s are prime? Recursively! Guess their certificates as
well.

© Accordingly, the certificate for p, will have the following form:

(rian;
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Details

Hidden details

@ How do we check that the g; represent all the divisors of p? Repeated division.

© How do we check that the g;s are prime? Recursively! Guess their certificates as
well.

© Accordingly, the certificate for p, will have the following form:

(r; 91 C(qn);
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Hidden details

@ How do we check that the g; represent all the divisors of p? Repeated division.

© How do we check that the g;s are prime? Recursively! Guess their certificates as
well.

© Accordingly, the certificate for p, will have the following form:

(rig1; C(q1); g2
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Details

Hidden details

@ How do we check that the g; represent all the divisors of p? Repeated division.

© How do we check that the g;s are prime? Recursively! Guess their certificates as
well.

© Accordingly, the certificate for p, will have the following form:

(r;g1: C(q1); 92; C(q2) - - - Gk
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Details

Hidden details

@ How do we check that the g; represent all the divisors of p? Repeated division.

© How do we check that the g;s are prime? Recursively! Guess their certificates as
well.

© Accordingly, the certificate for p, will have the following form:

(r; 1; C(q1); g2; C(qe) - - - Gk; C(qk))
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@ How do we check that the g; represent all the divisors of p? Repeated division.

© How do we check that the g;s are prime? Recursively! Guess their certificates as
well.

© Accordingly, the certificate for p, will have the following form:

(r; 1; C(q1); g2; C(qe) - - - Gk; C(qk))

© Unless p = 2, p will be odd and hence g; = 2.

Non-deterministic Polynomial Time



Details

Hidden details

@ How do we check that the g; represent all the divisors of p? Repeated division.

© How do we check that the g;s are prime? Recursively! Guess their certificates as
well.

© Accordingly, the certificate for p, will have the following form:

(r; 1; C(q1); g2; C(qe) - - - Gk; C(qk))

© Unless p = 2, p will be odd and hence g; = 2. So without loss of generality, the
certificate for p will have the following form:
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@ How do we check that the g; represent all the divisors of p? Repeated division.

© How do we check that the g;s are prime? Recursively! Guess their certificates as
well.

© Accordingly, the certificate for p, will have the following form:

(r; 1; C(q1); g2; C(qe) - - - Gk; C(qk))

© Unless p = 2, p will be odd and hence g; = 2. So without loss of generality, the
certificate for p will have the following form:
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@ How do we check that the g; represent all the divisors of p? Repeated division.

© How do we check that the g;s are prime? Recursively! Guess their certificates as
well.

© Accordingly, the certificate for p, will have the following form:

(r; 1; C(q1); g2; C(qe) - - - Gk; C(qk))

© Unless p = 2, p will be odd and hence g; = 2. So without loss of generality, the
certificate for p will have the following form:

(r;2;
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@ How do we check that the g; represent all the divisors of p? Repeated division.

© How do we check that the g;s are prime? Recursively! Guess their certificates as
well.

© Accordingly, the certificate for p, will have the following form:

(r; 1; C(q1); g2; C(qe) - - - Gk; C(qk))

© Unless p = 2, p will be odd and hence g; = 2. So without loss of generality, the
certificate for p will have the following form:

(r;2;(1);
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@ How do we check that the g; represent all the divisors of p? Repeated division.

© How do we check that the g;s are prime? Recursively! Guess their certificates as
well.

© Accordingly, the certificate for p, will have the following form:

(r; 1; C(q1); g2; C(qe) - - - Gk; C(qk))

© Unless p = 2, p will be odd and hence g; = 2. So without loss of generality, the
certificate for p will have the following form:

(r;2;(1); g2
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@ How do we check that the g; represent all the divisors of p? Repeated division.

© How do we check that the g;s are prime? Recursively! Guess their certificates as
well.

© Accordingly, the certificate for p, will have the following form:

(r; 1; C(q1); g2; C(qe) - - - Gk; C(qk))

© Unless p = 2, p will be odd and hence g; = 2. So without loss of generality, the
certificate for p will have the following form:

(r;2;(1); 92: C(Q2) - - - Gk;
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Hidden details

@ How do we check that the g; represent all the divisors of p? Repeated division.

© How do we check that the g;s are prime? Recursively! Guess their certificates as
well.

© Accordingly, the certificate for p, will have the following form:

(r; 1; C(q1); g2; C(qe) - - - Gk; C(qk))

© Unless p = 2, p will be odd and hence g; = 2. So without loss of generality, the
certificate for p will have the following form:

(r:2;(1); 92: C(q2) - - - gk: C(qk))
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Hidden details

@ How do we check that the g; represent all the divisors of p? Repeated division.

© How do we check that the g;s are prime? Recursively! Guess their certificates as
well.

© Accordingly, the certificate for p, will have the following form:

(r; 1; C(q1); g2; C(qe) - - - Gk; C(qk))

© Unless p = 2, p will be odd and hence g; = 2. So without loss of generality, the
certificate for p will have the following form:

(r:2;(1); 92: C(q2) - - - gk: C(qk))

For instance, the certificate for 67 is:
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@ How do we check that the g; represent all the divisors of p? Repeated division.

© How do we check that the g;s are prime? Recursively! Guess their certificates as
well.

© Accordingly, the certificate for p, will have the following form:

(r; 1; C(q1); g2; C(qe) - - - Gk; C(qk))

© Unless p = 2, p will be odd and hence g; = 2. So without loss of generality, the
certificate for p will have the following form:

(r;2;(1); g2: C(a2) - - - gk: C(ak))
For instance, the certificate for 67 is:

(2:2;(1):3:(2:2; (1)) 11:(8;2;(1): 5 (3:2: (1))
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© Total number of symbols needed to represent r is at most log p.
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@ Clearly true forp=2and p = 3.

Q q1,%,Gs, ...,k are prime divisors of (p — 1) ( kK < logp.). Hence,
Q- Q... gk < "2;1-

© Total number of symbols needed to represent r is at most log p.

© Total number of symbols needed to represent 2 and its certificate (1) is 5.

© Total number of symbols needed to represent all the g;s, i = 2,3, . .. p is at most
2 (log(Bz1)) <2 (logp — 1).

Q Total number of symbols needed to represent all the delimiters is 2 - k < 2 - log p.

@ Total number of parentheses is 2.
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Lets = {(,),0,1,;}. The size of p’s certificate in ¥ is at most 4 - log® p.

@ Clearly true forp=2and p = 3.

Q q1,%,Gs, ...,k are prime divisors of (p — 1) ( kK < logp.). Hence,
Q- Q... gk < "2;1-

© Total number of symbols needed to represent r is at most log p.

© Total number of symbols needed to represent 2 and its certificate (1) is 5.

© Total number of symbols needed to represent all the g;s, i = 2,3, . .. p is at most
2 (log(Bz1)) <2 (logp — 1).

Q Total number of symbols needed to represent all the delimiters is 2 - k < 2 - log p.

@ Total number of parentheses is 2.

@ By induction |C(g;)| < 4 - log? g;.
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It follows that:

k
IC(p)l < logp+5+2-(logp—1)+2-logp+2+4-> log®q;
i=2
k
< 5-logp+5+4-) log® g
i=2
k
< 5-logp+5+4-(>_logg)?

i=2
= 5-logp+5+4-log*(qz - .. - Gk)

5-Iogp+5+4-(|og%)z
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It follows that:

k
IC(p)] < logp+5+2-(logp—1)+2-logp+2+4-> log® g
i=2
k
logp+5+4- log® g
i=2
k
logp+5+4-(>_logq;)?
i=2
= 5-logp+5+4-log*(qz - .. - Gk)
p—1,
4§ﬁ

IN
[&)]

IN
()]

IN
(&)

-logp+5+4 - (log

IN
o

-logp+5+4-(logp—1)2
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It follows that:

k
IC(p)l < logp+5+2-(logp—1)+2-logp+2+4-> log®q;
i=2
k
logp+5+4- log® g
i=2
k
logp+5+4-(>_logq;)?
i=2

5-logp+5+4-l0g®(qe - ... - Gk)

IN
[&)]

IN
()]

1
< 5-Iogp+5+4-(long)2
< 5.logp+5+4-(logp—1)2
< 4log’?p+9—3-logp
< 4log®p, when p > 5.
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Binary alphabet
How many bits one needs in order to represent p’s certificate?

Lety' = {oy,...,0t} be any alphabet with |<’| > 2, and let x be a string in X'. Then x
can be represented using |x| - log |X’| bits, where |x| is the number of symbols from ¥’
present in x.

p’s certificate requires at most 12 - log? p bits.
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