
Outline

The class NP

K. Subramani1

1Lane Department of Computer Science and Electrical Engineering
West Virginia University

March 9 and March 16, 2015

Non-deterministic Polynomial Time Computational Complexity

Outline

Outline

1 Reductions and Completeness

2 The Class NP

3 Sample problems in NP

4 Search, Existence and Non-determinism

5 Linear Programming and Primality

Non-deterministic Polynomial Time Computational Complexity

Outline

Outline

1 Reductions and Completeness

2 The Class NP

3 Sample problems in NP

4 Search, Existence and Non-determinism

5 Linear Programming and Primality

Non-deterministic Polynomial Time Computational Complexity

Outline

Outline

1 Reductions and Completeness

2 The Class NP

3 Sample problems in NP

4 Search, Existence and Non-determinism

5 Linear Programming and Primality

Non-deterministic Polynomial Time Computational Complexity

Outline

Outline

1 Reductions and Completeness

2 The Class NP

3 Sample problems in NP

4 Search, Existence and Non-determinism

5 Linear Programming and Primality

Non-deterministic Polynomial Time Computational Complexity

Outline

Outline

1 Reductions and Completeness

2 The Class NP

3 Sample problems in NP

4 Search, Existence and Non-determinism

5 Linear Programming and Primality

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Reductions

Main concept

Comparing problem difficulty through A ≤ B.

When is problem B at least as hard as problem A?

When there is a transformation R, which for every input of A produces an equivalent
input R(x) of B such that x ∈ A⇔ R(x) ∈ B.

Note

To be useful, R should have limitations. (Hamilton Path to Reachability).

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Reductions

Main concept

Comparing problem difficulty through A ≤ B.

When is problem B at least as hard as problem A?

When there is a transformation R, which for every input of A produces an equivalent
input R(x) of B such that x ∈ A⇔ R(x) ∈ B.

Note

To be useful, R should have limitations. (Hamilton Path to Reachability).

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Reductions

Main concept

Comparing problem difficulty through A ≤ B.

When is problem B at least as hard as problem A?

When there is a transformation R, which for every input of A produces an equivalent
input R(x) of B such that x ∈ A⇔ R(x) ∈ B.

Note

To be useful, R should have limitations. (Hamilton Path to Reachability).

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Reductions

Main concept

Comparing problem difficulty through A ≤ B.

When is problem B at least as hard as problem A?

When there is a transformation R, which for every input of A produces an equivalent
input R(x) of B such that x ∈ A⇔ R(x) ∈ B.

Note

To be useful, R should have limitations. (Hamilton Path to Reachability).

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Reductions

Main concept

Comparing problem difficulty through A ≤ B.

When is problem B at least as hard as problem A?

When there is a transformation R, which for every input of A produces an equivalent
input R(x) of B such that x ∈ A⇔ R(x) ∈ B.

Note

To be useful, R should have limitations. (Hamilton Path to Reachability).

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Reductions

Main concept

Comparing problem difficulty through A ≤ B.

When is problem B at least as hard as problem A?

When there is a transformation R, which for every input of A produces an equivalent
input R(x) of B such that x ∈ A⇔ R(x) ∈ B.

Note

To be useful, R should have limitations. (Hamilton Path to Reachability).

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Reductions

Main concept

Comparing problem difficulty through A ≤ B.

When is problem B at least as hard as problem A?

When there is a transformation R, which for every input of A produces an equivalent
input R(x) of B such that x ∈ A⇔ R(x) ∈ B.

Note

To be useful, R should have limitations. (Hamilton Path to Reachability).

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

More on reductions

Definition

A language L1 is reducible to a language L2 if there is a function R from strings of L1 to
strings of L2, such that

(∀x ∈ Σ∗1) x ∈ L1 ↔ R(x) ∈ L2.

Furthermore, the function should be computable by an algorithm in O(log n) space, on
strings of length n.

Note

Good old days, we used poly-time reductions.

Proposition

If R is a reduction computed by an algorithm A, then for all x, A halts after a polynomial
number of steps.

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

More on reductions

Definition

A language L1 is reducible to a language L2 if there is a function R from strings of L1 to
strings of L2, such that

(∀x ∈ Σ∗1) x ∈ L1 ↔ R(x) ∈ L2.

Furthermore, the function should be computable by an algorithm in O(log n) space, on
strings of length n.

Note

Good old days, we used poly-time reductions.

Proposition

If R is a reduction computed by an algorithm A, then for all x, A halts after a polynomial
number of steps.

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

More on reductions

Definition

A language L1 is reducible to a language L2 if there is a function R from strings of L1 to
strings of L2, such that

(∀x ∈ Σ∗1) x ∈ L1 ↔ R(x) ∈ L2.

Furthermore, the function should be computable by an algorithm in O(log n) space, on
strings of length n.

Note

Good old days, we used poly-time reductions.

Proposition

If R is a reduction computed by an algorithm A, then for all x, A halts after a polynomial
number of steps.

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

More on reductions

Definition

A language L1 is reducible to a language L2 if there is a function R from strings of L1 to
strings of L2, such that

(∀x ∈ Σ∗1) x ∈ L1 ↔ R(x) ∈ L2.

Furthermore, the function should be computable by an algorithm in O(log n) space, on
strings of length n.

Note

Good old days, we used poly-time reductions.

Proposition

If R is a reduction computed by an algorithm A, then for all x, A halts after a polynomial
number of steps.

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

More on reductions

Definition

A language L1 is reducible to a language L2 if there is a function R from strings of L1 to
strings of L2, such that

(∀x ∈ Σ∗1) x ∈ L1 ↔ R(x) ∈ L2.

Furthermore, the function should be computable by an algorithm in O(log n) space, on
strings of length n.

Note

Good old days, we used poly-time reductions.

Proposition

If R is a reduction computed by an algorithm A, then for all x, A halts after a polynomial
number of steps.

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

More on reductions

Definition

A language L1 is reducible to a language L2 if there is a function R from strings of L1 to
strings of L2, such that

(∀x ∈ Σ∗1) x ∈ L1 ↔ R(x) ∈ L2.

Furthermore, the function should be computable by an algorithm in O(log n) space, on
strings of length n.

Note

Good old days, we used poly-time reductions.

Proposition

If R is a reduction computed by an algorithm A, then for all x, A halts after a polynomial
number of steps.

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

More on reductions

Definition

A language L1 is reducible to a language L2 if there is a function R from strings of L1 to
strings of L2, such that

(∀x ∈ Σ∗1) x ∈ L1 ↔ R(x) ∈ L2.

Furthermore, the function should be computable by an algorithm in O(log n) space, on
strings of length n.

Note

Good old days, we used poly-time reductions.

Proposition

If R is a reduction computed by an algorithm A, then for all x, A halts after a polynomial
number of steps.

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

More on reductions

Definition

A language L1 is reducible to a language L2 if there is a function R from strings of L1 to
strings of L2, such that

(∀x ∈ Σ∗1) x ∈ L1 ↔ R(x) ∈ L2.

Furthermore, the function should be computable by an algorithm in O(log n) space, on
strings of length n.

Note

Good old days, we used poly-time reductions.

Proposition

If R is a reduction computed by an algorithm A, then for all x, A halts after a polynomial
number of steps.

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Composition of Reductions

Theorem

If R is a reduction from L1 to L2 and R′ is a reduction from L2 to L3, then R′ ◦ R is a
reduction from L1 to L3.

Proof.

Trivial for poly-time reductions. Not so obvious for log-space reductions, since output of
R(x) could be larger than log |x |.
Main idea: Dovetail simulations.

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Composition of Reductions

Theorem

If R is a reduction from L1 to L2 and R′ is a reduction from L2 to L3, then R′ ◦ R is a
reduction from L1 to L3.

Proof.

Trivial for poly-time reductions. Not so obvious for log-space reductions, since output of
R(x) could be larger than log |x |.
Main idea: Dovetail simulations.

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Composition of Reductions

Theorem

If R is a reduction from L1 to L2 and R′ is a reduction from L2 to L3, then R′ ◦ R is a
reduction from L1 to L3.

Proof.

Trivial for poly-time reductions. Not so obvious for log-space reductions, since output of
R(x) could be larger than log |x |.
Main idea: Dovetail simulations.

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Composition of Reductions

Theorem

If R is a reduction from L1 to L2 and R′ is a reduction from L2 to L3, then R′ ◦ R is a
reduction from L1 to L3.

Proof.

Trivial for poly-time reductions. Not so obvious for log-space reductions, since output of
R(x) could be larger than log |x |.
Main idea: Dovetail simulations.

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Composition of Reductions

Theorem

If R is a reduction from L1 to L2 and R′ is a reduction from L2 to L3, then R′ ◦ R is a
reduction from L1 to L3.

Proof.

Trivial for poly-time reductions.

Not so obvious for log-space reductions, since output of
R(x) could be larger than log |x |.
Main idea: Dovetail simulations.

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Composition of Reductions

Theorem

If R is a reduction from L1 to L2 and R′ is a reduction from L2 to L3, then R′ ◦ R is a
reduction from L1 to L3.

Proof.

Trivial for poly-time reductions. Not so obvious for log-space reductions, since output of
R(x) could be larger than log |x |.

Main idea: Dovetail simulations.

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Composition of Reductions

Theorem

If R is a reduction from L1 to L2 and R′ is a reduction from L2 to L3, then R′ ◦ R is a
reduction from L1 to L3.

Proof.

Trivial for poly-time reductions. Not so obvious for log-space reductions, since output of
R(x) could be larger than log |x |.
Main idea:

Dovetail simulations.

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Composition of Reductions

Theorem

If R is a reduction from L1 to L2 and R′ is a reduction from L2 to L3, then R′ ◦ R is a
reduction from L1 to L3.

Proof.

Trivial for poly-time reductions. Not so obvious for log-space reductions, since output of
R(x) could be larger than log |x |.
Main idea: Dovetail simulations.

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Completeness

Definition

A language L in a complexity class C is said to be C-complete, if any language L′ ∈ C
can be reduced to L.

Definition

A complexity class C is closed under reductions, if
((L ∈ C) ∧ (L′ ≤ L))→ (L′ ∈ C).

Proposition

P, NP, coNP, L, NL, PSPACE and EXP are all closed under reductions.

Corollary

If two classes C and C′ are both closed under reductions and there exists a language L
that is complete for both C and C′ then C = C′.

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Completeness

Definition

A language L in a complexity class C is said to be C-complete, if any language L′ ∈ C
can be reduced to L.

Definition

A complexity class C is closed under reductions, if
((L ∈ C) ∧ (L′ ≤ L))→ (L′ ∈ C).

Proposition

P, NP, coNP, L, NL, PSPACE and EXP are all closed under reductions.

Corollary

If two classes C and C′ are both closed under reductions and there exists a language L
that is complete for both C and C′ then C = C′.

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Completeness

Definition

A language L in a complexity class C is said to be C-complete, if any language L′ ∈ C
can be reduced to L.

Definition

A complexity class C is closed under reductions, if
((L ∈ C) ∧ (L′ ≤ L))→ (L′ ∈ C).

Proposition

P, NP, coNP, L, NL, PSPACE and EXP are all closed under reductions.

Corollary

If two classes C and C′ are both closed under reductions and there exists a language L
that is complete for both C and C′ then C = C′.

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Completeness

Definition

A language L in a complexity class C is said to be C-complete, if any language L′ ∈ C
can be reduced to L.

Definition

A complexity class C is closed under reductions, if
((L ∈ C) ∧ (L′ ≤ L))→ (L′ ∈ C).

Proposition

P, NP, coNP, L, NL, PSPACE and EXP are all closed under reductions.

Corollary

If two classes C and C′ are both closed under reductions and there exists a language L
that is complete for both C and C′ then C = C′.

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Completeness

Definition

A language L in a complexity class C is said to be C-complete, if any language L′ ∈ C
can be reduced to L.

Definition

A complexity class C is closed under reductions, if

((L ∈ C) ∧ (L′ ≤ L))→ (L′ ∈ C).

Proposition

P, NP, coNP, L, NL, PSPACE and EXP are all closed under reductions.

Corollary

If two classes C and C′ are both closed under reductions and there exists a language L
that is complete for both C and C′ then C = C′.

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Completeness

Definition

A language L in a complexity class C is said to be C-complete, if any language L′ ∈ C
can be reduced to L.

Definition

A complexity class C is closed under reductions, if
((L ∈ C) ∧ (L′ ≤ L))

→ (L′ ∈ C).

Proposition

P, NP, coNP, L, NL, PSPACE and EXP are all closed under reductions.

Corollary

If two classes C and C′ are both closed under reductions and there exists a language L
that is complete for both C and C′ then C = C′.

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Completeness

Definition

A language L in a complexity class C is said to be C-complete, if any language L′ ∈ C
can be reduced to L.

Definition

A complexity class C is closed under reductions, if
((L ∈ C) ∧ (L′ ≤ L))→ (L′ ∈ C).

Proposition

P, NP, coNP, L, NL, PSPACE and EXP are all closed under reductions.

Corollary

If two classes C and C′ are both closed under reductions and there exists a language L
that is complete for both C and C′ then C = C′.

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Completeness

Definition

A language L in a complexity class C is said to be C-complete, if any language L′ ∈ C
can be reduced to L.

Definition

A complexity class C is closed under reductions, if
((L ∈ C) ∧ (L′ ≤ L))→ (L′ ∈ C).

Proposition

P, NP, coNP, L, NL, PSPACE and EXP are all closed under reductions.

Corollary

If two classes C and C′ are both closed under reductions and there exists a language L
that is complete for both C and C′ then C = C′.

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Completeness

Definition

A language L in a complexity class C is said to be C-complete, if any language L′ ∈ C
can be reduced to L.

Definition

A complexity class C is closed under reductions, if
((L ∈ C) ∧ (L′ ≤ L))→ (L′ ∈ C).

Proposition

P, NP, coNP, L, NL, PSPACE and EXP are all closed under reductions.

Corollary

If two classes C and C′ are both closed under reductions and there exists a language L
that is complete for both C and C′ then C = C′.

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Completeness

Definition

A language L in a complexity class C is said to be C-complete, if any language L′ ∈ C
can be reduced to L.

Definition

A complexity class C is closed under reductions, if
((L ∈ C) ∧ (L′ ≤ L))→ (L′ ∈ C).

Proposition

P, NP, coNP, L, NL, PSPACE and EXP are all closed under reductions.

Corollary

If two classes C and C′ are both closed under reductions and there exists a language L
that is complete for both C and C′ then C = C′.

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Completeness

Definition

A language L in a complexity class C is said to be C-complete, if any language L′ ∈ C
can be reduced to L.

Definition

A complexity class C is closed under reductions, if
((L ∈ C) ∧ (L′ ≤ L))→ (L′ ∈ C).

Proposition

P, NP, coNP, L, NL, PSPACE and EXP are all closed under reductions.

Corollary

If two classes C and C′ are both closed under reductions and there exists a language L
that is complete for both C and C′ then C = C′.

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

The class NP

Definition

A decision problem is in NP, if, whenever the answer for a particular instance is “yes”,
there is a simple proof of this fact.

Observations

1 How to solve the Hamilton path problem efficiently? Don’t know.
2 Suppose I give you a Hamilton path, can you verify its Hamiltonicity?
3 Needle in a haystack analogy.
4 NP is profoundly asymmetric.
5 Is P ⊆ NP? What is a short proof for a problem in P?

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

The class NP

Definition

A decision problem is in NP, if, whenever the answer for a particular instance is “yes”,
there is a simple proof of this fact.

Observations

1 How to solve the Hamilton path problem efficiently? Don’t know.
2 Suppose I give you a Hamilton path, can you verify its Hamiltonicity?
3 Needle in a haystack analogy.
4 NP is profoundly asymmetric.
5 Is P ⊆ NP? What is a short proof for a problem in P?

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

The class NP

Definition

A decision problem is in NP, if, whenever the answer for a particular instance is “yes”,
there is a simple proof of this fact.

Observations

1 How to solve the Hamilton path problem efficiently? Don’t know.
2 Suppose I give you a Hamilton path, can you verify its Hamiltonicity?
3 Needle in a haystack analogy.
4 NP is profoundly asymmetric.
5 Is P ⊆ NP? What is a short proof for a problem in P?

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

The class NP

Definition

A decision problem is in NP, if, whenever the answer for a particular instance is “yes”,
there is a simple proof of this fact.

Observations

1 How to solve the Hamilton path problem efficiently? Don’t know.
2 Suppose I give you a Hamilton path, can you verify its Hamiltonicity?
3 Needle in a haystack analogy.
4 NP is profoundly asymmetric.
5 Is P ⊆ NP? What is a short proof for a problem in P?

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

The class NP

Definition

A decision problem is in NP, if, whenever the answer for a particular instance is “yes”,
there is a simple proof of this fact.

Observations

1 How to solve the Hamilton path problem efficiently?

Don’t know.
2 Suppose I give you a Hamilton path, can you verify its Hamiltonicity?
3 Needle in a haystack analogy.
4 NP is profoundly asymmetric.
5 Is P ⊆ NP? What is a short proof for a problem in P?

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

The class NP

Definition

A decision problem is in NP, if, whenever the answer for a particular instance is “yes”,
there is a simple proof of this fact.

Observations

1 How to solve the Hamilton path problem efficiently? Don’t know.

2 Suppose I give you a Hamilton path, can you verify its Hamiltonicity?
3 Needle in a haystack analogy.
4 NP is profoundly asymmetric.
5 Is P ⊆ NP? What is a short proof for a problem in P?

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

The class NP

Definition

A decision problem is in NP, if, whenever the answer for a particular instance is “yes”,
there is a simple proof of this fact.

Observations

1 How to solve the Hamilton path problem efficiently? Don’t know.
2 Suppose I give you a Hamilton path, can you verify its Hamiltonicity?

3 Needle in a haystack analogy.
4 NP is profoundly asymmetric.
5 Is P ⊆ NP? What is a short proof for a problem in P?

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

The class NP

Definition

A decision problem is in NP, if, whenever the answer for a particular instance is “yes”,
there is a simple proof of this fact.

Observations

1 How to solve the Hamilton path problem efficiently? Don’t know.
2 Suppose I give you a Hamilton path, can you verify its Hamiltonicity?
3 Needle in a haystack analogy.

4 NP is profoundly asymmetric.
5 Is P ⊆ NP? What is a short proof for a problem in P?

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

The class NP

Definition

A decision problem is in NP, if, whenever the answer for a particular instance is “yes”,
there is a simple proof of this fact.

Observations

1 How to solve the Hamilton path problem efficiently? Don’t know.
2 Suppose I give you a Hamilton path, can you verify its Hamiltonicity?
3 Needle in a haystack analogy.
4 NP is profoundly asymmetric.

5 Is P ⊆ NP? What is a short proof for a problem in P?

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

The class NP

Definition

A decision problem is in NP, if, whenever the answer for a particular instance is “yes”,
there is a simple proof of this fact.

Observations

1 How to solve the Hamilton path problem efficiently? Don’t know.
2 Suppose I give you a Hamilton path, can you verify its Hamiltonicity?
3 Needle in a haystack analogy.
4 NP is profoundly asymmetric.
5 Is P ⊆ NP?

What is a short proof for a problem in P?

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

The class NP

Definition

A decision problem is in NP, if, whenever the answer for a particular instance is “yes”,
there is a simple proof of this fact.

Observations

1 How to solve the Hamilton path problem efficiently? Don’t know.
2 Suppose I give you a Hamilton path, can you verify its Hamiltonicity?
3 Needle in a haystack analogy.
4 NP is profoundly asymmetric.
5 Is P ⊆ NP? What is a short proof for a problem in P?

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Satisfiability

SAT

1 A boolean variable is a variable that assumes the values true or false.
2 The complement of a boolean variable x is denoted by x̄ and assumes the value

true if and only if the variable assumes false.
3 A literal is a boolean variable or its complement.
4 A clause is a disjunction of literals.
5 A boolean formula is said to be in Conjunctive Normal Form (CNF), if it is a

conjunction of clauses.
6 An assignment is a consistent mapping of the literals of a formula to true/false.
7 A formula is said to be satisfiable, if it has a satisfying assignment.

Definition

Given a CNF formula φ = C1 ∧ C2 . . .Cm over the n boolean variables {x1, x2, . . . xn}
and their complements, the satisfiability problem (or SAT) asks if φ is satisfiable.

kSAT is the variant of SAT in which each clause has exactly k variables.

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Satisfiability

SAT

1 A boolean variable is a variable that assumes the values true or false.
2 The complement of a boolean variable x is denoted by x̄ and assumes the value

true if and only if the variable assumes false.
3 A literal is a boolean variable or its complement.
4 A clause is a disjunction of literals.
5 A boolean formula is said to be in Conjunctive Normal Form (CNF), if it is a

conjunction of clauses.
6 An assignment is a consistent mapping of the literals of a formula to true/false.
7 A formula is said to be satisfiable, if it has a satisfying assignment.

Definition

Given a CNF formula φ = C1 ∧ C2 . . .Cm over the n boolean variables {x1, x2, . . . xn}
and their complements, the satisfiability problem (or SAT) asks if φ is satisfiable.

kSAT is the variant of SAT in which each clause has exactly k variables.

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Satisfiability

SAT

1 A boolean variable is a variable that assumes the values true or false.

2 The complement of a boolean variable x is denoted by x̄ and assumes the value
true if and only if the variable assumes false.

3 A literal is a boolean variable or its complement.
4 A clause is a disjunction of literals.
5 A boolean formula is said to be in Conjunctive Normal Form (CNF), if it is a

conjunction of clauses.
6 An assignment is a consistent mapping of the literals of a formula to true/false.
7 A formula is said to be satisfiable, if it has a satisfying assignment.

Definition

Given a CNF formula φ = C1 ∧ C2 . . .Cm over the n boolean variables {x1, x2, . . . xn}
and their complements, the satisfiability problem (or SAT) asks if φ is satisfiable.

kSAT is the variant of SAT in which each clause has exactly k variables.

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Satisfiability

SAT

1 A boolean variable is a variable that assumes the values true or false.
2 The complement of a boolean variable x is denoted by x̄ and assumes the value

true if and only if the variable assumes false.

3 A literal is a boolean variable or its complement.
4 A clause is a disjunction of literals.
5 A boolean formula is said to be in Conjunctive Normal Form (CNF), if it is a

conjunction of clauses.
6 An assignment is a consistent mapping of the literals of a formula to true/false.
7 A formula is said to be satisfiable, if it has a satisfying assignment.

Definition

Given a CNF formula φ = C1 ∧ C2 . . .Cm over the n boolean variables {x1, x2, . . . xn}
and their complements, the satisfiability problem (or SAT) asks if φ is satisfiable.

kSAT is the variant of SAT in which each clause has exactly k variables.

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Satisfiability

SAT

1 A boolean variable is a variable that assumes the values true or false.
2 The complement of a boolean variable x is denoted by x̄ and assumes the value

true if and only if the variable assumes false.
3 A literal is a boolean variable or its complement.

4 A clause is a disjunction of literals.
5 A boolean formula is said to be in Conjunctive Normal Form (CNF), if it is a

conjunction of clauses.
6 An assignment is a consistent mapping of the literals of a formula to true/false.
7 A formula is said to be satisfiable, if it has a satisfying assignment.

Definition

Given a CNF formula φ = C1 ∧ C2 . . .Cm over the n boolean variables {x1, x2, . . . xn}
and their complements, the satisfiability problem (or SAT) asks if φ is satisfiable.

kSAT is the variant of SAT in which each clause has exactly k variables.

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Satisfiability

SAT

1 A boolean variable is a variable that assumes the values true or false.
2 The complement of a boolean variable x is denoted by x̄ and assumes the value

true if and only if the variable assumes false.
3 A literal is a boolean variable or its complement.
4 A clause is a disjunction of literals.

5 A boolean formula is said to be in Conjunctive Normal Form (CNF), if it is a
conjunction of clauses.

6 An assignment is a consistent mapping of the literals of a formula to true/false.
7 A formula is said to be satisfiable, if it has a satisfying assignment.

Definition

Given a CNF formula φ = C1 ∧ C2 . . .Cm over the n boolean variables {x1, x2, . . . xn}
and their complements, the satisfiability problem (or SAT) asks if φ is satisfiable.

kSAT is the variant of SAT in which each clause has exactly k variables.

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Satisfiability

SAT

1 A boolean variable is a variable that assumes the values true or false.
2 The complement of a boolean variable x is denoted by x̄ and assumes the value

true if and only if the variable assumes false.
3 A literal is a boolean variable or its complement.
4 A clause is a disjunction of literals.
5 A boolean formula is said to be in Conjunctive Normal Form (CNF), if it is a

conjunction of clauses.

6 An assignment is a consistent mapping of the literals of a formula to true/false.
7 A formula is said to be satisfiable, if it has a satisfying assignment.

Definition

Given a CNF formula φ = C1 ∧ C2 . . .Cm over the n boolean variables {x1, x2, . . . xn}
and their complements, the satisfiability problem (or SAT) asks if φ is satisfiable.

kSAT is the variant of SAT in which each clause has exactly k variables.

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Satisfiability

SAT

1 A boolean variable is a variable that assumes the values true or false.
2 The complement of a boolean variable x is denoted by x̄ and assumes the value

true if and only if the variable assumes false.
3 A literal is a boolean variable or its complement.
4 A clause is a disjunction of literals.
5 A boolean formula is said to be in Conjunctive Normal Form (CNF), if it is a

conjunction of clauses.
6 An assignment is a consistent mapping of the literals of a formula to true/false.

7 A formula is said to be satisfiable, if it has a satisfying assignment.

Definition

Given a CNF formula φ = C1 ∧ C2 . . .Cm over the n boolean variables {x1, x2, . . . xn}
and their complements, the satisfiability problem (or SAT) asks if φ is satisfiable.

kSAT is the variant of SAT in which each clause has exactly k variables.

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Satisfiability

SAT

1 A boolean variable is a variable that assumes the values true or false.
2 The complement of a boolean variable x is denoted by x̄ and assumes the value

true if and only if the variable assumes false.
3 A literal is a boolean variable or its complement.
4 A clause is a disjunction of literals.
5 A boolean formula is said to be in Conjunctive Normal Form (CNF), if it is a

conjunction of clauses.
6 An assignment is a consistent mapping of the literals of a formula to true/false.
7 A formula is said to be satisfiable, if it has a satisfying assignment.

Definition

Given a CNF formula φ = C1 ∧ C2 . . .Cm over the n boolean variables {x1, x2, . . . xn}
and their complements, the satisfiability problem (or SAT) asks if φ is satisfiable.

kSAT is the variant of SAT in which each clause has exactly k variables.

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Satisfiability

SAT

1 A boolean variable is a variable that assumes the values true or false.
2 The complement of a boolean variable x is denoted by x̄ and assumes the value

true if and only if the variable assumes false.
3 A literal is a boolean variable or its complement.
4 A clause is a disjunction of literals.
5 A boolean formula is said to be in Conjunctive Normal Form (CNF), if it is a

conjunction of clauses.
6 An assignment is a consistent mapping of the literals of a formula to true/false.
7 A formula is said to be satisfiable, if it has a satisfying assignment.

Definition

Given a CNF formula φ = C1 ∧ C2 . . .Cm over the n boolean variables {x1, x2, . . . xn}
and their complements, the satisfiability problem (or SAT) asks if φ is satisfiable.

kSAT is the variant of SAT in which each clause has exactly k variables.

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Satisfiability

SAT

1 A boolean variable is a variable that assumes the values true or false.
2 The complement of a boolean variable x is denoted by x̄ and assumes the value

true if and only if the variable assumes false.
3 A literal is a boolean variable or its complement.
4 A clause is a disjunction of literals.
5 A boolean formula is said to be in Conjunctive Normal Form (CNF), if it is a

conjunction of clauses.
6 An assignment is a consistent mapping of the literals of a formula to true/false.
7 A formula is said to be satisfiable, if it has a satisfying assignment.

Definition

Given a CNF formula φ = C1 ∧ C2 . . .Cm over the n boolean variables {x1, x2, . . . xn}
and their complements, the satisfiability problem (or SAT) asks if φ is satisfiable.

kSAT is the variant of SAT in which each clause has exactly k variables.

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Satisfiability

SAT

1 A boolean variable is a variable that assumes the values true or false.
2 The complement of a boolean variable x is denoted by x̄ and assumes the value

true if and only if the variable assumes false.
3 A literal is a boolean variable or its complement.
4 A clause is a disjunction of literals.
5 A boolean formula is said to be in Conjunctive Normal Form (CNF), if it is a

conjunction of clauses.
6 An assignment is a consistent mapping of the literals of a formula to true/false.
7 A formula is said to be satisfiable, if it has a satisfying assignment.

Definition

Given a CNF formula φ = C1 ∧ C2 . . .Cm over the n boolean variables {x1, x2, . . . xn}
and their complements, the satisfiability problem (or SAT) asks if φ is satisfiable.

kSAT is the variant of SAT in which each clause has exactly k variables.

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Variants of SAT

Exercise

1 Show that 1SAT is in P.
2 Show that the formula (p∨ q̄)∧ (p̄∨ r̄)∧ (q ∨ r)∧ (p∨ q)∧ (q̄ ∨ r) is unsatisfiable.
3 A CNF formula is said to be Horn, if each clause has at most one positive literal.

Argue that HornSAT is in P.

Theorem

2SAT is in P.

Observation

(a ∨ b) ⇔ (ā→ b) ∧ (b̄ → a)

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Variants of SAT

Exercise

1 Show that 1SAT is in P.
2 Show that the formula (p∨ q̄)∧ (p̄∨ r̄)∧ (q ∨ r)∧ (p∨ q)∧ (q̄ ∨ r) is unsatisfiable.
3 A CNF formula is said to be Horn, if each clause has at most one positive literal.

Argue that HornSAT is in P.

Theorem

2SAT is in P.

Observation

(a ∨ b) ⇔ (ā→ b) ∧ (b̄ → a)

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Variants of SAT

Exercise

1 Show that 1SAT is in P.

2 Show that the formula (p∨ q̄)∧ (p̄∨ r̄)∧ (q ∨ r)∧ (p∨ q)∧ (q̄ ∨ r) is unsatisfiable.
3 A CNF formula is said to be Horn, if each clause has at most one positive literal.

Argue that HornSAT is in P.

Theorem

2SAT is in P.

Observation

(a ∨ b) ⇔ (ā→ b) ∧ (b̄ → a)

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Variants of SAT

Exercise

1 Show that 1SAT is in P.
2 Show that the formula (p∨ q̄)∧ (p̄∨ r̄)∧ (q ∨ r)∧ (p∨ q)∧ (q̄ ∨ r) is unsatisfiable.

3 A CNF formula is said to be Horn, if each clause has at most one positive literal.
Argue that HornSAT is in P.

Theorem

2SAT is in P.

Observation

(a ∨ b) ⇔ (ā→ b) ∧ (b̄ → a)

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Variants of SAT

Exercise

1 Show that 1SAT is in P.
2 Show that the formula (p∨ q̄)∧ (p̄∨ r̄)∧ (q ∨ r)∧ (p∨ q)∧ (q̄ ∨ r) is unsatisfiable.
3 A CNF formula is said to be Horn, if each clause has at most one positive literal.

Argue that HornSAT is in P.

Theorem

2SAT is in P.

Observation

(a ∨ b) ⇔ (ā→ b) ∧ (b̄ → a)

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Variants of SAT

Exercise

1 Show that 1SAT is in P.
2 Show that the formula (p∨ q̄)∧ (p̄∨ r̄)∧ (q ∨ r)∧ (p∨ q)∧ (q̄ ∨ r) is unsatisfiable.
3 A CNF formula is said to be Horn, if each clause has at most one positive literal.

Argue that HornSAT is in P.

Theorem

2SAT is in P.

Observation

(a ∨ b) ⇔ (ā→ b) ∧ (b̄ → a)

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Variants of SAT

Exercise

1 Show that 1SAT is in P.
2 Show that the formula (p∨ q̄)∧ (p̄∨ r̄)∧ (q ∨ r)∧ (p∨ q)∧ (q̄ ∨ r) is unsatisfiable.
3 A CNF formula is said to be Horn, if each clause has at most one positive literal.

Argue that HornSAT is in P.

Theorem

2SAT is in P.

Observation

(a ∨ b) ⇔ (ā→ b) ∧ (b̄ → a)

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Variants of SAT

Exercise

1 Show that 1SAT is in P.
2 Show that the formula (p∨ q̄)∧ (p̄∨ r̄)∧ (q ∨ r)∧ (p∨ q)∧ (q̄ ∨ r) is unsatisfiable.
3 A CNF formula is said to be Horn, if each clause has at most one positive literal.

Argue that HornSAT is in P.

Theorem

2SAT is in P.

Observation

(a ∨ b) ⇔ (ā→ b) ∧ (b̄ → a)

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Variants of SAT

Exercise

1 Show that 1SAT is in P.
2 Show that the formula (p∨ q̄)∧ (p̄∨ r̄)∧ (q ∨ r)∧ (p∨ q)∧ (q̄ ∨ r) is unsatisfiable.
3 A CNF formula is said to be Horn, if each clause has at most one positive literal.

Argue that HornSAT is in P.

Theorem

2SAT is in P.

Observation

(a ∨ b) ⇔ (ā→ b) ∧ (b̄ → a)

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Variants of SAT

Exercise

1 Show that 1SAT is in P.
2 Show that the formula (p∨ q̄)∧ (p̄∨ r̄)∧ (q ∨ r)∧ (p∨ q)∧ (q̄ ∨ r) is unsatisfiable.
3 A CNF formula is said to be Horn, if each clause has at most one positive literal.

Argue that HornSAT is in P.

Theorem

2SAT is in P.

Observation

(a ∨ b) ⇔ (ā→ b) ∧ (b̄ → a)

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Variants of SAT

Exercise

1 Show that 1SAT is in P.
2 Show that the formula (p∨ q̄)∧ (p̄∨ r̄)∧ (q ∨ r)∧ (p∨ q)∧ (q̄ ∨ r) is unsatisfiable.
3 A CNF formula is said to be Horn, if each clause has at most one positive literal.

Argue that HornSAT is in P.

Theorem

2SAT is in P.

Observation

(a ∨ b) ⇔ (ā→ b)

∧ (b̄ → a)

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Variants of SAT

Exercise

1 Show that 1SAT is in P.
2 Show that the formula (p∨ q̄)∧ (p̄∨ r̄)∧ (q ∨ r)∧ (p∨ q)∧ (q̄ ∨ r) is unsatisfiable.
3 A CNF formula is said to be Horn, if each clause has at most one positive literal.

Argue that HornSAT is in P.

Theorem

2SAT is in P.

Observation

(a ∨ b) ⇔ (ā→ b) ∧ (b̄ → a)

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Implication Graph

From constraints to Digraphs

The implication graph G(φ) corresponding to the formula φ is created as follows:
1 Create one vertex for each literal; the vertex is labeled with the literal.
2 Corresponding to the clause (xi ∨ xj) draw a directed arc from x̄i to xj and another

directed arc from x̄j to xi .
3 The resultant graph is called the implication graph corresponding to the given

2CNF formula.

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Implication Graph

From constraints to Digraphs

The implication graph G(φ) corresponding to the formula φ is created as follows:
1 Create one vertex for each literal; the vertex is labeled with the literal.
2 Corresponding to the clause (xi ∨ xj) draw a directed arc from x̄i to xj and another

directed arc from x̄j to xi .
3 The resultant graph is called the implication graph corresponding to the given

2CNF formula.

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Implication Graph

From constraints to Digraphs

The implication graph G(φ) corresponding to the formula φ is created as follows:

1 Create one vertex for each literal; the vertex is labeled with the literal.
2 Corresponding to the clause (xi ∨ xj) draw a directed arc from x̄i to xj and another

directed arc from x̄j to xi .
3 The resultant graph is called the implication graph corresponding to the given

2CNF formula.

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Implication Graph

From constraints to Digraphs

The implication graph G(φ) corresponding to the formula φ is created as follows:
1 Create one vertex for each literal; the vertex is labeled with the literal.

2 Corresponding to the clause (xi ∨ xj) draw a directed arc from x̄i to xj and another
directed arc from x̄j to xi .

3 The resultant graph is called the implication graph corresponding to the given
2CNF formula.

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Implication Graph

From constraints to Digraphs

The implication graph G(φ) corresponding to the formula φ is created as follows:
1 Create one vertex for each literal; the vertex is labeled with the literal.
2 Corresponding to the clause (xi ∨ xj) draw a directed arc from x̄i to xj and another

directed arc from x̄j to xi .

3 The resultant graph is called the implication graph corresponding to the given
2CNF formula.

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Implication Graph

From constraints to Digraphs

The implication graph G(φ) corresponding to the formula φ is created as follows:
1 Create one vertex for each literal; the vertex is labeled with the literal.
2 Corresponding to the clause (xi ∨ xj) draw a directed arc from x̄i to xj and another

directed arc from x̄j to xi .
3 The resultant graph is called the implication graph corresponding to the given

2CNF formula.

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Some observations

Observations

1 If there is a path from literal a to literal b in G(φ), then there is also a path from b̄
to ā.

2 Any assignment which leads to a path from true to false is not a satisfying
assignment.

3 If there is a path from xi to x̄i , then xi cannot be assigned true in a satisfying
assignment.

4 If there is a path from x̄i to xi , then xi cannot be assigned false in a satisfying
assignment.

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Some observations

Observations

1 If there is a path from literal a to literal b in G(φ), then there is also a path from b̄
to ā.

2 Any assignment which leads to a path from true to false is not a satisfying
assignment.

3 If there is a path from xi to x̄i , then xi cannot be assigned true in a satisfying
assignment.

4 If there is a path from x̄i to xi , then xi cannot be assigned false in a satisfying
assignment.

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Some observations

Observations

1 If there is a path from literal a to literal b in G(φ), then there is also a path from b̄
to ā.

2 Any assignment which leads to a path from true to false is not a satisfying
assignment.

3 If there is a path from xi to x̄i , then xi cannot be assigned true in a satisfying
assignment.

4 If there is a path from x̄i to xi , then xi cannot be assigned false in a satisfying
assignment.

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Some observations

Observations

1 If there is a path from literal a to literal b in G(φ), then there is also a path from b̄
to ā.

2 Any assignment which leads to a path from true to false is not a satisfying
assignment.

3 If there is a path from xi to x̄i , then xi cannot be assigned true in a satisfying
assignment.

4 If there is a path from x̄i to xi , then xi cannot be assigned false in a satisfying
assignment.

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Some observations

Observations

1 If there is a path from literal a to literal b in G(φ), then there is also a path from b̄
to ā.

2 Any assignment which leads to a path from true to false is not a satisfying
assignment.

3 If there is a path from xi to x̄i , then xi cannot be assigned true in a satisfying
assignment.

4 If there is a path from x̄i to xi , then xi cannot be assigned false in a satisfying
assignment.

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Some observations

Observations

1 If there is a path from literal a to literal b in G(φ), then there is also a path from b̄
to ā.

2 Any assignment which leads to a path from true to false is not a satisfying
assignment.

3 If there is a path from xi to x̄i , then xi cannot be assigned true in a satisfying
assignment.

4 If there is a path from x̄i to xi , then xi cannot be assigned false in a satisfying
assignment.

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Reachability Lemmata

Lemma

If there is a variable x in G(φ) such that x is reachable from x̄ and vice versa, then φ is
unsatisfiable.

Lemma

If there is no variable x such that x is reachable from x̄ and vice versa, then φ is
satisfiable.

Proof.

1 Assume that x is set to true, which means that there is no path from x to x̄ .
2 A contradiction occurs only if x y and x ȳ for some variable y .
3 By the symmetry of G(φ), there must be paths ȳ x̄ and y x̄ .
4 This means that there is a path x x̄ , i.e., a contradiction.

The case where x is set to false can be handled similarly.

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Reachability Lemmata

Lemma

If there is a variable x in G(φ) such that x is reachable from x̄ and vice versa, then φ is
unsatisfiable.

Lemma

If there is no variable x such that x is reachable from x̄ and vice versa, then φ is
satisfiable.

Proof.

1 Assume that x is set to true, which means that there is no path from x to x̄ .
2 A contradiction occurs only if x y and x ȳ for some variable y .
3 By the symmetry of G(φ), there must be paths ȳ x̄ and y x̄ .
4 This means that there is a path x x̄ , i.e., a contradiction.

The case where x is set to false can be handled similarly.

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Reachability Lemmata

Lemma

If there is a variable x in G(φ) such that x is reachable from x̄ and vice versa,

then φ is
unsatisfiable.

Lemma

If there is no variable x such that x is reachable from x̄ and vice versa, then φ is
satisfiable.

Proof.

1 Assume that x is set to true, which means that there is no path from x to x̄ .
2 A contradiction occurs only if x y and x ȳ for some variable y .
3 By the symmetry of G(φ), there must be paths ȳ x̄ and y x̄ .
4 This means that there is a path x x̄ , i.e., a contradiction.

The case where x is set to false can be handled similarly.

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Reachability Lemmata

Lemma

If there is a variable x in G(φ) such that x is reachable from x̄ and vice versa, then φ is
unsatisfiable.

Lemma

If there is no variable x such that x is reachable from x̄ and vice versa, then φ is
satisfiable.

Proof.

1 Assume that x is set to true, which means that there is no path from x to x̄ .
2 A contradiction occurs only if x y and x ȳ for some variable y .
3 By the symmetry of G(φ), there must be paths ȳ x̄ and y x̄ .
4 This means that there is a path x x̄ , i.e., a contradiction.

The case where x is set to false can be handled similarly.

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Reachability Lemmata

Lemma

If there is a variable x in G(φ) such that x is reachable from x̄ and vice versa, then φ is
unsatisfiable.

Lemma

If there is no variable x such that x is reachable from x̄ and vice versa,

then φ is
satisfiable.

Proof.

1 Assume that x is set to true, which means that there is no path from x to x̄ .
2 A contradiction occurs only if x y and x ȳ for some variable y .
3 By the symmetry of G(φ), there must be paths ȳ x̄ and y x̄ .
4 This means that there is a path x x̄ , i.e., a contradiction.

The case where x is set to false can be handled similarly.

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Reachability Lemmata

Lemma

If there is a variable x in G(φ) such that x is reachable from x̄ and vice versa, then φ is
unsatisfiable.

Lemma

If there is no variable x such that x is reachable from x̄ and vice versa, then φ is
satisfiable.

Proof.

1 Assume that x is set to true, which means that there is no path from x to x̄ .
2 A contradiction occurs only if x y and x ȳ for some variable y .
3 By the symmetry of G(φ), there must be paths ȳ x̄ and y x̄ .
4 This means that there is a path x x̄ , i.e., a contradiction.

The case where x is set to false can be handled similarly.

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Reachability Lemmata

Lemma

If there is a variable x in G(φ) such that x is reachable from x̄ and vice versa, then φ is
unsatisfiable.

Lemma

If there is no variable x such that x is reachable from x̄ and vice versa, then φ is
satisfiable.

Proof.

1 Assume that x is set to true, which means that there is no path from x to x̄ .
2 A contradiction occurs only if x y and x ȳ for some variable y .
3 By the symmetry of G(φ), there must be paths ȳ x̄ and y x̄ .
4 This means that there is a path x x̄ , i.e., a contradiction.

The case where x is set to false can be handled similarly.

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Reachability Lemmata

Lemma

If there is a variable x in G(φ) such that x is reachable from x̄ and vice versa, then φ is
unsatisfiable.

Lemma

If there is no variable x such that x is reachable from x̄ and vice versa, then φ is
satisfiable.

Proof.

1 Assume that x is set to true, which means that there is no path from x to x̄ .

2 A contradiction occurs only if x y and x ȳ for some variable y .
3 By the symmetry of G(φ), there must be paths ȳ x̄ and y x̄ .
4 This means that there is a path x x̄ , i.e., a contradiction.

The case where x is set to false can be handled similarly.

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Reachability Lemmata

Lemma

If there is a variable x in G(φ) such that x is reachable from x̄ and vice versa, then φ is
unsatisfiable.

Lemma

If there is no variable x such that x is reachable from x̄ and vice versa, then φ is
satisfiable.

Proof.

1 Assume that x is set to true, which means that there is no path from x to x̄ .
2 A contradiction occurs only if x y and x ȳ for some variable y .

3 By the symmetry of G(φ), there must be paths ȳ x̄ and y x̄ .
4 This means that there is a path x x̄ , i.e., a contradiction.

The case where x is set to false can be handled similarly.

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Reachability Lemmata

Lemma

If there is a variable x in G(φ) such that x is reachable from x̄ and vice versa, then φ is
unsatisfiable.

Lemma

If there is no variable x such that x is reachable from x̄ and vice versa, then φ is
satisfiable.

Proof.

1 Assume that x is set to true, which means that there is no path from x to x̄ .
2 A contradiction occurs only if x y and x ȳ for some variable y .
3 By the symmetry of G(φ), there must be paths ȳ x̄ and y x̄ .

4 This means that there is a path x x̄ , i.e., a contradiction.

The case where x is set to false can be handled similarly.

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Reachability Lemmata

Lemma

If there is a variable x in G(φ) such that x is reachable from x̄ and vice versa, then φ is
unsatisfiable.

Lemma

If there is no variable x such that x is reachable from x̄ and vice versa, then φ is
satisfiable.

Proof.

1 Assume that x is set to true, which means that there is no path from x to x̄ .
2 A contradiction occurs only if x y and x ȳ for some variable y .
3 By the symmetry of G(φ), there must be paths ȳ x̄ and y x̄ .
4 This means that there is a path x x̄ ,

i.e., a contradiction.

The case where x is set to false can be handled similarly.

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Reachability Lemmata

Lemma

If there is a variable x in G(φ) such that x is reachable from x̄ and vice versa, then φ is
unsatisfiable.

Lemma

If there is no variable x such that x is reachable from x̄ and vice versa, then φ is
satisfiable.

Proof.

1 Assume that x is set to true, which means that there is no path from x to x̄ .
2 A contradiction occurs only if x y and x ȳ for some variable y .
3 By the symmetry of G(φ), there must be paths ȳ x̄ and y x̄ .
4 This means that there is a path x x̄ , i.e., a contradiction.

The case where x is set to false can be handled similarly.

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Reachability Lemmata

Lemma

If there is a variable x in G(φ) such that x is reachable from x̄ and vice versa, then φ is
unsatisfiable.

Lemma

If there is no variable x such that x is reachable from x̄ and vice versa, then φ is
satisfiable.

Proof.

1 Assume that x is set to true, which means that there is no path from x to x̄ .
2 A contradiction occurs only if x y and x ȳ for some variable y .
3 By the symmetry of G(φ), there must be paths ȳ x̄ and y x̄ .
4 This means that there is a path x x̄ , i.e., a contradiction.

The case where x is set to false can be handled similarly.

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

The 2SAT Algorithm

FUNCTION 2SAT-ALGORITHM(G(φ))
1: for (each variable x) do
2: if (x x̄) and (x̄ x) then
3: return(false).
4: end if
5: end for
6: for (each variable x) do
7: if (x x̄) then
8: x = false.
9: else

10: if (x̄ x) then
11: x = true.
12: else
13: Set x to true or false.
14: end if
15: end if
16: end for

Algorithm 4.1: 2CNF satisfiability through Reachability

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

The 2SAT Algorithm

FUNCTION 2SAT-ALGORITHM(G(φ))

1: for (each variable x) do
2: if (x x̄) and (x̄ x) then
3: return(false).
4: end if
5: end for
6: for (each variable x) do
7: if (x x̄) then
8: x = false.
9: else

10: if (x̄ x) then
11: x = true.
12: else
13: Set x to true or false.
14: end if
15: end if
16: end for

Algorithm 4.2: 2CNF satisfiability through Reachability

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

The 2SAT Algorithm

FUNCTION 2SAT-ALGORITHM(G(φ))
1: for (each variable x) do

2: if (x x̄) and (x̄ x) then
3: return(false).
4: end if
5: end for
6: for (each variable x) do
7: if (x x̄) then
8: x = false.
9: else

10: if (x̄ x) then
11: x = true.
12: else
13: Set x to true or false.
14: end if
15: end if
16: end for

Algorithm 4.3: 2CNF satisfiability through Reachability

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

The 2SAT Algorithm

FUNCTION 2SAT-ALGORITHM(G(φ))
1: for (each variable x) do
2: if (x x̄)

and (x̄ x) then
3: return(false).
4: end if
5: end for
6: for (each variable x) do
7: if (x x̄) then
8: x = false.
9: else

10: if (x̄ x) then
11: x = true.
12: else
13: Set x to true or false.
14: end if
15: end if
16: end for

Algorithm 4.4: 2CNF satisfiability through Reachability

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

The 2SAT Algorithm

FUNCTION 2SAT-ALGORITHM(G(φ))
1: for (each variable x) do
2: if (x x̄) and (x̄ x) then

3: return(false).
4: end if
5: end for
6: for (each variable x) do
7: if (x x̄) then
8: x = false.
9: else

10: if (x̄ x) then
11: x = true.
12: else
13: Set x to true or false.
14: end if
15: end if
16: end for

Algorithm 4.5: 2CNF satisfiability through Reachability

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

The 2SAT Algorithm

FUNCTION 2SAT-ALGORITHM(G(φ))
1: for (each variable x) do
2: if (x x̄) and (x̄ x) then
3: return(false).

4: end if
5: end for
6: for (each variable x) do
7: if (x x̄) then
8: x = false.
9: else

10: if (x̄ x) then
11: x = true.
12: else
13: Set x to true or false.
14: end if
15: end if
16: end for

Algorithm 4.6: 2CNF satisfiability through Reachability

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

The 2SAT Algorithm

FUNCTION 2SAT-ALGORITHM(G(φ))
1: for (each variable x) do
2: if (x x̄) and (x̄ x) then
3: return(false).
4: end if

5: end for
6: for (each variable x) do
7: if (x x̄) then
8: x = false.
9: else

10: if (x̄ x) then
11: x = true.
12: else
13: Set x to true or false.
14: end if
15: end if
16: end for

Algorithm 4.7: 2CNF satisfiability through Reachability

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

The 2SAT Algorithm

FUNCTION 2SAT-ALGORITHM(G(φ))
1: for (each variable x) do
2: if (x x̄) and (x̄ x) then
3: return(false).
4: end if
5: end for

6: for (each variable x) do
7: if (x x̄) then
8: x = false.
9: else

10: if (x̄ x) then
11: x = true.
12: else
13: Set x to true or false.
14: end if
15: end if
16: end for

Algorithm 4.8: 2CNF satisfiability through Reachability

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

The 2SAT Algorithm

FUNCTION 2SAT-ALGORITHM(G(φ))
1: for (each variable x) do
2: if (x x̄) and (x̄ x) then
3: return(false).
4: end if
5: end for
6: for (each variable x) do

7: if (x x̄) then
8: x = false.
9: else

10: if (x̄ x) then
11: x = true.
12: else
13: Set x to true or false.
14: end if
15: end if
16: end for

Algorithm 4.9: 2CNF satisfiability through Reachability

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

The 2SAT Algorithm

FUNCTION 2SAT-ALGORITHM(G(φ))
1: for (each variable x) do
2: if (x x̄) and (x̄ x) then
3: return(false).
4: end if
5: end for
6: for (each variable x) do
7: if (x x̄) then

8: x = false.
9: else

10: if (x̄ x) then
11: x = true.
12: else
13: Set x to true or false.
14: end if
15: end if
16: end for

Algorithm 4.10: 2CNF satisfiability through Reachability

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

The 2SAT Algorithm

FUNCTION 2SAT-ALGORITHM(G(φ))
1: for (each variable x) do
2: if (x x̄) and (x̄ x) then
3: return(false).
4: end if
5: end for
6: for (each variable x) do
7: if (x x̄) then
8: x = false.

9: else
10: if (x̄ x) then
11: x = true.
12: else
13: Set x to true or false.
14: end if
15: end if
16: end for

Algorithm 4.11: 2CNF satisfiability through Reachability

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

The 2SAT Algorithm

FUNCTION 2SAT-ALGORITHM(G(φ))
1: for (each variable x) do
2: if (x x̄) and (x̄ x) then
3: return(false).
4: end if
5: end for
6: for (each variable x) do
7: if (x x̄) then
8: x = false.
9: else

10: if (x̄ x) then
11: x = true.
12: else
13: Set x to true or false.
14: end if
15: end if
16: end for

Algorithm 4.12: 2CNF satisfiability through Reachability

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

The 2SAT Algorithm

FUNCTION 2SAT-ALGORITHM(G(φ))
1: for (each variable x) do
2: if (x x̄) and (x̄ x) then
3: return(false).
4: end if
5: end for
6: for (each variable x) do
7: if (x x̄) then
8: x = false.
9: else

10: if (x̄ x) then

11: x = true.
12: else
13: Set x to true or false.
14: end if
15: end if
16: end for

Algorithm 4.13: 2CNF satisfiability through Reachability

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

The 2SAT Algorithm

FUNCTION 2SAT-ALGORITHM(G(φ))
1: for (each variable x) do
2: if (x x̄) and (x̄ x) then
3: return(false).
4: end if
5: end for
6: for (each variable x) do
7: if (x x̄) then
8: x = false.
9: else

10: if (x̄ x) then
11: x = true.

12: else
13: Set x to true or false.
14: end if
15: end if
16: end for

Algorithm 4.14: 2CNF satisfiability through Reachability

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

The 2SAT Algorithm

FUNCTION 2SAT-ALGORITHM(G(φ))
1: for (each variable x) do
2: if (x x̄) and (x̄ x) then
3: return(false).
4: end if
5: end for
6: for (each variable x) do
7: if (x x̄) then
8: x = false.
9: else

10: if (x̄ x) then
11: x = true.
12: else

13: Set x to true or false.
14: end if
15: end if
16: end for

Algorithm 4.15: 2CNF satisfiability through Reachability

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

The 2SAT Algorithm

FUNCTION 2SAT-ALGORITHM(G(φ))
1: for (each variable x) do
2: if (x x̄) and (x̄ x) then
3: return(false).
4: end if
5: end for
6: for (each variable x) do
7: if (x x̄) then
8: x = false.
9: else

10: if (x̄ x) then
11: x = true.
12: else
13: Set x to true

or false.
14: end if
15: end if
16: end for

Algorithm 4.16: 2CNF satisfiability through Reachability

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

The 2SAT Algorithm

FUNCTION 2SAT-ALGORITHM(G(φ))
1: for (each variable x) do
2: if (x x̄) and (x̄ x) then
3: return(false).
4: end if
5: end for
6: for (each variable x) do
7: if (x x̄) then
8: x = false.
9: else

10: if (x̄ x) then
11: x = true.
12: else
13: Set x to true or false.

14: end if
15: end if
16: end for

Algorithm 4.17: 2CNF satisfiability through Reachability

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

The 2SAT Algorithm

FUNCTION 2SAT-ALGORITHM(G(φ))
1: for (each variable x) do
2: if (x x̄) and (x̄ x) then
3: return(false).
4: end if
5: end for
6: for (each variable x) do
7: if (x x̄) then
8: x = false.
9: else

10: if (x̄ x) then
11: x = true.
12: else
13: Set x to true or false.
14: end if

15: end if
16: end for

Algorithm 4.18: 2CNF satisfiability through Reachability

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

The 2SAT Algorithm

FUNCTION 2SAT-ALGORITHM(G(φ))
1: for (each variable x) do
2: if (x x̄) and (x̄ x) then
3: return(false).
4: end if
5: end for
6: for (each variable x) do
7: if (x x̄) then
8: x = false.
9: else

10: if (x̄ x) then
11: x = true.
12: else
13: Set x to true or false.
14: end if
15: end if

16: end for

Algorithm 4.19: 2CNF satisfiability through Reachability

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

The 2SAT Algorithm

FUNCTION 2SAT-ALGORITHM(G(φ))
1: for (each variable x) do
2: if (x x̄) and (x̄ x) then
3: return(false).
4: end if
5: end for
6: for (each variable x) do
7: if (x x̄) then
8: x = false.
9: else

10: if (x̄ x) then
11: x = true.
12: else
13: Set x to true or false.
14: end if
15: end if
16: end for

Algorithm 4.20: 2CNF satisfiability through Reachability

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Analysis

Exercise

What is the running time of the above algorithm?

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Analysis

Exercise

What is the running time of the above algorithm?

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Reducing Hamilton Path to SAT

Hamilton Path to SAT

Input instance: An unweighted, directed graph G.
Output instance: A CNF formula φ, such that G has a Hamilton path if and only if φ is
satisfiable.

1 Suppose G has n nodes; φ has n2 variables of the form xij , where xij represents
the fact that node j is the i th node in the Hamilton Path (may or may not be true).

2 (x1j ∨ x2j . . . xnj), j = 1, 2, . . . , n. [C1].
3 (¬xij ∨ ¬xkj), j = 1, 2 . . . n, i = 1, 2, . . . , n, k = 1, 2, . . . n, k 6= i . [C2].
4 (xi1 ∨ xi2 . . . ∨ xin), i = 1, 2 . . . n. [C3].
5 (¬xij ∨ ¬xik), i = 1, 2, . . . , n, j, k = 1, 2, . . . , n, j 6= k . [C4].
6 (¬xki ∨ ¬x(k+1)j), k = 1, 2, . . . , n − 1, (i, j) 6∈ G. [C5].

7 φ = C1 ∧ C2 ∧ C3 ∧ C4 ∧ C5.

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Reducing Hamilton Path to SAT

Hamilton Path to SAT

Input instance: An unweighted, directed graph G.
Output instance: A CNF formula φ, such that G has a Hamilton path if and only if φ is
satisfiable.

1 Suppose G has n nodes; φ has n2 variables of the form xij , where xij represents
the fact that node j is the i th node in the Hamilton Path (may or may not be true).

2 (x1j ∨ x2j . . . xnj), j = 1, 2, . . . , n. [C1].
3 (¬xij ∨ ¬xkj), j = 1, 2 . . . n, i = 1, 2, . . . , n, k = 1, 2, . . . n, k 6= i . [C2].
4 (xi1 ∨ xi2 . . . ∨ xin), i = 1, 2 . . . n. [C3].
5 (¬xij ∨ ¬xik), i = 1, 2, . . . , n, j, k = 1, 2, . . . , n, j 6= k . [C4].
6 (¬xki ∨ ¬x(k+1)j), k = 1, 2, . . . , n − 1, (i, j) 6∈ G. [C5].

7 φ = C1 ∧ C2 ∧ C3 ∧ C4 ∧ C5.

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Reducing Hamilton Path to SAT

Hamilton Path to SAT

Input instance: An unweighted, directed graph G.

Output instance: A CNF formula φ, such that G has a Hamilton path if and only if φ is
satisfiable.

1 Suppose G has n nodes; φ has n2 variables of the form xij , where xij represents
the fact that node j is the i th node in the Hamilton Path (may or may not be true).

2 (x1j ∨ x2j . . . xnj), j = 1, 2, . . . , n. [C1].
3 (¬xij ∨ ¬xkj), j = 1, 2 . . . n, i = 1, 2, . . . , n, k = 1, 2, . . . n, k 6= i . [C2].
4 (xi1 ∨ xi2 . . . ∨ xin), i = 1, 2 . . . n. [C3].
5 (¬xij ∨ ¬xik), i = 1, 2, . . . , n, j, k = 1, 2, . . . , n, j 6= k . [C4].
6 (¬xki ∨ ¬x(k+1)j), k = 1, 2, . . . , n − 1, (i, j) 6∈ G. [C5].

7 φ = C1 ∧ C2 ∧ C3 ∧ C4 ∧ C5.

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Reducing Hamilton Path to SAT

Hamilton Path to SAT

Input instance: An unweighted, directed graph G.
Output instance: A CNF formula φ, such that G has a Hamilton path if and only if φ is
satisfiable.

1 Suppose G has n nodes; φ has n2 variables of the form xij , where xij represents
the fact that node j is the i th node in the Hamilton Path (may or may not be true).

2 (x1j ∨ x2j . . . xnj), j = 1, 2, . . . , n. [C1].
3 (¬xij ∨ ¬xkj), j = 1, 2 . . . n, i = 1, 2, . . . , n, k = 1, 2, . . . n, k 6= i . [C2].
4 (xi1 ∨ xi2 . . . ∨ xin), i = 1, 2 . . . n. [C3].
5 (¬xij ∨ ¬xik), i = 1, 2, . . . , n, j, k = 1, 2, . . . , n, j 6= k . [C4].
6 (¬xki ∨ ¬x(k+1)j), k = 1, 2, . . . , n − 1, (i, j) 6∈ G. [C5].

7 φ = C1 ∧ C2 ∧ C3 ∧ C4 ∧ C5.

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Reducing Hamilton Path to SAT

Hamilton Path to SAT

Input instance: An unweighted, directed graph G.
Output instance: A CNF formula φ, such that G has a Hamilton path if and only if φ is
satisfiable.

1 Suppose G has n nodes; φ has n2 variables of the form xij , where xij represents
the fact that node j is the i th node in the Hamilton Path (may or may not be true).

2 (x1j ∨ x2j . . . xnj), j = 1, 2, . . . , n. [C1].
3 (¬xij ∨ ¬xkj), j = 1, 2 . . . n, i = 1, 2, . . . , n, k = 1, 2, . . . n, k 6= i . [C2].
4 (xi1 ∨ xi2 . . . ∨ xin), i = 1, 2 . . . n. [C3].
5 (¬xij ∨ ¬xik), i = 1, 2, . . . , n, j, k = 1, 2, . . . , n, j 6= k . [C4].
6 (¬xki ∨ ¬x(k+1)j), k = 1, 2, . . . , n − 1, (i, j) 6∈ G. [C5].

7 φ = C1 ∧ C2 ∧ C3 ∧ C4 ∧ C5.

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Reducing Hamilton Path to SAT

Hamilton Path to SAT

Input instance: An unweighted, directed graph G.
Output instance: A CNF formula φ, such that G has a Hamilton path if and only if φ is
satisfiable.

1 Suppose G has n nodes; φ has n2 variables of the form xij , where xij represents
the fact that node j is the i th node in the Hamilton Path (may or may not be true).

2 (x1j ∨ x2j . . . xnj), j = 1, 2, . . . , n. [C1].

3 (¬xij ∨ ¬xkj), j = 1, 2 . . . n, i = 1, 2, . . . , n, k = 1, 2, . . . n, k 6= i . [C2].
4 (xi1 ∨ xi2 . . . ∨ xin), i = 1, 2 . . . n. [C3].
5 (¬xij ∨ ¬xik), i = 1, 2, . . . , n, j, k = 1, 2, . . . , n, j 6= k . [C4].
6 (¬xki ∨ ¬x(k+1)j), k = 1, 2, . . . , n − 1, (i, j) 6∈ G. [C5].

7 φ = C1 ∧ C2 ∧ C3 ∧ C4 ∧ C5.

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Reducing Hamilton Path to SAT

Hamilton Path to SAT

Input instance: An unweighted, directed graph G.
Output instance: A CNF formula φ, such that G has a Hamilton path if and only if φ is
satisfiable.

1 Suppose G has n nodes; φ has n2 variables of the form xij , where xij represents
the fact that node j is the i th node in the Hamilton Path (may or may not be true).

2 (x1j ∨ x2j . . . xnj), j = 1, 2, . . . , n. [C1].

3 (¬xij ∨ ¬xkj), j = 1, 2 . . . n, i = 1, 2, . . . , n, k = 1, 2, . . . n, k 6= i . [C2].
4 (xi1 ∨ xi2 . . . ∨ xin), i = 1, 2 . . . n. [C3].
5 (¬xij ∨ ¬xik), i = 1, 2, . . . , n, j, k = 1, 2, . . . , n, j 6= k . [C4].
6 (¬xki ∨ ¬x(k+1)j), k = 1, 2, . . . , n − 1, (i, j) 6∈ G. [C5].

7 φ = C1 ∧ C2 ∧ C3 ∧ C4 ∧ C5.

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Reducing Hamilton Path to SAT

Hamilton Path to SAT

Input instance: An unweighted, directed graph G.
Output instance: A CNF formula φ, such that G has a Hamilton path if and only if φ is
satisfiable.

1 Suppose G has n nodes; φ has n2 variables of the form xij , where xij represents
the fact that node j is the i th node in the Hamilton Path (may or may not be true).

2 (x1j ∨ x2j . . . xnj), j = 1, 2, . . . , n. [C1].
3 (¬xij ∨ ¬xkj), j = 1, 2 . . . n, i = 1, 2, . . . , n, k = 1, 2, . . . n, k 6= i . [C2].

4 (xi1 ∨ xi2 . . . ∨ xin), i = 1, 2 . . . n. [C3].
5 (¬xij ∨ ¬xik), i = 1, 2, . . . , n, j, k = 1, 2, . . . , n, j 6= k . [C4].
6 (¬xki ∨ ¬x(k+1)j), k = 1, 2, . . . , n − 1, (i, j) 6∈ G. [C5].

7 φ = C1 ∧ C2 ∧ C3 ∧ C4 ∧ C5.

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Reducing Hamilton Path to SAT

Hamilton Path to SAT

Input instance: An unweighted, directed graph G.
Output instance: A CNF formula φ, such that G has a Hamilton path if and only if φ is
satisfiable.

1 Suppose G has n nodes; φ has n2 variables of the form xij , where xij represents
the fact that node j is the i th node in the Hamilton Path (may or may not be true).

2 (x1j ∨ x2j . . . xnj), j = 1, 2, . . . , n. [C1].
3 (¬xij ∨ ¬xkj), j = 1, 2 . . . n, i = 1, 2, . . . , n, k = 1, 2, . . . n, k 6= i . [C2].
4 (xi1 ∨ xi2 . . . ∨ xin), i = 1, 2 . . . n. [C3].

5 (¬xij ∨ ¬xik), i = 1, 2, . . . , n, j, k = 1, 2, . . . , n, j 6= k . [C4].
6 (¬xki ∨ ¬x(k+1)j), k = 1, 2, . . . , n − 1, (i, j) 6∈ G. [C5].

7 φ = C1 ∧ C2 ∧ C3 ∧ C4 ∧ C5.

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Reducing Hamilton Path to SAT

Hamilton Path to SAT

Input instance: An unweighted, directed graph G.
Output instance: A CNF formula φ, such that G has a Hamilton path if and only if φ is
satisfiable.

1 Suppose G has n nodes; φ has n2 variables of the form xij , where xij represents
the fact that node j is the i th node in the Hamilton Path (may or may not be true).

2 (x1j ∨ x2j . . . xnj), j = 1, 2, . . . , n. [C1].
3 (¬xij ∨ ¬xkj), j = 1, 2 . . . n, i = 1, 2, . . . , n, k = 1, 2, . . . n, k 6= i . [C2].
4 (xi1 ∨ xi2 . . . ∨ xin), i = 1, 2 . . . n. [C3].
5 (¬xij ∨ ¬xik), i = 1, 2, . . . , n, j, k = 1, 2, . . . , n, j 6= k . [C4].

6 (¬xki ∨ ¬x(k+1)j), k = 1, 2, . . . , n − 1, (i, j) 6∈ G. [C5].

7 φ = C1 ∧ C2 ∧ C3 ∧ C4 ∧ C5.

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Reducing Hamilton Path to SAT

Hamilton Path to SAT

Input instance: An unweighted, directed graph G.
Output instance: A CNF formula φ, such that G has a Hamilton path if and only if φ is
satisfiable.

1 Suppose G has n nodes; φ has n2 variables of the form xij , where xij represents
the fact that node j is the i th node in the Hamilton Path (may or may not be true).

2 (x1j ∨ x2j . . . xnj), j = 1, 2, . . . , n. [C1].
3 (¬xij ∨ ¬xkj), j = 1, 2 . . . n, i = 1, 2, . . . , n, k = 1, 2, . . . n, k 6= i . [C2].
4 (xi1 ∨ xi2 . . . ∨ xin), i = 1, 2 . . . n. [C3].
5 (¬xij ∨ ¬xik), i = 1, 2, . . . , n, j, k = 1, 2, . . . , n, j 6= k . [C4].
6 (¬xki ∨ ¬x(k+1)j), k = 1, 2, . . . , n − 1, (i, j) 6∈ G. [C5].

7 φ = C1 ∧ C2 ∧ C3 ∧ C4 ∧ C5.

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Reducing Hamilton Path to SAT

Hamilton Path to SAT

Input instance: An unweighted, directed graph G.
Output instance: A CNF formula φ, such that G has a Hamilton path if and only if φ is
satisfiable.

1 Suppose G has n nodes; φ has n2 variables of the form xij , where xij represents
the fact that node j is the i th node in the Hamilton Path (may or may not be true).

2 (x1j ∨ x2j . . . xnj), j = 1, 2, . . . , n. [C1].
3 (¬xij ∨ ¬xkj), j = 1, 2 . . . n, i = 1, 2, . . . , n, k = 1, 2, . . . n, k 6= i . [C2].
4 (xi1 ∨ xi2 . . . ∨ xin), i = 1, 2 . . . n. [C3].
5 (¬xij ∨ ¬xik), i = 1, 2, . . . , n, j, k = 1, 2, . . . , n, j 6= k . [C4].
6 (¬xki ∨ ¬x(k+1)j), k = 1, 2, . . . , n − 1, (i, j) 6∈ G. [C5].

7 φ = C1 ∧ C2 ∧ C3 ∧ C4 ∧ C5.

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Completing the argument

Satisfiability implies Hamilton Path

Let T denote a satisfying assignment to φ.

We show that there must exist a Hamilton Path in G.

1 For each j , there is exactly one i , such that xij is true under T . (Why?)
2 For each i , there is exactly one j , such that xij is true under T . (Why?)
3 T is thus a permutation of the nodes (π(1), π(2), . . . , π(n)), such that π(i) = j if

and only if xij is set to true under T .
4 The clause system [C6] guarantees that adjacent elements on the permutation are

connected by an edge in G.
5 It follows that G has a Hamilton path.

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Completing the argument

Satisfiability implies Hamilton Path

Let T denote a satisfying assignment to φ.

We show that there must exist a Hamilton Path in G.

1 For each j , there is exactly one i , such that xij is true under T . (Why?)
2 For each i , there is exactly one j , such that xij is true under T . (Why?)
3 T is thus a permutation of the nodes (π(1), π(2), . . . , π(n)), such that π(i) = j if

and only if xij is set to true under T .
4 The clause system [C6] guarantees that adjacent elements on the permutation are

connected by an edge in G.
5 It follows that G has a Hamilton path.

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Completing the argument

Satisfiability implies Hamilton Path

Let T denote a satisfying assignment to φ.

We show that there must exist a Hamilton Path in G.

1 For each j , there is exactly one i , such that xij is true under T . (Why?)
2 For each i , there is exactly one j , such that xij is true under T . (Why?)
3 T is thus a permutation of the nodes (π(1), π(2), . . . , π(n)), such that π(i) = j if

and only if xij is set to true under T .
4 The clause system [C6] guarantees that adjacent elements on the permutation are

connected by an edge in G.
5 It follows that G has a Hamilton path.

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Completing the argument

Satisfiability implies Hamilton Path

Let T denote a satisfying assignment to φ.

We show that there must exist a Hamilton Path in G.

1 For each j , there is exactly one i , such that xij is true under T . (Why?)
2 For each i , there is exactly one j , such that xij is true under T . (Why?)
3 T is thus a permutation of the nodes (π(1), π(2), . . . , π(n)), such that π(i) = j if

and only if xij is set to true under T .
4 The clause system [C6] guarantees that adjacent elements on the permutation are

connected by an edge in G.
5 It follows that G has a Hamilton path.

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Completing the argument

Satisfiability implies Hamilton Path

Let T denote a satisfying assignment to φ.

We show that there must exist a Hamilton Path in G.

1 For each j , there is exactly one i , such that xij is true under T . (Why?)
2 For each i , there is exactly one j , such that xij is true under T . (Why?)
3 T is thus a permutation of the nodes (π(1), π(2), . . . , π(n)), such that π(i) = j if

and only if xij is set to true under T .
4 The clause system [C6] guarantees that adjacent elements on the permutation are

connected by an edge in G.
5 It follows that G has a Hamilton path.

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Completing the argument

Satisfiability implies Hamilton Path

Let T denote a satisfying assignment to φ.

We show that there must exist a Hamilton Path in G.

1 For each j , there is exactly one i , such that xij is true under T .

(Why?)
2 For each i , there is exactly one j , such that xij is true under T . (Why?)
3 T is thus a permutation of the nodes (π(1), π(2), . . . , π(n)), such that π(i) = j if

and only if xij is set to true under T .
4 The clause system [C6] guarantees that adjacent elements on the permutation are

connected by an edge in G.
5 It follows that G has a Hamilton path.

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Completing the argument

Satisfiability implies Hamilton Path

Let T denote a satisfying assignment to φ.

We show that there must exist a Hamilton Path in G.

1 For each j , there is exactly one i , such that xij is true under T . (Why?)

2 For each i , there is exactly one j , such that xij is true under T . (Why?)
3 T is thus a permutation of the nodes (π(1), π(2), . . . , π(n)), such that π(i) = j if

and only if xij is set to true under T .
4 The clause system [C6] guarantees that adjacent elements on the permutation are

connected by an edge in G.
5 It follows that G has a Hamilton path.

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Completing the argument

Satisfiability implies Hamilton Path

Let T denote a satisfying assignment to φ.

We show that there must exist a Hamilton Path in G.

1 For each j , there is exactly one i , such that xij is true under T . (Why?)
2 For each i , there is exactly one j , such that xij is true under T .

(Why?)
3 T is thus a permutation of the nodes (π(1), π(2), . . . , π(n)), such that π(i) = j if

and only if xij is set to true under T .
4 The clause system [C6] guarantees that adjacent elements on the permutation are

connected by an edge in G.
5 It follows that G has a Hamilton path.

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Completing the argument

Satisfiability implies Hamilton Path

Let T denote a satisfying assignment to φ.

We show that there must exist a Hamilton Path in G.

1 For each j , there is exactly one i , such that xij is true under T . (Why?)
2 For each i , there is exactly one j , such that xij is true under T . (Why?)

3 T is thus a permutation of the nodes (π(1), π(2), . . . , π(n)), such that π(i) = j if
and only if xij is set to true under T .

4 The clause system [C6] guarantees that adjacent elements on the permutation are
connected by an edge in G.

5 It follows that G has a Hamilton path.

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Completing the argument

Satisfiability implies Hamilton Path

Let T denote a satisfying assignment to φ.

We show that there must exist a Hamilton Path in G.

1 For each j , there is exactly one i , such that xij is true under T . (Why?)
2 For each i , there is exactly one j , such that xij is true under T . (Why?)
3 T is thus a permutation of the nodes (π(1), π(2), . . . , π(n)), such that π(i) = j if

and only if xij is set to true under T .

4 The clause system [C6] guarantees that adjacent elements on the permutation are
connected by an edge in G.

5 It follows that G has a Hamilton path.

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Completing the argument

Satisfiability implies Hamilton Path

Let T denote a satisfying assignment to φ.

We show that there must exist a Hamilton Path in G.

1 For each j , there is exactly one i , such that xij is true under T . (Why?)
2 For each i , there is exactly one j , such that xij is true under T . (Why?)
3 T is thus a permutation of the nodes (π(1), π(2), . . . , π(n)), such that π(i) = j if

and only if xij is set to true under T .
4 The clause system [C6] guarantees that adjacent elements on the permutation are

connected by an edge in G.

5 It follows that G has a Hamilton path.

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Completing the argument

Satisfiability implies Hamilton Path

Let T denote a satisfying assignment to φ.

We show that there must exist a Hamilton Path in G.

1 For each j , there is exactly one i , such that xij is true under T . (Why?)
2 For each i , there is exactly one j , such that xij is true under T . (Why?)
3 T is thus a permutation of the nodes (π(1), π(2), . . . , π(n)), such that π(i) = j if

and only if xij is set to true under T .
4 The clause system [C6] guarantees that adjacent elements on the permutation are

connected by an edge in G.
5 It follows that G has a Hamilton path.

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Completing the argument (contd.)

Hamilton Path implies Satisfiability

Assume that the graph G has a Hamilton path p.

We show that φ is satisfiable. Observe that,
1 Observe that p can be represented as a permutation π = (π(1), π(2) . . . π(n)),

where π(i) represents the i th vertex on the Hamilton path.
2 Consider the following assignment: T (xij) = true if and only if π(i) = j .
3 It is not hard to see that every clause in φ is satisfied.

Final Step

Is the reduction polynomial in the size of the input?

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Completing the argument (contd.)

Hamilton Path implies Satisfiability

Assume that the graph G has a Hamilton path p.

We show that φ is satisfiable. Observe that,
1 Observe that p can be represented as a permutation π = (π(1), π(2) . . . π(n)),

where π(i) represents the i th vertex on the Hamilton path.
2 Consider the following assignment: T (xij) = true if and only if π(i) = j .
3 It is not hard to see that every clause in φ is satisfied.

Final Step

Is the reduction polynomial in the size of the input?

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Completing the argument (contd.)

Hamilton Path implies Satisfiability

Assume that the graph G has a Hamilton path p.

We show that φ is satisfiable.

Observe that,
1 Observe that p can be represented as a permutation π = (π(1), π(2) . . . π(n)),

where π(i) represents the i th vertex on the Hamilton path.
2 Consider the following assignment: T (xij) = true if and only if π(i) = j .
3 It is not hard to see that every clause in φ is satisfied.

Final Step

Is the reduction polynomial in the size of the input?

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Completing the argument (contd.)

Hamilton Path implies Satisfiability

Assume that the graph G has a Hamilton path p.

We show that φ is satisfiable. Observe that,

1 Observe that p can be represented as a permutation π = (π(1), π(2) . . . π(n)),
where π(i) represents the i th vertex on the Hamilton path.

2 Consider the following assignment: T (xij) = true if and only if π(i) = j .
3 It is not hard to see that every clause in φ is satisfied.

Final Step

Is the reduction polynomial in the size of the input?

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Completing the argument (contd.)

Hamilton Path implies Satisfiability

Assume that the graph G has a Hamilton path p.

We show that φ is satisfiable. Observe that,
1 Observe that p can be represented as a permutation π = (π(1), π(2) . . . π(n)),

where π(i) represents the i th vertex on the Hamilton path.

2 Consider the following assignment: T (xij) = true if and only if π(i) = j .
3 It is not hard to see that every clause in φ is satisfied.

Final Step

Is the reduction polynomial in the size of the input?

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Completing the argument (contd.)

Hamilton Path implies Satisfiability

Assume that the graph G has a Hamilton path p.

We show that φ is satisfiable. Observe that,
1 Observe that p can be represented as a permutation π = (π(1), π(2) . . . π(n)),

where π(i) represents the i th vertex on the Hamilton path.
2 Consider the following assignment: T (xij) = true if and only if π(i) = j .

3 It is not hard to see that every clause in φ is satisfied.

Final Step

Is the reduction polynomial in the size of the input?

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Completing the argument (contd.)

Hamilton Path implies Satisfiability

Assume that the graph G has a Hamilton path p.

We show that φ is satisfiable. Observe that,
1 Observe that p can be represented as a permutation π = (π(1), π(2) . . . π(n)),

where π(i) represents the i th vertex on the Hamilton path.
2 Consider the following assignment: T (xij) = true if and only if π(i) = j .
3 It is not hard to see that every clause in φ is satisfied.

Final Step

Is the reduction polynomial in the size of the input?

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Completing the argument (contd.)

Hamilton Path implies Satisfiability

Assume that the graph G has a Hamilton path p.

We show that φ is satisfiable. Observe that,
1 Observe that p can be represented as a permutation π = (π(1), π(2) . . . π(n)),

where π(i) represents the i th vertex on the Hamilton path.
2 Consider the following assignment: T (xij) = true if and only if π(i) = j .
3 It is not hard to see that every clause in φ is satisfied.

Final Step

Is the reduction polynomial in the size of the input?

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Completing the argument (contd.)

Hamilton Path implies Satisfiability

Assume that the graph G has a Hamilton path p.

We show that φ is satisfiable. Observe that,
1 Observe that p can be represented as a permutation π = (π(1), π(2) . . . π(n)),

where π(i) represents the i th vertex on the Hamilton path.
2 Consider the following assignment: T (xij) = true if and only if π(i) = j .
3 It is not hard to see that every clause in φ is satisfied.

Final Step

Is the reduction polynomial in the size of the input?

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Boolean Circuits (Syntax)

Syntax

1 A boolean circuit C is a DAG G = 〈V ,E〉.
2 The nodes V = {1, 2, . . . n} are called the gates of C.
3 We can assume without loss of generality that the edges are of the form (i, j),

where i < j .
4 Each gate i has a sort s(i) associated with it, where

s(i) ∈ {true, false} ∪ {x1, x2, . . .} ∪ {∨,∧,¬}.
5 If s(i) ∈ {true, false} ∪ {x1, x2, . . .}, then its in-degree is 0.
6 If s(i) ∈ {¬}, its in-degree is 1.
7 All other gates have in-degree 2.
8 All gates except gate n have out-degree 1.
9 Gate n, is called the output gate and has out-degree 0.

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Boolean Circuits (Syntax)

Syntax

1 A boolean circuit C is a DAG G = 〈V ,E〉.
2 The nodes V = {1, 2, . . . n} are called the gates of C.
3 We can assume without loss of generality that the edges are of the form (i, j),

where i < j .
4 Each gate i has a sort s(i) associated with it, where

s(i) ∈ {true, false} ∪ {x1, x2, . . .} ∪ {∨,∧,¬}.
5 If s(i) ∈ {true, false} ∪ {x1, x2, . . .}, then its in-degree is 0.
6 If s(i) ∈ {¬}, its in-degree is 1.
7 All other gates have in-degree 2.
8 All gates except gate n have out-degree 1.
9 Gate n, is called the output gate and has out-degree 0.

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Boolean Circuits (Syntax)

Syntax

1 A boolean circuit C is a DAG G = 〈V ,E〉.

2 The nodes V = {1, 2, . . . n} are called the gates of C.
3 We can assume without loss of generality that the edges are of the form (i, j),

where i < j .
4 Each gate i has a sort s(i) associated with it, where

s(i) ∈ {true, false} ∪ {x1, x2, . . .} ∪ {∨,∧,¬}.
5 If s(i) ∈ {true, false} ∪ {x1, x2, . . .}, then its in-degree is 0.
6 If s(i) ∈ {¬}, its in-degree is 1.
7 All other gates have in-degree 2.
8 All gates except gate n have out-degree 1.
9 Gate n, is called the output gate and has out-degree 0.

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Boolean Circuits (Syntax)

Syntax

1 A boolean circuit C is a DAG G = 〈V ,E〉.
2 The nodes V = {1, 2, . . . n} are called the gates of C.

3 We can assume without loss of generality that the edges are of the form (i, j),
where i < j .

4 Each gate i has a sort s(i) associated with it, where
s(i) ∈ {true, false} ∪ {x1, x2, . . .} ∪ {∨,∧,¬}.

5 If s(i) ∈ {true, false} ∪ {x1, x2, . . .}, then its in-degree is 0.
6 If s(i) ∈ {¬}, its in-degree is 1.
7 All other gates have in-degree 2.
8 All gates except gate n have out-degree 1.
9 Gate n, is called the output gate and has out-degree 0.

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Boolean Circuits (Syntax)

Syntax

1 A boolean circuit C is a DAG G = 〈V ,E〉.
2 The nodes V = {1, 2, . . . n} are called the gates of C.
3 We can assume without loss of generality that the edges are of the form (i, j),

where i < j .

4 Each gate i has a sort s(i) associated with it, where
s(i) ∈ {true, false} ∪ {x1, x2, . . .} ∪ {∨,∧,¬}.

5 If s(i) ∈ {true, false} ∪ {x1, x2, . . .}, then its in-degree is 0.
6 If s(i) ∈ {¬}, its in-degree is 1.
7 All other gates have in-degree 2.
8 All gates except gate n have out-degree 1.
9 Gate n, is called the output gate and has out-degree 0.

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Boolean Circuits (Syntax)

Syntax

1 A boolean circuit C is a DAG G = 〈V ,E〉.
2 The nodes V = {1, 2, . . . n} are called the gates of C.
3 We can assume without loss of generality that the edges are of the form (i, j),

where i < j .
4 Each gate i has a sort s(i) associated with it, where

s(i) ∈ {true, false} ∪ {x1, x2, . . .} ∪ {∨,∧,¬}.

5 If s(i) ∈ {true, false} ∪ {x1, x2, . . .}, then its in-degree is 0.
6 If s(i) ∈ {¬}, its in-degree is 1.
7 All other gates have in-degree 2.
8 All gates except gate n have out-degree 1.
9 Gate n, is called the output gate and has out-degree 0.

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Boolean Circuits (Syntax)

Syntax

1 A boolean circuit C is a DAG G = 〈V ,E〉.
2 The nodes V = {1, 2, . . . n} are called the gates of C.
3 We can assume without loss of generality that the edges are of the form (i, j),

where i < j .
4 Each gate i has a sort s(i) associated with it, where

s(i) ∈ {true, false} ∪ {x1, x2, . . .} ∪ {∨,∧,¬}.
5 If s(i) ∈ {true, false} ∪ {x1, x2, . . .}, then its in-degree is 0.

6 If s(i) ∈ {¬}, its in-degree is 1.
7 All other gates have in-degree 2.
8 All gates except gate n have out-degree 1.
9 Gate n, is called the output gate and has out-degree 0.

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Boolean Circuits (Syntax)

Syntax

1 A boolean circuit C is a DAG G = 〈V ,E〉.
2 The nodes V = {1, 2, . . . n} are called the gates of C.
3 We can assume without loss of generality that the edges are of the form (i, j),

where i < j .
4 Each gate i has a sort s(i) associated with it, where

s(i) ∈ {true, false} ∪ {x1, x2, . . .} ∪ {∨,∧,¬}.
5 If s(i) ∈ {true, false} ∪ {x1, x2, . . .}, then its in-degree is 0.
6 If s(i) ∈ {¬}, its in-degree is 1.

7 All other gates have in-degree 2.
8 All gates except gate n have out-degree 1.
9 Gate n, is called the output gate and has out-degree 0.

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Boolean Circuits (Syntax)

Syntax

1 A boolean circuit C is a DAG G = 〈V ,E〉.
2 The nodes V = {1, 2, . . . n} are called the gates of C.
3 We can assume without loss of generality that the edges are of the form (i, j),

where i < j .
4 Each gate i has a sort s(i) associated with it, where

s(i) ∈ {true, false} ∪ {x1, x2, . . .} ∪ {∨,∧,¬}.
5 If s(i) ∈ {true, false} ∪ {x1, x2, . . .}, then its in-degree is 0.
6 If s(i) ∈ {¬}, its in-degree is 1.
7 All other gates have in-degree 2.

8 All gates except gate n have out-degree 1.
9 Gate n, is called the output gate and has out-degree 0.

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Boolean Circuits (Syntax)

Syntax

1 A boolean circuit C is a DAG G = 〈V ,E〉.
2 The nodes V = {1, 2, . . . n} are called the gates of C.
3 We can assume without loss of generality that the edges are of the form (i, j),

where i < j .
4 Each gate i has a sort s(i) associated with it, where

s(i) ∈ {true, false} ∪ {x1, x2, . . .} ∪ {∨,∧,¬}.
5 If s(i) ∈ {true, false} ∪ {x1, x2, . . .}, then its in-degree is 0.
6 If s(i) ∈ {¬}, its in-degree is 1.
7 All other gates have in-degree 2.
8 All gates except gate n have out-degree 1.

9 Gate n, is called the output gate and has out-degree 0.

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Boolean Circuits (Syntax)

Syntax

1 A boolean circuit C is a DAG G = 〈V ,E〉.
2 The nodes V = {1, 2, . . . n} are called the gates of C.
3 We can assume without loss of generality that the edges are of the form (i, j),

where i < j .
4 Each gate i has a sort s(i) associated with it, where

s(i) ∈ {true, false} ∪ {x1, x2, . . .} ∪ {∨,∧,¬}.
5 If s(i) ∈ {true, false} ∪ {x1, x2, . . .}, then its in-degree is 0.
6 If s(i) ∈ {¬}, its in-degree is 1.
7 All other gates have in-degree 2.
8 All gates except gate n have out-degree 1.
9 Gate n, is called the output gate and has out-degree 0.

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Boolean Circuits (Semantics)

Semantics

The semantics of circuits specifies a truth value for the circuit, corresponding to each
appropriate assignment.

This value can be computed inductively as follows:
1 If the gate is true or false, then it retains that value.
2 If the gate is a variable, then its value is equal to its assignment.
3 If the gate has sort ¬, then its value is the complement of its input.
4 If the gate has sort ∨, then its value is true if at least one of its two input gates has

value true and is false otherwise.
5 If the gate has sort ∧, then its value is true if both its two input gates have value

true and is false otherwise.
6 The value of the circuit is the value of the output gate.

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Boolean Circuits (Semantics)

Semantics

The semantics of circuits specifies a truth value for the circuit, corresponding to each
appropriate assignment.

This value can be computed inductively as follows:
1 If the gate is true or false, then it retains that value.
2 If the gate is a variable, then its value is equal to its assignment.
3 If the gate has sort ¬, then its value is the complement of its input.
4 If the gate has sort ∨, then its value is true if at least one of its two input gates has

value true and is false otherwise.
5 If the gate has sort ∧, then its value is true if both its two input gates have value

true and is false otherwise.
6 The value of the circuit is the value of the output gate.

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Boolean Circuits (Semantics)

Semantics

The semantics of circuits specifies a truth value for the circuit, corresponding to each
appropriate assignment.

This value can be computed inductively as follows:
1 If the gate is true or false, then it retains that value.
2 If the gate is a variable, then its value is equal to its assignment.
3 If the gate has sort ¬, then its value is the complement of its input.
4 If the gate has sort ∨, then its value is true if at least one of its two input gates has

value true and is false otherwise.
5 If the gate has sort ∧, then its value is true if both its two input gates have value

true and is false otherwise.
6 The value of the circuit is the value of the output gate.

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Boolean Circuits (Semantics)

Semantics

The semantics of circuits specifies a truth value for the circuit, corresponding to each
appropriate assignment.

This value can be computed inductively as follows:

1 If the gate is true or false, then it retains that value.
2 If the gate is a variable, then its value is equal to its assignment.
3 If the gate has sort ¬, then its value is the complement of its input.
4 If the gate has sort ∨, then its value is true if at least one of its two input gates has

value true and is false otherwise.
5 If the gate has sort ∧, then its value is true if both its two input gates have value

true and is false otherwise.
6 The value of the circuit is the value of the output gate.

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Boolean Circuits (Semantics)

Semantics

The semantics of circuits specifies a truth value for the circuit, corresponding to each
appropriate assignment.

This value can be computed inductively as follows:
1 If the gate is true or false, then it retains that value.

2 If the gate is a variable, then its value is equal to its assignment.
3 If the gate has sort ¬, then its value is the complement of its input.
4 If the gate has sort ∨, then its value is true if at least one of its two input gates has

value true and is false otherwise.
5 If the gate has sort ∧, then its value is true if both its two input gates have value

true and is false otherwise.
6 The value of the circuit is the value of the output gate.

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Boolean Circuits (Semantics)

Semantics

The semantics of circuits specifies a truth value for the circuit, corresponding to each
appropriate assignment.

This value can be computed inductively as follows:
1 If the gate is true or false, then it retains that value.
2 If the gate is a variable, then its value is equal to its assignment.

3 If the gate has sort ¬, then its value is the complement of its input.
4 If the gate has sort ∨, then its value is true if at least one of its two input gates has

value true and is false otherwise.
5 If the gate has sort ∧, then its value is true if both its two input gates have value

true and is false otherwise.
6 The value of the circuit is the value of the output gate.

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Boolean Circuits (Semantics)

Semantics

The semantics of circuits specifies a truth value for the circuit, corresponding to each
appropriate assignment.

This value can be computed inductively as follows:
1 If the gate is true or false, then it retains that value.
2 If the gate is a variable, then its value is equal to its assignment.
3 If the gate has sort ¬, then its value is the complement of its input.

4 If the gate has sort ∨, then its value is true if at least one of its two input gates has
value true and is false otherwise.

5 If the gate has sort ∧, then its value is true if both its two input gates have value
true and is false otherwise.

6 The value of the circuit is the value of the output gate.

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Boolean Circuits (Semantics)

Semantics

The semantics of circuits specifies a truth value for the circuit, corresponding to each
appropriate assignment.

This value can be computed inductively as follows:
1 If the gate is true or false, then it retains that value.
2 If the gate is a variable, then its value is equal to its assignment.
3 If the gate has sort ¬, then its value is the complement of its input.
4 If the gate has sort ∨, then its value is true if at least one of its two input gates has

value true and is false otherwise.

5 If the gate has sort ∧, then its value is true if both its two input gates have value
true and is false otherwise.

6 The value of the circuit is the value of the output gate.

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Boolean Circuits (Semantics)

Semantics

The semantics of circuits specifies a truth value for the circuit, corresponding to each
appropriate assignment.

This value can be computed inductively as follows:
1 If the gate is true or false, then it retains that value.
2 If the gate is a variable, then its value is equal to its assignment.
3 If the gate has sort ¬, then its value is the complement of its input.
4 If the gate has sort ∨, then its value is true if at least one of its two input gates has

value true and is false otherwise.
5 If the gate has sort ∧, then its value is true if both its two input gates have value

true and is false otherwise.

6 The value of the circuit is the value of the output gate.

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Boolean Circuits (Semantics)

Semantics

The semantics of circuits specifies a truth value for the circuit, corresponding to each
appropriate assignment.

This value can be computed inductively as follows:
1 If the gate is true or false, then it retains that value.
2 If the gate is a variable, then its value is equal to its assignment.
3 If the gate has sort ¬, then its value is the complement of its input.
4 If the gate has sort ∨, then its value is true if at least one of its two input gates has

value true and is false otherwise.
5 If the gate has sort ∧, then its value is true if both its two input gates have value

true and is false otherwise.
6 The value of the circuit is the value of the output gate.

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

CIRCUIT-SAT and CIRCUIT-VALUE

Circuit-SAT

Given a circuit C, is there an assignment true/false to the variable gates, so that C
evaluates to true?

Circuit-Value

Given a variable-free circuit C, does it evaluate to true?

Exercise

Argue that CIRCUIT-VALUE is in P.

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

CIRCUIT-SAT and CIRCUIT-VALUE

Circuit-SAT

Given a circuit C, is there an assignment true/false to the variable gates, so that C
evaluates to true?

Circuit-Value

Given a variable-free circuit C, does it evaluate to true?

Exercise

Argue that CIRCUIT-VALUE is in P.

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

CIRCUIT-SAT and CIRCUIT-VALUE

Circuit-SAT

Given a circuit C, is there an assignment true/false to the variable gates, so that C
evaluates to true?

Circuit-Value

Given a variable-free circuit C, does it evaluate to true?

Exercise

Argue that CIRCUIT-VALUE is in P.

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

CIRCUIT-SAT and CIRCUIT-VALUE

Circuit-SAT

Given a circuit C, is there an assignment true/false to the variable gates, so that C
evaluates to true?

Circuit-Value

Given a variable-free circuit C, does it evaluate to true?

Exercise

Argue that CIRCUIT-VALUE is in P.

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

CIRCUIT-SAT and CIRCUIT-VALUE

Circuit-SAT

Given a circuit C, is there an assignment true/false to the variable gates, so that C
evaluates to true?

Circuit-Value

Given a variable-free circuit C, does it evaluate to true?

Exercise

Argue that CIRCUIT-VALUE is in P.

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

CIRCUIT-SAT and CIRCUIT-VALUE

Circuit-SAT

Given a circuit C, is there an assignment true/false to the variable gates, so that C
evaluates to true?

Circuit-Value

Given a variable-free circuit C, does it evaluate to true?

Exercise

Argue that CIRCUIT-VALUE is in P.

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

CIRCUIT-SAT and CIRCUIT-VALUE

Circuit-SAT

Given a circuit C, is there an assignment true/false to the variable gates, so that C
evaluates to true?

Circuit-Value

Given a variable-free circuit C, does it evaluate to true?

Exercise

Argue that CIRCUIT-VALUE is in P.

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Reduction from CIRCUIT-SAT to SAT

CIRCUIT-SAT to SAT

Input instance: A circuit C.

Output instance: A CNF formula φ such that φ is satisfiable if and only if C is.

1 The variables of φ will contain all the variables of C. Additionally, for each gate g
in C, we create a new variable in φ, also denoted by g.

2 If g is a variable gate, corresponding to variable x , add the clauses (g ∨ ¬x) and
(¬g ∨ x) to φ. (g ⇔ x .)

3 If g is a true gate, add (g) to φ; likewise, if it is a false gate, add (¬g).
4 If g is a NOT gate with predecessor h, add the clauses (g ∨ h) and (¬g ∨¬h) to φ.
5 If g is an OR gate with predecessors h and h′, add the clauses (¬h ∨ g),

(¬h′ ∨ g) and (h ∨ h′ ∨ ¬g) to φ. (g ⇔ (h ∨ h′).)
6 If g is an AND gate with predecessors h and h′, add the clauses (¬g ∨ h),

(¬g ∨ h′) and (¬h ∨ ¬h′ ∨ g) to φ. (g ⇔ (h ∧ h′).)
7 If g is an output gate, add the clause (g).

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Reduction from CIRCUIT-SAT to SAT

CIRCUIT-SAT to SAT

Input instance: A circuit C.

Output instance: A CNF formula φ such that φ is satisfiable if and only if C is.

1 The variables of φ will contain all the variables of C. Additionally, for each gate g
in C, we create a new variable in φ, also denoted by g.

2 If g is a variable gate, corresponding to variable x , add the clauses (g ∨ ¬x) and
(¬g ∨ x) to φ. (g ⇔ x .)

3 If g is a true gate, add (g) to φ; likewise, if it is a false gate, add (¬g).
4 If g is a NOT gate with predecessor h, add the clauses (g ∨ h) and (¬g ∨¬h) to φ.
5 If g is an OR gate with predecessors h and h′, add the clauses (¬h ∨ g),

(¬h′ ∨ g) and (h ∨ h′ ∨ ¬g) to φ. (g ⇔ (h ∨ h′).)
6 If g is an AND gate with predecessors h and h′, add the clauses (¬g ∨ h),

(¬g ∨ h′) and (¬h ∨ ¬h′ ∨ g) to φ. (g ⇔ (h ∧ h′).)
7 If g is an output gate, add the clause (g).

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Reduction from CIRCUIT-SAT to SAT

CIRCUIT-SAT to SAT

Input instance: A circuit C.

Output instance: A CNF formula φ such that φ is satisfiable if and only if C is.

1 The variables of φ will contain all the variables of C. Additionally, for each gate g
in C, we create a new variable in φ, also denoted by g.

2 If g is a variable gate, corresponding to variable x , add the clauses (g ∨ ¬x) and
(¬g ∨ x) to φ. (g ⇔ x .)

3 If g is a true gate, add (g) to φ; likewise, if it is a false gate, add (¬g).
4 If g is a NOT gate with predecessor h, add the clauses (g ∨ h) and (¬g ∨¬h) to φ.
5 If g is an OR gate with predecessors h and h′, add the clauses (¬h ∨ g),

(¬h′ ∨ g) and (h ∨ h′ ∨ ¬g) to φ. (g ⇔ (h ∨ h′).)
6 If g is an AND gate with predecessors h and h′, add the clauses (¬g ∨ h),

(¬g ∨ h′) and (¬h ∨ ¬h′ ∨ g) to φ. (g ⇔ (h ∧ h′).)
7 If g is an output gate, add the clause (g).

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Reduction from CIRCUIT-SAT to SAT

CIRCUIT-SAT to SAT

Input instance: A circuit C.

Output instance: A CNF formula φ such that φ is satisfiable if and only if C is.

1 The variables of φ will contain all the variables of C. Additionally, for each gate g
in C, we create a new variable in φ, also denoted by g.

2 If g is a variable gate, corresponding to variable x , add the clauses (g ∨ ¬x) and
(¬g ∨ x) to φ. (g ⇔ x .)

3 If g is a true gate, add (g) to φ; likewise, if it is a false gate, add (¬g).
4 If g is a NOT gate with predecessor h, add the clauses (g ∨ h) and (¬g ∨¬h) to φ.
5 If g is an OR gate with predecessors h and h′, add the clauses (¬h ∨ g),

(¬h′ ∨ g) and (h ∨ h′ ∨ ¬g) to φ. (g ⇔ (h ∨ h′).)
6 If g is an AND gate with predecessors h and h′, add the clauses (¬g ∨ h),

(¬g ∨ h′) and (¬h ∨ ¬h′ ∨ g) to φ. (g ⇔ (h ∧ h′).)
7 If g is an output gate, add the clause (g).

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Reduction from CIRCUIT-SAT to SAT

CIRCUIT-SAT to SAT

Input instance: A circuit C.

Output instance: A CNF formula φ such that φ is satisfiable if and only if C is.

1 The variables of φ will contain all the variables of C. Additionally, for each gate g
in C, we create a new variable in φ, also denoted by g.

2 If g is a variable gate, corresponding to variable x , add the clauses (g ∨ ¬x) and
(¬g ∨ x) to φ.

(g ⇔ x .)
3 If g is a true gate, add (g) to φ; likewise, if it is a false gate, add (¬g).
4 If g is a NOT gate with predecessor h, add the clauses (g ∨ h) and (¬g ∨¬h) to φ.
5 If g is an OR gate with predecessors h and h′, add the clauses (¬h ∨ g),

(¬h′ ∨ g) and (h ∨ h′ ∨ ¬g) to φ. (g ⇔ (h ∨ h′).)
6 If g is an AND gate with predecessors h and h′, add the clauses (¬g ∨ h),

(¬g ∨ h′) and (¬h ∨ ¬h′ ∨ g) to φ. (g ⇔ (h ∧ h′).)
7 If g is an output gate, add the clause (g).

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Reduction from CIRCUIT-SAT to SAT

CIRCUIT-SAT to SAT

Input instance: A circuit C.

Output instance: A CNF formula φ such that φ is satisfiable if and only if C is.

1 The variables of φ will contain all the variables of C. Additionally, for each gate g
in C, we create a new variable in φ, also denoted by g.

2 If g is a variable gate, corresponding to variable x , add the clauses (g ∨ ¬x) and
(¬g ∨ x) to φ. (g ⇔ x .)

3 If g is a true gate, add (g) to φ; likewise, if it is a false gate, add (¬g).
4 If g is a NOT gate with predecessor h, add the clauses (g ∨ h) and (¬g ∨¬h) to φ.
5 If g is an OR gate with predecessors h and h′, add the clauses (¬h ∨ g),

(¬h′ ∨ g) and (h ∨ h′ ∨ ¬g) to φ. (g ⇔ (h ∨ h′).)
6 If g is an AND gate with predecessors h and h′, add the clauses (¬g ∨ h),

(¬g ∨ h′) and (¬h ∨ ¬h′ ∨ g) to φ. (g ⇔ (h ∧ h′).)
7 If g is an output gate, add the clause (g).

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Reduction from CIRCUIT-SAT to SAT

CIRCUIT-SAT to SAT

Input instance: A circuit C.

Output instance: A CNF formula φ such that φ is satisfiable if and only if C is.

1 The variables of φ will contain all the variables of C. Additionally, for each gate g
in C, we create a new variable in φ, also denoted by g.

2 If g is a variable gate, corresponding to variable x , add the clauses (g ∨ ¬x) and
(¬g ∨ x) to φ. (g ⇔ x .)

3 If g is a true gate, add (g) to φ; likewise, if it is a false gate, add (¬g).

4 If g is a NOT gate with predecessor h, add the clauses (g ∨ h) and (¬g ∨¬h) to φ.
5 If g is an OR gate with predecessors h and h′, add the clauses (¬h ∨ g),

(¬h′ ∨ g) and (h ∨ h′ ∨ ¬g) to φ. (g ⇔ (h ∨ h′).)
6 If g is an AND gate with predecessors h and h′, add the clauses (¬g ∨ h),

(¬g ∨ h′) and (¬h ∨ ¬h′ ∨ g) to φ. (g ⇔ (h ∧ h′).)
7 If g is an output gate, add the clause (g).

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Reduction from CIRCUIT-SAT to SAT

CIRCUIT-SAT to SAT

Input instance: A circuit C.

Output instance: A CNF formula φ such that φ is satisfiable if and only if C is.

1 The variables of φ will contain all the variables of C. Additionally, for each gate g
in C, we create a new variable in φ, also denoted by g.

2 If g is a variable gate, corresponding to variable x , add the clauses (g ∨ ¬x) and
(¬g ∨ x) to φ. (g ⇔ x .)

3 If g is a true gate, add (g) to φ; likewise, if it is a false gate, add (¬g).
4 If g is a NOT gate with predecessor h, add the clauses (g ∨ h) and (¬g ∨¬h) to φ.

5 If g is an OR gate with predecessors h and h′, add the clauses (¬h ∨ g),
(¬h′ ∨ g) and (h ∨ h′ ∨ ¬g) to φ. (g ⇔ (h ∨ h′).)

6 If g is an AND gate with predecessors h and h′, add the clauses (¬g ∨ h),
(¬g ∨ h′) and (¬h ∨ ¬h′ ∨ g) to φ. (g ⇔ (h ∧ h′).)

7 If g is an output gate, add the clause (g).

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Reduction from CIRCUIT-SAT to SAT

CIRCUIT-SAT to SAT

Input instance: A circuit C.

Output instance: A CNF formula φ such that φ is satisfiable if and only if C is.

1 The variables of φ will contain all the variables of C. Additionally, for each gate g
in C, we create a new variable in φ, also denoted by g.

2 If g is a variable gate, corresponding to variable x , add the clauses (g ∨ ¬x) and
(¬g ∨ x) to φ. (g ⇔ x .)

3 If g is a true gate, add (g) to φ; likewise, if it is a false gate, add (¬g).
4 If g is a NOT gate with predecessor h, add the clauses (g ∨ h) and (¬g ∨¬h) to φ.
5 If g is an OR gate with predecessors h and h′, add the clauses (¬h ∨ g),

(¬h′ ∨ g) and (h ∨ h′ ∨ ¬g) to φ.

(g ⇔ (h ∨ h′).)
6 If g is an AND gate with predecessors h and h′, add the clauses (¬g ∨ h),

(¬g ∨ h′) and (¬h ∨ ¬h′ ∨ g) to φ. (g ⇔ (h ∧ h′).)
7 If g is an output gate, add the clause (g).

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Reduction from CIRCUIT-SAT to SAT

CIRCUIT-SAT to SAT

Input instance: A circuit C.

Output instance: A CNF formula φ such that φ is satisfiable if and only if C is.

1 The variables of φ will contain all the variables of C. Additionally, for each gate g
in C, we create a new variable in φ, also denoted by g.

2 If g is a variable gate, corresponding to variable x , add the clauses (g ∨ ¬x) and
(¬g ∨ x) to φ. (g ⇔ x .)

3 If g is a true gate, add (g) to φ; likewise, if it is a false gate, add (¬g).
4 If g is a NOT gate with predecessor h, add the clauses (g ∨ h) and (¬g ∨¬h) to φ.
5 If g is an OR gate with predecessors h and h′, add the clauses (¬h ∨ g),

(¬h′ ∨ g) and (h ∨ h′ ∨ ¬g) to φ. (g ⇔ (h ∨ h′).)

6 If g is an AND gate with predecessors h and h′, add the clauses (¬g ∨ h),
(¬g ∨ h′) and (¬h ∨ ¬h′ ∨ g) to φ. (g ⇔ (h ∧ h′).)

7 If g is an output gate, add the clause (g).

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Reduction from CIRCUIT-SAT to SAT

CIRCUIT-SAT to SAT

Input instance: A circuit C.

Output instance: A CNF formula φ such that φ is satisfiable if and only if C is.

1 The variables of φ will contain all the variables of C. Additionally, for each gate g
in C, we create a new variable in φ, also denoted by g.

2 If g is a variable gate, corresponding to variable x , add the clauses (g ∨ ¬x) and
(¬g ∨ x) to φ. (g ⇔ x .)

3 If g is a true gate, add (g) to φ; likewise, if it is a false gate, add (¬g).
4 If g is a NOT gate with predecessor h, add the clauses (g ∨ h) and (¬g ∨¬h) to φ.
5 If g is an OR gate with predecessors h and h′, add the clauses (¬h ∨ g),

(¬h′ ∨ g) and (h ∨ h′ ∨ ¬g) to φ. (g ⇔ (h ∨ h′).)
6 If g is an AND gate with predecessors h and h′, add the clauses (¬g ∨ h),

(¬g ∨ h′) and (¬h ∨ ¬h′ ∨ g) to φ.

(g ⇔ (h ∧ h′).)
7 If g is an output gate, add the clause (g).

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Reduction from CIRCUIT-SAT to SAT

CIRCUIT-SAT to SAT

Input instance: A circuit C.

Output instance: A CNF formula φ such that φ is satisfiable if and only if C is.

1 The variables of φ will contain all the variables of C. Additionally, for each gate g
in C, we create a new variable in φ, also denoted by g.

2 If g is a variable gate, corresponding to variable x , add the clauses (g ∨ ¬x) and
(¬g ∨ x) to φ. (g ⇔ x .)

3 If g is a true gate, add (g) to φ; likewise, if it is a false gate, add (¬g).
4 If g is a NOT gate with predecessor h, add the clauses (g ∨ h) and (¬g ∨¬h) to φ.
5 If g is an OR gate with predecessors h and h′, add the clauses (¬h ∨ g),

(¬h′ ∨ g) and (h ∨ h′ ∨ ¬g) to φ. (g ⇔ (h ∨ h′).)
6 If g is an AND gate with predecessors h and h′, add the clauses (¬g ∨ h),

(¬g ∨ h′) and (¬h ∨ ¬h′ ∨ g) to φ. (g ⇔ (h ∧ h′).)

7 If g is an output gate, add the clause (g).

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Reduction from CIRCUIT-SAT to SAT

CIRCUIT-SAT to SAT

Input instance: A circuit C.

Output instance: A CNF formula φ such that φ is satisfiable if and only if C is.

1 The variables of φ will contain all the variables of C. Additionally, for each gate g
in C, we create a new variable in φ, also denoted by g.

2 If g is a variable gate, corresponding to variable x , add the clauses (g ∨ ¬x) and
(¬g ∨ x) to φ. (g ⇔ x .)

3 If g is a true gate, add (g) to φ; likewise, if it is a false gate, add (¬g).
4 If g is a NOT gate with predecessor h, add the clauses (g ∨ h) and (¬g ∨¬h) to φ.
5 If g is an OR gate with predecessors h and h′, add the clauses (¬h ∨ g),

(¬h′ ∨ g) and (h ∨ h′ ∨ ¬g) to φ. (g ⇔ (h ∨ h′).)
6 If g is an AND gate with predecessors h and h′, add the clauses (¬g ∨ h),

(¬g ∨ h′) and (¬h ∨ ¬h′ ∨ g) to φ. (g ⇔ (h ∧ h′).)
7 If g is an output gate, add the clause (g).

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Argument

Argument

1 If C is satisfiable, then φ is satisfiable.
2 If φ is satisfiable, then C is satisfiable.

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Argument

Argument

1 If C is satisfiable, then φ is satisfiable.
2 If φ is satisfiable, then C is satisfiable.

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Argument

Argument

1 If C is satisfiable, then φ is satisfiable.

2 If φ is satisfiable, then C is satisfiable.

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Argument

Argument

1 If C is satisfiable, then φ is satisfiable.
2 If φ is satisfiable, then C is satisfiable.

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Graph coloring

The Graph coloring problem

A coloring of an undirected graph G = 〈V ,E〉 is an assignment V → {1, 2, . . . , k}.

The coloring is said to be valid if no two adjacent vertices have the same color.

In the GRAPH k -COLORING problem, you are given a number k and asked if G can be
colored using k colors.

Exercise

1 Argue that GRAPH 2-COLORING is in P.
2 Argue that GRAPH 3-COLORING can be reduced to 3SAT.

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Graph coloring

The Graph coloring problem

A coloring of an undirected graph G = 〈V ,E〉 is an assignment V → {1, 2, . . . , k}.

The coloring is said to be valid if no two adjacent vertices have the same color.

In the GRAPH k -COLORING problem, you are given a number k and asked if G can be
colored using k colors.

Exercise

1 Argue that GRAPH 2-COLORING is in P.
2 Argue that GRAPH 3-COLORING can be reduced to 3SAT.

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Graph coloring

The Graph coloring problem

A coloring of an undirected graph G = 〈V ,E〉 is an assignment V → {1, 2, . . . , k}.

The coloring is said to be valid if no two adjacent vertices have the same color.

In the GRAPH k -COLORING problem, you are given a number k and asked if G can be
colored using k colors.

Exercise

1 Argue that GRAPH 2-COLORING is in P.
2 Argue that GRAPH 3-COLORING can be reduced to 3SAT.

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Graph coloring

The Graph coloring problem

A coloring of an undirected graph G = 〈V ,E〉 is an assignment V → {1, 2, . . . , k}.

The coloring is said to be valid if no two adjacent vertices have the same color.

In the GRAPH k -COLORING problem, you are given a number k and asked if G can be
colored using k colors.

Exercise

1 Argue that GRAPH 2-COLORING is in P.
2 Argue that GRAPH 3-COLORING can be reduced to 3SAT.

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Graph coloring

The Graph coloring problem

A coloring of an undirected graph G = 〈V ,E〉 is an assignment V → {1, 2, . . . , k}.

The coloring is said to be valid if no two adjacent vertices have the same color.

In the GRAPH k -COLORING problem, you are given a number k and asked if G can be
colored using k colors.

Exercise

1 Argue that GRAPH 2-COLORING is in P.
2 Argue that GRAPH 3-COLORING can be reduced to 3SAT.

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Graph coloring

The Graph coloring problem

A coloring of an undirected graph G = 〈V ,E〉 is an assignment V → {1, 2, . . . , k}.

The coloring is said to be valid if no two adjacent vertices have the same color.

In the GRAPH k -COLORING problem, you are given a number k and asked if G can be
colored using k colors.

Exercise

1 Argue that GRAPH 2-COLORING is in P.
2 Argue that GRAPH 3-COLORING can be reduced to 3SAT.

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Graph coloring

The Graph coloring problem

A coloring of an undirected graph G = 〈V ,E〉 is an assignment V → {1, 2, . . . , k}.

The coloring is said to be valid if no two adjacent vertices have the same color.

In the GRAPH k -COLORING problem, you are given a number k and asked if G can be
colored using k colors.

Exercise

1 Argue that GRAPH 2-COLORING is in P.

2 Argue that GRAPH 3-COLORING can be reduced to 3SAT.

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Graph coloring

The Graph coloring problem

A coloring of an undirected graph G = 〈V ,E〉 is an assignment V → {1, 2, . . . , k}.

The coloring is said to be valid if no two adjacent vertices have the same color.

In the GRAPH k -COLORING problem, you are given a number k and asked if G can be
colored using k colors.

Exercise

1 Argue that GRAPH 2-COLORING is in P.
2 Argue that GRAPH 3-COLORING can be reduced to 3SAT.

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

3-coloring to 3-SAT

Reduction

Input: An undirected graph G = 〈V ,E〉.

Output: A CNF formula φ, such that φ is satisfiable if and only if G has a valid
3-coloring.

1 Let xij , i = 1, 2, . . . , n, j = 1, 2, 3 be the boolean variable that is true if vertex i
gets color j , and false otherwise.

2 Every vertex should get at least one color.

(xi1 ∨ xi2 ∨ xi3), i = 1, 2, . . . , n

3 Every vertex should get at most one color.

¬(xi1 ∧ xi2)

¬(xi1 ∧ xi3)

¬(xi2 ∧ xi3), i = 1, 2, . . . , n

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

3-coloring to 3-SAT

Reduction

Input: An undirected graph G = 〈V ,E〉.

Output: A CNF formula φ, such that φ is satisfiable if and only if G has a valid
3-coloring.

1 Let xij , i = 1, 2, . . . , n, j = 1, 2, 3 be the boolean variable that is true if vertex i
gets color j , and false otherwise.

2 Every vertex should get at least one color.

(xi1 ∨ xi2 ∨ xi3), i = 1, 2, . . . , n

3 Every vertex should get at most one color.

¬(xi1 ∧ xi2)

¬(xi1 ∧ xi3)

¬(xi2 ∧ xi3), i = 1, 2, . . . , n

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

3-coloring to 3-SAT

Reduction

Input: An undirected graph G = 〈V ,E〉.

Output: A CNF formula φ, such that φ is satisfiable if and only if G has a valid
3-coloring.

1 Let xij , i = 1, 2, . . . , n, j = 1, 2, 3 be the boolean variable that is true if vertex i
gets color j , and false otherwise.

2 Every vertex should get at least one color.

(xi1 ∨ xi2 ∨ xi3), i = 1, 2, . . . , n

3 Every vertex should get at most one color.

¬(xi1 ∧ xi2)

¬(xi1 ∧ xi3)

¬(xi2 ∧ xi3), i = 1, 2, . . . , n

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

3-coloring to 3-SAT

Reduction

Input: An undirected graph G = 〈V ,E〉.

Output: A CNF formula φ, such that φ is satisfiable if and only if G has a valid
3-coloring.

1 Let xij , i = 1, 2, . . . , n, j = 1, 2, 3 be the boolean variable that is true if vertex i
gets color j , and false otherwise.

2 Every vertex should get at least one color.

(xi1 ∨ xi2 ∨ xi3), i = 1, 2, . . . , n

3 Every vertex should get at most one color.

¬(xi1 ∧ xi2)

¬(xi1 ∧ xi3)

¬(xi2 ∧ xi3), i = 1, 2, . . . , n

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

3-coloring to 3-SAT

Reduction

Input: An undirected graph G = 〈V ,E〉.

Output: A CNF formula φ, such that φ is satisfiable if and only if G has a valid
3-coloring.

1 Let xij , i = 1, 2, . . . , n, j = 1, 2, 3 be the boolean variable that is true if vertex i
gets color j , and false otherwise.

2 Every vertex should get at least one color.

(xi1 ∨ xi2 ∨ xi3), i = 1, 2, . . . , n

3 Every vertex should get at most one color.

¬(xi1 ∧ xi2)

¬(xi1 ∧ xi3)

¬(xi2 ∧ xi3), i = 1, 2, . . . , n

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

3-coloring to 3-SAT

Reduction

Input: An undirected graph G = 〈V ,E〉.

Output: A CNF formula φ, such that φ is satisfiable if and only if G has a valid
3-coloring.

1 Let xij , i = 1, 2, . . . , n, j = 1, 2, 3 be the boolean variable that is true if vertex i
gets color j , and false otherwise.

2 Every vertex should get at least one color.

(xi1 ∨ xi2 ∨ xi3), i = 1, 2, . . . , n

3 Every vertex should get at most one color.

¬(xi1 ∧ xi2)

¬(xi1 ∧ xi3)

¬(xi2 ∧ xi3), i = 1, 2, . . . , n

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

3-coloring to 3-SAT

Reduction

Input: An undirected graph G = 〈V ,E〉.

Output: A CNF formula φ, such that φ is satisfiable if and only if G has a valid
3-coloring.

1 Let xij , i = 1, 2, . . . , n, j = 1, 2, 3 be the boolean variable that is true if vertex i
gets color j , and false otherwise.

2 Every vertex should get at least one color.

(xi1 ∨ xi2 ∨ xi3), i = 1, 2, . . . , n

3 Every vertex should get at most one color.

¬(xi1 ∧ xi2)

¬(xi1 ∧ xi3)

¬(xi2 ∧ xi3), i = 1, 2, . . . , n

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

3-coloring to 3-SAT

Reduction

Input: An undirected graph G = 〈V ,E〉.

Output: A CNF formula φ, such that φ is satisfiable if and only if G has a valid
3-coloring.

1 Let xij , i = 1, 2, . . . , n, j = 1, 2, 3 be the boolean variable that is true if vertex i
gets color j , and false otherwise.

2 Every vertex should get at least one color.

(xi1 ∨ xi2 ∨ xi3), i = 1, 2, . . . , n

3 Every vertex should get at most one color.

¬(xi1 ∧ xi2)

¬(xi1 ∧ xi3)

¬(xi2 ∧ xi3), i = 1, 2, . . . , n

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

3-coloring to 3-SAT

Reduction

Input: An undirected graph G = 〈V ,E〉.

Output: A CNF formula φ, such that φ is satisfiable if and only if G has a valid
3-coloring.

1 Let xij , i = 1, 2, . . . , n, j = 1, 2, 3 be the boolean variable that is true if vertex i
gets color j , and false otherwise.

2 Every vertex should get at least one color.

(xi1 ∨ xi2 ∨ xi3), i = 1, 2, . . . , n

3 Every vertex should get at most one color.

¬(xi1 ∧ xi2)

¬(xi1 ∧ xi3)

¬(xi2 ∧ xi3), i = 1, 2, . . . , n

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

3-coloring to 3-SAT

Reduction

Input: An undirected graph G = 〈V ,E〉.

Output: A CNF formula φ, such that φ is satisfiable if and only if G has a valid
3-coloring.

1 Let xij , i = 1, 2, . . . , n, j = 1, 2, 3 be the boolean variable that is true if vertex i
gets color j , and false otherwise.

2 Every vertex should get at least one color.

(xi1 ∨ xi2 ∨ xi3), i = 1, 2, . . . , n

3 Every vertex should get at most one color.

¬(xi1 ∧ xi2)

¬(xi1 ∧ xi3)

¬(xi2 ∧ xi3), i = 1, 2, . . . , n

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

3-coloring to 3-SAT

Reduction

Input: An undirected graph G = 〈V ,E〉.

Output: A CNF formula φ, such that φ is satisfiable if and only if G has a valid
3-coloring.

1 Let xij , i = 1, 2, . . . , n, j = 1, 2, 3 be the boolean variable that is true if vertex i
gets color j , and false otherwise.

2 Every vertex should get at least one color.

(xi1 ∨ xi2 ∨ xi3), i = 1, 2, . . . , n

3 Every vertex should get at most one color.

¬(xi1 ∧ xi2)

¬(xi1 ∧ xi3)

¬(xi2 ∧ xi3), i = 1, 2, . . . , n

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

3-coloring to 3-SAT

Reduction

Input: An undirected graph G = 〈V ,E〉.

Output: A CNF formula φ, such that φ is satisfiable if and only if G has a valid
3-coloring.

1 Let xij , i = 1, 2, . . . , n, j = 1, 2, 3 be the boolean variable that is true if vertex i
gets color j , and false otherwise.

2 Every vertex should get at least one color.

(xi1 ∨ xi2 ∨ xi3), i = 1, 2, . . . , n

3 Every vertex should get at most one color.

¬(xi1 ∧ xi2)

¬(xi1 ∧ xi3)

¬(xi2 ∧ xi3),

i = 1, 2, . . . , n

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

3-coloring to 3-SAT

Reduction

Input: An undirected graph G = 〈V ,E〉.

Output: A CNF formula φ, such that φ is satisfiable if and only if G has a valid
3-coloring.

1 Let xij , i = 1, 2, . . . , n, j = 1, 2, 3 be the boolean variable that is true if vertex i
gets color j , and false otherwise.

2 Every vertex should get at least one color.

(xi1 ∨ xi2 ∨ xi3), i = 1, 2, . . . , n

3 Every vertex should get at most one color.

¬(xi1 ∧ xi2)

¬(xi1 ∧ xi3)

¬(xi2 ∧ xi3), i = 1, 2, . . . , n

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Completing the reduction

Connectivity requirements

If (u, v) ∈ E , then u and v should get different colors.

¬(xu1 ∧ xv1)

¬(xu2 ∧ xv2)

¬(xu3 ∧ xv3)

∀(u, v) ∈ E

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Completing the reduction

Connectivity requirements

If (u, v) ∈ E , then u and v should get different colors.

¬(xu1 ∧ xv1)

¬(xu2 ∧ xv2)

¬(xu3 ∧ xv3)

∀(u, v) ∈ E

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Completing the reduction

Connectivity requirements

If (u, v) ∈ E , then u and v should get different colors.

¬(xu1 ∧ xv1)

¬(xu2 ∧ xv2)

¬(xu3 ∧ xv3)

∀(u, v) ∈ E

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Completing the reduction

Connectivity requirements

If (u, v) ∈ E , then u and v should get different colors.

¬(xu1 ∧ xv1)

¬(xu2 ∧ xv2)

¬(xu3 ∧ xv3)

∀(u, v) ∈ E

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Completing the reduction

Connectivity requirements

If (u, v) ∈ E , then u and v should get different colors.

¬(xu1 ∧ xv1)

¬(xu2 ∧ xv2)

¬(xu3 ∧ xv3)

∀(u, v) ∈ E

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Completing the reduction

Connectivity requirements

If (u, v) ∈ E , then u and v should get different colors.

¬(xu1 ∧ xv1)

¬(xu2 ∧ xv2)

¬(xu3 ∧ xv3)

∀(u, v) ∈ E

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Completing the reduction

Connectivity requirements

If (u, v) ∈ E , then u and v should get different colors.

¬(xu1 ∧ xv1)

¬(xu2 ∧ xv2)

¬(xu3 ∧ xv3)

∀(u, v) ∈ E

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Completing the reduction

Connectivity requirements

If (u, v) ∈ E , then u and v should get different colors.

¬(xu1 ∧ xv1)

¬(xu2 ∧ xv2)

¬(xu3 ∧ xv3)

∀(u, v) ∈ E

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Integer Partitioning and Subset Sum

Integer Partitioning

Given a list S = {x1, x2, . . . , xn} of integers, is there a set A ⊆ S, such that∑
xi∈A xi =

∑
xi 6∈A xi ?

Subset Sum

Given a list S = {x1, x2, . . . , xn} of integers and a target t , is there a set A ⊆ S, such
that

∑
xi∈A xi = t?

Exercise

Reduce INTEGER PARTITIONING to SUBSET SUM

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Integer Partitioning and Subset Sum

Integer Partitioning

Given a list S = {x1, x2, . . . , xn} of integers, is there a set A ⊆ S, such that∑
xi∈A xi =

∑
xi 6∈A xi ?

Subset Sum

Given a list S = {x1, x2, . . . , xn} of integers and a target t , is there a set A ⊆ S, such
that

∑
xi∈A xi = t?

Exercise

Reduce INTEGER PARTITIONING to SUBSET SUM

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Integer Partitioning and Subset Sum

Integer Partitioning

Given a list S = {x1, x2, . . . , xn} of integers, is there a set A ⊆ S, such that∑
xi∈A xi =

∑
xi 6∈A xi ?

Subset Sum

Given a list S = {x1, x2, . . . , xn} of integers and a target t , is there a set A ⊆ S, such
that

∑
xi∈A xi = t?

Exercise

Reduce INTEGER PARTITIONING to SUBSET SUM

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Integer Partitioning and Subset Sum

Integer Partitioning

Given a list S = {x1, x2, . . . , xn} of integers, is there a set A ⊆ S, such that∑
xi∈A xi =

∑
xi 6∈A xi ?

Subset Sum

Given a list S = {x1, x2, . . . , xn} of integers and a target t , is there a set A ⊆ S, such
that

∑
xi∈A xi = t?

Exercise

Reduce INTEGER PARTITIONING to SUBSET SUM

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Integer Partitioning and Subset Sum

Integer Partitioning

Given a list S = {x1, x2, . . . , xn} of integers, is there a set A ⊆ S, such that∑
xi∈A xi =

∑
xi 6∈A xi ?

Subset Sum

Given a list S = {x1, x2, . . . , xn} of integers and a target t , is there a set A ⊆ S, such
that

∑
xi∈A xi = t?

Exercise

Reduce INTEGER PARTITIONING to SUBSET SUM

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Integer Partitioning and Subset Sum

Integer Partitioning

Given a list S = {x1, x2, . . . , xn} of integers, is there a set A ⊆ S, such that∑
xi∈A xi =

∑
xi 6∈A xi ?

Subset Sum

Given a list S = {x1, x2, . . . , xn} of integers and a target t , is there a set A ⊆ S, such
that

∑
xi∈A xi = t?

Exercise

Reduce INTEGER PARTITIONING to SUBSET SUM

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Integer Partitioning and Subset Sum

Integer Partitioning

Given a list S = {x1, x2, . . . , xn} of integers, is there a set A ⊆ S, such that∑
xi∈A xi =

∑
xi 6∈A xi ?

Subset Sum

Given a list S = {x1, x2, . . . , xn} of integers and a target t , is there a set A ⊆ S, such
that

∑
xi∈A xi = t?

Exercise

Reduce INTEGER PARTITIONING to SUBSET SUM

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Binary Knapsack

Binary Knapsack

1 You are given n objects O = {o1, o2, . . . , on}.
2 Object oi has weight wi and profit pi .
3 You are also given a knapsack of weight capacity W .
4 The goal is to select a subset of the objects which does not violate the capacity

constraint of the knapsack while maximizing the profit of the objects selected.
5 Profits are additive.
6 The integer programming formulation is:

max
∑n

i=1 pi · xi∑n
i=1 wi · xi ≤ W

xi = {0, 1} ∀i = 1, 2, . . . , n

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Binary Knapsack

Binary Knapsack

1 You are given n objects O = {o1, o2, . . . , on}.
2 Object oi has weight wi and profit pi .
3 You are also given a knapsack of weight capacity W .
4 The goal is to select a subset of the objects which does not violate the capacity

constraint of the knapsack while maximizing the profit of the objects selected.
5 Profits are additive.
6 The integer programming formulation is:

max
∑n

i=1 pi · xi∑n
i=1 wi · xi ≤ W

xi = {0, 1} ∀i = 1, 2, . . . , n

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Binary Knapsack

Binary Knapsack

1 You are given n objects O = {o1, o2, . . . , on}.

2 Object oi has weight wi and profit pi .
3 You are also given a knapsack of weight capacity W .
4 The goal is to select a subset of the objects which does not violate the capacity

constraint of the knapsack while maximizing the profit of the objects selected.
5 Profits are additive.
6 The integer programming formulation is:

max
∑n

i=1 pi · xi∑n
i=1 wi · xi ≤ W

xi = {0, 1} ∀i = 1, 2, . . . , n

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Binary Knapsack

Binary Knapsack

1 You are given n objects O = {o1, o2, . . . , on}.
2 Object oi has weight wi and profit pi .

3 You are also given a knapsack of weight capacity W .
4 The goal is to select a subset of the objects which does not violate the capacity

constraint of the knapsack while maximizing the profit of the objects selected.
5 Profits are additive.
6 The integer programming formulation is:

max
∑n

i=1 pi · xi∑n
i=1 wi · xi ≤ W

xi = {0, 1} ∀i = 1, 2, . . . , n

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Binary Knapsack

Binary Knapsack

1 You are given n objects O = {o1, o2, . . . , on}.
2 Object oi has weight wi and profit pi .
3 You are also given a knapsack of weight capacity W .

4 The goal is to select a subset of the objects which does not violate the capacity
constraint of the knapsack while maximizing the profit of the objects selected.

5 Profits are additive.
6 The integer programming formulation is:

max
∑n

i=1 pi · xi∑n
i=1 wi · xi ≤ W

xi = {0, 1} ∀i = 1, 2, . . . , n

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Binary Knapsack

Binary Knapsack

1 You are given n objects O = {o1, o2, . . . , on}.
2 Object oi has weight wi and profit pi .
3 You are also given a knapsack of weight capacity W .
4 The goal is to select a subset of the objects which does not violate the capacity

constraint of the knapsack while maximizing the profit of the objects selected.

5 Profits are additive.
6 The integer programming formulation is:

max
∑n

i=1 pi · xi∑n
i=1 wi · xi ≤ W

xi = {0, 1} ∀i = 1, 2, . . . , n

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Binary Knapsack

Binary Knapsack

1 You are given n objects O = {o1, o2, . . . , on}.
2 Object oi has weight wi and profit pi .
3 You are also given a knapsack of weight capacity W .
4 The goal is to select a subset of the objects which does not violate the capacity

constraint of the knapsack while maximizing the profit of the objects selected.
5 Profits are additive.

6 The integer programming formulation is:

max
∑n

i=1 pi · xi∑n
i=1 wi · xi ≤ W

xi = {0, 1} ∀i = 1, 2, . . . , n

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Binary Knapsack

Binary Knapsack

1 You are given n objects O = {o1, o2, . . . , on}.
2 Object oi has weight wi and profit pi .
3 You are also given a knapsack of weight capacity W .
4 The goal is to select a subset of the objects which does not violate the capacity

constraint of the knapsack while maximizing the profit of the objects selected.
5 Profits are additive.
6 The integer programming formulation is:

max
∑n

i=1 pi · xi∑n
i=1 wi · xi ≤ W

xi = {0, 1} ∀i = 1, 2, . . . , n

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Binary Knapsack

Binary Knapsack

1 You are given n objects O = {o1, o2, . . . , on}.
2 Object oi has weight wi and profit pi .
3 You are also given a knapsack of weight capacity W .
4 The goal is to select a subset of the objects which does not violate the capacity

constraint of the knapsack while maximizing the profit of the objects selected.
5 Profits are additive.
6 The integer programming formulation is:

max
∑n

i=1 pi · xi

∑n
i=1 wi · xi ≤ W

xi = {0, 1} ∀i = 1, 2, . . . , n

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Binary Knapsack

Binary Knapsack

1 You are given n objects O = {o1, o2, . . . , on}.
2 Object oi has weight wi and profit pi .
3 You are also given a knapsack of weight capacity W .
4 The goal is to select a subset of the objects which does not violate the capacity

constraint of the knapsack while maximizing the profit of the objects selected.
5 Profits are additive.
6 The integer programming formulation is:

max
∑n

i=1 pi · xi∑n
i=1 wi · xi ≤ W

xi = {0, 1} ∀i = 1, 2, . . . , n

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Binary Knapsack

Binary Knapsack

1 You are given n objects O = {o1, o2, . . . , on}.
2 Object oi has weight wi and profit pi .
3 You are also given a knapsack of weight capacity W .
4 The goal is to select a subset of the objects which does not violate the capacity

constraint of the knapsack while maximizing the profit of the objects selected.
5 Profits are additive.
6 The integer programming formulation is:

max
∑n

i=1 pi · xi∑n
i=1 wi · xi ≤ W

xi = {0, 1} ∀i = 1, 2, . . . , n

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Binary Knapsack (contd.)

Exercise

Demonstrate through a counterexample that the greedy strategy used for fractional
knapsack does not work in the binary knapsack case.

Solution

1 Consider three objects o1, o2 and o3 with weights 10 units, 20 units and 30 units
respectively and profits $60, $100 and $120 respectively.

2 Let the knapsack have weight capacity 50 units.
3 The greedy solution is {o1, o2}.
4 The optimal solution is {o2, o3}.

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Binary Knapsack (contd.)

Exercise

Demonstrate through a counterexample that the greedy strategy used for fractional
knapsack does not work in the binary knapsack case.

Solution

1 Consider three objects o1, o2 and o3 with weights 10 units, 20 units and 30 units
respectively and profits $60, $100 and $120 respectively.

2 Let the knapsack have weight capacity 50 units.
3 The greedy solution is {o1, o2}.
4 The optimal solution is {o2, o3}.

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Binary Knapsack (contd.)

Exercise

Demonstrate through a counterexample that the greedy strategy used for fractional
knapsack does not work in the binary knapsack case.

Solution

1 Consider three objects o1, o2 and o3 with weights 10 units, 20 units and 30 units
respectively and profits $60, $100 and $120 respectively.

2 Let the knapsack have weight capacity 50 units.
3 The greedy solution is {o1, o2}.
4 The optimal solution is {o2, o3}.

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Binary Knapsack (contd.)

Exercise

Demonstrate through a counterexample that the greedy strategy used for fractional
knapsack does not work in the binary knapsack case.

Solution

1 Consider three objects o1, o2 and o3 with weights 10 units, 20 units and 30 units
respectively and profits $60, $100 and $120 respectively.

2 Let the knapsack have weight capacity 50 units.
3 The greedy solution is {o1, o2}.
4 The optimal solution is {o2, o3}.

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Binary Knapsack (contd.)

Exercise

Demonstrate through a counterexample that the greedy strategy used for fractional
knapsack does not work in the binary knapsack case.

Solution

1 Consider three objects o1, o2 and o3 with weights 10 units, 20 units and 30 units
respectively and profits $60, $100 and $120 respectively.

2 Let the knapsack have weight capacity 50 units.
3 The greedy solution is {o1, o2}.
4 The optimal solution is {o2, o3}.

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Binary Knapsack (contd.)

Exercise

Demonstrate through a counterexample that the greedy strategy used for fractional
knapsack does not work in the binary knapsack case.

Solution

1 Consider three objects o1, o2 and o3 with weights 10 units, 20 units and 30 units
respectively and profits $60, $100 and $120 respectively.

2 Let the knapsack have weight capacity 50 units.

3 The greedy solution is {o1, o2}.
4 The optimal solution is {o2, o3}.

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Binary Knapsack (contd.)

Exercise

Demonstrate through a counterexample that the greedy strategy used for fractional
knapsack does not work in the binary knapsack case.

Solution

1 Consider three objects o1, o2 and o3 with weights 10 units, 20 units and 30 units
respectively and profits $60, $100 and $120 respectively.

2 Let the knapsack have weight capacity 50 units.
3 The greedy solution is

{o1, o2}.
4 The optimal solution is {o2, o3}.

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Binary Knapsack (contd.)

Exercise

Demonstrate through a counterexample that the greedy strategy used for fractional
knapsack does not work in the binary knapsack case.

Solution

1 Consider three objects o1, o2 and o3 with weights 10 units, 20 units and 30 units
respectively and profits $60, $100 and $120 respectively.

2 Let the knapsack have weight capacity 50 units.
3 The greedy solution is {o1, o2}.

4 The optimal solution is {o2, o3}.

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Binary Knapsack (contd.)

Exercise

Demonstrate through a counterexample that the greedy strategy used for fractional
knapsack does not work in the binary knapsack case.

Solution

1 Consider three objects o1, o2 and o3 with weights 10 units, 20 units and 30 units
respectively and profits $60, $100 and $120 respectively.

2 Let the knapsack have weight capacity 50 units.
3 The greedy solution is {o1, o2}.
4 The optimal solution is

{o2, o3}.

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Binary Knapsack (contd.)

Exercise

Demonstrate through a counterexample that the greedy strategy used for fractional
knapsack does not work in the binary knapsack case.

Solution

1 Consider three objects o1, o2 and o3 with weights 10 units, 20 units and 30 units
respectively and profits $60, $100 and $120 respectively.

2 Let the knapsack have weight capacity 50 units.
3 The greedy solution is {o1, o2}.
4 The optimal solution is {o2, o3}.

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

A DP-based algorithm for binary knapsack

Principle of optimality

1 Let KNAP(n,W) denote the given instance of the problem.
2 Let S ⊆ O denote the optimal solution.
3 Focus on object on.
4 Either on ∈ S or on 6∈ S.
5 If on ∈ S, then S − {on} must constitute an optimal solution for

KNAP(n − 1,W − wn). (Why?)
6 If on 6∈ S, then S must be an optimal solution for KNAP(n − 1,W). (Why?)

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

A DP-based algorithm for binary knapsack

Principle of optimality

1 Let KNAP(n,W) denote the given instance of the problem.
2 Let S ⊆ O denote the optimal solution.
3 Focus on object on.
4 Either on ∈ S or on 6∈ S.
5 If on ∈ S, then S − {on} must constitute an optimal solution for

KNAP(n − 1,W − wn). (Why?)
6 If on 6∈ S, then S must be an optimal solution for KNAP(n − 1,W). (Why?)

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

A DP-based algorithm for binary knapsack

Principle of optimality

1 Let KNAP(n,W) denote the given instance of the problem.

2 Let S ⊆ O denote the optimal solution.
3 Focus on object on.
4 Either on ∈ S or on 6∈ S.
5 If on ∈ S, then S − {on} must constitute an optimal solution for

KNAP(n − 1,W − wn). (Why?)
6 If on 6∈ S, then S must be an optimal solution for KNAP(n − 1,W). (Why?)

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

A DP-based algorithm for binary knapsack

Principle of optimality

1 Let KNAP(n,W) denote the given instance of the problem.
2 Let S ⊆ O denote the optimal solution.

3 Focus on object on.
4 Either on ∈ S or on 6∈ S.
5 If on ∈ S, then S − {on} must constitute an optimal solution for

KNAP(n − 1,W − wn). (Why?)
6 If on 6∈ S, then S must be an optimal solution for KNAP(n − 1,W). (Why?)

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

A DP-based algorithm for binary knapsack

Principle of optimality

1 Let KNAP(n,W) denote the given instance of the problem.
2 Let S ⊆ O denote the optimal solution.
3 Focus on object on.

4 Either on ∈ S or on 6∈ S.
5 If on ∈ S, then S − {on} must constitute an optimal solution for

KNAP(n − 1,W − wn). (Why?)
6 If on 6∈ S, then S must be an optimal solution for KNAP(n − 1,W). (Why?)

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

A DP-based algorithm for binary knapsack

Principle of optimality

1 Let KNAP(n,W) denote the given instance of the problem.
2 Let S ⊆ O denote the optimal solution.
3 Focus on object on.
4 Either on ∈ S or on 6∈ S.

5 If on ∈ S, then S − {on} must constitute an optimal solution for
KNAP(n − 1,W − wn). (Why?)

6 If on 6∈ S, then S must be an optimal solution for KNAP(n − 1,W). (Why?)

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

A DP-based algorithm for binary knapsack

Principle of optimality

1 Let KNAP(n,W) denote the given instance of the problem.
2 Let S ⊆ O denote the optimal solution.
3 Focus on object on.
4 Either on ∈ S or on 6∈ S.
5 If on ∈ S, then S − {on} must constitute an optimal solution for

KNAP(n − 1,W − wn). (Why?)
6 If on 6∈ S, then S must be an optimal solution for KNAP(n − 1,W). (Why?)

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

A DP-based algorithm for binary knapsack

Principle of optimality

1 Let KNAP(n,W) denote the given instance of the problem.
2 Let S ⊆ O denote the optimal solution.
3 Focus on object on.
4 Either on ∈ S or on 6∈ S.
5 If on ∈ S, then S − {on} must constitute an optimal solution for

KNAP(n − 1,W − wn).

(Why?)
6 If on 6∈ S, then S must be an optimal solution for KNAP(n − 1,W). (Why?)

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

A DP-based algorithm for binary knapsack

Principle of optimality

1 Let KNAP(n,W) denote the given instance of the problem.
2 Let S ⊆ O denote the optimal solution.
3 Focus on object on.
4 Either on ∈ S or on 6∈ S.
5 If on ∈ S, then S − {on} must constitute an optimal solution for

KNAP(n − 1,W − wn). (Why?)

6 If on 6∈ S, then S must be an optimal solution for KNAP(n − 1,W). (Why?)

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

A DP-based algorithm for binary knapsack

Principle of optimality

1 Let KNAP(n,W) denote the given instance of the problem.
2 Let S ⊆ O denote the optimal solution.
3 Focus on object on.
4 Either on ∈ S or on 6∈ S.
5 If on ∈ S, then S − {on} must constitute an optimal solution for

KNAP(n − 1,W − wn). (Why?)
6 If on 6∈ S, then S must be an optimal solution for

KNAP(n − 1,W). (Why?)

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

A DP-based algorithm for binary knapsack

Principle of optimality

1 Let KNAP(n,W) denote the given instance of the problem.
2 Let S ⊆ O denote the optimal solution.
3 Focus on object on.
4 Either on ∈ S or on 6∈ S.
5 If on ∈ S, then S − {on} must constitute an optimal solution for

KNAP(n − 1,W − wn). (Why?)
6 If on 6∈ S, then S must be an optimal solution for KNAP(n − 1,

W). (Why?)

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

A DP-based algorithm for binary knapsack

Principle of optimality

1 Let KNAP(n,W) denote the given instance of the problem.
2 Let S ⊆ O denote the optimal solution.
3 Focus on object on.
4 Either on ∈ S or on 6∈ S.
5 If on ∈ S, then S − {on} must constitute an optimal solution for

KNAP(n − 1,W − wn). (Why?)
6 If on 6∈ S, then S must be an optimal solution for KNAP(n − 1,W).

(Why?)

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

A DP-based algorithm for binary knapsack

Principle of optimality

1 Let KNAP(n,W) denote the given instance of the problem.
2 Let S ⊆ O denote the optimal solution.
3 Focus on object on.
4 Either on ∈ S or on 6∈ S.
5 If on ∈ S, then S − {on} must constitute an optimal solution for

KNAP(n − 1,W − wn). (Why?)
6 If on 6∈ S, then S must be an optimal solution for KNAP(n − 1,W). (Why?)

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Formulating the recurrence

The Recurrence

1 Let V [i,w] denote the optimal solution for the subset {o1, o2, . . . , oi}, assuming
that the Knapsack has a capacity w .

2 Which entry of the table are we interested in? Clearly, V [n,W].
3 As per the discussion above,

V [i,w] = max

{
V [i − 1,w − wi] + pi (oi is included)

V [i − 1,w] (oi is excluded)

4 Initial conditions:

V [0,w] = 0, 0 ≤ w ≤ W

pauseV [i,w] = −∞, w < 0

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Formulating the recurrence

The Recurrence

1 Let V [i,w] denote the optimal solution for the subset {o1, o2, . . . , oi}, assuming
that the Knapsack has a capacity w .

2 Which entry of the table are we interested in? Clearly, V [n,W].
3 As per the discussion above,

V [i,w] = max

{
V [i − 1,w − wi] + pi (oi is included)

V [i − 1,w] (oi is excluded)

4 Initial conditions:

V [0,w] = 0, 0 ≤ w ≤ W

pauseV [i,w] = −∞, w < 0

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Formulating the recurrence

The Recurrence

1 Let V [i,w] denote the optimal solution for the subset {o1, o2, . . . , oi}, assuming
that the Knapsack has a capacity w .

2 Which entry of the table are we interested in? Clearly, V [n,W].
3 As per the discussion above,

V [i,w] = max

{
V [i − 1,w − wi] + pi (oi is included)

V [i − 1,w] (oi is excluded)

4 Initial conditions:

V [0,w] = 0, 0 ≤ w ≤ W

pauseV [i,w] = −∞, w < 0

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Formulating the recurrence

The Recurrence

1 Let V [i,w] denote the optimal solution for the subset {o1, o2, . . . , oi}, assuming
that the Knapsack has a capacity w .

2 Which entry of the table are we interested in?

Clearly, V [n,W].
3 As per the discussion above,

V [i,w] = max

{
V [i − 1,w − wi] + pi (oi is included)

V [i − 1,w] (oi is excluded)

4 Initial conditions:

V [0,w] = 0, 0 ≤ w ≤ W

pauseV [i,w] = −∞, w < 0

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Formulating the recurrence

The Recurrence

1 Let V [i,w] denote the optimal solution for the subset {o1, o2, . . . , oi}, assuming
that the Knapsack has a capacity w .

2 Which entry of the table are we interested in? Clearly, V [n,W].

3 As per the discussion above,

V [i,w] = max

{
V [i − 1,w − wi] + pi (oi is included)

V [i − 1,w] (oi is excluded)

4 Initial conditions:

V [0,w] = 0, 0 ≤ w ≤ W

pauseV [i,w] = −∞, w < 0

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Formulating the recurrence

The Recurrence

1 Let V [i,w] denote the optimal solution for the subset {o1, o2, . . . , oi}, assuming
that the Knapsack has a capacity w .

2 Which entry of the table are we interested in? Clearly, V [n,W].
3 As per the discussion above,

V [i,w] = max

{
V [i − 1,w − wi] + pi (oi is included)

V [i − 1,w] (oi is excluded)

4 Initial conditions:

V [0,w] = 0, 0 ≤ w ≤ W

pauseV [i,w] = −∞, w < 0

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Formulating the recurrence

The Recurrence

1 Let V [i,w] denote the optimal solution for the subset {o1, o2, . . . , oi}, assuming
that the Knapsack has a capacity w .

2 Which entry of the table are we interested in? Clearly, V [n,W].
3 As per the discussion above,

V [i,w] = max

{

V [i − 1,w − wi] + pi (oi is included)

V [i − 1,w] (oi is excluded)

4 Initial conditions:

V [0,w] = 0, 0 ≤ w ≤ W

pauseV [i,w] = −∞, w < 0

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Formulating the recurrence

The Recurrence

1 Let V [i,w] denote the optimal solution for the subset {o1, o2, . . . , oi}, assuming
that the Knapsack has a capacity w .

2 Which entry of the table are we interested in? Clearly, V [n,W].
3 As per the discussion above,

V [i,w] = max

{
V [i − 1,w − wi] + pi

(oi is included)

V [i − 1,w] (oi is excluded)

4 Initial conditions:

V [0,w] = 0, 0 ≤ w ≤ W

pauseV [i,w] = −∞, w < 0

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Formulating the recurrence

The Recurrence

1 Let V [i,w] denote the optimal solution for the subset {o1, o2, . . . , oi}, assuming
that the Knapsack has a capacity w .

2 Which entry of the table are we interested in? Clearly, V [n,W].
3 As per the discussion above,

V [i,w] = max

{
V [i − 1,w − wi] + pi (oi is included)

V [i − 1,w] (oi is excluded)

4 Initial conditions:

V [0,w] = 0, 0 ≤ w ≤ W

pauseV [i,w] = −∞, w < 0

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Formulating the recurrence

The Recurrence

1 Let V [i,w] denote the optimal solution for the subset {o1, o2, . . . , oi}, assuming
that the Knapsack has a capacity w .

2 Which entry of the table are we interested in? Clearly, V [n,W].
3 As per the discussion above,

V [i,w] = max

{
V [i − 1,w − wi] + pi (oi is included)

V [i − 1,w]

(oi is excluded)

4 Initial conditions:

V [0,w] = 0, 0 ≤ w ≤ W

pauseV [i,w] = −∞, w < 0

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Formulating the recurrence

The Recurrence

1 Let V [i,w] denote the optimal solution for the subset {o1, o2, . . . , oi}, assuming
that the Knapsack has a capacity w .

2 Which entry of the table are we interested in? Clearly, V [n,W].
3 As per the discussion above,

V [i,w] = max

{
V [i − 1,w − wi] + pi (oi is included)

V [i − 1,w] (oi is excluded)

4 Initial conditions:

V [0,w] = 0, 0 ≤ w ≤ W

pauseV [i,w] = −∞, w < 0

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Formulating the recurrence

The Recurrence

1 Let V [i,w] denote the optimal solution for the subset {o1, o2, . . . , oi}, assuming
that the Knapsack has a capacity w .

2 Which entry of the table are we interested in? Clearly, V [n,W].
3 As per the discussion above,

V [i,w] = max

{
V [i − 1,w − wi] + pi (oi is included)

V [i − 1,w] (oi is excluded)

4 Initial conditions:

V [0,w] = 0, 0 ≤ w ≤ W

pauseV [i,w] = −∞, w < 0

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Formulating the recurrence

The Recurrence

1 Let V [i,w] denote the optimal solution for the subset {o1, o2, . . . , oi}, assuming
that the Knapsack has a capacity w .

2 Which entry of the table are we interested in? Clearly, V [n,W].
3 As per the discussion above,

V [i,w] = max

{
V [i − 1,w − wi] + pi (oi is included)

V [i − 1,w] (oi is excluded)

4 Initial conditions:

V [0,w] = 0, 0 ≤ w ≤ W

pauseV [i,w] = −∞, w < 0

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Example

Example

Solve the following instance of Knapsack:
n = 4, w = 〈5, 4, 6, 3〉, W = 10, p = 〈10, 40, 30, 50〉.
Solution:

V [i,w] 0 1 2 3 4 5 6 7 8 9 10

i = 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 10 10 10 10 10 10

2 0 0 0 0 40 40 40 40 40 50 50

3 0 0 0 0 40 40 40 40 40 50 70

4 0 0 0 50 50 50 50 90 90 90 90

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Example

Example

Solve the following instance of Knapsack:
n = 4, w = 〈5, 4, 6, 3〉, W = 10, p = 〈10, 40, 30, 50〉.
Solution:

V [i,w] 0 1 2 3 4 5 6 7 8 9 10

i = 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 10 10 10 10 10 10

2 0 0 0 0 40 40 40 40 40 50 50

3 0 0 0 0 40 40 40 40 40 50 70

4 0 0 0 50 50 50 50 90 90 90 90

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Example

Example

Solve the following instance of Knapsack:
n = 4,

w = 〈5, 4, 6, 3〉, W = 10, p = 〈10, 40, 30, 50〉.
Solution:

V [i,w] 0 1 2 3 4 5 6 7 8 9 10

i = 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 10 10 10 10 10 10

2 0 0 0 0 40 40 40 40 40 50 50

3 0 0 0 0 40 40 40 40 40 50 70

4 0 0 0 50 50 50 50 90 90 90 90

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Example

Example

Solve the following instance of Knapsack:
n = 4, w = 〈5, 4, 6, 3〉,

W = 10, p = 〈10, 40, 30, 50〉.
Solution:

V [i,w] 0 1 2 3 4 5 6 7 8 9 10

i = 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 10 10 10 10 10 10

2 0 0 0 0 40 40 40 40 40 50 50

3 0 0 0 0 40 40 40 40 40 50 70

4 0 0 0 50 50 50 50 90 90 90 90

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Example

Example

Solve the following instance of Knapsack:
n = 4, w = 〈5, 4, 6, 3〉, W = 10,

p = 〈10, 40, 30, 50〉.
Solution:

V [i,w] 0 1 2 3 4 5 6 7 8 9 10

i = 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 10 10 10 10 10 10

2 0 0 0 0 40 40 40 40 40 50 50

3 0 0 0 0 40 40 40 40 40 50 70

4 0 0 0 50 50 50 50 90 90 90 90

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Example

Example

Solve the following instance of Knapsack:
n = 4, w = 〈5, 4, 6, 3〉, W = 10, p = 〈10, 40, 30, 50〉.

Solution:

V [i,w] 0 1 2 3 4 5 6 7 8 9 10

i = 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 10 10 10 10 10 10

2 0 0 0 0 40 40 40 40 40 50 50

3 0 0 0 0 40 40 40 40 40 50 70

4 0 0 0 50 50 50 50 90 90 90 90

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Example

Example

Solve the following instance of Knapsack:
n = 4, w = 〈5, 4, 6, 3〉, W = 10, p = 〈10, 40, 30, 50〉.
Solution:

V [i,w] 0 1 2 3 4 5 6 7 8 9 10

i = 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 10 10 10 10 10 10

2 0 0 0 0 40 40 40 40 40 50 50

3 0 0 0 0 40 40 40 40 40 50 70

4 0 0 0 50 50 50 50 90 90 90 90

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Example

Example

Solve the following instance of Knapsack:
n = 4, w = 〈5, 4, 6, 3〉, W = 10, p = 〈10, 40, 30, 50〉.
Solution:

V [i,w] 0 1 2 3 4 5 6 7 8 9 10

i = 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 10 10 10 10 10 10

2 0 0 0 0 40 40 40 40 40 50 50

3 0 0 0 0 40 40 40 40 40 50 70

4 0 0 0 50 50 50 50 90 90 90 90

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Example

Example

Solve the following instance of Knapsack:
n = 4, w = 〈5, 4, 6, 3〉, W = 10, p = 〈10, 40, 30, 50〉.
Solution:

V [i,w] 0 1 2 3 4 5 6 7 8 9 10

i = 0

0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 10 10 10 10 10 10

2 0 0 0 0 40 40 40 40 40 50 50

3 0 0 0 0 40 40 40 40 40 50 70

4 0 0 0 50 50 50 50 90 90 90 90

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Example

Example

Solve the following instance of Knapsack:
n = 4, w = 〈5, 4, 6, 3〉, W = 10, p = 〈10, 40, 30, 50〉.
Solution:

V [i,w] 0 1 2 3 4 5 6 7 8 9 10

i = 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 10 10 10 10 10 10

2 0 0 0 0 40 40 40 40 40 50 50

3 0 0 0 0 40 40 40 40 40 50 70

4 0 0 0 50 50 50 50 90 90 90 90

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Example

Example

Solve the following instance of Knapsack:
n = 4, w = 〈5, 4, 6, 3〉, W = 10, p = 〈10, 40, 30, 50〉.
Solution:

V [i,w] 0 1 2 3 4 5 6 7 8 9 10

i = 0 0 0 0 0 0 0 0 0 0 0 0

1

0 0 0 0 0 10 10 10 10 10 10

2 0 0 0 0 40 40 40 40 40 50 50

3 0 0 0 0 40 40 40 40 40 50 70

4 0 0 0 50 50 50 50 90 90 90 90

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Example

Example

Solve the following instance of Knapsack:
n = 4, w = 〈5, 4, 6, 3〉, W = 10, p = 〈10, 40, 30, 50〉.
Solution:

V [i,w] 0 1 2 3 4 5 6 7 8 9 10

i = 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0

10 10 10 10 10 10

2 0 0 0 0 40 40 40 40 40 50 50

3 0 0 0 0 40 40 40 40 40 50 70

4 0 0 0 50 50 50 50 90 90 90 90

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Example

Example

Solve the following instance of Knapsack:
n = 4, w = 〈5, 4, 6, 3〉, W = 10, p = 〈10, 40, 30, 50〉.
Solution:

V [i,w] 0 1 2 3 4 5 6 7 8 9 10

i = 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 10 10 10 10 10 10

2 0 0 0 0 40 40 40 40 40 50 50

3 0 0 0 0 40 40 40 40 40 50 70

4 0 0 0 50 50 50 50 90 90 90 90

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Example

Example

Solve the following instance of Knapsack:
n = 4, w = 〈5, 4, 6, 3〉, W = 10, p = 〈10, 40, 30, 50〉.
Solution:

V [i,w] 0 1 2 3 4 5 6 7 8 9 10

i = 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 10 10 10 10 10 10

2

0 0 0 0 40 40 40 40 40 50 50

3 0 0 0 0 40 40 40 40 40 50 70

4 0 0 0 50 50 50 50 90 90 90 90

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Example

Example

Solve the following instance of Knapsack:
n = 4, w = 〈5, 4, 6, 3〉, W = 10, p = 〈10, 40, 30, 50〉.
Solution:

V [i,w] 0 1 2 3 4 5 6 7 8 9 10

i = 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 10 10 10 10 10 10

2 0 0 0 0

40 40 40 40 40 50 50

3 0 0 0 0 40 40 40 40 40 50 70

4 0 0 0 50 50 50 50 90 90 90 90

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Example

Example

Solve the following instance of Knapsack:
n = 4, w = 〈5, 4, 6, 3〉, W = 10, p = 〈10, 40, 30, 50〉.
Solution:

V [i,w] 0 1 2 3 4 5 6 7 8 9 10

i = 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 10 10 10 10 10 10

2 0 0 0 0 40 40 40 40 40 50 50

3 0 0 0 0 40 40 40 40 40 50 70

4 0 0 0 50 50 50 50 90 90 90 90

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Example

Example

Solve the following instance of Knapsack:
n = 4, w = 〈5, 4, 6, 3〉, W = 10, p = 〈10, 40, 30, 50〉.
Solution:

V [i,w] 0 1 2 3 4 5 6 7 8 9 10

i = 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 10 10 10 10 10 10

2 0 0 0 0 40 40 40 40 40 50 50

3

0 0 0 0 40 40 40 40 40 50 70

4 0 0 0 50 50 50 50 90 90 90 90

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Example

Example

Solve the following instance of Knapsack:
n = 4, w = 〈5, 4, 6, 3〉, W = 10, p = 〈10, 40, 30, 50〉.
Solution:

V [i,w] 0 1 2 3 4 5 6 7 8 9 10

i = 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 10 10 10 10 10 10

2 0 0 0 0 40 40 40 40 40 50 50

3 0 0 0 0

40 40 40 40 40 50 70

4 0 0 0 50 50 50 50 90 90 90 90

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Example

Example

Solve the following instance of Knapsack:
n = 4, w = 〈5, 4, 6, 3〉, W = 10, p = 〈10, 40, 30, 50〉.
Solution:

V [i,w] 0 1 2 3 4 5 6 7 8 9 10

i = 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 10 10 10 10 10 10

2 0 0 0 0 40 40 40 40 40 50 50

3 0 0 0 0 40 40 40 40 40 50 70

4 0 0 0 50 50 50 50 90 90 90 90

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Example

Example

Solve the following instance of Knapsack:
n = 4, w = 〈5, 4, 6, 3〉, W = 10, p = 〈10, 40, 30, 50〉.
Solution:

V [i,w] 0 1 2 3 4 5 6 7 8 9 10

i = 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 10 10 10 10 10 10

2 0 0 0 0 40 40 40 40 40 50 50

3 0 0 0 0 40 40 40 40 40 50 70

4

0 0 0 50 50 50 50 90 90 90 90

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Example

Example

Solve the following instance of Knapsack:
n = 4, w = 〈5, 4, 6, 3〉, W = 10, p = 〈10, 40, 30, 50〉.
Solution:

V [i,w] 0 1 2 3 4 5 6 7 8 9 10

i = 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 10 10 10 10 10 10

2 0 0 0 0 40 40 40 40 40 50 50

3 0 0 0 0 40 40 40 40 40 50 70

4 0 0 0

50 50 50 50 90 90 90 90

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Example

Example

Solve the following instance of Knapsack:
n = 4, w = 〈5, 4, 6, 3〉, W = 10, p = 〈10, 40, 30, 50〉.
Solution:

V [i,w] 0 1 2 3 4 5 6 7 8 9 10

i = 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 10 10 10 10 10 10

2 0 0 0 0 40 40 40 40 40 50 50

3 0 0 0 0 40 40 40 40 40 50 70

4 0 0 0 50 50 50 50 90 90 90 90

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Final observations

Observation

1 The running time of the DP-based algorithm for binary knapsack is O(n ·W).
2 Is the running time polynomial?
3 The Subset Sum problem can be easily reduced to binary knapsack. How?
4 We thus have, INTEGER PARTITION ≤ SUBSET SUM ≤ BINARY KNAPSACK.

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Final observations

Observation

1 The running time of the DP-based algorithm for binary knapsack is O(n ·W).
2 Is the running time polynomial?
3 The Subset Sum problem can be easily reduced to binary knapsack. How?
4 We thus have, INTEGER PARTITION ≤ SUBSET SUM ≤ BINARY KNAPSACK.

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Final observations

Observation

1 The running time of the DP-based algorithm for binary knapsack is

O(n ·W).
2 Is the running time polynomial?
3 The Subset Sum problem can be easily reduced to binary knapsack. How?
4 We thus have, INTEGER PARTITION ≤ SUBSET SUM ≤ BINARY KNAPSACK.

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Final observations

Observation

1 The running time of the DP-based algorithm for binary knapsack is O(n ·W).

2 Is the running time polynomial?
3 The Subset Sum problem can be easily reduced to binary knapsack. How?
4 We thus have, INTEGER PARTITION ≤ SUBSET SUM ≤ BINARY KNAPSACK.

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Final observations

Observation

1 The running time of the DP-based algorithm for binary knapsack is O(n ·W).
2 Is the running time polynomial?

3 The Subset Sum problem can be easily reduced to binary knapsack. How?
4 We thus have, INTEGER PARTITION ≤ SUBSET SUM ≤ BINARY KNAPSACK.

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Final observations

Observation

1 The running time of the DP-based algorithm for binary knapsack is O(n ·W).
2 Is the running time polynomial?
3 The Subset Sum problem can be easily reduced to binary knapsack.

How?
4 We thus have, INTEGER PARTITION ≤ SUBSET SUM ≤ BINARY KNAPSACK.

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Final observations

Observation

1 The running time of the DP-based algorithm for binary knapsack is O(n ·W).
2 Is the running time polynomial?
3 The Subset Sum problem can be easily reduced to binary knapsack. How?

4 We thus have, INTEGER PARTITION ≤ SUBSET SUM ≤ BINARY KNAPSACK.

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Final observations

Observation

1 The running time of the DP-based algorithm for binary knapsack is O(n ·W).
2 Is the running time polynomial?
3 The Subset Sum problem can be easily reduced to binary knapsack. How?
4 We thus have, INTEGER PARTITION ≤ SUBSET SUM ≤ BINARY KNAPSACK.

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Three related graph problems

Vertex Cover (VC)

Given a graph G = 〈V ,E〉 and a number K , is there a set V ′ ⊆ V , |V ′| ≤ K , such that
for every edge (u, v) ∈ E , either u ∈ V ′ or v ∈ V ′?

Independent Set (IS)

Given a graph G = 〈V ,E〉 and a number K , is there a set V ′ ⊆ V , |V ′| ≥ K , such that
for every pair of vertices (u, v) ∈ V ′, (u, v) 6∈ E .

Clique (CQ)

Given a graph G = 〈V ,E〉 and a number K , is there a set V ′ ⊆ V , |V ′| ≤ K , such that
for pair of vertices (u, v) ∈ V ′, (u, v) ∈ E .

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Three related graph problems

Vertex Cover (VC)

Given a graph G = 〈V ,E〉 and a number K , is there a set V ′ ⊆ V , |V ′| ≤ K , such that
for every edge (u, v) ∈ E , either u ∈ V ′ or v ∈ V ′?

Independent Set (IS)

Given a graph G = 〈V ,E〉 and a number K , is there a set V ′ ⊆ V , |V ′| ≥ K , such that
for every pair of vertices (u, v) ∈ V ′, (u, v) 6∈ E .

Clique (CQ)

Given a graph G = 〈V ,E〉 and a number K , is there a set V ′ ⊆ V , |V ′| ≤ K , such that
for pair of vertices (u, v) ∈ V ′, (u, v) ∈ E .

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Three related graph problems

Vertex Cover (VC)

Given a graph G = 〈V ,E〉 and a number K , is there a set V ′ ⊆ V , |V ′| ≤ K , such that
for every edge (u, v) ∈ E , either u ∈ V ′ or v ∈ V ′?

Independent Set (IS)

Given a graph G = 〈V ,E〉 and a number K , is there a set V ′ ⊆ V , |V ′| ≥ K , such that
for every pair of vertices (u, v) ∈ V ′, (u, v) 6∈ E .

Clique (CQ)

Given a graph G = 〈V ,E〉 and a number K , is there a set V ′ ⊆ V , |V ′| ≤ K , such that
for pair of vertices (u, v) ∈ V ′, (u, v) ∈ E .

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Three related graph problems

Vertex Cover (VC)

Given a graph G = 〈V ,E〉 and a number K , is there a set V ′ ⊆ V , |V ′| ≤ K , such that
for every edge (u, v) ∈ E , either u ∈ V ′ or v ∈ V ′?

Independent Set (IS)

Given a graph G = 〈V ,E〉 and a number K , is there a set V ′ ⊆ V , |V ′| ≥ K , such that
for every pair of vertices (u, v) ∈ V ′, (u, v) 6∈ E .

Clique (CQ)

Given a graph G = 〈V ,E〉 and a number K , is there a set V ′ ⊆ V , |V ′| ≤ K , such that
for pair of vertices (u, v) ∈ V ′, (u, v) ∈ E .

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Three related graph problems

Vertex Cover (VC)

Given a graph G = 〈V ,E〉 and a number K , is there a set V ′ ⊆ V , |V ′| ≤ K , such that
for every edge (u, v) ∈ E , either u ∈ V ′ or v ∈ V ′?

Independent Set (IS)

Given a graph G = 〈V ,E〉 and a number K , is there a set V ′ ⊆ V , |V ′| ≥ K , such that
for every pair of vertices (u, v) ∈ V ′, (u, v) 6∈ E .

Clique (CQ)

Given a graph G = 〈V ,E〉 and a number K , is there a set V ′ ⊆ V , |V ′| ≤ K , such that
for pair of vertices (u, v) ∈ V ′, (u, v) ∈ E .

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Three related graph problems

Vertex Cover (VC)

Given a graph G = 〈V ,E〉 and a number K , is there a set V ′ ⊆ V , |V ′| ≤ K , such that
for every edge (u, v) ∈ E , either u ∈ V ′ or v ∈ V ′?

Independent Set (IS)

Given a graph G = 〈V ,E〉 and a number K , is there a set V ′ ⊆ V , |V ′| ≥ K , such that
for every pair of vertices (u, v) ∈ V ′, (u, v) 6∈ E .

Clique (CQ)

Given a graph G = 〈V ,E〉 and a number K , is there a set V ′ ⊆ V , |V ′| ≤ K , such that
for pair of vertices (u, v) ∈ V ′, (u, v) ∈ E .

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Three related graph problems

Vertex Cover (VC)

Given a graph G = 〈V ,E〉 and a number K , is there a set V ′ ⊆ V , |V ′| ≤ K , such that
for every edge (u, v) ∈ E , either u ∈ V ′ or v ∈ V ′?

Independent Set (IS)

Given a graph G = 〈V ,E〉 and a number K , is there a set V ′ ⊆ V , |V ′| ≥ K , such that
for every pair of vertices (u, v) ∈ V ′, (u, v) 6∈ E .

Clique (CQ)

Given a graph G = 〈V ,E〉 and a number K , is there a set V ′ ⊆ V , |V ′| ≤ K , such that
for pair of vertices (u, v) ∈ V ′, (u, v) ∈ E .

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Observation relating the three problems

Theorem

Let G = 〈V ,E〉 denote a graph and let S ⊆ V.

The following statements are equivalent:
1 S is a vertex cover.
2 V − S is an independent set.
3 V − S is a clique in Gc = 〈V ,Ec〉, where two vertices are adjacent in Gc if and

only if they are non-adjacent in G.

Exercise

1 Argue that VC ≤ IS ≤ CQ.
2 Show that if a graph is k-colorable, then it has an independent set of size at least

n
k . Is the converse true.

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Observation relating the three problems

Theorem

Let G = 〈V ,E〉 denote a graph and let S ⊆ V.

The following statements are equivalent:
1 S is a vertex cover.
2 V − S is an independent set.
3 V − S is a clique in Gc = 〈V ,Ec〉, where two vertices are adjacent in Gc if and

only if they are non-adjacent in G.

Exercise

1 Argue that VC ≤ IS ≤ CQ.
2 Show that if a graph is k-colorable, then it has an independent set of size at least

n
k . Is the converse true.

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Observation relating the three problems

Theorem

Let G = 〈V ,E〉 denote a graph and let S ⊆ V.

The following statements are equivalent:
1 S is a vertex cover.
2 V − S is an independent set.
3 V − S is a clique in Gc = 〈V ,Ec〉, where two vertices are adjacent in Gc if and

only if they are non-adjacent in G.

Exercise

1 Argue that VC ≤ IS ≤ CQ.
2 Show that if a graph is k-colorable, then it has an independent set of size at least

n
k . Is the converse true.

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Observation relating the three problems

Theorem

Let G = 〈V ,E〉 denote a graph and let S ⊆ V.

The following statements are equivalent:

1 S is a vertex cover.
2 V − S is an independent set.
3 V − S is a clique in Gc = 〈V ,Ec〉, where two vertices are adjacent in Gc if and

only if they are non-adjacent in G.

Exercise

1 Argue that VC ≤ IS ≤ CQ.
2 Show that if a graph is k-colorable, then it has an independent set of size at least

n
k . Is the converse true.

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Observation relating the three problems

Theorem

Let G = 〈V ,E〉 denote a graph and let S ⊆ V.

The following statements are equivalent:
1 S is a vertex cover.

2 V − S is an independent set.
3 V − S is a clique in Gc = 〈V ,Ec〉, where two vertices are adjacent in Gc if and

only if they are non-adjacent in G.

Exercise

1 Argue that VC ≤ IS ≤ CQ.
2 Show that if a graph is k-colorable, then it has an independent set of size at least

n
k . Is the converse true.

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Observation relating the three problems

Theorem

Let G = 〈V ,E〉 denote a graph and let S ⊆ V.

The following statements are equivalent:
1 S is a vertex cover.
2 V − S is an independent set.

3 V − S is a clique in Gc = 〈V ,Ec〉, where two vertices are adjacent in Gc if and
only if they are non-adjacent in G.

Exercise

1 Argue that VC ≤ IS ≤ CQ.
2 Show that if a graph is k-colorable, then it has an independent set of size at least

n
k . Is the converse true.

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Observation relating the three problems

Theorem

Let G = 〈V ,E〉 denote a graph and let S ⊆ V.

The following statements are equivalent:
1 S is a vertex cover.
2 V − S is an independent set.
3 V − S is a clique in Gc = 〈V ,Ec〉, where two vertices are adjacent in Gc if and

only if they are non-adjacent in G.

Exercise

1 Argue that VC ≤ IS ≤ CQ.
2 Show that if a graph is k-colorable, then it has an independent set of size at least

n
k . Is the converse true.

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Observation relating the three problems

Theorem

Let G = 〈V ,E〉 denote a graph and let S ⊆ V.

The following statements are equivalent:
1 S is a vertex cover.
2 V − S is an independent set.
3 V − S is a clique in Gc = 〈V ,Ec〉, where two vertices are adjacent in Gc if and

only if they are non-adjacent in G.

Exercise

1 Argue that VC ≤ IS ≤ CQ.
2 Show that if a graph is k-colorable, then it has an independent set of size at least

n
k . Is the converse true.

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Observation relating the three problems

Theorem

Let G = 〈V ,E〉 denote a graph and let S ⊆ V.

The following statements are equivalent:
1 S is a vertex cover.
2 V − S is an independent set.
3 V − S is a clique in Gc = 〈V ,Ec〉, where two vertices are adjacent in Gc if and

only if they are non-adjacent in G.

Exercise

1 Argue that VC ≤ IS ≤ CQ.

2 Show that if a graph is k-colorable, then it has an independent set of size at least
n
k . Is the converse true.

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Observation relating the three problems

Theorem

Let G = 〈V ,E〉 denote a graph and let S ⊆ V.

The following statements are equivalent:
1 S is a vertex cover.
2 V − S is an independent set.
3 V − S is a clique in Gc = 〈V ,Ec〉, where two vertices are adjacent in Gc if and

only if they are non-adjacent in G.

Exercise

1 Argue that VC ≤ IS ≤ CQ.
2 Show that if a graph is k-colorable, then it has an independent set of size at least

n
k .

Is the converse true.

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Observation relating the three problems

Theorem

Let G = 〈V ,E〉 denote a graph and let S ⊆ V.

The following statements are equivalent:
1 S is a vertex cover.
2 V − S is an independent set.
3 V − S is a clique in Gc = 〈V ,Ec〉, where two vertices are adjacent in Gc if and

only if they are non-adjacent in G.

Exercise

1 Argue that VC ≤ IS ≤ CQ.
2 Show that if a graph is k-colorable, then it has an independent set of size at least

n
k . Is the converse true.

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

First Formal Definition

Definition

NP is the class of problems A of the following form:

x is a yes-instance of A if and only if there exists a w , such that (x ,w) is
is a yes-instance of B,

where B is a decision problem in P regarding pairs (x ,w) and |w | = poly(|x |).

Observations

1 w is a witness of the fact that x is a yes-instance. It is called a certificate.
2 B is the problem of checking whether x is a genuine needle. For instance, if A is

HAMILTON-PATH, then x is a graph, w is a path, and B is the problem of checking
whether w is a valid Hamilton path for x.

3 w is required to be polynomially balanced. This ensures that B runs in time
polynomial in |x |.

4 NP ⊆ EXP, where EXP=TIME(2poly(n)).

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

First Formal Definition

Definition

NP is the class of problems A of the following form:

x is a yes-instance of A if and only if there exists a w , such that (x ,w) is
is a yes-instance of B,

where B is a decision problem in P regarding pairs (x ,w) and |w | = poly(|x |).

Observations

1 w is a witness of the fact that x is a yes-instance. It is called a certificate.
2 B is the problem of checking whether x is a genuine needle. For instance, if A is

HAMILTON-PATH, then x is a graph, w is a path, and B is the problem of checking
whether w is a valid Hamilton path for x.

3 w is required to be polynomially balanced. This ensures that B runs in time
polynomial in |x |.

4 NP ⊆ EXP, where EXP=TIME(2poly(n)).

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

First Formal Definition

Definition

NP is the class of problems A of the following form:

x is a yes-instance of A if and only if there exists a w , such that (x ,w) is
is a yes-instance of B,

where B is a decision problem in P regarding pairs (x ,w) and |w | = poly(|x |).

Observations

1 w is a witness of the fact that x is a yes-instance. It is called a certificate.
2 B is the problem of checking whether x is a genuine needle. For instance, if A is

HAMILTON-PATH, then x is a graph, w is a path, and B is the problem of checking
whether w is a valid Hamilton path for x.

3 w is required to be polynomially balanced. This ensures that B runs in time
polynomial in |x |.

4 NP ⊆ EXP, where EXP=TIME(2poly(n)).

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

First Formal Definition

Definition

NP is the class of problems A of the following form:

x is a yes-instance of A if and only if there exists a w ,

such that (x ,w) is
is a yes-instance of B,

where B is a decision problem in P regarding pairs (x ,w) and |w | = poly(|x |).

Observations

1 w is a witness of the fact that x is a yes-instance. It is called a certificate.
2 B is the problem of checking whether x is a genuine needle. For instance, if A is

HAMILTON-PATH, then x is a graph, w is a path, and B is the problem of checking
whether w is a valid Hamilton path for x.

3 w is required to be polynomially balanced. This ensures that B runs in time
polynomial in |x |.

4 NP ⊆ EXP, where EXP=TIME(2poly(n)).

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

First Formal Definition

Definition

NP is the class of problems A of the following form:

x is a yes-instance of A if and only if there exists a w , such that (x ,w) is
is a yes-instance of B,

where B is a decision problem in P regarding pairs (x ,w) and |w | = poly(|x |).

Observations

1 w is a witness of the fact that x is a yes-instance. It is called a certificate.
2 B is the problem of checking whether x is a genuine needle. For instance, if A is

HAMILTON-PATH, then x is a graph, w is a path, and B is the problem of checking
whether w is a valid Hamilton path for x.

3 w is required to be polynomially balanced. This ensures that B runs in time
polynomial in |x |.

4 NP ⊆ EXP, where EXP=TIME(2poly(n)).

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

First Formal Definition

Definition

NP is the class of problems A of the following form:

x is a yes-instance of A if and only if there exists a w , such that (x ,w) is
is a yes-instance of B,

where B is a decision problem in P regarding pairs (x ,w) and |w | = poly(|x |).

Observations

1 w is a witness of the fact that x is a yes-instance. It is called a certificate.
2 B is the problem of checking whether x is a genuine needle. For instance, if A is

HAMILTON-PATH, then x is a graph, w is a path, and B is the problem of checking
whether w is a valid Hamilton path for x.

3 w is required to be polynomially balanced. This ensures that B runs in time
polynomial in |x |.

4 NP ⊆ EXP, where EXP=TIME(2poly(n)).

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

First Formal Definition

Definition

NP is the class of problems A of the following form:

x is a yes-instance of A if and only if there exists a w , such that (x ,w) is
is a yes-instance of B,

where B is a decision problem in P regarding pairs (x ,w) and |w | = poly(|x |).

Observations

1 w is a witness of the fact that x is a yes-instance. It is called a certificate.
2 B is the problem of checking whether x is a genuine needle. For instance, if A is

HAMILTON-PATH, then x is a graph, w is a path, and B is the problem of checking
whether w is a valid Hamilton path for x.

3 w is required to be polynomially balanced. This ensures that B runs in time
polynomial in |x |.

4 NP ⊆ EXP, where EXP=TIME(2poly(n)).

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

First Formal Definition

Definition

NP is the class of problems A of the following form:

x is a yes-instance of A if and only if there exists a w , such that (x ,w) is
is a yes-instance of B,

where B is a decision problem in P regarding pairs (x ,w) and |w | = poly(|x |).

Observations

1 w is a witness of the fact that x is a yes-instance.

It is called a certificate.
2 B is the problem of checking whether x is a genuine needle. For instance, if A is

HAMILTON-PATH, then x is a graph, w is a path, and B is the problem of checking
whether w is a valid Hamilton path for x.

3 w is required to be polynomially balanced. This ensures that B runs in time
polynomial in |x |.

4 NP ⊆ EXP, where EXP=TIME(2poly(n)).

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

First Formal Definition

Definition

NP is the class of problems A of the following form:

x is a yes-instance of A if and only if there exists a w , such that (x ,w) is
is a yes-instance of B,

where B is a decision problem in P regarding pairs (x ,w) and |w | = poly(|x |).

Observations

1 w is a witness of the fact that x is a yes-instance. It is called a certificate.

2 B is the problem of checking whether x is a genuine needle. For instance, if A is
HAMILTON-PATH, then x is a graph, w is a path, and B is the problem of checking
whether w is a valid Hamilton path for x.

3 w is required to be polynomially balanced. This ensures that B runs in time
polynomial in |x |.

4 NP ⊆ EXP, where EXP=TIME(2poly(n)).

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

First Formal Definition

Definition

NP is the class of problems A of the following form:

x is a yes-instance of A if and only if there exists a w , such that (x ,w) is
is a yes-instance of B,

where B is a decision problem in P regarding pairs (x ,w) and |w | = poly(|x |).

Observations

1 w is a witness of the fact that x is a yes-instance. It is called a certificate.
2 B is the problem of checking whether x is a genuine needle.

For instance, if A is
HAMILTON-PATH, then x is a graph, w is a path, and B is the problem of checking
whether w is a valid Hamilton path for x.

3 w is required to be polynomially balanced. This ensures that B runs in time
polynomial in |x |.

4 NP ⊆ EXP, where EXP=TIME(2poly(n)).

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

First Formal Definition

Definition

NP is the class of problems A of the following form:

x is a yes-instance of A if and only if there exists a w , such that (x ,w) is
is a yes-instance of B,

where B is a decision problem in P regarding pairs (x ,w) and |w | = poly(|x |).

Observations

1 w is a witness of the fact that x is a yes-instance. It is called a certificate.
2 B is the problem of checking whether x is a genuine needle. For instance, if A is

HAMILTON-PATH, then x is a graph,

w is a path, and B is the problem of checking
whether w is a valid Hamilton path for x.

3 w is required to be polynomially balanced. This ensures that B runs in time
polynomial in |x |.

4 NP ⊆ EXP, where EXP=TIME(2poly(n)).

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

First Formal Definition

Definition

NP is the class of problems A of the following form:

x is a yes-instance of A if and only if there exists a w , such that (x ,w) is
is a yes-instance of B,

where B is a decision problem in P regarding pairs (x ,w) and |w | = poly(|x |).

Observations

1 w is a witness of the fact that x is a yes-instance. It is called a certificate.
2 B is the problem of checking whether x is a genuine needle. For instance, if A is

HAMILTON-PATH, then x is a graph, w is a path,

and B is the problem of checking
whether w is a valid Hamilton path for x.

3 w is required to be polynomially balanced. This ensures that B runs in time
polynomial in |x |.

4 NP ⊆ EXP, where EXP=TIME(2poly(n)).

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

First Formal Definition

Definition

NP is the class of problems A of the following form:

x is a yes-instance of A if and only if there exists a w , such that (x ,w) is
is a yes-instance of B,

where B is a decision problem in P regarding pairs (x ,w) and |w | = poly(|x |).

Observations

1 w is a witness of the fact that x is a yes-instance. It is called a certificate.
2 B is the problem of checking whether x is a genuine needle. For instance, if A is

HAMILTON-PATH, then x is a graph, w is a path, and B is the problem of checking
whether w is a valid Hamilton path for x.

3 w is required to be polynomially balanced. This ensures that B runs in time
polynomial in |x |.

4 NP ⊆ EXP, where EXP=TIME(2poly(n)).

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

First Formal Definition

Definition

NP is the class of problems A of the following form:

x is a yes-instance of A if and only if there exists a w , such that (x ,w) is
is a yes-instance of B,

where B is a decision problem in P regarding pairs (x ,w) and |w | = poly(|x |).

Observations

1 w is a witness of the fact that x is a yes-instance. It is called a certificate.
2 B is the problem of checking whether x is a genuine needle. For instance, if A is

HAMILTON-PATH, then x is a graph, w is a path, and B is the problem of checking
whether w is a valid Hamilton path for x.

3 w is required to be polynomially balanced.

This ensures that B runs in time
polynomial in |x |.

4 NP ⊆ EXP, where EXP=TIME(2poly(n)).

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

First Formal Definition

Definition

NP is the class of problems A of the following form:

x is a yes-instance of A if and only if there exists a w , such that (x ,w) is
is a yes-instance of B,

where B is a decision problem in P regarding pairs (x ,w) and |w | = poly(|x |).

Observations

1 w is a witness of the fact that x is a yes-instance. It is called a certificate.
2 B is the problem of checking whether x is a genuine needle. For instance, if A is

HAMILTON-PATH, then x is a graph, w is a path, and B is the problem of checking
whether w is a valid Hamilton path for x.

3 w is required to be polynomially balanced. This ensures that B runs in time
polynomial in |x |.

4 NP ⊆ EXP, where EXP=TIME(2poly(n)).

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

First Formal Definition

Definition

NP is the class of problems A of the following form:

x is a yes-instance of A if and only if there exists a w , such that (x ,w) is
is a yes-instance of B,

where B is a decision problem in P regarding pairs (x ,w) and |w | = poly(|x |).

Observations

1 w is a witness of the fact that x is a yes-instance. It is called a certificate.
2 B is the problem of checking whether x is a genuine needle. For instance, if A is

HAMILTON-PATH, then x is a graph, w is a path, and B is the problem of checking
whether w is a valid Hamilton path for x.

3 w is required to be polynomially balanced. This ensures that B runs in time
polynomial in |x |.

4 NP ⊆ EXP, where EXP=TIME(2poly(n)).

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Generalizing NP

Definition

NTIME(f (n)) is the class of problems A of the following form:

x is a yes-instance of A if and only if there exists a w , such that (x ,w) is
is a yes-instance of B,

where B is a decision problem in TIME(f (n) regarding pairs (x ,w), |x | = n and
|w | = O(f (n)).

As argued previously,

NTIME(f (n)) ⊆ TIME(2f (n))

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Generalizing NP

Definition

NTIME(f (n)) is the class of problems A of the following form:

x is a yes-instance of A if and only if there exists a w , such that (x ,w) is
is a yes-instance of B,

where B is a decision problem in TIME(f (n) regarding pairs (x ,w), |x | = n and
|w | = O(f (n)).

As argued previously,

NTIME(f (n)) ⊆ TIME(2f (n))

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Generalizing NP

Definition

NTIME(f (n)) is the class of problems A of the following form:

x is a yes-instance of A if and only if there exists a w , such that (x ,w) is
is a yes-instance of B,

where B is a decision problem in TIME(f (n) regarding pairs (x ,w), |x | = n and
|w | = O(f (n)).

As argued previously,

NTIME(f (n)) ⊆ TIME(2f (n))

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Generalizing NP

Definition

NTIME(f (n)) is the class of problems A of the following form:

x is a yes-instance of A if and only if there exists a w ,

such that (x ,w) is
is a yes-instance of B,

where B is a decision problem in TIME(f (n) regarding pairs (x ,w), |x | = n and
|w | = O(f (n)).

As argued previously,

NTIME(f (n)) ⊆ TIME(2f (n))

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Generalizing NP

Definition

NTIME(f (n)) is the class of problems A of the following form:

x is a yes-instance of A if and only if there exists a w , such that (x ,w) is
is a yes-instance of B,

where B is a decision problem in TIME(f (n) regarding pairs (x ,w), |x | = n and
|w | = O(f (n)).

As argued previously,

NTIME(f (n)) ⊆ TIME(2f (n))

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Generalizing NP

Definition

NTIME(f (n)) is the class of problems A of the following form:

x is a yes-instance of A if and only if there exists a w , such that (x ,w) is
is a yes-instance of B,

where B is a decision problem in TIME(f (n) regarding pairs (x ,w), |x | = n and
|w | = O(f (n)).

As argued previously,

NTIME(f (n)) ⊆ TIME(2f (n))

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Generalizing NP

Definition

NTIME(f (n)) is the class of problems A of the following form:

x is a yes-instance of A if and only if there exists a w , such that (x ,w) is
is a yes-instance of B,

where B is a decision problem in TIME(f (n) regarding pairs (x ,w), |x | = n and
|w | = O(f (n)).

As argued previously,

NTIME(f (n)) ⊆ TIME(2f (n))

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Generalizing NP

Definition

NTIME(f (n)) is the class of problems A of the following form:

x is a yes-instance of A if and only if there exists a w , such that (x ,w) is
is a yes-instance of B,

where B is a decision problem in TIME(f (n) regarding pairs (x ,w), |x | = n and
|w | = O(f (n)).

As argued previously,

NTIME(f (n)) ⊆ TIME(2f (n))

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Generalizing NP

Definition

NTIME(f (n)) is the class of problems A of the following form:

x is a yes-instance of A if and only if there exists a w , such that (x ,w) is
is a yes-instance of B,

where B is a decision problem in TIME(f (n) regarding pairs (x ,w), |x | = n and
|w | = O(f (n)).

As argued previously,

NTIME(f (n)) ⊆ TIME(2f (n))

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Another definition for NP

Definition

NP is the class of properties A of the form

A(x) = ∃w : B(x ,w)

where B is in P and where |w | = poly(|x |).

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Another definition for NP

Definition

NP is the class of properties A of the form

A(x) = ∃w : B(x ,w)

where B is in P and where |w | = poly(|x |).

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Another definition for NP

Definition

NP is the class of properties A of the form

A(x) = ∃w : B(x ,w)

where B is in P and where |w | = poly(|x |).

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Another definition for NP

Definition

NP is the class of properties A of the form

A(x) = ∃w : B(x ,w)

where B is in P and where |w | = poly(|x |).

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Another definition for NP

Definition

NP is the class of properties A of the form

A(x) = ∃w : B(x ,w)

where B is in P and where |w | = poly(|x |).

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Some observations

Observations

1 We have associated with the decision problem A, the property A(x), where A(x) is
true if and only if x is a yes-instance of A.

For instance, if x is a graph and A(x) is the property that x has a Hamilton path,
then B(x ,w) is the polynomial time property that w is a Hamilton path for x .

2 Algorithmically, the quantifier ∃ represents the process of searching for the
witness w .

3 Prover-Verifier conversation.
4 Are the complements of P properties in P?
5 How about complements of NP properties? These properties belong to the class

coNP; they have easy to check no instances, but no known method of verifying
yes-instances in polynomial time.

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Some observations

Observations

1 We have associated with the decision problem A, the property A(x), where A(x) is
true if and only if x is a yes-instance of A.

For instance, if x is a graph and A(x) is the property that x has a Hamilton path,
then B(x ,w) is the polynomial time property that w is a Hamilton path for x .

2 Algorithmically, the quantifier ∃ represents the process of searching for the
witness w .

3 Prover-Verifier conversation.
4 Are the complements of P properties in P?
5 How about complements of NP properties? These properties belong to the class

coNP; they have easy to check no instances, but no known method of verifying
yes-instances in polynomial time.

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Some observations

Observations

1 We have associated with the decision problem A, the property A(x), where A(x) is
true if and only if x is a yes-instance of A.

For instance, if x is a graph and A(x) is the property that x has a Hamilton path,
then B(x ,w) is the polynomial time property that w is a Hamilton path for x .

2 Algorithmically, the quantifier ∃ represents the process of searching for the
witness w .

3 Prover-Verifier conversation.
4 Are the complements of P properties in P?
5 How about complements of NP properties? These properties belong to the class

coNP; they have easy to check no instances, but no known method of verifying
yes-instances in polynomial time.

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Some observations

Observations

1 We have associated with the decision problem A, the property A(x), where A(x) is
true if and only if x is a yes-instance of A.

For instance, if x is a graph and A(x) is the property that x has a Hamilton path,
then B(x ,w) is the polynomial time property that w is a Hamilton path for x .

2 Algorithmically, the quantifier ∃ represents the process of searching for the
witness w .

3 Prover-Verifier conversation.
4 Are the complements of P properties in P?
5 How about complements of NP properties? These properties belong to the class

coNP; they have easy to check no instances, but no known method of verifying
yes-instances in polynomial time.

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Some observations

Observations

1 We have associated with the decision problem A, the property A(x), where A(x) is
true if and only if x is a yes-instance of A.

For instance, if x is a graph and A(x) is the property that x has a Hamilton path,
then B(x ,w) is the polynomial time property that w is a Hamilton path for x .

2 Algorithmically, the quantifier ∃ represents the process of searching for the
witness w .

3 Prover-Verifier conversation.
4 Are the complements of P properties in P?
5 How about complements of NP properties? These properties belong to the class

coNP; they have easy to check no instances, but no known method of verifying
yes-instances in polynomial time.

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Some observations

Observations

1 We have associated with the decision problem A, the property A(x), where A(x) is
true if and only if x is a yes-instance of A.

For instance, if x is a graph and A(x) is the property that x has a Hamilton path,
then B(x ,w) is the polynomial time property that w is a Hamilton path for x .

2 Algorithmically, the quantifier ∃ represents the process of searching for the
witness w .

3 Prover-Verifier conversation.

4 Are the complements of P properties in P?
5 How about complements of NP properties? These properties belong to the class

coNP; they have easy to check no instances, but no known method of verifying
yes-instances in polynomial time.

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Some observations

Observations

1 We have associated with the decision problem A, the property A(x), where A(x) is
true if and only if x is a yes-instance of A.

For instance, if x is a graph and A(x) is the property that x has a Hamilton path,
then B(x ,w) is the polynomial time property that w is a Hamilton path for x .

2 Algorithmically, the quantifier ∃ represents the process of searching for the
witness w .

3 Prover-Verifier conversation.
4 Are the complements of P properties in P?

5 How about complements of NP properties? These properties belong to the class
coNP; they have easy to check no instances, but no known method of verifying
yes-instances in polynomial time.

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Some observations

Observations

1 We have associated with the decision problem A, the property A(x), where A(x) is
true if and only if x is a yes-instance of A.

For instance, if x is a graph and A(x) is the property that x has a Hamilton path,
then B(x ,w) is the polynomial time property that w is a Hamilton path for x .

2 Algorithmically, the quantifier ∃ represents the process of searching for the
witness w .

3 Prover-Verifier conversation.
4 Are the complements of P properties in P?
5 How about complements of NP properties? These properties belong to the class

coNP; they have easy to check no instances, but no known method of verifying
yes-instances in polynomial time.

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Exercise

Exercise

1 Is coNP the complement of NP?
2 Is NP ∩ coNP identical to P?
3 Show that if P = NP then NP = coNP. Is the converse true?

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Exercise

Exercise

1 Is coNP the complement of NP?
2 Is NP ∩ coNP identical to P?
3 Show that if P = NP then NP = coNP. Is the converse true?

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Exercise

Exercise

1 Is coNP the complement of NP?

2 Is NP ∩ coNP identical to P?
3 Show that if P = NP then NP = coNP. Is the converse true?

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Exercise

Exercise

1 Is coNP the complement of NP?
2 Is NP ∩ coNP identical to P?

3 Show that if P = NP then NP = coNP. Is the converse true?

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Exercise

Exercise

1 Is coNP the complement of NP?
2 Is NP ∩ coNP identical to P?
3 Show that if P = NP then NP = coNP.

Is the converse true?

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Exercise

Exercise

1 Is coNP the complement of NP?
2 Is NP ∩ coNP identical to P?
3 Show that if P = NP then NP = coNP. Is the converse true?

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Nondeterministic Computation

Fundamentals

1 A computer program is deterministic in that given the initial state and input, the
execution trace is fixed, i.e., there are no choices for the program to make.

2 A nondeterministic program can make several possible choices at each step. For
instance, consider the instruction:

goto both line1, line2.
3 The computation then becomes a tree instead of a straight line.
4 The output of a nondeterministic program is “yes”, if any of the computations in the

tree leads to a an accepting state and “no” otherwise.
5 The running time of a nondeterministic program is the height of its computation

tree.

Exercise

Write a nondeterministic program for 3SAT.

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Nondeterministic Computation

Fundamentals

1 A computer program is deterministic in that given the initial state and input, the
execution trace is fixed, i.e., there are no choices for the program to make.

2 A nondeterministic program can make several possible choices at each step. For
instance, consider the instruction:

goto both line1, line2.
3 The computation then becomes a tree instead of a straight line.
4 The output of a nondeterministic program is “yes”, if any of the computations in the

tree leads to a an accepting state and “no” otherwise.
5 The running time of a nondeterministic program is the height of its computation

tree.

Exercise

Write a nondeterministic program for 3SAT.

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Nondeterministic Computation

Fundamentals

1 A computer program is deterministic in that given the initial state and input, the
execution trace is fixed, i.e., there are no choices for the program to make.

2 A nondeterministic program can make several possible choices at each step. For
instance, consider the instruction:

goto both line1, line2.
3 The computation then becomes a tree instead of a straight line.
4 The output of a nondeterministic program is “yes”, if any of the computations in the

tree leads to a an accepting state and “no” otherwise.
5 The running time of a nondeterministic program is the height of its computation

tree.

Exercise

Write a nondeterministic program for 3SAT.

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Nondeterministic Computation

Fundamentals

1 A computer program is deterministic in that given the initial state and input, the
execution trace is fixed, i.e., there are no choices for the program to make.

2 A nondeterministic program can make several possible choices at each step.

For
instance, consider the instruction:

goto both line1, line2.
3 The computation then becomes a tree instead of a straight line.
4 The output of a nondeterministic program is “yes”, if any of the computations in the

tree leads to a an accepting state and “no” otherwise.
5 The running time of a nondeterministic program is the height of its computation

tree.

Exercise

Write a nondeterministic program for 3SAT.

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Nondeterministic Computation

Fundamentals

1 A computer program is deterministic in that given the initial state and input, the
execution trace is fixed, i.e., there are no choices for the program to make.

2 A nondeterministic program can make several possible choices at each step. For
instance, consider the instruction:

goto both line1, line2.
3 The computation then becomes a tree instead of a straight line.
4 The output of a nondeterministic program is “yes”, if any of the computations in the

tree leads to a an accepting state and “no” otherwise.
5 The running time of a nondeterministic program is the height of its computation

tree.

Exercise

Write a nondeterministic program for 3SAT.

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Nondeterministic Computation

Fundamentals

1 A computer program is deterministic in that given the initial state and input, the
execution trace is fixed, i.e., there are no choices for the program to make.

2 A nondeterministic program can make several possible choices at each step. For
instance, consider the instruction:

goto both line1, line2.

3 The computation then becomes a tree instead of a straight line.
4 The output of a nondeterministic program is “yes”, if any of the computations in the

tree leads to a an accepting state and “no” otherwise.
5 The running time of a nondeterministic program is the height of its computation

tree.

Exercise

Write a nondeterministic program for 3SAT.

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Nondeterministic Computation

Fundamentals

1 A computer program is deterministic in that given the initial state and input, the
execution trace is fixed, i.e., there are no choices for the program to make.

2 A nondeterministic program can make several possible choices at each step. For
instance, consider the instruction:

goto both line1, line2.
3 The computation then becomes a tree instead of a straight line.

4 The output of a nondeterministic program is “yes”, if any of the computations in the
tree leads to a an accepting state and “no” otherwise.

5 The running time of a nondeterministic program is the height of its computation
tree.

Exercise

Write a nondeterministic program for 3SAT.

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Nondeterministic Computation

Fundamentals

1 A computer program is deterministic in that given the initial state and input, the
execution trace is fixed, i.e., there are no choices for the program to make.

2 A nondeterministic program can make several possible choices at each step. For
instance, consider the instruction:

goto both line1, line2.
3 The computation then becomes a tree instead of a straight line.
4 The output of a nondeterministic program is “yes”, if any of the computations in the

tree leads to a an accepting state and “no” otherwise.

5 The running time of a nondeterministic program is the height of its computation
tree.

Exercise

Write a nondeterministic program for 3SAT.

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Nondeterministic Computation

Fundamentals

1 A computer program is deterministic in that given the initial state and input, the
execution trace is fixed, i.e., there are no choices for the program to make.

2 A nondeterministic program can make several possible choices at each step. For
instance, consider the instruction:

goto both line1, line2.
3 The computation then becomes a tree instead of a straight line.
4 The output of a nondeterministic program is “yes”, if any of the computations in the

tree leads to a an accepting state and “no” otherwise.
5 The running time of a nondeterministic program is the height of its computation

tree.

Exercise

Write a nondeterministic program for 3SAT.

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Nondeterministic Computation

Fundamentals

1 A computer program is deterministic in that given the initial state and input, the
execution trace is fixed, i.e., there are no choices for the program to make.

2 A nondeterministic program can make several possible choices at each step. For
instance, consider the instruction:

goto both line1, line2.
3 The computation then becomes a tree instead of a straight line.
4 The output of a nondeterministic program is “yes”, if any of the computations in the

tree leads to a an accepting state and “no” otherwise.
5 The running time of a nondeterministic program is the height of its computation

tree.

Exercise

Write a nondeterministic program for 3SAT.

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Final definition of NP

Definition

NP is the class of problems for which a nondeterministic program exists that runs in
time poly(n), on instances of length n, such that the input is a yes-instance if and only
if there exists a computation path that returns “yes.”

Definition

NTIME(f (n)) is the class of problems for which a nondeterministic program exists that
runs in time O(f (n)), on instances of length n, such that the input is a yes-instance if
and only if there exists a computation path that returns “yes.”

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Final definition of NP

Definition

NP is the class of problems for which a nondeterministic program exists that runs in
time poly(n), on instances of length n, such that the input is a yes-instance if and only
if there exists a computation path that returns “yes.”

Definition

NTIME(f (n)) is the class of problems for which a nondeterministic program exists that
runs in time O(f (n)), on instances of length n, such that the input is a yes-instance if
and only if there exists a computation path that returns “yes.”

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Final definition of NP

Definition

NP is the class of problems for which a nondeterministic program exists that runs in
time poly(n), on instances of length n,

such that the input is a yes-instance if and only
if there exists a computation path that returns “yes.”

Definition

NTIME(f (n)) is the class of problems for which a nondeterministic program exists that
runs in time O(f (n)), on instances of length n, such that the input is a yes-instance if
and only if there exists a computation path that returns “yes.”

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Final definition of NP

Definition

NP is the class of problems for which a nondeterministic program exists that runs in
time poly(n), on instances of length n, such that the input is a yes-instance if and only
if there exists a computation path that returns “yes.”

Definition

NTIME(f (n)) is the class of problems for which a nondeterministic program exists that
runs in time O(f (n)), on instances of length n, such that the input is a yes-instance if
and only if there exists a computation path that returns “yes.”

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Final definition of NP

Definition

NP is the class of problems for which a nondeterministic program exists that runs in
time poly(n), on instances of length n, such that the input is a yes-instance if and only
if there exists a computation path that returns “yes.”

Definition

NTIME(f (n)) is the class of problems for which a nondeterministic program exists that
runs in time O(f (n)), on instances of length n, such that the input is a yes-instance if
and only if there exists a computation path that returns “yes.”

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Final definition of NP

Definition

NP is the class of problems for which a nondeterministic program exists that runs in
time poly(n), on instances of length n, such that the input is a yes-instance if and only
if there exists a computation path that returns “yes.”

Definition

NTIME(f (n)) is the class of problems for which a nondeterministic program exists that
runs in time O(f (n)), on instances of length n,

such that the input is a yes-instance if
and only if there exists a computation path that returns “yes.”

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Final definition of NP

Definition

NP is the class of problems for which a nondeterministic program exists that runs in
time poly(n), on instances of length n, such that the input is a yes-instance if and only
if there exists a computation path that returns “yes.”

Definition

NTIME(f (n)) is the class of problems for which a nondeterministic program exists that
runs in time O(f (n)), on instances of length n, such that the input is a yes-instance if
and only if there exists a computation path that returns “yes.”

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Linear Programming

The Problem (LP)

∃x A · x ≤ b
x ≥ 0

Observation

1 Is LP in NP? Does Guess and Verify work?
2 Is LP in coNP?

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Linear Programming

The Problem (LP)

∃x A · x ≤ b
x ≥ 0

Observation

1 Is LP in NP? Does Guess and Verify work?
2 Is LP in coNP?

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Linear Programming

The Problem (LP)

∃x A · x ≤ b
x ≥ 0

Observation

1 Is LP in NP? Does Guess and Verify work?
2 Is LP in coNP?

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Linear Programming

The Problem (LP)

∃x A · x ≤ b
x ≥ 0

Observation

1 Is LP in NP? Does Guess and Verify work?
2 Is LP in coNP?

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Linear Programming

The Problem (LP)

∃x A · x ≤ b
x ≥ 0

Observation

1 Is LP in NP?

Does Guess and Verify work?
2 Is LP in coNP?

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Linear Programming

The Problem (LP)

∃x A · x ≤ b
x ≥ 0

Observation

1 Is LP in NP? Does Guess and Verify work?

2 Is LP in coNP?

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Linear Programming

The Problem (LP)

∃x A · x ≤ b
x ≥ 0

Observation

1 Is LP in NP? Does Guess and Verify work?
2 Is LP in coNP?

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Complexity

Fundamentals

1 Assume that A has m rows and n columns.
2 Observe that with the introduction of slack variables, we can rewrite the Linear

programming problem as:

∃x A · x = b
x ≥ 0

where m ≤ n
3 A basis of the above system is a collection of m linearly independent columns.
4 A basic solution is obtained by solving the system B · xB + N · xN = b, xN = 0.
5 The basic solution is feasible if every element of xB is non-negative.
6 The above system is feasible if and only if it has a basic feasible solution.
7 So all that we have to do now is to show that the basic solutions are polynomial in

the size of the input.

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Complexity

Fundamentals

1 Assume that A has m rows and n columns.
2 Observe that with the introduction of slack variables, we can rewrite the Linear

programming problem as:

∃x A · x = b
x ≥ 0

where m ≤ n
3 A basis of the above system is a collection of m linearly independent columns.
4 A basic solution is obtained by solving the system B · xB + N · xN = b, xN = 0.
5 The basic solution is feasible if every element of xB is non-negative.
6 The above system is feasible if and only if it has a basic feasible solution.
7 So all that we have to do now is to show that the basic solutions are polynomial in

the size of the input.

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Complexity

Fundamentals

1 Assume that A has m rows and n columns.

2 Observe that with the introduction of slack variables, we can rewrite the Linear
programming problem as:

∃x A · x = b
x ≥ 0

where m ≤ n
3 A basis of the above system is a collection of m linearly independent columns.
4 A basic solution is obtained by solving the system B · xB + N · xN = b, xN = 0.
5 The basic solution is feasible if every element of xB is non-negative.
6 The above system is feasible if and only if it has a basic feasible solution.
7 So all that we have to do now is to show that the basic solutions are polynomial in

the size of the input.

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Complexity

Fundamentals

1 Assume that A has m rows and n columns.
2 Observe that with the introduction of slack variables, we can rewrite the Linear

programming problem as:

∃x A · x = b
x ≥ 0

where m ≤ n

3 A basis of the above system is a collection of m linearly independent columns.
4 A basic solution is obtained by solving the system B · xB + N · xN = b, xN = 0.
5 The basic solution is feasible if every element of xB is non-negative.
6 The above system is feasible if and only if it has a basic feasible solution.
7 So all that we have to do now is to show that the basic solutions are polynomial in

the size of the input.

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Complexity

Fundamentals

1 Assume that A has m rows and n columns.
2 Observe that with the introduction of slack variables, we can rewrite the Linear

programming problem as:

∃x A · x = b
x ≥ 0

where m ≤ n
3 A basis of the above system is a collection of m linearly independent columns.

4 A basic solution is obtained by solving the system B · xB + N · xN = b, xN = 0.
5 The basic solution is feasible if every element of xB is non-negative.
6 The above system is feasible if and only if it has a basic feasible solution.
7 So all that we have to do now is to show that the basic solutions are polynomial in

the size of the input.

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Complexity

Fundamentals

1 Assume that A has m rows and n columns.
2 Observe that with the introduction of slack variables, we can rewrite the Linear

programming problem as:

∃x A · x = b
x ≥ 0

where m ≤ n
3 A basis of the above system is a collection of m linearly independent columns.
4 A basic solution is obtained by solving the system B · xB + N · xN = b, xN = 0.

5 The basic solution is feasible if every element of xB is non-negative.
6 The above system is feasible if and only if it has a basic feasible solution.
7 So all that we have to do now is to show that the basic solutions are polynomial in

the size of the input.

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Complexity

Fundamentals

1 Assume that A has m rows and n columns.
2 Observe that with the introduction of slack variables, we can rewrite the Linear

programming problem as:

∃x A · x = b
x ≥ 0

where m ≤ n
3 A basis of the above system is a collection of m linearly independent columns.
4 A basic solution is obtained by solving the system B · xB + N · xN = b, xN = 0.
5 The basic solution is feasible if every element of xB is non-negative.

6 The above system is feasible if and only if it has a basic feasible solution.
7 So all that we have to do now is to show that the basic solutions are polynomial in

the size of the input.

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Complexity

Fundamentals

1 Assume that A has m rows and n columns.
2 Observe that with the introduction of slack variables, we can rewrite the Linear

programming problem as:

∃x A · x = b
x ≥ 0

where m ≤ n
3 A basis of the above system is a collection of m linearly independent columns.
4 A basic solution is obtained by solving the system B · xB + N · xN = b, xN = 0.
5 The basic solution is feasible if every element of xB is non-negative.
6 The above system is feasible if and only if it has a basic feasible solution.

7 So all that we have to do now is to show that the basic solutions are polynomial in
the size of the input.

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Complexity

Fundamentals

1 Assume that A has m rows and n columns.
2 Observe that with the introduction of slack variables, we can rewrite the Linear

programming problem as:

∃x A · x = b
x ≥ 0

where m ≤ n
3 A basis of the above system is a collection of m linearly independent columns.
4 A basic solution is obtained by solving the system B · xB + N · xN = b, xN = 0.
5 The basic solution is feasible if every element of xB is non-negative.
6 The above system is feasible if and only if it has a basic feasible solution.
7 So all that we have to do now is to show that the basic solutions are polynomial in

the size of the input.

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Linear Programming theorem

Theorem

Let x = [x1, x2, . . . , xm, 0, 0, . . . , 0]T be a basic solution of the system

∃x A · x = b
x ≥ 0

Then,
|xj | ≤ m! · αm−1 · β

where,

α = max
i,j
|aij |

β = max
j
|bj |

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Linear Programming theorem

Theorem

Let x = [x1, x2, . . . , xm, 0, 0, . . . , 0]T be a basic solution of the system

∃x A · x = b
x ≥ 0

Then,
|xj | ≤ m! · αm−1 · β

where,

α = max
i,j
|aij |

β = max
j
|bj |

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Linear Programming theorem

Theorem

Let x = [x1, x2, . . . , xm, 0, 0, . . . , 0]T be a basic solution of the system

∃x A · x = b
x ≥ 0

Then,
|xj | ≤ m! · αm−1 · β

where,

α = max
i,j
|aij |

β = max
j
|bj |

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Linear Programming theorem

Theorem

Let x = [x1, x2, . . . , xm, 0, 0, . . . , 0]T be a basic solution of the system

∃x A · x = b
x ≥ 0

Then,
|xj | ≤ m! · αm−1 · β

where,

α = max
i,j
|aij |

β = max
j
|bj |

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Linear Programming theorem

Theorem

Let x = [x1, x2, . . . , xm, 0, 0, . . . , 0]T be a basic solution of the system

∃x A · x = b
x ≥ 0

Then,
|xj | ≤ m! · αm−1 · β

where,

α = max
i,j
|aij |

β = max
j
|bj |

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Linear Programming theorem

Theorem

Let x = [x1, x2, . . . , xm, 0, 0, . . . , 0]T be a basic solution of the system

∃x A · x = b
x ≥ 0

Then,
|xj | ≤ m! · αm−1 · β

where,

α = max
i,j
|aij |

β = max
j
|bj |

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Farkas’ Lemma

Lemma

Either,

∃x A · x ≤ b
x ≥ 0

or (mutually exclusively)

∃y y · A ≥ 0
y ≥ 0

y · b < 0

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Farkas’ Lemma

Lemma

Either,

∃x A · x ≤ b
x ≥ 0

or (mutually exclusively)

∃y y · A ≥ 0
y ≥ 0

y · b < 0

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Farkas’ Lemma

Lemma

Either,

∃x A · x ≤ b
x ≥ 0

or (mutually exclusively)

∃y y · A ≥ 0
y ≥ 0

y · b < 0

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Farkas’ Lemma

Lemma

Either,

∃x A · x ≤ b
x ≥ 0

or (mutually exclusively)

∃y y · A ≥ 0
y ≥ 0

y · b < 0

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Farkas’ Lemma

Lemma

Either,

∃x A · x ≤ b
x ≥ 0

or (mutually exclusively)

∃y y · A ≥ 0
y ≥ 0

y · b < 0

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Primality testing

PRIMES

Given a number N, determine whether it is a prime number, i.e., divisible only by one
and itself.

Exercise

1 Show that PRIMES is in coNP.
2 Show that PRIMES is in NP.

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Primality testing

PRIMES

Given a number N, determine whether it is a prime number, i.e., divisible only by one
and itself.

Exercise

1 Show that PRIMES is in coNP.
2 Show that PRIMES is in NP.

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Primality testing

PRIMES

Given a number N, determine whether it is a prime number, i.e., divisible only by one
and itself.

Exercise

1 Show that PRIMES is in coNP.
2 Show that PRIMES is in NP.

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Primality testing

PRIMES

Given a number N, determine whether it is a prime number, i.e., divisible only by one
and itself.

Exercise

1 Show that PRIMES is in coNP.
2 Show that PRIMES is in NP.

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Primality testing

PRIMES

Given a number N, determine whether it is a prime number, i.e., divisible only by one
and itself.

Exercise

1 Show that PRIMES is in coNP.

2 Show that PRIMES is in NP.

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Primality testing

PRIMES

Given a number N, determine whether it is a prime number, i.e., divisible only by one
and itself.

Exercise

1 Show that PRIMES is in coNP.
2 Show that PRIMES is in NP.

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Notations

Logarithms and natural numbers

Normally, when taking a logarithm, we get a real number. In order to work with natural
numbers, we adopt the following convention:

log x = dlog2 xe.

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Notations

Logarithms and natural numbers

Normally, when taking a logarithm, we get a real number. In order to work with natural
numbers, we adopt the following convention:

log x = dlog2 xe.

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Notations

Logarithms and natural numbers

Normally, when taking a logarithm, we get a real number.

In order to work with natural
numbers, we adopt the following convention:

log x = dlog2 xe.

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Notations

Logarithms and natural numbers

Normally, when taking a logarithm, we get a real number. In order to work with natural
numbers, we adopt the following convention:

log x = dlog2 xe.

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Notations

Logarithms and natural numbers

Normally, when taking a logarithm, we get a real number. In order to work with natural
numbers, we adopt the following convention:

log x = dlog2 xe.

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

The Lucas test for primality

Theorem

A number p > 1 is prime if and only if and only if there exists a number r , 1 < r < p,

such that rp−1 ≡ 1 mod p and furthermore, r
p−1

q 6≡ 1 mod p for all prime divisors q of
(p − 1).

Exercise

Can you design a nondeterministic algorithm for PRIMES?

We have to bound the number of prime divisors.

How many prime divisors can p have? At most log p.

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

The Lucas test for primality

Theorem

A number p > 1 is prime if and only if and only if there exists a number r , 1 < r < p,

such that rp−1 ≡ 1 mod p and furthermore, r
p−1

q 6≡ 1 mod p for all prime divisors q of
(p − 1).

Exercise

Can you design a nondeterministic algorithm for PRIMES?

We have to bound the number of prime divisors.

How many prime divisors can p have? At most log p.

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

The Lucas test for primality

Theorem

A number p > 1 is prime if and only if and only if there exists a number r ,

1 < r < p,

such that rp−1 ≡ 1 mod p and furthermore, r
p−1

q 6≡ 1 mod p for all prime divisors q of
(p − 1).

Exercise

Can you design a nondeterministic algorithm for PRIMES?

We have to bound the number of prime divisors.

How many prime divisors can p have? At most log p.

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

The Lucas test for primality

Theorem

A number p > 1 is prime if and only if and only if there exists a number r , 1 < r < p,

such that rp−1 ≡ 1 mod p and furthermore, r
p−1

q 6≡ 1 mod p for all prime divisors q of
(p − 1).

Exercise

Can you design a nondeterministic algorithm for PRIMES?

We have to bound the number of prime divisors.

How many prime divisors can p have? At most log p.

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

The Lucas test for primality

Theorem

A number p > 1 is prime if and only if and only if there exists a number r , 1 < r < p,

such that rp−1 ≡ 1 mod p

and furthermore, r
p−1

q 6≡ 1 mod p for all prime divisors q of
(p − 1).

Exercise

Can you design a nondeterministic algorithm for PRIMES?

We have to bound the number of prime divisors.

How many prime divisors can p have? At most log p.

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

The Lucas test for primality

Theorem

A number p > 1 is prime if and only if and only if there exists a number r , 1 < r < p,

such that rp−1 ≡ 1 mod p and furthermore,

r
p−1

q 6≡ 1 mod p for all prime divisors q of
(p − 1).

Exercise

Can you design a nondeterministic algorithm for PRIMES?

We have to bound the number of prime divisors.

How many prime divisors can p have? At most log p.

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

The Lucas test for primality

Theorem

A number p > 1 is prime if and only if and only if there exists a number r , 1 < r < p,

such that rp−1 ≡ 1 mod p and furthermore, r
p−1

q 6≡ 1 mod p for all prime divisors q of
(p − 1).

Exercise

Can you design a nondeterministic algorithm for PRIMES?

We have to bound the number of prime divisors.

How many prime divisors can p have? At most log p.

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

The Lucas test for primality

Theorem

A number p > 1 is prime if and only if and only if there exists a number r , 1 < r < p,

such that rp−1 ≡ 1 mod p and furthermore, r
p−1

q 6≡ 1 mod p for all prime divisors q of
(p − 1).

Exercise

Can you design a nondeterministic algorithm for PRIMES?

We have to bound the number of prime divisors.

How many prime divisors can p have? At most log p.

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

The Lucas test for primality

Theorem

A number p > 1 is prime if and only if and only if there exists a number r , 1 < r < p,

such that rp−1 ≡ 1 mod p and furthermore, r
p−1

q 6≡ 1 mod p for all prime divisors q of
(p − 1).

Exercise

Can you design a nondeterministic algorithm for PRIMES?

We have to bound the number of prime divisors.

How many prime divisors can p have? At most log p.

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

The Lucas test for primality

Theorem

A number p > 1 is prime if and only if and only if there exists a number r , 1 < r < p,

such that rp−1 ≡ 1 mod p and furthermore, r
p−1

q 6≡ 1 mod p for all prime divisors q of
(p − 1).

Exercise

Can you design a nondeterministic algorithm for PRIMES?

We have to bound the number of prime divisors.

How many prime divisors can p have? At most log p.

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

The Lucas test for primality

Theorem

A number p > 1 is prime if and only if and only if there exists a number r , 1 < r < p,

such that rp−1 ≡ 1 mod p and furthermore, r
p−1

q 6≡ 1 mod p for all prime divisors q of
(p − 1).

Exercise

Can you design a nondeterministic algorithm for PRIMES?

We have to bound the number of prime divisors.

How many prime divisors can p have?

At most log p.

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

The Lucas test for primality

Theorem

A number p > 1 is prime if and only if and only if there exists a number r , 1 < r < p,

such that rp−1 ≡ 1 mod p and furthermore, r
p−1

q 6≡ 1 mod p for all prime divisors q of
(p − 1).

Exercise

Can you design a nondeterministic algorithm for PRIMES?

We have to bound the number of prime divisors.

How many prime divisors can p have? At most log p.

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

FUNCTION PRIMALITY CHECKING(p)
1: Guess r .
2: if (rp−1 6≡ 1 mod p) then
3: return(“no”).
4: else
5: Guess q1, q2, . . . qk as the prime divisors of (p − 1).
6: if (any qi is not a prime divisor of (p − 1)) then
7: return(“no”).
8: end if
9: end if

10: for (i = 1 to k) do

11: if (r
p−1

q ≡ 1 mod p) then
12: return(“no”).
13: end if
14: end for
15: return(“yes”).

Algorithm 6.1: A nondeterministic algorithm for PRIMES

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

FUNCTION PRIMALITY CHECKING(p)

1: Guess r .
2: if (rp−1 6≡ 1 mod p) then
3: return(“no”).
4: else
5: Guess q1, q2, . . . qk as the prime divisors of (p − 1).
6: if (any qi is not a prime divisor of (p − 1)) then
7: return(“no”).
8: end if
9: end if

10: for (i = 1 to k) do

11: if (r
p−1

q ≡ 1 mod p) then
12: return(“no”).
13: end if
14: end for
15: return(“yes”).

Algorithm 6.2: A nondeterministic algorithm for PRIMES

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

FUNCTION PRIMALITY CHECKING(p)
1: Guess r .

2: if (rp−1 6≡ 1 mod p) then
3: return(“no”).
4: else
5: Guess q1, q2, . . . qk as the prime divisors of (p − 1).
6: if (any qi is not a prime divisor of (p − 1)) then
7: return(“no”).
8: end if
9: end if

10: for (i = 1 to k) do

11: if (r
p−1

q ≡ 1 mod p) then
12: return(“no”).
13: end if
14: end for
15: return(“yes”).

Algorithm 6.3: A nondeterministic algorithm for PRIMES

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

FUNCTION PRIMALITY CHECKING(p)
1: Guess r .
2: if (rp−1 6≡ 1 mod p) then

3: return(“no”).
4: else
5: Guess q1, q2, . . . qk as the prime divisors of (p − 1).
6: if (any qi is not a prime divisor of (p − 1)) then
7: return(“no”).
8: end if
9: end if

10: for (i = 1 to k) do

11: if (r
p−1

q ≡ 1 mod p) then
12: return(“no”).
13: end if
14: end for
15: return(“yes”).

Algorithm 6.4: A nondeterministic algorithm for PRIMES

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

FUNCTION PRIMALITY CHECKING(p)
1: Guess r .
2: if (rp−1 6≡ 1 mod p) then
3: return(“no”).

4: else
5: Guess q1, q2, . . . qk as the prime divisors of (p − 1).
6: if (any qi is not a prime divisor of (p − 1)) then
7: return(“no”).
8: end if
9: end if

10: for (i = 1 to k) do

11: if (r
p−1

q ≡ 1 mod p) then
12: return(“no”).
13: end if
14: end for
15: return(“yes”).

Algorithm 6.5: A nondeterministic algorithm for PRIMES

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

FUNCTION PRIMALITY CHECKING(p)
1: Guess r .
2: if (rp−1 6≡ 1 mod p) then
3: return(“no”).
4: else

5: Guess q1, q2, . . . qk as the prime divisors of (p − 1).
6: if (any qi is not a prime divisor of (p − 1)) then
7: return(“no”).
8: end if
9: end if

10: for (i = 1 to k) do

11: if (r
p−1

q ≡ 1 mod p) then
12: return(“no”).
13: end if
14: end for
15: return(“yes”).

Algorithm 6.6: A nondeterministic algorithm for PRIMES

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

FUNCTION PRIMALITY CHECKING(p)
1: Guess r .
2: if (rp−1 6≡ 1 mod p) then
3: return(“no”).
4: else
5: Guess q1, q2, . . . qk as the prime divisors of (p − 1).

6: if (any qi is not a prime divisor of (p − 1)) then
7: return(“no”).
8: end if
9: end if

10: for (i = 1 to k) do

11: if (r
p−1

q ≡ 1 mod p) then
12: return(“no”).
13: end if
14: end for
15: return(“yes”).

Algorithm 6.7: A nondeterministic algorithm for PRIMES

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

FUNCTION PRIMALITY CHECKING(p)
1: Guess r .
2: if (rp−1 6≡ 1 mod p) then
3: return(“no”).
4: else
5: Guess q1, q2, . . . qk as the prime divisors of (p − 1).
6: if (any qi is not a prime divisor of (p − 1)) then

7: return(“no”).
8: end if
9: end if

10: for (i = 1 to k) do

11: if (r
p−1

q ≡ 1 mod p) then
12: return(“no”).
13: end if
14: end for
15: return(“yes”).

Algorithm 6.8: A nondeterministic algorithm for PRIMES

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

FUNCTION PRIMALITY CHECKING(p)
1: Guess r .
2: if (rp−1 6≡ 1 mod p) then
3: return(“no”).
4: else
5: Guess q1, q2, . . . qk as the prime divisors of (p − 1).
6: if (any qi is not a prime divisor of (p − 1)) then
7: return(“no”).

8: end if
9: end if

10: for (i = 1 to k) do

11: if (r
p−1

q ≡ 1 mod p) then
12: return(“no”).
13: end if
14: end for
15: return(“yes”).

Algorithm 6.9: A nondeterministic algorithm for PRIMES

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

FUNCTION PRIMALITY CHECKING(p)
1: Guess r .
2: if (rp−1 6≡ 1 mod p) then
3: return(“no”).
4: else
5: Guess q1, q2, . . . qk as the prime divisors of (p − 1).
6: if (any qi is not a prime divisor of (p − 1)) then
7: return(“no”).
8: end if

9: end if
10: for (i = 1 to k) do

11: if (r
p−1

q ≡ 1 mod p) then
12: return(“no”).
13: end if
14: end for
15: return(“yes”).

Algorithm 6.10: A nondeterministic algorithm for PRIMES

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

FUNCTION PRIMALITY CHECKING(p)
1: Guess r .
2: if (rp−1 6≡ 1 mod p) then
3: return(“no”).
4: else
5: Guess q1, q2, . . . qk as the prime divisors of (p − 1).
6: if (any qi is not a prime divisor of (p − 1)) then
7: return(“no”).
8: end if
9: end if

10: for (i = 1 to k) do

11: if (r
p−1

q ≡ 1 mod p) then
12: return(“no”).
13: end if
14: end for
15: return(“yes”).

Algorithm 6.11: A nondeterministic algorithm for PRIMES

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

FUNCTION PRIMALITY CHECKING(p)
1: Guess r .
2: if (rp−1 6≡ 1 mod p) then
3: return(“no”).
4: else
5: Guess q1, q2, . . . qk as the prime divisors of (p − 1).
6: if (any qi is not a prime divisor of (p − 1)) then
7: return(“no”).
8: end if
9: end if

10: for (i = 1 to k) do

11: if (r
p−1

q ≡ 1 mod p) then
12: return(“no”).
13: end if
14: end for
15: return(“yes”).

Algorithm 6.12: A nondeterministic algorithm for PRIMES

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

FUNCTION PRIMALITY CHECKING(p)
1: Guess r .
2: if (rp−1 6≡ 1 mod p) then
3: return(“no”).
4: else
5: Guess q1, q2, . . . qk as the prime divisors of (p − 1).
6: if (any qi is not a prime divisor of (p − 1)) then
7: return(“no”).
8: end if
9: end if

10: for (i = 1 to k) do

11: if (r
p−1

q ≡ 1 mod p) then

12: return(“no”).
13: end if
14: end for
15: return(“yes”).

Algorithm 6.13: A nondeterministic algorithm for PRIMES

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

FUNCTION PRIMALITY CHECKING(p)
1: Guess r .
2: if (rp−1 6≡ 1 mod p) then
3: return(“no”).
4: else
5: Guess q1, q2, . . . qk as the prime divisors of (p − 1).
6: if (any qi is not a prime divisor of (p − 1)) then
7: return(“no”).
8: end if
9: end if

10: for (i = 1 to k) do

11: if (r
p−1

q ≡ 1 mod p) then
12: return(“no”).

13: end if
14: end for
15: return(“yes”).

Algorithm 6.14: A nondeterministic algorithm for PRIMES

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

FUNCTION PRIMALITY CHECKING(p)
1: Guess r .
2: if (rp−1 6≡ 1 mod p) then
3: return(“no”).
4: else
5: Guess q1, q2, . . . qk as the prime divisors of (p − 1).
6: if (any qi is not a prime divisor of (p − 1)) then
7: return(“no”).
8: end if
9: end if

10: for (i = 1 to k) do

11: if (r
p−1

q ≡ 1 mod p) then
12: return(“no”).
13: end if

14: end for
15: return(“yes”).

Algorithm 6.15: A nondeterministic algorithm for PRIMES

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

FUNCTION PRIMALITY CHECKING(p)
1: Guess r .
2: if (rp−1 6≡ 1 mod p) then
3: return(“no”).
4: else
5: Guess q1, q2, . . . qk as the prime divisors of (p − 1).
6: if (any qi is not a prime divisor of (p − 1)) then
7: return(“no”).
8: end if
9: end if

10: for (i = 1 to k) do

11: if (r
p−1

q ≡ 1 mod p) then
12: return(“no”).
13: end if
14: end for

15: return(“yes”).

Algorithm 6.16: A nondeterministic algorithm for PRIMES

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

FUNCTION PRIMALITY CHECKING(p)
1: Guess r .
2: if (rp−1 6≡ 1 mod p) then
3: return(“no”).
4: else
5: Guess q1, q2, . . . qk as the prime divisors of (p − 1).
6: if (any qi is not a prime divisor of (p − 1)) then
7: return(“no”).
8: end if
9: end if

10: for (i = 1 to k) do

11: if (r
p−1

q ≡ 1 mod p) then
12: return(“no”).
13: end if
14: end for
15: return(“yes”).

Algorithm 6.17: A nondeterministic algorithm for PRIMES

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Details

Hidden details

1 How do we check that the qi represent all the divisors of p? Repeated division.
2 How do we check that the qi s are prime? Recursively! Guess their certificates as

well.
3 Accordingly, the certificate for p, will have the following form:

(r ; q1; C(q1); q2; C(q2) . . . qk ; C(qk))

4 Unless p = 2, p will be odd and hence q1 = 2. So without loss of generality, the
certificate for p will have the following form:

(r ; 2; (1); q2; C(q2) . . . qk ; C(qk))

For instance, the certificate for 67 is:

(2; 2; (1); 3; (2; 2; (1)); 11; (8; 2; (1); 5; (3; 2; (1))).

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Details

Hidden details

1 How do we check that the qi represent all the divisors of p? Repeated division.
2 How do we check that the qi s are prime? Recursively! Guess their certificates as

well.
3 Accordingly, the certificate for p, will have the following form:

(r ; q1; C(q1); q2; C(q2) . . . qk ; C(qk))

4 Unless p = 2, p will be odd and hence q1 = 2. So without loss of generality, the
certificate for p will have the following form:

(r ; 2; (1); q2; C(q2) . . . qk ; C(qk))

For instance, the certificate for 67 is:

(2; 2; (1); 3; (2; 2; (1)); 11; (8; 2; (1); 5; (3; 2; (1))).

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Details

Hidden details

1 How do we check that the qi represent all the divisors of p?

Repeated division.
2 How do we check that the qi s are prime? Recursively! Guess their certificates as

well.
3 Accordingly, the certificate for p, will have the following form:

(r ; q1; C(q1); q2; C(q2) . . . qk ; C(qk))

4 Unless p = 2, p will be odd and hence q1 = 2. So without loss of generality, the
certificate for p will have the following form:

(r ; 2; (1); q2; C(q2) . . . qk ; C(qk))

For instance, the certificate for 67 is:

(2; 2; (1); 3; (2; 2; (1)); 11; (8; 2; (1); 5; (3; 2; (1))).

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Details

Hidden details

1 How do we check that the qi represent all the divisors of p? Repeated division.

2 How do we check that the qi s are prime? Recursively! Guess their certificates as
well.

3 Accordingly, the certificate for p, will have the following form:

(r ; q1; C(q1); q2; C(q2) . . . qk ; C(qk))

4 Unless p = 2, p will be odd and hence q1 = 2. So without loss of generality, the
certificate for p will have the following form:

(r ; 2; (1); q2; C(q2) . . . qk ; C(qk))

For instance, the certificate for 67 is:

(2; 2; (1); 3; (2; 2; (1)); 11; (8; 2; (1); 5; (3; 2; (1))).

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Details

Hidden details

1 How do we check that the qi represent all the divisors of p? Repeated division.
2 How do we check that the qi s are prime?

Recursively! Guess their certificates as
well.

3 Accordingly, the certificate for p, will have the following form:

(r ; q1; C(q1); q2; C(q2) . . . qk ; C(qk))

4 Unless p = 2, p will be odd and hence q1 = 2. So without loss of generality, the
certificate for p will have the following form:

(r ; 2; (1); q2; C(q2) . . . qk ; C(qk))

For instance, the certificate for 67 is:

(2; 2; (1); 3; (2; 2; (1)); 11; (8; 2; (1); 5; (3; 2; (1))).

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Details

Hidden details

1 How do we check that the qi represent all the divisors of p? Repeated division.
2 How do we check that the qi s are prime? Recursively!

Guess their certificates as
well.

3 Accordingly, the certificate for p, will have the following form:

(r ; q1; C(q1); q2; C(q2) . . . qk ; C(qk))

4 Unless p = 2, p will be odd and hence q1 = 2. So without loss of generality, the
certificate for p will have the following form:

(r ; 2; (1); q2; C(q2) . . . qk ; C(qk))

For instance, the certificate for 67 is:

(2; 2; (1); 3; (2; 2; (1)); 11; (8; 2; (1); 5; (3; 2; (1))).

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Details

Hidden details

1 How do we check that the qi represent all the divisors of p? Repeated division.
2 How do we check that the qi s are prime? Recursively! Guess their certificates as

well.

3 Accordingly, the certificate for p, will have the following form:

(r ; q1; C(q1); q2; C(q2) . . . qk ; C(qk))

4 Unless p = 2, p will be odd and hence q1 = 2. So without loss of generality, the
certificate for p will have the following form:

(r ; 2; (1); q2; C(q2) . . . qk ; C(qk))

For instance, the certificate for 67 is:

(2; 2; (1); 3; (2; 2; (1)); 11; (8; 2; (1); 5; (3; 2; (1))).

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Details

Hidden details

1 How do we check that the qi represent all the divisors of p? Repeated division.
2 How do we check that the qi s are prime? Recursively! Guess their certificates as

well.
3 Accordingly, the certificate for p, will have the following form:

(r ; q1; C(q1); q2; C(q2) . . . qk ; C(qk))

4 Unless p = 2, p will be odd and hence q1 = 2. So without loss of generality, the
certificate for p will have the following form:

(r ; 2; (1); q2; C(q2) . . . qk ; C(qk))

For instance, the certificate for 67 is:

(2; 2; (1); 3; (2; 2; (1)); 11; (8; 2; (1); 5; (3; 2; (1))).

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Details

Hidden details

1 How do we check that the qi represent all the divisors of p? Repeated division.
2 How do we check that the qi s are prime? Recursively! Guess their certificates as

well.
3 Accordingly, the certificate for p, will have the following form:

(r ;

q1; C(q1); q2; C(q2) . . . qk ; C(qk))

4 Unless p = 2, p will be odd and hence q1 = 2. So without loss of generality, the
certificate for p will have the following form:

(r ; 2; (1); q2; C(q2) . . . qk ; C(qk))

For instance, the certificate for 67 is:

(2; 2; (1); 3; (2; 2; (1)); 11; (8; 2; (1); 5; (3; 2; (1))).

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Details

Hidden details

1 How do we check that the qi represent all the divisors of p? Repeated division.
2 How do we check that the qi s are prime? Recursively! Guess their certificates as

well.
3 Accordingly, the certificate for p, will have the following form:

(r ; q1;

C(q1); q2; C(q2) . . . qk ; C(qk))

4 Unless p = 2, p will be odd and hence q1 = 2. So without loss of generality, the
certificate for p will have the following form:

(r ; 2; (1); q2; C(q2) . . . qk ; C(qk))

For instance, the certificate for 67 is:

(2; 2; (1); 3; (2; 2; (1)); 11; (8; 2; (1); 5; (3; 2; (1))).

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Details

Hidden details

1 How do we check that the qi represent all the divisors of p? Repeated division.
2 How do we check that the qi s are prime? Recursively! Guess their certificates as

well.
3 Accordingly, the certificate for p, will have the following form:

(r ; q1; C(q1);

q2; C(q2) . . . qk ; C(qk))

4 Unless p = 2, p will be odd and hence q1 = 2. So without loss of generality, the
certificate for p will have the following form:

(r ; 2; (1); q2; C(q2) . . . qk ; C(qk))

For instance, the certificate for 67 is:

(2; 2; (1); 3; (2; 2; (1)); 11; (8; 2; (1); 5; (3; 2; (1))).

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Details

Hidden details

1 How do we check that the qi represent all the divisors of p? Repeated division.
2 How do we check that the qi s are prime? Recursively! Guess their certificates as

well.
3 Accordingly, the certificate for p, will have the following form:

(r ; q1; C(q1); q2;

C(q2) . . . qk ; C(qk))

4 Unless p = 2, p will be odd and hence q1 = 2. So without loss of generality, the
certificate for p will have the following form:

(r ; 2; (1); q2; C(q2) . . . qk ; C(qk))

For instance, the certificate for 67 is:

(2; 2; (1); 3; (2; 2; (1)); 11; (8; 2; (1); 5; (3; 2; (1))).

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Details

Hidden details

1 How do we check that the qi represent all the divisors of p? Repeated division.
2 How do we check that the qi s are prime? Recursively! Guess their certificates as

well.
3 Accordingly, the certificate for p, will have the following form:

(r ; q1; C(q1); q2; C(q2) . . . qk ;

C(qk))

4 Unless p = 2, p will be odd and hence q1 = 2. So without loss of generality, the
certificate for p will have the following form:

(r ; 2; (1); q2; C(q2) . . . qk ; C(qk))

For instance, the certificate for 67 is:

(2; 2; (1); 3; (2; 2; (1)); 11; (8; 2; (1); 5; (3; 2; (1))).

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Details

Hidden details

1 How do we check that the qi represent all the divisors of p? Repeated division.
2 How do we check that the qi s are prime? Recursively! Guess their certificates as

well.
3 Accordingly, the certificate for p, will have the following form:

(r ; q1; C(q1); q2; C(q2) . . . qk ; C(qk))

4 Unless p = 2, p will be odd and hence q1 = 2. So without loss of generality, the
certificate for p will have the following form:

(r ; 2; (1); q2; C(q2) . . . qk ; C(qk))

For instance, the certificate for 67 is:

(2; 2; (1); 3; (2; 2; (1)); 11; (8; 2; (1); 5; (3; 2; (1))).

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Details

Hidden details

1 How do we check that the qi represent all the divisors of p? Repeated division.
2 How do we check that the qi s are prime? Recursively! Guess their certificates as

well.
3 Accordingly, the certificate for p, will have the following form:

(r ; q1; C(q1); q2; C(q2) . . . qk ; C(qk))

4 Unless p = 2, p will be odd and hence q1 = 2.

So without loss of generality, the
certificate for p will have the following form:

(r ; 2; (1); q2; C(q2) . . . qk ; C(qk))

For instance, the certificate for 67 is:

(2; 2; (1); 3; (2; 2; (1)); 11; (8; 2; (1); 5; (3; 2; (1))).

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Details

Hidden details

1 How do we check that the qi represent all the divisors of p? Repeated division.
2 How do we check that the qi s are prime? Recursively! Guess their certificates as

well.
3 Accordingly, the certificate for p, will have the following form:

(r ; q1; C(q1); q2; C(q2) . . . qk ; C(qk))

4 Unless p = 2, p will be odd and hence q1 = 2. So without loss of generality, the
certificate for p will have the following form:

(r ; 2; (1); q2; C(q2) . . . qk ; C(qk))

For instance, the certificate for 67 is:

(2; 2; (1); 3; (2; 2; (1)); 11; (8; 2; (1); 5; (3; 2; (1))).

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Details

Hidden details

1 How do we check that the qi represent all the divisors of p? Repeated division.
2 How do we check that the qi s are prime? Recursively! Guess their certificates as

well.
3 Accordingly, the certificate for p, will have the following form:

(r ; q1; C(q1); q2; C(q2) . . . qk ; C(qk))

4 Unless p = 2, p will be odd and hence q1 = 2. So without loss of generality, the
certificate for p will have the following form:

(r ;

2; (1); q2; C(q2) . . . qk ; C(qk))

For instance, the certificate for 67 is:

(2; 2; (1); 3; (2; 2; (1)); 11; (8; 2; (1); 5; (3; 2; (1))).

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Details

Hidden details

1 How do we check that the qi represent all the divisors of p? Repeated division.
2 How do we check that the qi s are prime? Recursively! Guess their certificates as

well.
3 Accordingly, the certificate for p, will have the following form:

(r ; q1; C(q1); q2; C(q2) . . . qk ; C(qk))

4 Unless p = 2, p will be odd and hence q1 = 2. So without loss of generality, the
certificate for p will have the following form:

(r ; 2;

(1); q2; C(q2) . . . qk ; C(qk))

For instance, the certificate for 67 is:

(2; 2; (1); 3; (2; 2; (1)); 11; (8; 2; (1); 5; (3; 2; (1))).

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Details

Hidden details

1 How do we check that the qi represent all the divisors of p? Repeated division.
2 How do we check that the qi s are prime? Recursively! Guess their certificates as

well.
3 Accordingly, the certificate for p, will have the following form:

(r ; q1; C(q1); q2; C(q2) . . . qk ; C(qk))

4 Unless p = 2, p will be odd and hence q1 = 2. So without loss of generality, the
certificate for p will have the following form:

(r ; 2; (1);

q2; C(q2) . . . qk ; C(qk))

For instance, the certificate for 67 is:

(2; 2; (1); 3; (2; 2; (1)); 11; (8; 2; (1); 5; (3; 2; (1))).

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Details

Hidden details

1 How do we check that the qi represent all the divisors of p? Repeated division.
2 How do we check that the qi s are prime? Recursively! Guess their certificates as

well.
3 Accordingly, the certificate for p, will have the following form:

(r ; q1; C(q1); q2; C(q2) . . . qk ; C(qk))

4 Unless p = 2, p will be odd and hence q1 = 2. So without loss of generality, the
certificate for p will have the following form:

(r ; 2; (1); q2;

C(q2) . . . qk ; C(qk))

For instance, the certificate for 67 is:

(2; 2; (1); 3; (2; 2; (1)); 11; (8; 2; (1); 5; (3; 2; (1))).

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Details

Hidden details

1 How do we check that the qi represent all the divisors of p? Repeated division.
2 How do we check that the qi s are prime? Recursively! Guess their certificates as

well.
3 Accordingly, the certificate for p, will have the following form:

(r ; q1; C(q1); q2; C(q2) . . . qk ; C(qk))

4 Unless p = 2, p will be odd and hence q1 = 2. So without loss of generality, the
certificate for p will have the following form:

(r ; 2; (1); q2; C(q2) . . . qk ;

C(qk))

For instance, the certificate for 67 is:

(2; 2; (1); 3; (2; 2; (1)); 11; (8; 2; (1); 5; (3; 2; (1))).

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Details

Hidden details

1 How do we check that the qi represent all the divisors of p? Repeated division.
2 How do we check that the qi s are prime? Recursively! Guess their certificates as

well.
3 Accordingly, the certificate for p, will have the following form:

(r ; q1; C(q1); q2; C(q2) . . . qk ; C(qk))

4 Unless p = 2, p will be odd and hence q1 = 2. So without loss of generality, the
certificate for p will have the following form:

(r ; 2; (1); q2; C(q2) . . . qk ; C(qk))

For instance, the certificate for 67 is:

(2; 2; (1); 3; (2; 2; (1)); 11; (8; 2; (1); 5; (3; 2; (1))).

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Details

Hidden details

1 How do we check that the qi represent all the divisors of p? Repeated division.
2 How do we check that the qi s are prime? Recursively! Guess their certificates as

well.
3 Accordingly, the certificate for p, will have the following form:

(r ; q1; C(q1); q2; C(q2) . . . qk ; C(qk))

4 Unless p = 2, p will be odd and hence q1 = 2. So without loss of generality, the
certificate for p will have the following form:

(r ; 2; (1); q2; C(q2) . . . qk ; C(qk))

For instance, the certificate for 67 is:

(2; 2; (1); 3; (2; 2; (1)); 11; (8; 2; (1); 5; (3; 2; (1))).

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Details

Hidden details

1 How do we check that the qi represent all the divisors of p? Repeated division.
2 How do we check that the qi s are prime? Recursively! Guess their certificates as

well.
3 Accordingly, the certificate for p, will have the following form:

(r ; q1; C(q1); q2; C(q2) . . . qk ; C(qk))

4 Unless p = 2, p will be odd and hence q1 = 2. So without loss of generality, the
certificate for p will have the following form:

(r ; 2; (1); q2; C(q2) . . . qk ; C(qk))

For instance, the certificate for 67 is:

(2; 2; (1); 3; (2; 2; (1)); 11; (8; 2; (1); 5; (3; 2; (1))).

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Theorem

Let Σ = {(,), 0, 1, ; }. The size of p’s certificate in Σ is at most 4 · log2 p.

Proof

1 Clearly true for p = 2 and p = 3.
2 q1, q2, q3, . . . , qk are prime divisors of (p − 1) (k ≤ log p.). Hence,

q2 · q3 . . . qk ≤ p−1
2 .

3 Total number of symbols needed to represent r is at most log p.
4 Total number of symbols needed to represent 2 and its certificate (1) is 5.
5 Total number of symbols needed to represent all the qi s, i = 2, 3, . . . p is at most

2 · (log(p−1
2)) ≤ 2 · (log p − 1).

6 Total number of symbols needed to represent all the delimiters is 2 · k ≤ 2 · log p.
7 Total number of parentheses is 2.
8 By induction |C(qi)| ≤ 4 · log2 qi .

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Theorem

Let Σ = {(,), 0, 1, ; }.

The size of p’s certificate in Σ is at most 4 · log2 p.

Proof

1 Clearly true for p = 2 and p = 3.
2 q1, q2, q3, . . . , qk are prime divisors of (p − 1) (k ≤ log p.). Hence,

q2 · q3 . . . qk ≤ p−1
2 .

3 Total number of symbols needed to represent r is at most log p.
4 Total number of symbols needed to represent 2 and its certificate (1) is 5.
5 Total number of symbols needed to represent all the qi s, i = 2, 3, . . . p is at most

2 · (log(p−1
2)) ≤ 2 · (log p − 1).

6 Total number of symbols needed to represent all the delimiters is 2 · k ≤ 2 · log p.
7 Total number of parentheses is 2.
8 By induction |C(qi)| ≤ 4 · log2 qi .

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Theorem

Let Σ = {(,), 0, 1, ; }. The size of p’s certificate in Σ is at most 4 · log2 p.

Proof

1 Clearly true for p = 2 and p = 3.
2 q1, q2, q3, . . . , qk are prime divisors of (p − 1) (k ≤ log p.). Hence,

q2 · q3 . . . qk ≤ p−1
2 .

3 Total number of symbols needed to represent r is at most log p.
4 Total number of symbols needed to represent 2 and its certificate (1) is 5.
5 Total number of symbols needed to represent all the qi s, i = 2, 3, . . . p is at most

2 · (log(p−1
2)) ≤ 2 · (log p − 1).

6 Total number of symbols needed to represent all the delimiters is 2 · k ≤ 2 · log p.
7 Total number of parentheses is 2.
8 By induction |C(qi)| ≤ 4 · log2 qi .

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Theorem

Let Σ = {(,), 0, 1, ; }. The size of p’s certificate in Σ is at most 4 · log2 p.

Proof

1 Clearly true for p = 2 and p = 3.
2 q1, q2, q3, . . . , qk are prime divisors of (p − 1) (k ≤ log p.). Hence,

q2 · q3 . . . qk ≤ p−1
2 .

3 Total number of symbols needed to represent r is at most log p.
4 Total number of symbols needed to represent 2 and its certificate (1) is 5.
5 Total number of symbols needed to represent all the qi s, i = 2, 3, . . . p is at most

2 · (log(p−1
2)) ≤ 2 · (log p − 1).

6 Total number of symbols needed to represent all the delimiters is 2 · k ≤ 2 · log p.
7 Total number of parentheses is 2.
8 By induction |C(qi)| ≤ 4 · log2 qi .

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Theorem

Let Σ = {(,), 0, 1, ; }. The size of p’s certificate in Σ is at most 4 · log2 p.

Proof

1 Clearly true for p = 2 and p = 3.

2 q1, q2, q3, . . . , qk are prime divisors of (p − 1) (k ≤ log p.). Hence,
q2 · q3 . . . qk ≤ p−1

2 .

3 Total number of symbols needed to represent r is at most log p.
4 Total number of symbols needed to represent 2 and its certificate (1) is 5.
5 Total number of symbols needed to represent all the qi s, i = 2, 3, . . . p is at most

2 · (log(p−1
2)) ≤ 2 · (log p − 1).

6 Total number of symbols needed to represent all the delimiters is 2 · k ≤ 2 · log p.
7 Total number of parentheses is 2.
8 By induction |C(qi)| ≤ 4 · log2 qi .

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Theorem

Let Σ = {(,), 0, 1, ; }. The size of p’s certificate in Σ is at most 4 · log2 p.

Proof

1 Clearly true for p = 2 and p = 3.
2 q1, q2, q3, . . . , qk are prime divisors of (p − 1) (k ≤ log p.).

Hence,
q2 · q3 . . . qk ≤ p−1

2 .

3 Total number of symbols needed to represent r is at most log p.
4 Total number of symbols needed to represent 2 and its certificate (1) is 5.
5 Total number of symbols needed to represent all the qi s, i = 2, 3, . . . p is at most

2 · (log(p−1
2)) ≤ 2 · (log p − 1).

6 Total number of symbols needed to represent all the delimiters is 2 · k ≤ 2 · log p.
7 Total number of parentheses is 2.
8 By induction |C(qi)| ≤ 4 · log2 qi .

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Theorem

Let Σ = {(,), 0, 1, ; }. The size of p’s certificate in Σ is at most 4 · log2 p.

Proof

1 Clearly true for p = 2 and p = 3.
2 q1, q2, q3, . . . , qk are prime divisors of (p − 1) (k ≤ log p.). Hence,

q2 · q3 . . . qk ≤ p−1
2 .

3 Total number of symbols needed to represent r is at most log p.
4 Total number of symbols needed to represent 2 and its certificate (1) is 5.
5 Total number of symbols needed to represent all the qi s, i = 2, 3, . . . p is at most

2 · (log(p−1
2)) ≤ 2 · (log p − 1).

6 Total number of symbols needed to represent all the delimiters is 2 · k ≤ 2 · log p.
7 Total number of parentheses is 2.
8 By induction |C(qi)| ≤ 4 · log2 qi .

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Theorem

Let Σ = {(,), 0, 1, ; }. The size of p’s certificate in Σ is at most 4 · log2 p.

Proof

1 Clearly true for p = 2 and p = 3.
2 q1, q2, q3, . . . , qk are prime divisors of (p − 1) (k ≤ log p.). Hence,

q2 · q3 . . . qk ≤ p−1
2 .

3 Total number of symbols needed to represent r is at most log p.

4 Total number of symbols needed to represent 2 and its certificate (1) is 5.
5 Total number of symbols needed to represent all the qi s, i = 2, 3, . . . p is at most

2 · (log(p−1
2)) ≤ 2 · (log p − 1).

6 Total number of symbols needed to represent all the delimiters is 2 · k ≤ 2 · log p.
7 Total number of parentheses is 2.
8 By induction |C(qi)| ≤ 4 · log2 qi .

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Theorem

Let Σ = {(,), 0, 1, ; }. The size of p’s certificate in Σ is at most 4 · log2 p.

Proof

1 Clearly true for p = 2 and p = 3.
2 q1, q2, q3, . . . , qk are prime divisors of (p − 1) (k ≤ log p.). Hence,

q2 · q3 . . . qk ≤ p−1
2 .

3 Total number of symbols needed to represent r is at most log p.
4 Total number of symbols needed to represent 2 and its certificate (1) is 5.

5 Total number of symbols needed to represent all the qi s, i = 2, 3, . . . p is at most
2 · (log(p−1

2)) ≤ 2 · (log p − 1).

6 Total number of symbols needed to represent all the delimiters is 2 · k ≤ 2 · log p.
7 Total number of parentheses is 2.
8 By induction |C(qi)| ≤ 4 · log2 qi .

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Theorem

Let Σ = {(,), 0, 1, ; }. The size of p’s certificate in Σ is at most 4 · log2 p.

Proof

1 Clearly true for p = 2 and p = 3.
2 q1, q2, q3, . . . , qk are prime divisors of (p − 1) (k ≤ log p.). Hence,

q2 · q3 . . . qk ≤ p−1
2 .

3 Total number of symbols needed to represent r is at most log p.
4 Total number of symbols needed to represent 2 and its certificate (1) is 5.
5 Total number of symbols needed to represent all the qi s, i = 2, 3, . . . p is at most

2 · (log(p−1
2)) ≤ 2 · (log p − 1).

6 Total number of symbols needed to represent all the delimiters is 2 · k ≤ 2 · log p.
7 Total number of parentheses is 2.
8 By induction |C(qi)| ≤ 4 · log2 qi .

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Theorem

Let Σ = {(,), 0, 1, ; }. The size of p’s certificate in Σ is at most 4 · log2 p.

Proof

1 Clearly true for p = 2 and p = 3.
2 q1, q2, q3, . . . , qk are prime divisors of (p − 1) (k ≤ log p.). Hence,

q2 · q3 . . . qk ≤ p−1
2 .

3 Total number of symbols needed to represent r is at most log p.
4 Total number of symbols needed to represent 2 and its certificate (1) is 5.
5 Total number of symbols needed to represent all the qi s, i = 2, 3, . . . p is at most

2 · (log(p−1
2)) ≤ 2 · (log p − 1).

6 Total number of symbols needed to represent all the delimiters is 2 · k ≤ 2 · log p.

7 Total number of parentheses is 2.
8 By induction |C(qi)| ≤ 4 · log2 qi .

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Theorem

Let Σ = {(,), 0, 1, ; }. The size of p’s certificate in Σ is at most 4 · log2 p.

Proof

1 Clearly true for p = 2 and p = 3.
2 q1, q2, q3, . . . , qk are prime divisors of (p − 1) (k ≤ log p.). Hence,

q2 · q3 . . . qk ≤ p−1
2 .

3 Total number of symbols needed to represent r is at most log p.
4 Total number of symbols needed to represent 2 and its certificate (1) is 5.
5 Total number of symbols needed to represent all the qi s, i = 2, 3, . . . p is at most

2 · (log(p−1
2)) ≤ 2 · (log p − 1).

6 Total number of symbols needed to represent all the delimiters is 2 · k ≤ 2 · log p.
7 Total number of parentheses is 2.

8 By induction |C(qi)| ≤ 4 · log2 qi .

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Theorem

Let Σ = {(,), 0, 1, ; }. The size of p’s certificate in Σ is at most 4 · log2 p.

Proof

1 Clearly true for p = 2 and p = 3.
2 q1, q2, q3, . . . , qk are prime divisors of (p − 1) (k ≤ log p.). Hence,

q2 · q3 . . . qk ≤ p−1
2 .

3 Total number of symbols needed to represent r is at most log p.
4 Total number of symbols needed to represent 2 and its certificate (1) is 5.
5 Total number of symbols needed to represent all the qi s, i = 2, 3, . . . p is at most

2 · (log(p−1
2)) ≤ 2 · (log p − 1).

6 Total number of symbols needed to represent all the delimiters is 2 · k ≤ 2 · log p.
7 Total number of parentheses is 2.
8 By induction |C(qi)| ≤ 4 · log2 qi .

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Proof

It follows that:

|C(p)| ≤ log p + 5 + 2 · (log p − 1) + 2 · log p + 2 + 4 ·
k∑

i=2

log2 qi

≤ 5 · log p + 5 + 4 ·
k∑

i=2

log2 qi

≤ 5 · log p + 5 + 4 · (
k∑

i=2

log qi)
2

= 5 · log p + 5 + 4 · log2(q2 · ... · qk)

≤ 5 · log p + 5 + 4 · (log
p − 1

2
)2

≤ 5 · log p + 5 + 4 · (log p − 1)2

≤ 4 log2 p + 9− 3 · log p

≤ 4 log2 p, when p ≥ 5.

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Proof

It follows that:

|C(p)| ≤ log p + 5 + 2 · (log p − 1) + 2 · log p + 2 + 4 ·
k∑

i=2

log2 qi

≤ 5 · log p + 5 + 4 ·
k∑

i=2

log2 qi

≤ 5 · log p + 5 + 4 · (
k∑

i=2

log qi)
2

= 5 · log p + 5 + 4 · log2(q2 · ... · qk)

≤ 5 · log p + 5 + 4 · (log
p − 1

2
)2

≤ 5 · log p + 5 + 4 · (log p − 1)2

≤ 4 log2 p + 9− 3 · log p

≤ 4 log2 p, when p ≥ 5.

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Proof

It follows that:

|C(p)| ≤ log p + 5 + 2 · (log p − 1) + 2 · log p + 2 + 4 ·
k∑

i=2

log2 qi

≤ 5 · log p + 5 + 4 ·
k∑

i=2

log2 qi

≤ 5 · log p + 5 + 4 · (
k∑

i=2

log qi)
2

= 5 · log p + 5 + 4 · log2(q2 · ... · qk)

≤ 5 · log p + 5 + 4 · (log
p − 1

2
)2

≤ 5 · log p + 5 + 4 · (log p − 1)2

≤ 4 log2 p + 9− 3 · log p

≤ 4 log2 p, when p ≥ 5.

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Proof

It follows that:

|C(p)| ≤ log p + 5 + 2 · (log p − 1) + 2 · log p + 2 + 4 ·
k∑

i=2

log2 qi

≤ 5 · log p + 5 + 4 ·
k∑

i=2

log2 qi

≤ 5 · log p + 5 + 4 · (
k∑

i=2

log qi)
2

= 5 · log p + 5 + 4 · log2(q2 · ... · qk)

≤ 5 · log p + 5 + 4 · (log
p − 1

2
)2

≤ 5 · log p + 5 + 4 · (log p − 1)2

≤ 4 log2 p + 9− 3 · log p

≤ 4 log2 p, when p ≥ 5.

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Proof

It follows that:

|C(p)| ≤ log p + 5 + 2 · (log p − 1) + 2 · log p + 2 + 4 ·
k∑

i=2

log2 qi

≤ 5 · log p + 5 + 4 ·
k∑

i=2

log2 qi

≤ 5 · log p + 5 + 4 · (
k∑

i=2

log qi)
2

= 5 · log p + 5 + 4 · log2(q2 · ... · qk)

≤ 5 · log p + 5 + 4 · (log
p − 1

2
)2

≤ 5 · log p + 5 + 4 · (log p − 1)2

≤ 4 log2 p + 9− 3 · log p

≤ 4 log2 p, when p ≥ 5.

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Proof

It follows that:

|C(p)| ≤ log p + 5 + 2 · (log p − 1) + 2 · log p + 2 + 4 ·
k∑

i=2

log2 qi

≤ 5 · log p + 5 + 4 ·
k∑

i=2

log2 qi

≤ 5 · log p + 5 + 4 · (
k∑

i=2

log qi)
2

= 5 · log p + 5 + 4 · log2(q2 · ... · qk)

≤ 5 · log p + 5 + 4 · (log
p − 1

2
)2

≤ 5 · log p + 5 + 4 · (log p − 1)2

≤ 4 log2 p + 9− 3 · log p

≤ 4 log2 p, when p ≥ 5.

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Proof

It follows that:

|C(p)| ≤ log p + 5 + 2 · (log p − 1) + 2 · log p + 2 + 4 ·
k∑

i=2

log2 qi

≤ 5 · log p + 5 + 4 ·
k∑

i=2

log2 qi

≤ 5 · log p + 5 + 4 · (
k∑

i=2

log qi)
2

= 5 · log p + 5 + 4 · log2(q2 · ... · qk)

≤ 5 · log p + 5 + 4 · (log
p − 1

2
)2

≤ 5 · log p + 5 + 4 · (log p − 1)2

≤ 4 log2 p + 9− 3 · log p

≤ 4 log2 p, when p ≥ 5.

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Proof

It follows that:

|C(p)| ≤ log p + 5 + 2 · (log p − 1) + 2 · log p + 2 + 4 ·
k∑

i=2

log2 qi

≤ 5 · log p + 5 + 4 ·
k∑

i=2

log2 qi

≤ 5 · log p + 5 + 4 · (
k∑

i=2

log qi)
2

= 5 · log p + 5 + 4 · log2(q2 · ... · qk)

≤ 5 · log p + 5 + 4 · (log
p − 1

2
)2

≤ 5 · log p + 5 + 4 · (log p − 1)2

≤ 4 log2 p + 9− 3 · log p

≤ 4 log2 p, when p ≥ 5.

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Proof

It follows that:

|C(p)| ≤ log p + 5 + 2 · (log p − 1) + 2 · log p + 2 + 4 ·
k∑

i=2

log2 qi

≤ 5 · log p + 5 + 4 ·
k∑

i=2

log2 qi

≤ 5 · log p + 5 + 4 · (
k∑

i=2

log qi)
2

= 5 · log p + 5 + 4 · log2(q2 · ... · qk)

≤ 5 · log p + 5 + 4 · (log
p − 1

2
)2

≤ 5 · log p + 5 + 4 · (log p − 1)2

≤ 4 log2 p + 9− 3 · log p

≤ 4 log2 p, when p ≥ 5.

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Proof

It follows that:

|C(p)| ≤ log p + 5 + 2 · (log p − 1) + 2 · log p + 2 + 4 ·
k∑

i=2

log2 qi

≤ 5 · log p + 5 + 4 ·
k∑

i=2

log2 qi

≤ 5 · log p + 5 + 4 · (
k∑

i=2

log qi)
2

= 5 · log p + 5 + 4 · log2(q2 · ... · qk)

≤ 5 · log p + 5 + 4 · (log
p − 1

2
)2

≤ 5 · log p + 5 + 4 · (log p − 1)2

≤ 4 log2 p + 9− 3 · log p

≤ 4 log2 p,

when p ≥ 5.

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Proof

It follows that:

|C(p)| ≤ log p + 5 + 2 · (log p − 1) + 2 · log p + 2 + 4 ·
k∑

i=2

log2 qi

≤ 5 · log p + 5 + 4 ·
k∑

i=2

log2 qi

≤ 5 · log p + 5 + 4 · (
k∑

i=2

log qi)
2

= 5 · log p + 5 + 4 · log2(q2 · ... · qk)

≤ 5 · log p + 5 + 4 · (log
p − 1

2
)2

≤ 5 · log p + 5 + 4 · (log p − 1)2

≤ 4 log2 p + 9− 3 · log p

≤ 4 log2 p, when p ≥ 5.

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Binary alphabet

How many bits one needs in order to represent p’s certificate?

Theorem

Let Σ′ = {σ1, ..., σt} be any alphabet with |Σ′| ≥ 2, and let x be a string in Σ′. Then x
can be represented using |x | · log |Σ′| bits, where |x | is the number of symbols from Σ′

present in x.

Corollary

p’s certificate requires at most 12 · log2 p bits.

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Binary alphabet

How many bits one needs in order to represent p’s certificate?

Theorem

Let Σ′ = {σ1, ..., σt} be any alphabet with |Σ′| ≥ 2, and let x be a string in Σ′. Then x
can be represented using |x | · log |Σ′| bits, where |x | is the number of symbols from Σ′

present in x.

Corollary

p’s certificate requires at most 12 · log2 p bits.

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Binary alphabet

How many bits one needs in order to represent p’s certificate?

Theorem

Let Σ′ = {σ1, ..., σt} be any alphabet with |Σ′| ≥ 2, and let x be a string in Σ′. Then x
can be represented using |x | · log |Σ′| bits, where |x | is the number of symbols from Σ′

present in x.

Corollary

p’s certificate requires at most 12 · log2 p bits.

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Binary alphabet

How many bits one needs in order to represent p’s certificate?

Theorem

Let Σ′ = {σ1, ..., σt} be any alphabet with |Σ′| ≥ 2, and let x be a string in Σ′.

Then x
can be represented using |x | · log |Σ′| bits, where |x | is the number of symbols from Σ′

present in x.

Corollary

p’s certificate requires at most 12 · log2 p bits.

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Binary alphabet

How many bits one needs in order to represent p’s certificate?

Theorem

Let Σ′ = {σ1, ..., σt} be any alphabet with |Σ′| ≥ 2, and let x be a string in Σ′. Then x
can be represented using |x | · log |Σ′| bits,

where |x | is the number of symbols from Σ′

present in x.

Corollary

p’s certificate requires at most 12 · log2 p bits.

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Binary alphabet

How many bits one needs in order to represent p’s certificate?

Theorem

Let Σ′ = {σ1, ..., σt} be any alphabet with |Σ′| ≥ 2, and let x be a string in Σ′. Then x
can be represented using |x | · log |Σ′| bits, where |x | is the number of symbols from Σ′

present in x.

Corollary

p’s certificate requires at most 12 · log2 p bits.

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Binary alphabet

How many bits one needs in order to represent p’s certificate?

Theorem

Let Σ′ = {σ1, ..., σt} be any alphabet with |Σ′| ≥ 2, and let x be a string in Σ′. Then x
can be represented using |x | · log |Σ′| bits, where |x | is the number of symbols from Σ′

present in x.

Corollary

p’s certificate requires at most 12 · log2 p bits.

Non-deterministic Polynomial Time Computational Complexity

Reductions and Completeness
The Class NP

Sample problems in NP
Search, Existence and Non-determinism

Linear Programming and Primality

Binary alphabet

How many bits one needs in order to represent p’s certificate?

Theorem

Let Σ′ = {σ1, ..., σt} be any alphabet with |Σ′| ≥ 2, and let x be a string in Σ′. Then x
can be represented using |x | · log |Σ′| bits, where |x | is the number of symbols from Σ′

present in x.

Corollary

p’s certificate requires at most 12 · log2 p bits.

Non-deterministic Polynomial Time Computational Complexity

	Outline
	Main Talk
	Reductions and Completeness
	The Class NP
	Sample problems in NP
	Search, Existence and Non-determinism
	Linear Programming and Primality

