The class NP

K. Subramani'

TLane Department of Computer Science and Electrical Engineering
West Virginia University

March 9 and March 16, 2015

Non-deterministic Polynomial Time

Outline

o Reductions and Completeness

Non-deterministic Polynomial Time

Outline

o Reductions and Completeness

© The Class NP

Non-deterministic Polynomial Time

Outline

o Reductions and Completeness
© The Class NP

e Sample problems in NP

Non-deterministic Polynomial Time

Outline

o Reductions and Completeness
9 The Class NP
e Sample problems in NP

o Search, Existence and Non-determinism

Non-deterministic Polynomial Time

Outline

o Reductions and Completeness

9 The Class NP

e Sample problems in NP

o Search, Existence and Non-determinism

e Linear Programming and Primality

Non-deterministic Polynomial Time

Reductions

Non-deterministic Polynomial Time

Reductions

Main concept

Non-deterministic Polynomial Time

Reductions

Main concept
Comparing problem difficulty through A < B.

Non-deterministic Polynomial Time

Reductions

Main concept
Comparing problem difficulty through A < B.

When is problem B at least as hard as problem A?

Non-deterministic Polynomial Time

Reductions

Main concept

Comparing problem difficulty through A < B.
When is problem B at least as hard as problem A?

When there is a transformation R, which for every input of A produces an equivalent
input R(x) of B such that x € A< R(x) € B.

Non-deterministic Polynomial Time

Reductions

Main concept
Comparing problem difficulty through A < B.
When is problem B at least as hard as problem A?

When there is a transformation R, which for every input of A produces an equivalent
input R(x) of B such that x € A< R(x) € B.

_

Non-deterministic Polynomial Time

Reductions

Main concept
Comparing problem difficulty through A < B.
When is problem B at least as hard as problem A?

When there is a transformation R, which for every input of A produces an equivalent
input R(x) of B such that x € A< R(x) € B.

To be useful, R should have limitations. (Hamilton Path to Reachability).

Non-deterministic Polynomial Time

More on reductions

Non-deterministic Polynomial Time

More on reductions

Definition

Non-deterministic Polynomial Time

More on reductions

Definition

A language L, is reducible to a language L if there is a function R from strings of L to
strings of L, such that

(Vx € X]) x € Ly + R(x) € Lo.

Non-deterministic Polynomial Time

More on reductions

Definition
A language L, is reducible to a language L if there is a function R from strings of L to
strings of L, such that

(Vx € X]) x € Ly + R(x) € Lo.

Furthermore, the function should be computable by an algorithm in O(log n) space, on
strings of length n.

Non-deterministic Polynomial Time

More on reductions

Definition
A language L, is reducible to a language L if there is a function R from strings of L to
strings of L, such that

(Vx € X]) x € Ly + R(x) € Lo.

Furthermore, the function should be computable by an algorithm in O(log n) space, on
strings of length n.

_

Non-deterministic Polynomial Time

More on reductions

Definition

A language L, is reducible to a language L if there is a function R from strings of L to
strings of L, such that

(Vx € X]) x € Ly + R(x) € Lo.

Furthermore, the function should be computable by an algorithm in O(log n) space, on
strings of length n.

Good old days, we used poly-time reductions.

Non-deterministic Polynomial Time

More on reductions

Definition

A language L, is reducible to a language L if there is a function R from strings of L to
strings of L, such that

(Vx € X]) x € Ly + R(x) € Lo.

Furthermore, the function should be computable by an algorithm in O(log n) space, on
strings of length n.

Good old days, we used poly-time reductions.

Proposition

Non-deterministic Polynomial Time

More on reductions

Definition

A language L, is reducible to a language L if there is a function R from strings of L to
strings of L, such that

(Vx € X]) x € Ly + R(x) € Lo.

Furthermore, the function should be computable by an algorithm in O(log n) space, on
strings of length n.

Good old days, we used poly-time reductions.

Proposition

If R is a reduction computed by an algorithm A, then for all x, A halts after a polynomial
number of steps.

Non-deterministic Polynomial Time

Composition of Reductions

Non-deterministic Polynomial Time

Composition of Reductions

Non-deterministic Polynomial Time

Composition of Reductions

If R is a reduction from L4 to L, and R’ is a reduction from Ly to Lz, then R’ o R is a
reduction from Ly to L3.

Non-deterministic Polynomial Time

Composition of Reductions

If R is a reduction from L4 to L, and R’ is a reduction from Ly to Lz, then R’ o R is a
reduction from Ly to L3.

Non-deterministic Polynomial Time

Composition of Reductions

If R is a reduction from L4 to L, and R’ is a reduction from Ly to Lz, then R’ o R is a
reduction from Ly to L3.

Trivial for poly-time reductions.

Non-deterministic Polynomial Time

Composition of Reductions

If R is a reduction from L4 to L, and R’ is a reduction from Ly to Lz, then R’ o R is a
reduction from Ly to L3.

Proof.

| A

Trivial for poly-time reductions. Not so obvious for log-space reductions, since output of
R(x) could be larger than log |x|.

Non-deterministic Polynomial Time

Composition of Reductions

If R is a reduction from L4 to L, and R’ is a reduction from Ly to Lz, then R’ o R is a
reduction from Ly to L3.

Proof.

| A

Trivial for poly-time reductions. Not so obvious for log-space reductions, since output of
R(x) could be larger than log |x|.
Main idea:

Non-deterministic Polynomial Time

Composition of Reductions

If R is a reduction from L4 to L, and R’ is a reduction from Ly to Lz, then R’ o R is a
reduction from Ly to L3.

Proof.

| A

Trivial for poly-time reductions. Not so obvious for log-space reductions, since output of
R(x) could be larger than log |x|.
Main idea: Dovetail simulations.

O

4

Non-deterministic Polynomial Time

Completeness

Non-deterministic Polynomial Time

Completeness

Definition

Non-deterministic Polynomial Time

Completeness

Definition

A language L in a complexity class C is said to be C-complete, if any language L' € C
can be reduced to L.

Non-deterministic Polynomial Time

Completeness

Definition
A language L in a complexity class C is said to be C-complete, if any language L' € C
can be reduced to L.

Definition

Non-deterministic Polynomial Time

Completeness

Definition

A language L in a complexity class C is said to be C-complete, if any language L' € C
can be reduced to L.

Definition

A complexity class C is closed under reductions, if

Non-deterministic Polynomial Time

Completeness

Definition

A language L in a complexity class C is said to be C-complete, if any language L' € C
can be reduced to L.

Definition

A complexity class C is closed under reductions, if
(Lec)n (L' <L)

Non-deterministic Polynomial Time

Completeness

Definition

A language L in a complexity class C is said to be C-complete, if any language L' € C
can be reduced to L.

Definition

A complexity class C is closed under reductions, if
((Lec)n (' <L) — (L' €0).

Non-deterministic Polynomial Time

Completeness

Definition

A language L in a complexity class C is said to be C-complete, if any language L' € C
can be reduced to L.

Definition

A complexity class C is closed under reductions, if
((Lec)n (' <L) — (L' €0).

Proposition

Non-deterministic Polynomial Time

Completeness

Definition

A language L in a complexity class C is said to be C-complete, if any language L' € C
can be reduced to L.

Definition

A complexity class C is closed under reductions, if
((Lec)n (' <L) — (L' €0).

Proposition
P, NP, coNP, L, NL, PSPACE and EXP are all closed under reductions.

Non-deterministic Polynomial Time

Completeness

Definition

A language L in a complexity class C is said to be C-complete, if any language L' € C
can be reduced to L.

Definition

A complexity class C is closed under reductions, if
((Lec)n (' <L) — (L' €0).

Proposition
P, NP, coNP, L, NL, PSPACE and EXP are all closed under reductions.

Non-deterministic Polynomial Time

Completeness

Definition

A language L in a complexity class C is said to be C-complete, if any language L' € C
can be reduced to L.

Definition

A complexity class C is closed under reductions, if
((Lec)n (' <L) — (L' €0).

Proposition
P, NP, coNP, L, NL, PSPACE and EXP are all closed under reductions.

If two classes C and C’ are both closed under reductions and there exists a language L
that is complete for both C and C’ thenC = C’.

Non-deterministic Polynomial Time

The class NP

Non-deterministic Polynomial Time

The class NP

Definition

Non-deterministic Polynomial Time

The class NP

Definition

A decision problem is in NP, if, whenever the answer for a particular instance is “yes”,
there is a simple proof of this fact.

Non-deterministic Polynomial Time

The class NP

A decision problem is in NP, if, whenever the answer for a particular instance is “yes”,
there is a simple proof of this fact.

v

Non-deterministic Polynomial Time

The class NP

A decision problem is in NP, if, whenever the answer for a particular instance is “yes”,
there is a simple proof of this fact.

v

@ How to solve the Hamilton path problem efficiently?

Non-deterministic Polynomial Time

The class NP

A decision problem is in NP, if, whenever the answer for a particular instance is “yes”,
there is a simple proof of this fact.

v

@ How to solve the Hamilton path problem efficiently? Don't know.

Non-deterministic Polynomial Time

The class NP

A decision problem is in NP, if, whenever the answer for a particular instance is “yes”,
there is a simple proof of this fact.

v

@ How to solve the Hamilton path problem efficiently? Don't know.
© Suppose | give you a Hamilton path, can you verify its Hamiltonicity?

Non-deterministic Polynomial Time

The class NP

A decision problem is in NP, if, whenever the answer for a particular instance is “yes”,
there is a simple proof of this fact.

v

@ How to solve the Hamilton path problem efficiently? Don't know.
© Suppose | give you a Hamilton path, can you verify its Hamiltonicity?
© Needle in a haystack analogy.

Non-deterministic Polynomial Time

The class NP

A decision problem is in NP, if, whenever the answer for a particular instance is “yes”,
there is a simple proof of this fact.

v

@ How to solve the Hamilton path problem efficiently? Don't know.

© Suppose | give you a Hamilton path, can you verify its Hamiltonicity?
© Needle in a haystack analogy.

©Q NP is profoundly asymmetric.

Non-deterministic Polynomial Time

The class NP

A decision problem is in NP, if, whenever the answer for a particular instance is “yes”,
there is a simple proof of this fact.

v

@ How to solve the Hamilton path problem efficiently? Don't know.

© Suppose | give you a Hamilton path, can you verify its Hamiltonicity?
© Needle in a haystack analogy.

©Q NP is profoundly asymmetric.

©Q IsP CNP?

Non-deterministic Polynomial Time

The class NP

A decision problem is in NP, if, whenever the answer for a particular instance is “yes”,
there is a simple proof of this fact.

v

@ How to solve the Hamilton path problem efficiently? Don’t know.

© Suppose | give you a Hamilton path, can you verify its Hamiltonicity?
© Needle in a haystack analogy.

© NP is profoundly asymmetric.

© Is P C NP? What is a short proof for a problem in P?

Non-deterministic Polynomial Time

Satisfiability

Non-deterministic Polynomial Time

Satisfiability

Non-deterministic Polynomial Time

Satisfiability

SAT

@ A boolean variable is a variable that assumes the values true or false.

Non-deterministic Polynomial Time

Satisfiability

SAT

@ A boolean variable is a variable that assumes the values true or false.

@ The complement of a boolean variable x is denoted by x and assumes the value
true if and only if the variable assumes false.

Non-deterministic Polynomial Time

Satisfiability

SAT

@ A boolean variable is a variable that assumes the values true or false.

@ The complement of a boolean variable x is denoted by x and assumes the value
true if and only if the variable assumes false.

© Aliteral is a boolean variable or its complement.

Non-deterministic Polynomial Time

Satisfiability

SAT

@ A boolean variable is a variable that assumes the values true or false.

@ The complement of a boolean variable x is denoted by x and assumes the value
true if and only if the variable assumes false.

© Aliteral is a boolean variable or its complement.
© A clause is a disjunction of literals.

Non-deterministic Polynomial Time

Satisfiability

SAT

@ A boolean variable is a variable that assumes the values true or false.

@ The complement of a boolean variable x is denoted by x and assumes the value
true if and only if the variable assumes false.

© Aliteral is a boolean variable or its complement.
© A clause is a disjunction of literals.

© A boolean formula is said to be in Conjunctive Normal Form (CNF), if it is a
conjunction of clauses.

Non-deterministic Polynomial Time

Satisfiability

SAT

@ A boolean variable is a variable that assumes the values true or false.

@ The complement of a boolean variable x is denoted by x and assumes the value
true if and only if the variable assumes false.

© Aliteral is a boolean variable or its complement.
© A clause is a disjunction of literals.

© A boolean formula is said to be in Conjunctive Normal Form (CNF), if it is a
conjunction of clauses.

Q@ An assignment is a consistent mapping of the literals of a formula to true/false.

Non-deterministic Polynomial Time

Satisfiability

SAT

@ A boolean variable is a variable that assumes the values true or false.

@ The complement of a boolean variable x is denoted by x and assumes the value
true if and only if the variable assumes false.

© Aliteral is a boolean variable or its complement.
© A clause is a disjunction of literals.

© A boolean formula is said to be in Conjunctive Normal Form (CNF), if it is a
conjunction of clauses.

Q@ An assignment is a consistent mapping of the literals of a formula to true/false.
@ A formula is said to be satisfiable, if it has a satisfying assignment.

Non-deterministic Polynomial Time

Satisfiability

SAT

@ A boolean variable is a variable that assumes the values true or false.

@ The complement of a boolean variable x is denoted by x and assumes the value
true if and only if the variable assumes false.

© Aliteral is a boolean variable or its complement.
© A clause is a disjunction of literals.

© A boolean formula is said to be in Conjunctive Normal Form (CNF), if it is a
conjunction of clauses.

Q@ An assignment is a consistent mapping of the literals of a formula to true/false.
@ A formula is said to be satisfiable, if it has a satisfying assignment.

Non-deterministic Polynomial Time

Satisfiability

SAT

@ A boolean variable is a variable that assumes the values true or false.

@ The complement of a boolean variable x is denoted by x and assumes the value
true if and only if the variable assumes false.

© Aliteral is a boolean variable or its complement.
© A clause is a disjunction of literals.

© A boolean formula is said to be in Conjunctive Normal Form (CNF), if it is a
conjunction of clauses.

Q@ An assignment is a consistent mapping of the literals of a formula to true/false.
@ A formula is said to be satisfiable, if it has a satisfying assignment.

Definition

Given a CNF formula ¢ = Cy A Gy ... Cm over the n boolean variables {x1, X2, ... Xn}
and their complements, the satisfiability problem (or SAT) asks if ¢ is satisfiable.

Non-deterministic Polynomial Time

Satisfiability

SAT

@ A boolean variable is a variable that assumes the values true or false.

@ The complement of a boolean variable x is denoted by x and assumes the value
true if and only if the variable assumes false.

© Aliteral is a boolean variable or its complement.
© A clause is a disjunction of literals.

© A boolean formula is said to be in Conjunctive Normal Form (CNF), if it is a
conjunction of clauses.

Q@ An assignment is a consistent mapping of the literals of a formula to true/false.
@ A formula is said to be satisfiable, if it has a satisfying assignment.

Definition

Given a CNF formula ¢ = Cy A Gy ... Cm over the n boolean variables {x1, X2, ... Xn}
and their complements, the satisfiability problem (or SAT) asks if ¢ is satisfiable.

kSAT is the variant of SAT in which each clause has exactly k variables.

Non-deterministic Polynomial Time

Variants of SAT

Non-deterministic Polynomial Time

Variants of SAT

Non-deterministic Polynomial Time

Variants of SAT

@ Show that 1SAT is in P.

Non-deterministic Polynomial Time

Variants of SAT

@ Show that 1SAT is in P.
@ Show that the formula (pV @) A (BVT)A(gVr)A(pV q)A(QV r) is unsatisfiable.

Non-deterministic Polynomial Time

Variants of SAT

@ Show that 1SAT is in P.
@ Show that the formula (pV @) A (BVT)A(gVr)A(pV q)A(QV r) is unsatisfiable.
© A CNF formula is said to be Horn, if each clause has at most one positive literal.

Non-deterministic Polynomial Time

Variants of SAT

@ Show that 1SAT is in P.

@ Show that the formula (pV @) A (BVT)A(gVr)A(pV q)A(QV r) is unsatisfiable.

© A CNF formula is said to be Horn, if each clause has at most one positive literal.
Argue that HornSAT is in P.

Non-deterministic Polynomial Time

Variants of SAT

@ Show that 1SAT is in P.

@ Show that the formula (pV @) A (BVT)A(gVr)A(pV q)A(QV r) is unsatisfiable.

© A CNF formula is said to be Horn, if each clause has at most one positive literal.
Argue that HornSAT is in P.

_

Non-deterministic Polynomial Time

Variants of SAT

@ Show that 1SAT is in P.

@ Show that the formula (pV @) A (BVT)A(gVr)A(pV q)A(QV r) is unsatisfiable.

© A CNF formula is said to be Horn, if each clause has at most one positive literal.
Argue that HornSAT is in P.

2SAT isinP.

Non-deterministic Polynomial Time

Variants of SAT

@ Show that 1SAT is in P.

@ Show that the formula (pV @) A (BVT)A(gVr)A(pV q)A(QV r) is unsatisfiable.

© A CNF formula is said to be Horn, if each clause has at most one positive literal.
Argue that HornSAT is in P.

2SAT isinP.

Observation

Non-deterministic Polynomial Time

Variants of SAT

@ Show that 1SAT is in P.

@ Show that the formula (pV @) A (BVT)A(gVr)A(pV q)A(QV r) is unsatisfiable.

© A CNF formula is said to be Horn, if each clause has at most one positive literal.
Argue that HornSAT is in P.

2SAT isinP.

Observation

Non-deterministic Polynomial Time

Variants of SAT

@ Show that 1SAT is in P.

@ Show that the formula (pV @) A (BVT)A(gVr)A(pV q)A(QV r) is unsatisfiable.

© A CNF formula is said to be Horn, if each clause has at most one positive literal.
Argue that HornSAT is in P.

2SAT isinP.

Observation

(avb) < (a—b)

Non-deterministic Polynomial Time

Variants of SAT

@ Show that 1SAT is in P.

@ Show that the formula (pV @) A (BVT)A(gVr)A(pV q)A(QV r) is unsatisfiable.

© A CNF formula is said to be Horn, if each clause has at most one positive literal.
Argue that HornSAT is in P.

2SAT isinP.

Observation

(avb) < (a—b)A(b— a)

Non-deterministic Polynomial Time

Implication Graph

Non-deterministic Polynomial Time

Implication Graph

From constraints to Digraphs

Non-deterministic Polynomial Time

Implication Graph

From constraints to Digraphs

The implication graph G(¢) corresponding to the formula ¢ is created as follows:

Non-deterministic Polynomial Time

Implication Graph

From constraints to Digraphs

The implication graph G(¢) corresponding to the formula ¢ is created as follows:
@ Create one vertex for each literal; the vertex is labeled with the literal.

Non-deterministic Polynomial Time

Implication Graph

From constraints to Digraphs
The implication graph G(¢) corresponding to the formula ¢ is created as follows:
@ Create one vertex for each literal; the vertex is labeled with the literal.

@ Corresponding to the clause (x; \ x;) draw a directed arc from X; to x; and another
directed arc from X; to x;.

Non-deterministic Polynomial Time

Implication Graph

From constraints to Digraphs
The implication graph G(¢) corresponding to the formula ¢ is created as follows:
@ Create one vertex for each literal; the vertex is labeled with the literal.

@ Corresponding to the clause (x; \ x;) draw a directed arc from X; to x; and another
directed arc from X; to x;.

© The resultant graph is called the implication graph corresponding to the given
2CNF formula.

Non-deterministic Polynomial Time

Some observations

Non-deterministic Polynomial Time

Some observations

Non-deterministic Polynomial Time

Some observations

@ If there is a path from literal a to literal b in G(¢), then there is also a path from b
to a.

Non-deterministic Polynomial Time

Some observations

@ If there is a path from literal a to literal b in G(¢), then there is also a path from b
to a.

@ Any assignment which leads to a path from true to false is not a satisfying
assignment.

Non-deterministic Polynomial Time

Some observations

@ If there is a path from literal a to literal b in G(¢), then there is also a path from b
to a.

@ Any assignment which leads to a path from true to false is not a satisfying
assignment.

© If there is a path from x; to X;, then x; cannot be assigned true in a satisfying
assignment.

Non-deterministic Polynomial Time

Some observations

@ If there is a path from literal a to literal b in G(¢), then there is also a path from b
to a.

@ Any assignment which leads to a path from true to false is not a satisfying
assignment.

© If there is a path from x; to X;, then x; cannot be assigned true in a satisfying
assignment.

© If there is a path from X; to x;, then x; cannot be assigned false in a satisfying
assignment.

Non-deterministic Polynomial Time

Reachability Lemmata

Non-deterministic Polynomial Time

Reachability Lemmata

Non-deterministic Polynomial Time

Reachability Lemmata

If there is a variable x in G(¢) such that x is reachable from X and vice versa,

Non-deterministic Polynomial Time

Reachability Lemmata

If there is a variable x in G(¢) such that x is reachable from X and vice versa, then ¢ is
unsatisfiable.

Non-deterministic Polynomial Time

Reachability Lemmata

If there is a variable x in G(¢) such that x is reachable from X and vice versa, then ¢ is
unsatisfiable.

If there is no variable x such that x is reachable from x and vice versa,

Non-deterministic Polynomial Time

Reachability Lemmata

If there is a variable x in G(¢) such that x is reachable from X and vice versa, then ¢ is
unsatisfiable.

If there is no variable x such that x is reachable from X and vice versa, then ¢ is
satisfiable.

Non-deterministic Polynomial Time

Reachability Lemmata

Lemma

If there is a variable x in G(¢) such that x is reachable from X and vice versa, then ¢ is
unsatisfiable.

Lemma

If there is no variable x such that x is reachable from X and vice versa, then ¢ is
satisfiable.

<

Non-deterministic Polynomial Time

Reachability Lemmata

Lemma

If there is a variable x in G(¢) such that x is reachable from X and vice versa, then ¢ is
unsatisfiable.

Lemma

If there is no variable x such that x is reachable from X and vice versa, then ¢ is
satisfiable.

<

@ Assume that x is set to true, which means that there is no path from x to x.

Non-deterministic Polynomial Time

Reachability Lemmata

Lemma

If there is a variable x in G(¢) such that x is reachable from X and vice versa, then ¢ is
unsatisfiable.

Lemma

If there is no variable x such that x is reachable from X and vice versa, then ¢ is
satisfiable.

<

@ Assume that x is set to true, which means that there is no path from x to x.
@ A contradiction occurs only if x ~~ y and x ~ y for some variable y.

Non-deterministic Polynomial Time

Reachability Lemmata

Lemma

If there is a variable x in G(¢) such that x is reachable from X and vice versa, then ¢ is
unsatisfiable.

Lemma

If there is no variable x such that x is reachable from X and vice versa, then ¢ is
satisfiable.

<

@ Assume that x is set to true, which means that there is no path from x to x.
@ A contradiction occurs only if x ~~ y and x ~ y for some variable y.
© By the symmetry of G(¢), there must be paths y ~~ X and y ~ Xx.

Non-deterministic Polynomial Time

Reachability Lemmata

Lemma

If there is a variable x in G(¢) such that x is reachable from X and vice versa, then ¢ is
unsatisfiable.

Lemma

If there is no variable x such that x is reachable from X and vice versa, then ¢ is
satisfiable.

<

@ Assume that x is set to true, which means that there is no path from x to x.
@ A contradiction occurs only if x ~~ y and x ~ y for some variable y.

© By the symmetry of G(¢), there must be paths y ~~ X and y ~ Xx.

© This means that there is a path x ~ X,

Non-deterministic Polynomial Time

Reachability Lemmata

Lemma

If there is a variable x in G(¢) such that x is reachable from X and vice versa, then ¢ is
unsatisfiable.

Lemma

If there is no variable x such that x is reachable from X and vice versa, then ¢ is
satisfiable.

<

@ Assume that x is set to true, which means that there is no path from x to x.
@ A contradiction occurs only if x ~~ y and x ~ y for some variable y.

© By the symmetry of G(¢), there must be paths y ~~ X and y ~ Xx.

© This means that there is a path x ~ X, i.e., a contradiction.

Non-deterministic Polynomial Time

Reachability Lemmata

Lemma

If there is a variable x in G(¢) such that x is reachable from X and vice versa, then ¢ is
unsatisfiable.

Lemma

If there is no variable x such that x is reachable from X and vice versa, then ¢ is
satisfiable.

<

@ Assume that x is set to true, which means that there is no path from x to x.
@ A contradiction occurs only if x ~~ y and x ~ y for some variable y.

© By the symmetry of G(¢), there must be paths y ~~ X and y ~ Xx.

© This means that there is a path x ~ X, i.e., a contradiction.

The case where x is set to false can be handled similarly. g

Non-deterministic Polynomial Time

The 2SAT Algorithm

Non-deterministic Polynomial Time

The 2SAT Algorithm

FUNCTION 2SAT-ALGORITHM(G(¢))

Non-deterministic Polynomial Time

The 2SAT Algorithm

FUNCTION 2SAT-ALGORITHM(G(¢))
1: for (each variable x) do

Non-deterministic Polynomial Time

The 2SAT Algorithm

FUNCTION 2SAT-ALGORITHM(G(¢))

1: for (each variable x) do
2. if (x ~ X)

Non-deterministic Polynomial Time

The 2SAT Algorithm

FUNCTION 2SAT-ALGORITHM(G(¢))

1: for (each variable x) do
2. if (x ~ X) and (X ~ x) then

Non-deterministic Polynomial Time

The 2SAT Algorithm

FUNCTION 2SAT-ALGORITHM(G(¢))
1: for (each variable x) do
2. if (x ~ X) and (X ~ x) then
3: return(false).

Non-deterministic Polynomial Time

The 2SAT Algorithm

FUNCTION 2SAT-ALGORITHM(G(¢))
1: for (each variable x) do
2. if (x ~ X) and (X ~ x) then
3: return(false).
4. endif

Non-deterministic Polynomial Time

The 2SAT Algorithm

FUNCTION 2SAT-ALGORITHM(G(¢))
1: for (each variable x) do
2. if (x ~ X) and (X ~ x) then

3: return(false).
4. endif
5. end for

Non-deterministic Polynomial Time

The 2SAT Algorithm

FUNCTION 2SAT-ALGORITHM(G(¢))
1: for (each variable x) do

2. if (x ~ X) and (X ~ x) then

3 return(false).

4. endif

5: end for

6: for (each variable x) do

Non-deterministic Polynomial Time

The 2SAT Algorithm

FUNCTION 2SAT-ALGORITHM(G(¢))
1: for (each variable x) do
2. if (x ~ X) and (X ~ x) then

return(false).

end if

: end for

: for (each variable x) do

if (x ~ X) then

USRI OTRE RN G

Non-deterministic Polynomial Time

The 2SAT Algorithm

FUNCTION 2SAT-ALGORITHM(G(¢))
1: for (each variable x) do
2. if (x ~ X) and (X ~ x) then
return(false).
end if
: end for
: for (each variable x) do
if (x ~ X) then
x = false.

© N o af

Non-deterministic Polynomial Time

The 2SAT Algorithm

FUNCTION 2SAT-ALGORITHM(G(¢))
1: for (each variable x) do
2. if (x ~ X) and (X ~ x) then
return(false).
end if
: end for
: for (each variable x) do
if (x ~ X) then
x = false.
else

© o N o A W

Non-deterministic Polynomial Time

The 2SAT Algorithm

FUNCTION 2SAT-ALGORITHM(G(¢))
1: for (each variable x) do
2. if (x ~ X) and (X ~ x) then
return(false).
end if
: end for
: for (each variable x) do
if (x ~ X) then
x = false.
else
if (x ~ x) then

S © ® N OO AR W

Non-deterministic Polynomial Time

The 2SAT Algorithm

FUNCTION 2SAT-ALGORITHM(G(¢))
1: for (each variable x) do
2. if (x ~ X) and (X ~ x) then
return(false).
end if
: end for
: for (each variable x) do
if (x ~ X) then
x = false.
else
if (x ~ x) then
x = true.

= 2 © @ N ofa W

Non-deterministic Polynomial Time

The 2SAT Algorithm

FUNCTION 2SAT-ALGORITHM(G(¢))
1: for (each variable x) do

if (x ~ X) and (x ~~ x) then

3 return(false).

4. endif

5: end for

6: for (each variable x) do

7

8

if (x ~ X) then

x = false.
9: else
10: if (x ~ x) then
11: x = true.
12: else

Non-deterministic Polynomial Time

The 2SAT Algorithm

FUNCTION 2SAT-ALGORITHM(G(¢))
1: for (each variable x) do

if (x ~ X) and (x ~~ x) then

3 return(false).

4. endif

5: end for

6: for (each variable x) do

7

8

if (x ~ X) then

x = false.
9: else
10: if (x ~ x) then
11: x = true.
12: else
13: Set x to true

Non-deterministic Polynomial Time

The 2SAT Algorithm

FUNCTION 2SAT-ALGORITHM(G(¢))
1: for (each variable x) do

if (x ~ X) and (x ~~ x) then

3 return(false).

4. endif

5: end for

6: for (each variable x) do

7

8

if (x ~ X) then

x = false.
9: else
10: if (x ~ x) then
11: x = true.
12: else
13: Set x to true or false.

Non-deterministic Polynomial Time

The 2SAT Algorithm

FUNCTION 2SAT-ALGORITHM(G(¢))
1: for (each variable x) do

if (x ~ X) and (x ~~ x) then

3 return(false).

4. endif

5: end for

6: for (each variable x) do

7

8

if (x ~ X) then

x = false.
9: else
10: if (x ~ x) then
11: x = true.
12: else
13: Set x to true or false.
14: end if

Non-deterministic Polynomial Time

The 2SAT Algorithm

FUNCTION 2SAT-ALGORITHM(G(¢))
1: for (each variable x) do

if (x ~ X) and (x ~~ x) then

3 return(false).

4. endif

5: end for

6: for (each variable x) do

7

8

if (x ~ X) then

x = false.
9: else
10: if (x ~ x) then
11: x = true.
12: else
13: Set x to true or false.
14: end if
15: end if

Non-deterministic Polynomial Time

The 2SAT Algorithm

FUNCTION 2SAT-ALGORITHM(G(¢))
1: for (each variable x) do

if (x ~ X) and (x ~~ x) then

3 return(false).

4. endif

5: end for

6: for (each variable x) do

7

8

if (x ~ X) then

x = false.
9: else
10: if (x ~ x) then
11: x = true.
12: else
13: Set x to true or false.
14: end if
15: end if
16: end for

Algorithm 4.20: 2CNF satisfiability through Reachability

Non-deterministic Polynomial Time

Analysis

Non-deterministic Polynomial Ti

Analysis

What is the running time of the above algorithm? I

Non-deterministic Polynomial Time

Reducing Hamilton Path to SAT

Non-deterministic Polynomial Time

Reducing Hamilton Path to SAT

Hamilton Path to SAT

Non-deterministic Polynomial Time

Reducing Hamilton Path to SAT

Hamilton Path to SAT

Input instance: An unweighted, directed graph G.

Non-deterministic Polynomial Time

Reducing Hamilton Path to SAT

Hamilton Path to SAT

Input instance: An unweighted, directed graph G.
Output instance: A CNF formula ¢, such that G has a Hamilton path if and only if ¢ is

satisfiable.

Non-deterministic Polynomial Time

Reducing Hamilton Path to SAT

Hamilton Path to SAT

Input instance: An unweighted, directed graph G.
Output instance: A CNF formula ¢, such that G has a Hamilton path if and only if ¢ is
satisfiable.
@ Suppose G has n nodes; ¢ has n? variables of the form Xjj, Where x;; represents
the fact that node j is the i node in the Hamilton Path (may or may not be true).

Non-deterministic Polynomial Time

Reducing Hamilton Path to SAT

Hamilton Path to SAT

Input instance: An unweighted, directed graph G.
Output instance: A CNF formula ¢, such that G has a Hamilton path if and only if ¢ is

satisfiable.

@ Suppose G has n nodes; ¢ has n? variables of the form Xjj, Where x;; represents
the fact that node j is the i node in the Hamilton Path (may or may not be true).

Q (xijVXg)...xp), f=1,2,...,n [Cy].

Non-deterministic Polynomial Time

Reducing Hamilton Path to SAT

Hamilton Path to SAT

Input instance: An unweighted, directed graph G.
Output instance: A CNF formula ¢, such that G has a Hamilton path if and only if ¢ is

satisfiable.

@ Suppose G has n nodes; ¢ has n? variables of the form Xjj, Where x;; represents
the fact that node j is the i node in the Hamilton Path (may or may not be true).

Q (xijVXg)...xp), f=1,2,...,n [Cy].

Non-deterministic Polynomial Time

Reducing Hamilton Path to SAT

Hamilton Path to SAT

Input instance: An unweighted, directed graph G.
Output instance: A CNF formula ¢, such that G has a Hamilton path if and only if ¢ is

satisfiable.
@ Suppose G has n nodes; ¢ has n? variables of the form Xjj, Where x;; represents
the fact that node j is the i node in the Hamilton Path (may or may not be true).
Q (xqjVXy...xp), j=1,2,...,n. [Cq].
Q (—x3V—xq),j=1,2...ni=1,2,....,nk=1,2,...nk#i [C].

Non-deterministic Polynomial Time

Reducing Hamilton Path to SAT

Hamilton Path to SAT

Input instance: An unweighted, directed graph G.
Output instance: A CNF formula ¢, such that G has a Hamilton path if and only if ¢ is

satisfiable.

@ Suppose G has n nodes; ¢ has n? variables of the form Xjj, Where x;; represents
the fact that node j is the i node in the Hamilton Path (may or may not be true).

o(X1j\/X2/'...an),j:1,2,...,!7. [C1]
Q (—|X,']‘\/—\ij),j:1,24..n,l':1,2,...,n,k:1,2,...[7,[(75['. [Cg]
0(x,»1\/x,-2..4\/x,ﬂ,,),i:1,2...n. [Cg]

Non-deterministic Polynomial Time

Reducing Hamilton Path to SAT

Hamilton Path to SAT

Input instance: An unweighted, directed graph G.
Output instance: A CNF formula ¢, such that G has a Hamilton path if and only if ¢ is

satisfiable.
@ Suppose G has n nodes; ¢ has n? variables of the form Xjj, Where x;; represents
the fact that node j is the i node in the Hamilton Path (may or may not be true).
Q (xqjVXy...xp), j=1,2,...,n. [Cq].
Q (—x3V—xq),j=1,2...ni=1,2,....,nk=1,2,...nk#i [C].
Q (X1 VXo...VXp),i=1,2...n. [C3].
Q (—xV—xi),i=1,2,....nj,k=1,2,....nj#k. [C4].

Non-deterministic Polynomial Time

Reducing Hamilton Path to SAT

Hamilton Path to SAT

Input instance: An unweighted, directed graph G.
Output instance: A CNF formula ¢, such that G has a Hamilton path if and only if ¢ is
satisfiable.

@ Suppose G has n nodes; ¢ has n? variables of the form Xjj, Where x;; represents
the fact that node j is the i node in the Hamilton Path (may or may not be true).

Q (xijVXg)...xp), f=1,2,...,n [Cy].
0(—|X,'j\/—\ij),j:1,24..n,l':1,2,...,n,k:1,2,...[7,[(75['. [Cg]
0(x,»1\/x,-2..4\/x,ﬂ,,),i:1,2...n. [Cg]
o(_‘Xij\/_\Xjk),i:1,2,..‘,n,j,k:1,2,‘..,n,]‘¢k. [C4]

Q (X vV ~Xky1)) k=1,2,...,n=1,(i,j) € G. [Cs].

Non-deterministic Polynomial Time

Reducing Hamilton Path to SAT

Hamilton Path to SAT

Input instance: An unweighted, directed graph G.
Output instance: A CNF formula ¢, such that G has a Hamilton path if and only if ¢ is
satisfiable.

@ Suppose G has n nodes; ¢ has n? variables of the form Xjj, Where x;; represents
the fact that node j is the i node in the Hamilton Path (may or may not be true).

Q (xijVXg)...xp), f=1,2,...,n [Cy].
0(—|X,'j\/—\ij),j:1,24..n,l':1,2,...,n,k:1,2,...[7,[(75['. [Cg]
0(x,»1\/x,-2..4\/x,ﬂ,,),i:1,2...n. [Cg]
o(_‘Xij\/_\Xjk),i:1,2,..‘,n,j,k:1,2,‘..,n,]‘¢k. [C4]

Q (X vV ~Xky1)) k=1,2,...,n=1,(i,j) € G. [Cs].
°¢=C1/\Cg/\C3/\C4/\C5.

Non-deterministic Polynomial Time

Completing the argument

Non-deterministic Polynomial Time

Completing the argument

Satisfiability implies Hamilton Path

Non-deterministic Polynomial Time

Completing the argument

Satisfiability implies Hamilton Path

Non-deterministic Polynomial Time

Completing the argument

Satisfiability implies Hamilton Path

Let T denote a satisfying assignment to ¢.

Non-deterministic Polynomial Time

Completing the argument

Satisfiability implies Hamilton Path

Let T denote a satisfying assignment to ¢.

We show that there must exist a Hamilton Path in G.

Non-deterministic Polynomial Time

Completing the argument

Satisfiability implies Hamilton Path

Let T denote a satisfying assignment to ¢.

We show that there must exist a Hamilton Path in G.

@ For each j, there is exactly one /, such that xj is true under T.

Non-deterministic Polynomial Time

Completing the argument

Satisfiability implies Hamilton Path

Let T denote a satisfying assignment to ¢.

We show that there must exist a Hamilton Path in G.

@ For each j, there is exactly one /, such that xj; is true under 7. (Why?)

Non-deterministic Polynomial Time

Completing the argument

Satisfiability implies Hamilton Path

Let T denote a satisfying assignment to ¢.

We show that there must exist a Hamilton Path in G.

@ For each j, there is exactly one /, such that xj; is true under 7. (Why?)

@ For each i, there is exactly one j, such that x; is true under T.

Non-deterministic Polynomial Time

Completing the argument

Satisfiability implies Hamilton Path

Let T denote a satisfying assignment to ¢.

We show that there must exist a Hamilton Path in G.

@ For each j, there is exactly one /, such that xj; is true under 7. (Why?)

@ For each i, there is exactly one j, such that x;; is true under 7. (Why?)

Non-deterministic Polynomial Time

Completing the argument

Satisfiability implies Hamilton Path

Let T denote a satisfying assignment to ¢.

We show that there must exist a Hamilton Path in G.

@ For each j, there is exactly one /, such that xj; is true under 7. (Why?)
@ For each i, there is exactly one j, such that x;; is true under 7. (Why?)

© T is thus a permutation of the nodes (7 (1), w(2), ..., w(n)), such that (/) = j if
and only if x;; is set to true under T.

Non-deterministic Polynomial Time

Completing the argument

Satisfiability implies Hamilton Path

Let T denote a satisfying assignment to ¢.

We show that there must exist a Hamilton Path in G.

@ For each j, there is exactly one /, such that xj; is true under 7. (Why?)
@ For each i, there is exactly one j, such that x;; is true under 7. (Why?)

© T is thus a permutation of the nodes (7 (1), w(2), ..., w(n)), such that (/) = j if
and only if x;; is set to true under T.

© The clause system [Cg] guarantees that adjacent elements on the permutation are
connected by an edge in G.

Non-deterministic Polynomial Time

Completing the argument

Satisfiability implies Hamilton Path

Let T denote a satisfying assignment to ¢.

We show that there must exist a Hamilton Path in G.

@ For each j, there is exactly one /, such that xj; is true under 7. (Why?)
@ For each i, there is exactly one j, such that x;; is true under 7. (Why?)

© T is thus a permutation of the nodes (7 (1), w(2), ..., w(n)), such that (/) = j if
and only if x;; is set to true under T.

© The clause system [Cg] guarantees that adjacent elements on the permutation are
connected by an edge in G.

© It follows that G has a Hamilton path.

Non-deterministic Polynomial Time

Completing the argument (contd.)

Non-deterministic Polynomial Time

Completing the argument (contd.)

Hamilton Path implies Satisfiability

Assume that the graph G has a Hamilton path p.

Non-deterministic Polynomial Time

Completing the argument (contd.)

Hamilton Path implies Satisfiability

Assume that the graph G has a Hamilton path p.

We show that ¢ is satisfiable.

Non-deterministic Polynomial Time

Completing the argument (contd.)

Hamilton Path implies Satisfiability

Assume that the graph G has a Hamilton path p.

We show that ¢ is satisfiable. Observe that,

Non-deterministic Polynomial Time

Completing the argument (contd.)

Hamilton Path implies Satisfiability

Assume that the graph G has a Hamilton path p.

We show that ¢ is satisfiable. Observe that,

@ Observe that p can be represented as a permutation © = («(1), 7(2) ... w(n)),
where 7 (i) represents the i vertex on the Hamilton path.

Non-deterministic Polynomial Time

Completing the argument (contd.)

Hamilton Path implies Satisfiability

Assume that the graph G has a Hamilton path p.

We show that ¢ is satisfiable. Observe that,

@ Observe that p can be represented as a permutation © = («(1), 7(2) ... w(n)),
where 7 (i) represents the i vertex on the Hamilton path.

@ Consider the following assignment: T(x;) = true if and only if 7(i) = j.

Non-deterministic Polynomial Time

Completing the argument (contd.)

Hamilton Path implies Satisfiability

Assume that the graph G has a Hamilton path p.

We show that ¢ is satisfiable. Observe that,

@ Observe that p can be represented as a permutation © = («(1), 7(2) ... w(n)),
where 7 (i) represents the i vertex on the Hamilton path.

@ Consider the following assignment: T(x;) = true if and only if 7(i) = j.
© Itis not hard to see that every clause in ¢ is satisfied.

Non-deterministic Polynomial Time

Completing the argument (contd.)

Hamilton Path implies Satisfiability

Assume that the graph G has a Hamilton path p.

We show that ¢ is satisfiable. Observe that,

@ Observe that p can be represented as a permutation © = («(1), 7(2) ... w(n)),
where 7 (i) represents the i vertex on the Hamilton path.

@ Consider the following assignment: T(x;) = true if and only if 7(i) = j.
© Itis not hard to see that every clause in ¢ is satisfied.

v

_

Non-deterministic Polynomial Time

Completing the argument (contd.)

Hamilton Path implies Satisfiability

Assume that the graph G has a Hamilton path p.

We show that ¢ is satisfiable. Observe that,

@ Observe that p can be represented as a permutation © = («(1), 7(2) ... w(n)),
where 7 (i) represents the i vertex on the Hamilton path.

@ Consider the following assignment: T(x;) = true if and only if 7(i) = j.

© Itis not hard to see that every clause in ¢ is satisfied.

v

Is the reduction polynomial in the size of the input?

Non-deterministic Polynomial Time

Boolean Circuits (Syntax)

Non-deterministic Polynomial Time

Boolean Circuits (Syntax)

Non-deterministic Polynomial Time

Boolean Circuits (Syntax)

@ A boolean circuit C is a DAG G = (V, E).

Non-deterministic Polynomial Time

Boolean Circuits (Syntax)

@ A boolean circuit C is a DAG G = (V, E).
@ The nodes V = {1,2,...n} are called the gates of C.

Non-deterministic Polynomial Time

Boolean Circuits (Syntax)

@ A boolean circuit C is a DAG G = (V, E).
@ The nodes V = {1,2,...n} are called the gates of C.

© We can assume without loss of generality that the edges are of the form (/,),
where i < j.

Non-deterministic Polynomial Time

Boolean Circuits (Syntax)

@ A boolean circuit C is a DAG G = (V, E).
@ The nodes V = {1,2,...n} are called the gates of C.

© We can assume without loss of generality that the edges are of the form (/,),
where i < j.

© Each gate i has a sort s(i) associated with it, where
s(i) € {true, false} U {xq,xo,...} U{V,A,—}.

Non-deterministic Polynomial Time

Boolean Circuits (Syntax)

@ A boolean circuit C is a DAG G = (V, E).
@ The nodes V = {1,2,...n} are called the gates of C.

© We can assume without loss of generality that the edges are of the form (/,),
where i < j.

© Each gate i has a sort s(i) associated with it, where
s(i) € {true, false} U {xq,xo,...} U{V,A,—}.

@ If s(i) € {true, false} U {x1, X2, ...}, then its in-degree is 0.

Non-deterministic Polynomial Time

Boolean Circuits (Syntax)

@ A boolean circuit C is a DAG G = (V, E).
@ The nodes V = {1,2,...n} are called the gates of C.

© We can assume without loss of generality that the edges are of the form (/,),
where i < j.

© Each gate i has a sort s(i) associated with it, where
s(i) € {true, false} U {xq,xo,...} U{V,A,—}.

@ If s(i) € {true, false} U {x1, X2, ...}, then its in-degree is 0.
Q If s(i) € {—}, its in-degree is 1.

Non-deterministic Polynomial Time

Boolean Circuits (Syntax)

@ A boolean circuit C is a DAG G = (V, E).
@ The nodes V = {1,2,...n} are called the gates of C.

© We can assume without loss of generality that the edges are of the form (/,),
where i < j.

© Each gate i has a sort s(i) associated with it, where
s(i) € {true, false} U {xq,xo,...} U{V,A,—}.

@ If s(i) € {true, false} U {x1, X2, ...}, then its in-degree is 0.
Q If s(i) € {1}, its in-degree is 1.
@ All other gates have in-degree 2.

Non-deterministic Polynomial Time

Boolean Circuits (Syntax)

@ A boolean circuit C is a DAG G = (V, E).
@ The nodes V = {1,2,...n} are called the gates of C.

© We can assume without loss of generality that the edges are of the form (/,),
where i < j.

© Each gate i has a sort s(i) associated with it, where
s(i) € {true, false} U {xq,xo,...} U{V,A,—}.

@ If s(i) € {true, false} U {x1, Xo, ...}, then its in-degree is 0.
Q If s(i) € {1}, its in-degree is 1.

@ All other gates have in-degree 2.

Q All gates except gate n have out-degree 1.

Non-deterministic Polynomial Time

Boolean Circuits (Syntax)

@ A boolean circuit C is a DAG G = (V, E).
@ The nodes V = {1,2,...n} are called the gates of C.

© We can assume without loss of generality that the edges are of the form (/,),
where i < j.

© Each gate i has a sort s(i) associated with it, where
s(i) € {true, false} U {xq,xo,...} U{V,A,—}.

@ If s(i) € {true, false} U {x1, Xo, ...}, then its in-degree is 0.
Q If s(i) € {1}, its in-degree is 1.

@ All other gates have in-degree 2.

Q All gates except gate n have out-degree 1.

© Gate n, is called the output gate and has out-degree 0.

Non-deterministic Polynomial Time

Boolean Circuits (Semantics)

Non-deterministic Polynomial Time

Boolean Circuits (Semantics)

Semantics

Non-deterministic Polynomial Time

Boolean Circuits (Semantics)

Semantics

The semantics of circuits specifies a truth value for the circuit, corresponding to each
appropriate assignment.

Non-deterministic Polynomial Time

Boolean Circuits (Semantics)

Semantics

The semantics of circuits specifies a truth value for the circuit, corresponding to each
appropriate assignment.

This value can be computed inductively as follows:

Non-deterministic Polynomial Time

Boolean Circuits (Semantics)

Semantics

The semantics of circuits specifies a truth value for the circuit, corresponding to each
appropriate assignment.

This value can be computed inductively as follows:
@ |[f the gate is true or false, then it retains that value.

Non-deterministic Polynomial Time

Boolean Circuits (Semantics)

Semantics

The semantics of circuits specifies a truth value for the circuit, corresponding to each
appropriate assignment.

This value can be computed inductively as follows:
@ |[f the gate is true or false, then it retains that value.
@ If the gate is a variable, then its value is equal to its assignment.

Non-deterministic Polynomial Time

Boolean Circuits (Semantics)

Semantics

The semantics of circuits specifies a truth value for the circuit, corresponding to each
appropriate assignment.

This value can be computed inductively as follows:
@ |[f the gate is true or false, then it retains that value.
@ If the gate is a variable, then its value is equal to its assignment.
© If the gate has sort —, then its value is the complement of its input.

Non-deterministic Polynomial Time

Boolean Circuits (Semantics)

Semantics

The semantics of circuits specifies a truth value for the circuit, corresponding to each
appropriate assignment.
This value can be computed inductively as follows:

@ |[f the gate is true or false, then it retains that value.

@ If the gate is a variable, then its value is equal to its assignment.

© If the gate has sort —, then its value is the complement of its input.

Q If the gate has sort Vv, then its value is true if at least one of its two input gates has
value true and is false otherwise.

Non-deterministic Polynomial Time

Boolean Circuits (Semantics)

Semantics

The semantics of circuits specifies a truth value for the circuit, corresponding to each
appropriate assignment.
This value can be computed inductively as follows:

@ |[f the gate is true or false, then it retains that value.

@ If the gate is a variable, then its value is equal to its assignment.

© If the gate has sort —, then its value is the complement of its input.

Q If the gate has sort Vv, then its value is true if at least one of its two input gates has
value true and is false otherwise.

© If the gate has sort A, then its value is true if both its two input gates have value
true and is false otherwise.

Non-deterministic Polynomial Time

Boolean Circuits (Semantics)

Semantics

The semantics of circuits specifies a truth value for the circuit, corresponding to each
appropriate assignment.
This value can be computed inductively as follows:

@ |[f the gate is true or false, then it retains that value.

@ If the gate is a variable, then its value is equal to its assignment.

© If the gate has sort —, then its value is the complement of its input.

Q If the gate has sort Vv, then its value is true if at least one of its two input gates has
value true and is false otherwise.

© If the gate has sort A, then its value is true if both its two input gates have value
true and is false otherwise.

Q@ The value of the circuit is the value of the output gate.

Non-deterministic Polynomial Time

CIRCUIT-SAT and CIRCUIT-VALUE

Non-deterministic Polynomial Time

CIRCUIT-SAT and CIRCUIT-VALUE

Non-deterministic Polynomial Time

CIRCUIT-SAT and CIRCUIT-VALUE

Given a circuit C, is there an assignment true/false to the variable gates, so that C
evaluates to true?

Non-deterministic Polynomial Time

CIRCUIT-SAT and CIRCUIT-VALUE

Given a circuit C, is there an assignment true/false to the variable gates, so that C
evaluates to true?

_

Non-deterministic Polynomial Time

CIRCUIT-SAT and CIRCUIT-VALUE

Given a circuit C, is there an assignment true/false to the variable gates, so that C
evaluates to true?

Given a variable-free circuit C, does it evaluate to true?

Non-deterministic Polynomial Time

CIRCUIT-SAT and CIRCUIT-VALUE

Given a circuit C, is there an assignment true/false to the variable gates, so that C
evaluates to true?

Given a variable-free circuit C, does it evaluate to true?

Non-deterministic Polynomial Time

CIRCUIT-SAT and CIRCUIT-VALUE

Given a circuit C, is there an assignment true/false to the variable gates, so that C
evaluates to true?

Given a variable-free circuit C, does it evaluate to true?
Argue that CIRCUIT-VALUE is in P.

Non-deterministic Polynomial Time

Reduction from CIRCUIT-SAT to SAT

CIRCUIT-SAT to SAT

Non-deterministic Polynomial Time

Reduction from CIRCUIT-SAT to SAT

CIRCUIT-SAT to SAT

Input instance: A circuit C.

Non-deterministic Polynomial Time

Reduction from CIRCUIT-SAT to SAT

CIRCUIT-SAT to SAT

Input instance: A circuit C.

Output instance: A CNF formula ¢ such that ¢ is satisfiable if and only if C is.

Non-deterministic Polynomial Time

Reduction from CIRCUIT-SAT to SAT

CIRCUIT-SAT to SAT

Input instance: A circuit C.

Output instance: A CNF formula ¢ such that ¢ is satisfiable if and only if C is.

@ The variables of ¢ will contain all the variables of C. Additionally, for each gate g
in C, we create a new variable in ¢, also denoted by g.

Non-deterministic Polynomial Time

Reduction from CIRCUIT-SAT to SAT

CIRCUIT-SAT to SAT

Input instance: A circuit C.

Output instance: A CNF formula ¢ such that ¢ is satisfiable if and only if C is.

@ The variables of ¢ will contain all the variables of C. Additionally, for each gate g
in C, we create a new variable in ¢, also denoted by g.

@ If gis a variable gate, corresponding to variable x, add the clauses (g v —x) and
(—g V x) to ¢.

Non-deterministic Polynomial Time

Reduction from CIRCUIT-SAT to SAT

CIRCUIT-SAT to SAT

Input instance: A circuit C.

Output instance: A CNF formula ¢ such that ¢ is satisfiable if and only if C is.

@ The variables of ¢ will contain all the variables of C. Additionally, for each gate g
in C, we create a new variable in ¢, also denoted by g.

@ If gis a variable gate, corresponding to variable x, add the clauses (g v —x) and
(mg Vv x)to ¢. (g & x.)

Non-deterministic Polynomial Time

Reduction from CIRCUIT-SAT to SAT

CIRCUIT-SAT to SAT

Input instance: A circuit C.

Output instance: A CNF formula ¢ such that ¢ is satisfiable if and only if C is.

@ The variables of ¢ will contain all the variables of C. Additionally, for each gate g
in C, we create a new variable in ¢, also denoted by g.

@ If gis a variable gate, corresponding to variable x, add the clauses (g v —x) and
(mg Vv x)to ¢. (g & x.)
© If gis a true gate, add (g) to ¢; likewise, if it is a false gate, add (—g).

Non-deterministic Polynomial Time

Reduction from CIRCUIT-SAT to SAT

CIRCUIT-SAT to SAT

Input instance: A circuit C.

Output instance: A CNF formula ¢ such that ¢ is satisfiable if and only if C is.

@ The variables of ¢ will contain all the variables of C. Additionally, for each gate g
in C, we create a new variable in ¢, also denoted by g.

@ If gis a variable gate, corresponding to variable x, add the clauses (g v —x) and
(mg Vv x)to ¢. (g & x.)

© If gis a true gate, add (g) to ¢; likewise, if it is a false gate, add (—g).

Q If gis a NOT gate with predecessor h, add the clauses (g V h) and (—g V —h) to ¢.

Non-deterministic Polynomial Time

Reduction from CIRCUIT-SAT to SAT

CIRCUIT-SAT to SAT

Input instance: A circuit C.

Output instance: A CNF formula ¢ such that ¢ is satisfiable if and only if C is.

@ The variables of ¢ will contain all the variables of C. Additionally, for each gate g
in C, we create a new variable in ¢, also denoted by g.

@ If gis a variable gate, corresponding to variable x, add the clauses (g v —x) and
(mg Vv x)to ¢. (g & x.)

© If gis a true gate, add (g) to ¢; likewise, if it is a false gate, add (—g).

Q If gis a NOT gate with predecessor h, add the clauses (g V h) and (—g V —h) to ¢.

@ If gis an OR gate with predecessors h and h’, add the clauses (—h V g),
(=h" v g)and (hv h V —g)to ¢.

Non-deterministic Polynomial Time

Reduction from CIRCUIT-SAT to SAT

CIRCUIT-SAT to SAT

Input instance: A circuit C.

Output instance: A CNF formula ¢ such that ¢ is satisfiable if and only if C is.

@ The variables of ¢ will contain all the variables of C. Additionally, for each gate g
in C, we create a new variable in ¢, also denoted by g.

@ If gis a variable gate, corresponding to variable x, add the clauses (g v —x) and
(mg Vv x)to ¢. (g & x.)

© If gis a true gate, add (g) to ¢; likewise, if it is a false gate, add (—g).

Q If gis a NOT gate with predecessor h, add the clauses (g V h) and (—g V —h) to ¢.

@ If gis an OR gate with predecessors h and h’, add the clauses (—h V g),
(=h"vg)and (hv h Vv —g)too. (g< (hVH).)

Non-deterministic Polynomial Time

Reduction from CIRCUIT-SAT to SAT

CIRCUIT-SAT to SAT

Input instance: A circuit C.

Output instance: A CNF formula ¢ such that ¢ is satisfiable if and only if C is.

@ The variables of ¢ will contain all the variables of C. Additionally, for each gate g
in C, we create a new variable in ¢, also denoted by g.

@ If gis a variable gate, corresponding to variable x, add the clauses (g v —x) and
(mg Vv x)to ¢. (g & x.)

If g is a true gate, add (g) to ¢; likewise, if it is a false gate, add (—g).

If g is a NOT gate with predecessor h, add the clauses (g V h) and (=g V —h) to ¢.

If g is an OR gate with predecessors h and h’, add the clauses (—hV g),
(=h"vg)and (hv h Vv —g)too. (g< (hVH).)

If g is an AND gate with predecessors h and h’, add the clauses (=g V h),
(=g Vv h)and (-hV -h Vv g)to ¢.

© 000

Non-deterministic Polynomial Time

Reduction from CIRCUIT-SAT to SAT

CIRCUIT-SAT to SAT

Input instance: A circuit C.

Output instance: A CNF formula ¢ such that ¢ is satisfiable if and only if C is.

@ The variables of ¢ will contain all the variables of C. Additionally, for each gate g
in C, we create a new variable in ¢, also denoted by g.

@ If gis a variable gate, corresponding to variable x, add the clauses (g v —x) and
(mg Vv x)to ¢. (g & x.)

If g is a true gate, add (g) to ¢; likewise, if it is a false gate, add (—g).

If g is a NOT gate with predecessor h, add the clauses (g V h) and (=g V —h) to ¢.

If g is an OR gate with predecessors h and h’, add the clauses (—hV g),
(=h"vg)and (hv h Vv —g)too. (g< (hVH).)

If g is an AND gate with predecessors h and h’, add the clauses (=g V h),
(mgV hH)and (mhVv -H vg)too. (g< (hAHK).)

© 000

Non-deterministic Polynomial Time

Reduction from CIRCUIT-SAT to SAT

CIRCUIT-SAT to SAT

Input instance: A circuit C.

Output instance: A CNF formula ¢ such that ¢ is satisfiable if and only if C is.

@ The variables of ¢ will contain all the variables of C. Additionally, for each gate g
in C, we create a new variable in ¢, also denoted by g.

@ If gis a variable gate, corresponding to variable x, add the clauses (g v —x) and
(mg Vv x)to ¢. (g & x.)

If g is a true gate, add (g) to ¢; likewise, if it is a false gate, add (—g).

If g is a NOT gate with predecessor h, add the clauses (g V h) and (=g V —h) to ¢.

If g is an OR gate with predecessors h and h’, add the clauses (—hV g),
(=h"vg)and (hv h Vv —g)too. (g< (hVH).)

If g is an AND gate with predecessors h and h’, add the clauses (=g V h),
(mgV hH)and (mhVv -H vg)too. (g< (hAHK).)

If g is an output gate, add the clause (g).

© 06 06060

Non-deterministic Polynomial Time

Argument

Non-deterministic Polynomial Time

Argument

Non-deterministic Polynomial Time

Argument

@ If Cis satisfiable, then ¢ is satisfiable.

Non-deterministic Polynomial Time

Argument

@ If Cis satisfiable, then ¢ is satisfiable.
Q If ¢ is satisfiable, then C is satisfiable.

Non-deterministic Polynomial Time

Graph coloring

Non-deterministic Polynomial Time

Graph coloring

The Graph coloring problem

Non-deterministic Polynomial Time

Graph coloring

The Graph coloring problem

A coloring of an undirected graph G = (V, E) is an assignment V — {1,2,... k}.

Non-deterministic Polynomial Time

Graph coloring

The Graph coloring problem

A coloring of an undirected graph G = (V, E) is an assignment V — {1,2,... k}.

The coloring is said to be valid if no two adjacent vertices have the same color.

Non-deterministic Polynomial Time

Graph coloring

The Graph coloring problem
A coloring of an undirected graph G = (V, E) is an assignment V — {1,2,... k}.
The coloring is said to be valid if no two adjacent vertices have the same color.

In the GRAPH k-COLORING problem, you are given a number k and asked if G can be
colored using k colors.

Non-deterministic Polynomial Time

Graph coloring

The Graph coloring problem

A coloring of an undirected graph G = (V, E) is an assignment V — {1,2,... k}.
The coloring is said to be valid if no two adjacent vertices have the same color.

In the GRAPH k-COLORING problem, you are given a number k and asked if G can be
colored using k colors.

Exercise

\ | \

Non-deterministic Polynomial Time

Graph coloring

The Graph coloring problem

A coloring of an undirected graph G = (V, E) is an assignment V — {1,2,... k}.
The coloring is said to be valid if no two adjacent vertices have the same color.

In the GRAPH k-COLORING problem, you are given a number k and asked if G can be
colored using k colors.

Exercise

| N

@ Argue that GRAPH 2-COLORING is in P.

A\

Non-deterministic Polynomial Time

Graph coloring

The Graph coloring problem

A coloring of an undirected graph G = (V, E) is an assignment V — {1,2,... k}.
The coloring is said to be valid if no two adjacent vertices have the same color.

In the GRAPH k-COLORING problem, you are given a number k and asked if G can be
colored using k colors.

Exercise

| N

@ Argue that GRAPH 2-COLORING is in P.
@ Argue that GRAPH 3-COLORING can be reduced to 3SAT.

A\

Non-deterministic Polynomial Time

3-coloring to 3-SAT

Non-deterministic Polynomial Time

3-coloring to 3-SAT

Non-deterministic Polynomial Time

3-coloring to 3-SAT

Input: An undirected graph G = (V, E).

Non-deterministic Polynomial Time

3-coloring to 3-SAT

Reduction
Input: An undirected graph G = (V, E).

Output: A CNF formula ¢, such that ¢ is satisfiable if and only if G has a valid
3-coloring.

Non-deterministic Polynomial Time

3-coloring to 3-SAT

Reduction
Input: An undirected graph G = (V, E).

Output: A CNF formula ¢, such that ¢ is satisfiable if and only if G has a valid
3-coloring.
Q Let X, 1=1,2,...,n,j=1,2,3 be the boolean variable that is true if vertex i
gets color j, and false otherwise.

Non-deterministic Polynomial Time

3-coloring to 3-SAT

Reduction
Input: An undirected graph G = (V, E).

Output: A CNF formula ¢, such that ¢ is satisfiable if and only if G has a valid
3-coloring.
Q Let X, 1=1,2,...,n,j=1,2,3 be the boolean variable that is true if vertex i
gets color j, and false otherwise.
@ Every vertex should get at least one color.

Non-deterministic Polynomial Time

3-coloring to 3-SAT

Reduction
Input: An undirected graph G = (V, E).

Output: A CNF formula ¢, such that ¢ is satisfiable if and only if G has a valid
3-coloring.
Q Let X, 1=1,2,...,n,j=1,2,3 be the boolean variable that is true if vertex i
gets color j, and false otherwise.
@ Every vertex should get at least one color.

(X1 VX2V X3), i=1,2,...,n

Non-deterministic Polynomial Time

3-coloring to 3-SAT

Reduction
Input: An undirected graph G = (V, E).

Output: A CNF formula ¢, such that ¢ is satisfiable if and only if G has a valid
3-coloring.
Q Let X, 1=1,2,...,n,j=1,2,3 be the boolean variable that is true if vertex i
gets color j, and false otherwise.
@ Every vertex should get at least one color.

(X1 VX2V X3), i=1,2,...,n

© Every vertex should get at most one color.

Non-deterministic Polynomial Time

3-coloring to 3-SAT

Reduction
Input: An undirected graph G = (V, E).

Output: A CNF formula ¢, such that ¢ is satisfiable if and only if G has a valid
3-coloring.
Q Let X, 1=1,2,...,n,j=1,2,3 be the boolean variable that is true if vertex i
gets color j, and false otherwise.
@ Every vertex should get at least one color.

(X1 VX2V X3), i=1,2,...,n

© Every vertex should get at most one color.

Non-deterministic Polynomial Time

3-coloring to 3-SAT

Reduction
Input: An undirected graph G = (V, E).

Output: A CNF formula ¢, such that ¢ is satisfiable if and only if G has a valid
3-coloring.
Q Let X, 1=1,2,...,n,j=1,2,3 be the boolean variable that is true if vertex i
gets color j, and false otherwise.

@ Every vertex should get at least one color.

(X1 VX2V X3), i=1,2,...,n

© Every vertex should get at most one color.

(X1 A Xp2)

Non-deterministic Polynomial Time

3-coloring to 3-SAT

Reduction
Input: An undirected graph G = (V, E).

Output: A CNF formula ¢, such that ¢ is satisfiable if and only if G has a valid
3-coloring.
Q Let X, 1=1,2,...,n,j=1,2,3 be the boolean variable that is true if vertex i
gets color j, and false otherwise.
@ Every vertex should get at least one color.

(X1 VX2V X3), i=1,2,...,n

© Every vertex should get at most one color.

(X1 A Xp2)
(X1 A Xi3)

Non-deterministic Polynomial Time

3-coloring to 3-SAT

Reduction
Input: An undirected graph G = (V, E).
Output: A CNF formula ¢, such that ¢ is satisfiable if and only if G has a valid
3-coloring.
Q Let X, 1=1,2,...,n,j=1,2,3 be the boolean variable that is true if vertex i
gets color j, and false otherwise.
@ Every vertex should get at least one color.

(X1 VX2V X3), i=1,2,...,n

© Every vertex should get at most one color.

(X1 A Xp2)
(X1 A Xi3)
(X2 A Xa),

Non-deterministic Polynomial Time

3-coloring to 3-SAT

Reduction
Input: An undirected graph G = (V, E).

Output: A CNF formula ¢, such that ¢ is satisfiable if and only if G has a valid
3-coloring.
Q Let X, 1=1,2,...,n,j=1,2,3 be the boolean variable that is true if vertex i
gets color j, and false otherwise.
@ Every vertex should get at least one color.

(X1 VX2V X3), i=1,2,...,n

© Every vertex should get at most one color.

(X1 A Xp2)
(X1 A Xi3)
_‘(Xi2 A Xf3)7i:1727"'7n

Non-deterministic Polynomial Time

Completing the reduction

Non-deterministic Polynomial Time

Completing the reduction

Connectivity requirements

Non-deterministic Polynomial Time

Completing the reduction

Connectivity requirements

If (u,v) € E, then u and v should get different colors.

Non-deterministic Polynomial Time

Completing the reduction

Connectivity requirements

If (u,v) € E, then u and v should get different colors.

Non-deterministic Polynomial Time

Completing the reduction

Connectivity requirements

If (u,v) € E, then u and v should get different colors.

(Xt A XiA)

Non-deterministic Polynomial Time

Completing the reduction

Connectivity requirements

If (u,v) € E, then u and v should get different colors.

(Xt A Xy1)
ﬁ(Xu2 A Xv2)

Non-deterministic Polynomial Time

Completing the reduction

Connectivity requirements

If (u,v) € E, then u and v should get different colors.
(Xt A Xu1)
ﬁ(Xu2 A Xv2)
ﬁ(Xu3 A Xv3)

Non-deterministic Polynomial Time

Completing the reduction

Connectivity requirements

If (u,v) € E, then u and v should get different colors.

(Xt A Xn1)

ﬁ(Xu2 A Xv2)

ﬁ(Xu3 A Xv3)
VY(u,v) € E

Non-deterministic Polynomial Time

Integer Partitioning and Subset Sum

Non-deterministic Polynomial Time

Integer Partitioning and Subset Sum

Integer Partitioning

Non-deterministic Polynomial Time

Integer Partitioning and Subset Sum

Integer Partitioning

Given a list S = {x1, X2, ..., Xn} of integers, is there a set A C S, such that
ZX,EA W = Zx,-eA xi?

Non-deterministic Polynomial Time

Integer Partitioning and Subset Sum

Integer Partitioning

Given a list S = {x1, X2, ..., Xn} of integers, is there a set A C S, such that
ZX,EA W = Zx,-eA xi?

v

A\

Non-deterministic Polynomial Time

Integer Partitioning and Subset Sum

Integer Partitioning

Given a list S = {x1, X2, ..., Xn} of integers, is there a set A C S, such that
ZX,EA W = Zx,-eA xi?

| N

Subset Sum
Given alist S = {x1, X2, ..., Xn} of integers and a target ¢, is there a set A C S, such
that ZX,'EA x; = t?

A\

Non-deterministic Polynomial Time

Integer Partitioning and Subset Sum

Integer Partitioning

Given a list S = {x1, X2, ..., Xn} of integers, is there a set A C S, such that
ZX,EA W = Zx,-eA xi?

| N

Subset Sum

Given alist S = {x1, X2, ..., Xn} of integers and a target ¢, is there a set A C S, such
that ZX,'EA x; = t?

_

Non-deterministic Polynomial Time

Integer Partitioning and Subset Sum

Integer Partitioning

Given a list S = {x1, X2, ..., Xn} of integers, is there a set A C S, such that
ZX,EA W = Zx,-eA xi?

Subset Sum

Given alist S = {x1, X2, ..., Xn} of integers and a target ¢, is there a set A C S, such
that ZX,'EA x; = t?

| N

v

Reduce INTEGER PARTITIONING fo SUBSET SUM

Non-deterministic Polynomial Time

Binary Knapsack

Non-deterministic Polynomial Time

Binary Knapsack

Binary Knapsack

Non-deterministic Polynomial Time

Binary Knapsack

Binary Knapsack

@ You are given n objects O = {01, 0, . . ., 0n}-

Non-deterministic Polynomial Time

Binary Knapsack

Binary Knapsack

@ You are given n objects O = {01, 0, . . ., 0n}-
@ Object o; has weight w; and profit p;.

Non-deterministic Polynomial Time

Binary Knapsack

Binary Knapsack

@ You are given n objects O = {01, 0, . . ., 0n}-
@ Object o; has weight w; and profit p;.
© You are also given a knapsack of weight capacity W.

Non-deterministic Polynomial Time

Binary Knapsack

Binary Knapsack

@ You are given n objects O = {01, 0, . . ., 0n}-
@ Object o; has weight w; and profit p;.
© You are also given a knapsack of weight capacity W.

© The goal is to select a subset of the objects which does not violate the capacity
constraint of the knapsack while maximizing the profit of the objects selected.

Non-deterministic Polynomial Time

Binary Knapsack

Binary Knapsack

@ You are given n objects O = {01, 0, . . ., 0n}-
@ Object o; has weight w; and profit p;.
© You are also given a knapsack of weight capacity W.

© The goal is to select a subset of the objects which does not violate the capacity
constraint of the knapsack while maximizing the profit of the objects selected.

Q@ Profits are additive.

Non-deterministic Polynomial Time

Binary Knapsack

Binary Knapsack

@ You are given n objects O = {01, 0, . . ., 0n}-
@ Object o; has weight w; and profit p;.
© You are also given a knapsack of weight capacity W.

© The goal is to select a subset of the objects which does not violate the capacity
constraint of the knapsack while maximizing the profit of the objects selected.

Q@ Profits are additive.

Q@ The integer programming formulation is:

Non-deterministic Polynomial Time

Binary Knapsack

Binary Knapsack

@ You are given n objects O = {01, 0, . . ., 0n}-
@ Object o; has weight w; and profit p;.
© You are also given a knapsack of weight capacity W.

© The goal is to select a subset of the objects which does not violate the capacity
constraint of the knapsack while maximizing the profit of the objects selected.

Q@ Profits are additive.

Q@ The integer programming formulation is:

n
max Dok P X

Non-deterministic Polynomial Time

Binary Knapsack

Binary Knapsack

@ You are given n objects O = {01, 0, . . ., 0n}-
@ Object o; has weight w; and profit p;.
© You are also given a knapsack of weight capacity W.

© The goal is to select a subset of the objects which does not violate the capacity
constraint of the knapsack while maximizing the profit of the objects selected.

Q@ Profits are additive.

Q@ The integer programming formulation is:

n
max E i—1 Pi * Xj
g Wi X =w

Non-deterministic Polynomial Time

Binary Knapsack

Binary Knapsack

@ You are given n objects O = {01, 0, . . ., 0n}-
@ Object o; has weight w; and profit p;.
© You are also given a knapsack of weight capacity W.

© The goal is to select a subset of the objects which does not violate the capacity
constraint of the knapsack while maximizing the profit of the objects selected.

Q@ Profits are additive.

Q@ The integer programming formulation is:
max P X
S Wi X <w
xi={0,1} Vi=1,2,...,n

Non-deterministic Polynomial Time

Binary Knapsack (contd.)

Non-deterministic Polynomial Time

Binary Knapsack (contd.)

Non-deterministic Polynomial Time

Binary Knapsack (contd.)

Demonstrate through a counterexample that the greedy strategy used for fractional
knapsack does not work in the binary knapsack case.

Non-deterministic Polynomial Time

Binary Knapsack (contd.)

Exercise

Demonstrate through a counterexample that the greedy strategy used for fractional
knapsack does not work in the binary knapsack case.

V.

A\

Non-deterministic Polynomial Time

Binary Knapsack (contd.)

Exercise

Demonstrate through a counterexample that the greedy strategy used for fractional
knapsack does not work in the binary knapsack case.

V.

@ Consider three objects 01, 0, and o3 with weights 10 units, 20 units and 30 units
respectively and profits $60, $100 and $120 respectively.

A\

Non-deterministic Polynomial Time

Binary Knapsack (contd.)

Exercise

Demonstrate through a counterexample that the greedy strategy used for fractional
knapsack does not work in the binary knapsack case.

V.

@ Consider three objects 01, 0, and o3 with weights 10 units, 20 units and 30 units
respectively and profits $60, $100 and $120 respectively.

© Let the knapsack have weight capacity 50 units.

A\

Non-deterministic Polynomial Time

Binary Knapsack (contd.)

Exercise

Demonstrate through a counterexample that the greedy strategy used for fractional
knapsack does not work in the binary knapsack case.

V.

@ Consider three objects 01, 0, and o3 with weights 10 units, 20 units and 30 units
respectively and profits $60, $100 and $120 respectively.

© Let the knapsack have weight capacity 50 units.
© The greedy solution is

A\

Non-deterministic Polynomial Time

Binary Knapsack (contd.)

Exercise

Demonstrate through a counterexample that the greedy strategy used for fractional
knapsack does not work in the binary knapsack case.

V.

@ Consider three objects 01, 0, and o3 with weights 10 units, 20 units and 30 units
respectively and profits $60, $100 and $120 respectively.

© Let the knapsack have weight capacity 50 units.
© The greedy solution is {01, 02}

A\

Non-deterministic Polynomial Time

Binary Knapsack (contd.)

Exercise

Demonstrate through a counterexample that the greedy strategy used for fractional
knapsack does not work in the binary knapsack case.

V.

@ Consider three objects 01, 0, and o3 with weights 10 units, 20 units and 30 units
respectively and profits $60, $100 and $120 respectively.

© Let the knapsack have weight capacity 50 units.
© The greedy solution is {01, 02}
© The optimal solution is

A\

Non-deterministic Polynomial Time

Binary Knapsack (contd.)

Exercise

Demonstrate through a counterexample that the greedy strategy used for fractional
knapsack does not work in the binary knapsack case.

V.

@ Consider three objects 01, 0, and o3 with weights 10 units, 20 units and 30 units
respectively and profits $60, $100 and $120 respectively.

© Let the knapsack have weight capacity 50 units.
© The greedy solution is {01, 02}
@ The optimal solution is {02, 03}.

A\

Non-deterministic Polynomial Time

A DP-based algorithm for binary knapsack

Non-deterministic Polynomial Time

A DP-based algorithm for binary knapsack

Principle of optimality

Non-deterministic Polynomial Time

A DP-based algorithm for binary knapsack

Principle of optimality

@ Let KNAP(n, W) denote the given instance of the problem.

Non-deterministic Polynomial Time

A DP-based algorithm for binary knapsack

Principle of optimality

@ Let KNAP(n, W) denote the given instance of the problem.
@ Let S C O denote the optimal solution.

Non-deterministic Polynomial Time

A DP-based algorithm for binary knapsack

Principle of optimality

@ Let KNAP(n, W) denote the given instance of the problem.
@ Let S C O denote the optimal solution.
© Focus on object op.

Non-deterministic Polynomial Time

A DP-based algorithm for binary knapsack

Principle of optimality

@ Let KNAP(n, W) denote the given instance of the problem.
@ Let S C O denote the optimal solution.

© Focus on object op.

© Eitherop € Soro, ¢ S.

Non-deterministic Polynomial Time

A DP-based algorithm for binary knapsack

@ Let KNAP(n, W) denote the given instance of the problem.

@ Let S C O denote the optimal solution.

© Focus on object op.

© Eitherop € Soro, ¢ S.

@ If on € S, then S — {on} must constitute an optimal solution for

Non-deterministic Polynomial Time

A DP-based algorithm for binary knapsack

Principle of optimality

@ Let KNAP(n, W) denote the given instance of the problem.
@ Let S C O denote the optimal solution.

© Focus on object op.

© Eitherop € Soro, ¢ S.

@ If on € S, then S — {on} must constitute an optimal solution for
KNAP(n — 1, W — wp).

Non-deterministic Polynomial Time

A DP-based algorithm for binary knapsack

Principle of optimality

@ Let KNAP(n, W) denote the given instance of the problem.
@ Let S C O denote the optimal solution.

© Focus on object op.

© Eitherop € Soro, ¢ S.

@ If on € S, then S — {on} must constitute an optimal solution for
KNAP(n — 1, W — wp). (Why?)

Non-deterministic Polynomial Time

A DP-based algorithm for binary knapsack

Principle of optimality

@ Let KNAP(n, W) denote the given instance of the problem.
@ Let S C O denote the optimal solution.

© Focus on object op.

© Eitherop € Soro, ¢ S.

@ If on € S, then S — {on} must constitute an optimal solution for
KNAP(n — 1, W — wp). (Why?)

Q Ifop € S, then S must be an optimal solution for

Non-deterministic Polynomial Time

A DP-based algorithm for binary knapsack

Principle of optimality

@ Let KNAP(n, W) denote the given instance of the problem.
@ Let S C O denote the optimal solution.

© Focus on object op.

© Eitherop € Soro, ¢ S.

@ If on € S, then S — {on} must constitute an optimal solution for
KNAP(n — 1, W — wp). (Why?)

Q If on € S, then S must be an optimal solution for KNAP(n — 1,

Non-deterministic Polynomial Time

A DP-based algorithm for binary knapsack

Principle of optimality

@ Let KNAP(n, W) denote the given instance of the problem.
@ Let S C O denote the optimal solution.

© Focus on object op.

© Eitherop € Soro, ¢ S.

@ If on € S, then S — {on} must constitute an optimal solution for
KNAP(n — 1, W — wp). (Why?)

Q If op € S, then S must be an optimal solution for KNAP(n — 1, W).

Non-deterministic Polynomial Time

A DP-based algorithm for binary knapsack

Principle of optimality

@ Let KNAP(n, W) denote the given instance of the problem.
@ Let S C O denote the optimal solution.

© Focus on object op.

© Eitherop € Soro, ¢ S.

@ If on € S, then S — {on} must constitute an optimal solution for
KNAP(n — 1, W — wp). (Why?)

Q If on € S, then S must be an optimal solution for KNAP(n — 1, W). (Why?)

Non-deterministic Polynomial Time

Formulating the recurrence

Non-deterministic Polynomial Time

Formulating the recurrence

The Recurrence

Non-deterministic Polynomial Time

Formulating the recurrence

The Recurrence

@ Let V[i, w] denote the optimal solution for the subset {0y, 0, . .., 0;}, assuming
that the Knapsack has a capacity w.

Non-deterministic Polynomial Time

Formulating the recurrence

The Recurrence

@ Let V[i, w] denote the optimal solution for the subset {0y, 0, . .., 0;}, assuming
that the Knapsack has a capacity w.

© Which entry of the table are we interested in?

Non-deterministic Polynomial Time

Formulating the recurrence

The Recurrence

@ Let V[i, w] denote the optimal solution for the subset {0y, 0, . .., 0;}, assuming
that the Knapsack has a capacity w.

@ Which entry of the table are we interested in? Clearly, V[n, W].

Non-deterministic Polynomial Time

Formulating the recurrence

The Recurrence

@ Let V[i, w] denote the optimal solution for the subset {0y, 0, . .., 0;}, assuming
that the Knapsack has a capacity w.

@ Which entry of the table are we interested in? Clearly, V[n, W].
© As per the discussion above,

Non-deterministic Polynomial Time

Formulating the recurrence

The Recurrence

@ Let V[i, w] denote the optimal solution for the subset {0y, 0, . .., 0;}, assuming
that the Knapsack has a capacity w.

@ Which entry of the table are we interested in? Clearly, V[n, W].
© As per the discussion above,

Vii,w] = max{

Non-deterministic Polynomial Time

Formulating the recurrence

The Recurrence

@ Let V[i, w] denote the optimal solution for the subset {0y, 0, . .., 0;}, assuming
that the Knapsack has a capacity w.

@ Which entry of the table are we interested in? Clearly, V[n, W].
© As per the discussion above,

Viwl = max{vl'—ﬁw—wwf

Non-deterministic Polynomial Time

Formulating the recurrence

The Recurrence

@ Let V[i, w] denote the optimal solution for the subset {0y, 0, . .., 0;}, assuming
that the Knapsack has a capacity w.

@ Which entry of the table are we interested in? Clearly, V[n, W].
© As per the discussion above,

Viw] = max {V[/— 1,w—w]+p: (oisincluded)

Non-deterministic Polynomial Time

Formulating the recurrence

The Recurrence

@ Let V[i, w] denote the optimal solution for the subset {0y, 0, . .., 0;}, assuming
that the Knapsack has a capacity w.

@ Which entry of the table are we interested in? Clearly, V[n, W].
© As per the discussion above,

V[i—1,w —wj] +p; (0;isincluded)

Vii,jw] = max { Vi1, w]

Non-deterministic Polynomial Time

Formulating the recurrence

The Recurrence

@ Let V[i, w] denote the optimal solution for the subset {0y, 0, . .., 0;}, assuming
that the Knapsack has a capacity w.

@ Which entry of the table are we interested in? Clearly, V[n, W].
© As per the discussion above,

V[i—1,w —wj] +p; (0;isincluded)
V[i—1,w] (o is excluded)

Vii,w] = max{

Non-deterministic Polynomial Time

Formulating the recurrence

The Recurrence

@ Let V[i, w] denote the optimal solution for the subset {0y, 0, . .., 0;}, assuming
that the Knapsack has a capacity w.

@ Which entry of the table are we interested in? Clearly, V[n, W].
© As per the discussion above,

V[i—1,w —wj] +p; (0;isincluded)
V[i—1,w] (o is excluded)

Vii,w] = max{

© |Initial conditions:

Non-deterministic Polynomial Time

Formulating the recurrence

The Recurrence

@ Let V[i, w] denote the optimal solution for the subset {0y, 0, . .., 0;}, assuming
that the Knapsack has a capacity w.

@ Which entry of the table are we interested in? Clearly, V[n, W].
© As per the discussion above,

V[i—1,w —wj] +p; (0;isincluded)
V[i—1,w] (o is excluded)

Vii,w] = max{

© |Initial conditions:

Viow] = 0, 0<w<W
pauseV[i,w] = —oco, w<0

Non-deterministic Polynomial Time

Example

Non-deterministic Polynomial Ti

Example

Non-deterministic Polynomial Time

Example

Solve the following instance of Knapsack:
n=4,

Non-deterministic Polynomial Time

Example

Solve the following instance of Knapsack:
n=4,w=(5,4,6,3),

Non-deterministic Polynomial Time

Example

Solve the following instance of Knapsack:
n=4,w=(546,3), W=10,

Non-deterministic Polynomial Time

Example

Solve the following instance of Knapsack:
n=4,w=(5,4,6,3), W=10, p= (10,40, 30, 50).

Non-deterministic Polynomial Time

Example

Example

Solve the following instance of Knapsack:
n=4,w=(5,4,6,3), W=10, p= (10,40, 30, 50).
Solution:

Non-deterministic Polynomial Time

Example

Example

Solve the following instance of Knapsack:
n=4,w=(5,4,6,3), W=10, p= (10,40, 30, 50).
Solution:

Vibwl [0 1 2 3 4 5 6 7 8 9 10

Non-deterministic Polynomial Time

Example

Example

Solve the following instance of Knapsack:
n=4,w=(5,4,6,3), W=10, p= (10,40, 30, 50).
Solution:

Vibwl [0 1 2 3 4 5 6 7 8 9 10

i=0

Non-deterministic Polynomial Time

Example

Example

Solve the following instance of Knapsack:
n=4,w=(5,4,6,3), W=10, p= (10,40, 30, 50).
Solution:

Vibwl [0 1 2 3 4 5 6 7 8 9 10

i=0 0 0 0 O 0 0 0 0 0 0 0

Non-deterministic Polynomial Time

Example

Example

Solve the following instance of Knapsack:
n=4,w=(5,4,6,3), W=10, p= (10,40, 30, 50).
Solution:

Vibwl [0 1 2 3 4 5 6 7 8 9 10

i=0 0 0 0 O 0 0 0 0 0 0 0

1

Non-deterministic Polynomial Time

Example

Example

Solve the following instance of Knapsack:
n=4,w=(5,4,6,3), W=10, p= (10,40, 30, 50).
Solution:

Vibwl [0 1 2 3 4 5 6 7 8 9 10

i=0 0 0 0 O 0 0 0 0 0 0 0

i |0 0 O O O

Non-deterministic Polynomial Time

Example

Example

Solve the following instance of Knapsack:
n=4,w=(5,4,6,3), W=10, p= (10,40, 30, 50).
Solution:

Vibwl [0 1 2 3 4 5 6 7 8 9 10
i=0 /0 00O O 0O 0O 0O 0 0 0 0
1 00 0 0 0 10 10 10 10 10 10

Non-deterministic Polynomial Time

Example

Example

Solve the following instance of Knapsack:
n=4,w=(5,4,6,3), W=10, p= (10,40, 30, 50).
Solution:

Vibwl [0 1 2 3 4 5 6 7 8 9 10

i=0 0 0 0 O 0 0 0 0 0 0 0

i |0 0 0O O O0 10 10 10 10 10 10

2

Non-deterministic Polynomial Time

Example

Example

Solve the following instance of Knapsack:
n=4,w=(5,4,6,3), W=10, p= (10,40, 30, 50).
Solution:

Vibwl [0 1 2 3 4 5 6 7 8 9 10

i=0 0 0 0 O 0 0 0 0 0 0 0

i |0 0 0O O O0 10 10 10 10 10 10

2 |0 0 0 O

Non-deterministic Polynomial Time

Example

Example

Solve the following instance of Knapsack:
n=4,w=(5,4,6,3), W=10, p= (10,40, 30, 50).
Solution:

Vibwl [0 1 2 3 4 5 6 7 8 9 10

i=0 /O 0 0O O O O o O O o0 o
i |0 0 0O O O0 10 10 10 10 10 10

2 |0 0 O O 40 40 40 40 40 50 50

Non-deterministic Polynomial Time

Example

Example

Solve the following instance of Knapsack:
n=4,w=(5,4,6,3), W=10, p= (10,40, 30, 50).
Solution:

Vibwl [0 1 2 3 4 5 6 7 8 9 10

i=0 /O 0 0O O O O o O O o0 o
i |0 0 0O O O0 10 10 10 10 10 10

2 |0 0 O O 40 40 40 40 40 50 50

Non-deterministic Polynomial Time

Example

Example

Solve the following instance of Knapsack:
n=4,w=(5,4,6,3), W=10, p= (10,40, 30, 50).
Solution:

Vibwl [0 1 2 3 4 5 6 7 8 9 10

i=0 0 0 0 O 0 0 0 0 0 0 0

i |0 0 0O O O0 10 10 10 10 10 10

2 |0 0 O O 40 40 40 40 40 50 50

Non-deterministic Polynomial Time

Example

Example

Solve the following instance of Knapsack:
n=4,w=(5,4,6,3), W=10, p= (10,40, 30, 50).
Solution:

Vibwl [0 1 2 3 4 5 6 7 8 9 10

i=0 /O 0 0O O O O o O O o0 o
i |0 0 0O O O0 10 10 10 10 10 10

2 |0 0 O O 40 40 40 40 40 50 50

Non-deterministic Polynomial Time

Example

Example

Solve the following instance of Knapsack:
n=4,w=(5,4,6,3), W=10, p= (10,40, 30, 50).
Solution:

Vibwl [0 1 2 3 4 5 6 7 8 9 10

i=0 /O 0 0O O O O o O O o0 o
i |0 0 0O O O0 10 10 10 10 10 10

2 |0 0 O O 40 40 40 40 40 50 50

Non-deterministic Polynomial Time

Example

Example

Solve the following instance of Knapsack:
n=4,w=(5,4,6,3), W=10, p= (10,40, 30, 50).
Solution:

Vibwl [0 1 2 3 4 5 6 7 8 9 10

i=0 0 0 0 O 0 0 0 0 0 0 0

i |0 0 0O O O0 10 10 10 10 10 10

2 |0 0 O O 40 40 40 40 40 50 50

Non-deterministic Polynomial Time

Example

Example

Solve the following instance of Knapsack:
n=4,w=(5,4,6,3), W=10, p= (10,40, 30, 50).
Solution:

Vibwl [0 1 2 3 4 5 6 7 8 9 10

i=0 0 0 0 O 0 0 0 0 0 0 0

i |0 0 0O O O0 10 10 10 10 10 10

2 |0 0 O O 40 40 40 40 40 50 50

Non-deterministic Polynomial Time

Final observations

Non-deterministic Polynomial Time

Final observations

Observation

Non-deterministic Polynomial Time

Final observations

Observation

@ The running time of the DP-based algorithm for binary knapsack is

Non-deterministic Polynomial Time

Final observations

Observation

@ The running time of the DP-based algorithm for binary knapsack is O(n - W).

Non-deterministic Polynomial Time

Final observations

Observation

@ The running time of the DP-based algorithm for binary knapsack is O(n - W).
@ s the running time polynomial?

Non-deterministic Polynomial Time

Final observations

Observation

@ The running time of the DP-based algorithm for binary knapsack is O(n - W).
@ s the running time polynomial?
© The Subset Sum problem can be easily reduced to binary knapsack.

Non-deterministic Polynomial Time

Final observations

Observation

@ The running time of the DP-based algorithm for binary knapsack is O(n - W).
@ s the running time polynomial?
© The Subset Sum problem can be easily reduced to binary knapsack. How?

Non-deterministic Polynomial Time

Final observations

Observation

@ The running time of the DP-based algorithm for binary knapsack is O(n - W).
@ s the running time polynomial?

© The Subset Sum problem can be easily reduced to binary knapsack. How?
© We thus have, INTEGER PARTITION < SUBSET SUM < BINARY KNAPSACK.

Non-deterministic Polynomial Time

Three related graph problems

Non-deterministic Polynomial Time

Three related graph problems

Vertex Cover (VC)

Non-deterministic Polynomial Time

Three related graph problems

Vertex Cover (VC)

Given a graph G = (V, E) and a number K, is there a set V' C V, |V’/| < K, such that
for every edge (u, v) € E, eitherue V' orv e V'?

Non-deterministic Polynomial Time

Three related graph problems

Vertex Cover (VC)

Given a graph G = (V, E) and a number K, is there a set V' C V, |V’/| < K, such that
for every edge (u, v) € E, eitherue V' orv e V'?

Independent Set (IS)

Non-deterministic Polynomial Time

Three related graph problems

Vertex Cover (VC)

Given a graph G = (V, E) and a number K, is there a set V' C V, |V’/| < K, such that
for every edge (u, v) € E, eitherue V' orv e V'?

Independent Set (IS)

Given a graph G = (V, E) and a number K, is there a set V' C V, |V’| > K, such that
for every pair of vertices (u,v) € V/, (u,v) € E.

Non-deterministic Polynomial Time

Three related graph problems

Vertex Cover (VC)

Given a graph G = (V, E) and a number K, is there a set V' C V, |V’/| < K, such that
for every edge (u, v) € E, eitherue V' orv e V'?

Independent Set (IS)

Given a graph G = (V, E) and a number K, is there a set V' C V, |V’| > K, such that
for every pair of vertices (u,v) € V/, (u,v) € E.

\

Clique (CQ)

Non-deterministic Polynomial Time

Three related graph problems

Vertex Cover (VC)

Given a graph G = (V, E) and a number K, is there a set V' C V, |V’/| < K, such that
for every edge (u, v) € E, eitherue V' orv e V'?

Independent Set (IS)

Given a graph G = (V, E) and a number K, is there a set V' C V, |V’| > K, such that
for every pair of vertices (u,v) € V/, (u,v) € E.

\

Clique (CQ)

Given a graph G = (V, E) and a number K, is there a set V' C V, |V’'| < K, such that
for pair of vertices (u,v) € V/, (u,v) € E.

Non-deterministic Polynomial Time

Observation relating the three problems

Non-deterministic Polynomial Time

Observation relating the three problems

Non-deterministic Polynomial Time

Observation relating the three problems

Let G= (V, E) denote a graph and letS C V.

Non-deterministic Polynomial Time

Observation relating the three problems

Let G= (V, E) denote a graph and letS C V.

The following statements are equivalent:

Non-deterministic Polynomial Time

Observation relating the three problems

Let G= (V, E) denote a graph and letS C V.

The following statements are equivalent:
@ S is a vertex cover.

Non-deterministic Polynomial Time

Observation relating the three problems

Let G= (V, E) denote a graph and letS C V.

The following statements are equivalent:
@ S is a vertex cover.
@ V — Sis an independent set.

Non-deterministic Polynomial Time

Observation relating the three problems

Let G= (V, E) denote a graph and letS C V.
The following statements are equivalent:

@ S is a vertex cover.

@ V — Sis an independent set.

© V — Sisaclique in G° = (V, E°), where two vertices are adjacent in G¢ if and
only if they are non-adjacent in G.

Non-deterministic Polynomial Time

Observation relating the three problems

Let G= (V, E) denote a graph and letS C V.
The following statements are equivalent:

@ S is a vertex cover.

@ V — Sis an independent set.

© V — Sisaclique in G° = (V, E°), where two vertices are adjacent in G¢ if and
only if they are non-adjacent in G.

Exercise

Non-deterministic Polynomial Time

Observation relating the three problems

Let G= (V, E) denote a graph and letS C V.
The following statements are equivalent:

@ S is a vertex cover.

@ V — Sis an independent set.

© V — Sisaclique in G° = (V, E°), where two vertices are adjacent in G¢ if and
only if they are non-adjacent in G.

@ Argue that VC < IS < CQ.

Non-deterministic Polynomial Time

Observation relating the three problems

Let G= (V, E) denote a graph and letS C V.

The following statements are equivalent:
@ S is a vertex cover.
@ V — Sis an independent set.

© V — Sisaclique in G° = (V, E°), where two vertices are adjacent in G¢ if and
only if they are non-adjacent in G.

@ Argue that VC < IS < CQ.
@ Show that if a graph is k-colorable, then it has an independent set of size at least
n

K

Non-deterministic Polynomial Time

Observation relating the three problems

Let G= (V, E) denote a graph and letS C V.

The following statements are equivalent:
@ S is a vertex cover.
@ V — Sis an independent set.

© V — Sisaclique in G° = (V, E°), where two vertices are adjacent in G¢ if and
only if they are non-adjacent in G.

@ Argue that VC < IS < CQ.

@ Show that if a graph is k-colorable, then it has an independent set of size at least
%. Is the converse true.

Non-deterministic Polynomial Time

First Formal Definition

Non-deterministic Polynomial Time

First Formal Definition

Definition

Non-deterministic Polynomial Time

First Formal Definition

Definition

NP is the class of problems A of the following form:

Non-deterministic Polynomial Time

First Formal Definition

Definition

NP is the class of problems A of the following form:

X is a yes-instance of A if and only if there exists a w,

Non-deterministic Polynomial Time

First Formal Definition

Definition

NP is the class of problems A of the following form:

X is a yes-instance of A if and only if there exists a w, such that (x, w) is
is a yes-instance of B,

Non-deterministic Polynomial Time

First Formal Definition

Definition

NP is the class of problems A of the following form:

X is a yes-instance of A if and only if there exists a w, such that (x, w) is
is a yes-instance of B,

where B is a decision problem in P regarding pairs (x, w) and |w| = poly(|x|).

Non-deterministic Polynomial Time

First Formal Definition

NP is the class of problems A of the following form:

X is a yes-instance of A if and only if there exists a w, such that (x, w) is
is a yes-instance of B,

where B is a decision problem in P regarding pairs (x, w) and |w| = poly(|x|).

Observations

Non-deterministic Polynomial Time

First Formal Definition

NP is the class of problems A of the following form:

X is a yes-instance of A if and only if there exists a w, such that (x, w) is
is a yes-instance of B,

where B is a decision problem in P regarding pairs (x, w) and |w| = poly(|x|).

Observations

@ w is a witness of the fact that x is a yes-instance.

Non-deterministic Polynomial Time

First Formal Definition

NP is the class of problems A of the following form:

X is a yes-instance of A if and only if there exists a w, such that (x, w) is
is a yes-instance of B,

where B is a decision problem in P regarding pairs (x, w) and |w| = poly(|x|).

Observations

@ w is a witness of the fact that x is a yes-instance. It is called a certificate.

Non-deterministic Polynomial Time

First Formal Definition

NP is the class of problems A of the following form:

X is a yes-instance of A if and only if there exists a w, such that (x, w) is
is a yes-instance of B,

where B is a decision problem in P regarding pairs (x, w) and |w| = poly(|x|).

Observations

@ w is a witness of the fact that x is a yes-instance. It is called a certificate.
© B is the problem of checking whether x is a genuine needle.

Non-deterministic Polynomial Time

First Formal Definition

NP is the class of problems A of the following form:

X is a yes-instance of A if and only if there exists a w, such that (x, w) is
is a yes-instance of B,

where B is a decision problem in P regarding pairs (x, w) and |w| = poly(|x|).

Observations

@ w is a witness of the fact that x is a yes-instance. It is called a certificate.

@ B is the problem of checking whether x is a genuine needle. For instance, if A is
HAMILTON-PATH, then x is a graph,

Non-deterministic Polynomial Time

First Formal Definition

NP is the class of problems A of the following form:

X is a yes-instance of A if and only if there exists a w, such that (x, w) is
is a yes-instance of B,

where B is a decision problem in P regarding pairs (x, w) and |w| = poly(|x|).

Observations

@ w is a witness of the fact that x is a yes-instance. It is called a certificate.

@ B is the problem of checking whether x is a genuine needle. For instance, if A is
HAMILTON-PATH, then x is a graph, w is a path,

Non-deterministic Polynomial Time

First Formal Definition

NP is the class of problems A of the following form:

X is a yes-instance of A if and only if there exists a w, such that (x, w) is
is a yes-instance of B,

where B is a decision problem in P regarding pairs (x, w) and |w| = poly(|x|).

Observations

@ w is a witness of the fact that x is a yes-instance. It is called a certificate.

@ B is the problem of checking whether x is a genuine needle. For instance, if A is
HAMILTON-PATH, then x is a graph, w is a path, and B is the problem of checking
whether w is a valid Hamilton path for x.

Non-deterministic Polynomial Time

First Formal Definition

NP is the class of problems A of the following form:

X is a yes-instance of A if and only if there exists a w, such that (x, w) is
is a yes-instance of B,

where B is a decision problem in P regarding pairs (x, w) and |w| = poly(|x|).

Observations

@ w is a witness of the fact that x is a yes-instance. It is called a certificate.

@ B is the problem of checking whether x is a genuine needle. For instance, if A is
HAMILTON-PATH, then x is a graph, w is a path, and B is the problem of checking
whether w is a valid Hamilton path for x.

© w is required to be polynomially balanced.

Non-deterministic Polynomial Time

First Formal Definition

NP is the class of problems A of the following form:

X is a yes-instance of A if and only if there exists a w, such that (x, w) is
is a yes-instance of B,

where B is a decision problem in P regarding pairs (x, w) and |w| = poly(|x|).

Observations

@ w is a witness of the fact that x is a yes-instance. It is called a certificate.

@ B is the problem of checking whether x is a genuine needle. For instance, if A is
HAMILTON-PATH, then x is a graph, w is a path, and B is the problem of checking
whether w is a valid Hamilton path for x.

© w is required to be polynomially balanced. This ensures that B runs in time
polynomial in |x|.

Non-deterministic Polynomial Time

First Formal Definition

NP is the class of problems A of the following form:

X is a yes-instance of A if and only if there exists a w, such that (x, w) is
is a yes-instance of B,

where B is a decision problem in P regarding pairs (x, w) and |w| = poly(|x|).

Observations

@ w is a witness of the fact that x is a yes-instance. It is called a certificate.

@ B is the problem of checking whether x is a genuine needle. For instance, if A is
HAMILTON-PATH, then x is a graph, w is a path, and B is the problem of checking
whether w is a valid Hamilton path for x.

© w is required to be polynomially balanced. This ensures that B runs in time
polynomial in |x|.

©Q NP C EXP, where EXP=TIME(2r°¥(n)),

Non-deterministic Polynomial Time

Generalizing NP

Non-deterministic Polynomial Time

Generalizing NP

Non-deterministic Polynomial Time

Generalizing NP

NTIME(f(n)) is the class of problems A of the following form:

Non-deterministic Polynomial Time

Generalizing NP

NTIME(f(n)) is the class of problems A of the following form:

X is a yes-instance of A if and only if there exists a w,

Non-deterministic Polynomial Time

Generalizing NP

NTIME(f(n)) is the class of problems A of the following form:

X is a yes-instance of A if and only if there exists a w, such that (x, w) is
is a yes-instance of B,

Non-deterministic Polynomial Time

Generalizing NP

Definition
NTIME(f(n)) is the class of problems A of the following form:

X is a yes-instance of A if and only if there exists a w, such that (x, w) is
is a yes-instance of B,

where B is a decision problem in TIME(f(n) regarding pairs (x, w), |x| = n and
lw| = O(f(n))-

Non-deterministic Polynomial Time

Generalizing NP

Definition
NTIME(f(n)) is the class of problems A of the following form:

X is a yes-instance of A if and only if there exists a w, such that (x, w) is
is a yes-instance of B,

where B is a decision problem in TIME(f(n) regarding pairs (x, w), |x| = n and
lw| = O(f(n))-

As argued previously,

Non-deterministic Polynomial Time

Generalizing NP

Definition
NTIME(f(n)) is the class of problems A of the following form:

X is a yes-instance of A if and only if there exists a w, such that (x, w) is
is a yes-instance of B,

where B is a decision problem in TIME(f(n) regarding pairs (x, w), |x| = n and
lw| = O(f(n))-

As argued previously,

NTIME(f(n)) C TIME(2/("))

Non-deterministic Polynomial Time

Generalizing NP

Definition
NTIME(f(n)) is the class of problems A of the following form:

X is a yes-instance of A if and only if there exists a w, such that (x, w) is
is a yes-instance of B,

where B is a decision problem in TIME(f(n) regarding pairs (x, w), |x| = n and
lw| = O(f(n))-

As argued previously,

NTIME(f(n)) C TIME(2/("))

Non-deterministic Polynomial Time

Another definition for NP

Non-deterministic Polynomial Time

Another definition for NP

Definition

Non-deterministic Polynomial Time

Another definition for NP

Definition

NP is the class of properties A of the form

Non-deterministic Polynomial Time

Another definition for NP

Definition

NP is the class of properties A of the form

A(x) = 3w : B(x, w)

Non-deterministic Polynomial Time

Another definition for NP

Definition

NP is the class of properties A of the form
A(x) = 3w : B(x, w)

where Bis in P and where |w| = poly(|x|).

Non-deterministic Polynomial Time

Some observations

Non-deterministic Polynomial Time

Some observations

Non-deterministic Polynomial Time

Some observations

@ We have associated with the decision problem A, the property A(x), where A(x) is
true if and only if x is a yes-instance of A.

Non-deterministic Polynomial Time

Some observations

@ We have associated with the decision problem A, the property A(x), where A(x) is
true if and only if x is a yes-instance of A.

For instance, if x is a graph and A(x) is the property that x has a Hamilton path,
then B(x, w) is the polynomial time property that w is a Hamilton path for x.

Non-deterministic Polynomial Time

Some observations

@ We have associated with the decision problem A, the property A(x), where A(x) is
true if and only if x is a yes-instance of A.

For instance, if x is a graph and A(x) is the property that x has a Hamilton path,
then B(x, w) is the polynomial time property that w is a Hamilton path for x.

@ Algorithmically, the quantifier 3 represents the process of searching for the
witness w.

Non-deterministic Polynomial Time

Some observations

@ We have associated with the decision problem A, the property A(x), where A(x) is
true if and only if x is a yes-instance of A.

For instance, if x is a graph and A(x) is the property that x has a Hamilton path,
then B(x, w) is the polynomial time property that w is a Hamilton path for x.

@ Algorithmically, the quantifier 3 represents the process of searching for the
witness w.

© Prover-Verifier conversation.

Non-deterministic Polynomial Time

Some observations

@ We have associated with the decision problem A, the property A(x), where A(x) is
true if and only if x is a yes-instance of A.

For instance, if x is a graph and A(x) is the property that x has a Hamilton path,
then B(x, w) is the polynomial time property that w is a Hamilton path for x.

@ Algorithmically, the quantifier 3 represents the process of searching for the
witness w.

© Prover-Verifier conversation.
© Are the complements of P properties in P?

Non-deterministic Polynomial Time

Some observations

@ We have associated with the decision problem A, the property A(x), where A(x) is
true if and only if x is a yes-instance of A.

For instance, if x is a graph and A(x) is the property that x has a Hamilton path,
then B(x, w) is the polynomial time property that w is a Hamilton path for x.

@ Algorithmically, the quantifier 3 represents the process of searching for the
witness w.

© Prover-Verifier conversation.
© Are the complements of P properties in P?

© How about complements of NP properties? These properties belong to the class
coNP; they have easy to check no instances, but no known method of verifying
yes-instances in polynomial time.

Non-deterministic Polynomial Time

Exercise

Non-deterministic Polynomial Ti

Exercise

Non-deterministic Polynomial Time

Exercise

© /s coNP the complement of NP ?

Non-deterministic Polynomial Time

Exercise

© /s coNP the complement of NP ?
© /s NP n coNP identical to P?

Non-deterministic Polynomial Time

Exercise

© /s coNP the complement of NP ?
© /s NP n coNP identical to P?
© Show that if P = NP then NP = coNP.

Non-deterministic Polynomial Time

Exercise

© /s coNP the complement of NP ?
@ /s NP n coNP identical to P ?
© Show that if P = NP then NP = coNP. /s the converse true?

Non-deterministic Polynomial Time

Nondeterministic Computation

Non-deterministic Polynomial Time

Nondeterministic Computation

Fundamentals

Non-deterministic Polynomial Time

Nondeterministic Computation

Fundamentals

@ A computer program is deterministic in that given the initial state and input, the
execution trace is fixed, i.e., there are no choices for the program to make.

Non-deterministic Polynomial Time

Nondeterministic Computation

Fundamentals

@ A computer program is deterministic in that given the initial state and input, the
execution trace is fixed, i.e., there are no choices for the program to make.

@ A nondeterministic program can make several possible choices at each step.

Non-deterministic Polynomial Time

Nondeterministic Computation

Fundamentals

@ A computer program is deterministic in that given the initial state and input, the
execution trace is fixed, i.e., there are no choices for the program to make.

@ A nondeterministic program can make several possible choices at each step. For
instance, consider the instruction:

Non-deterministic Polynomial Time

Nondeterministic Computation

Fundamentals

@ A computer program is deterministic in that given the initial state and input, the
execution trace is fixed, i.e., there are no choices for the program to make.

@ A nondeterministic program can make several possible choices at each step. For
instance, consider the instruction:

goto both line, lines.

Non-deterministic Polynomial Time

Nondeterministic Computation

Fundamentals

@ A computer program is deterministic in that given the initial state and input, the
execution trace is fixed, i.e., there are no choices for the program to make.

@ A nondeterministic program can make several possible choices at each step. For
instance, consider the instruction:

goto both line, lines.
© The computation then becomes a tree instead of a straight line.

Non-deterministic Polynomial Time

Nondeterministic Computation

Fundamentals

@ A computer program is deterministic in that given the initial state and input, the
execution trace is fixed, i.e., there are no choices for the program to make.

@ A nondeterministic program can make several possible choices at each step. For
instance, consider the instruction:

goto both line, lines.
© The computation then becomes a tree instead of a straight line.

© The output of a nondeterministic program is “yes”, if any of the computations in the
tree leads to a an accepting state and “no” otherwise.

Non-deterministic Polynomial Time

Nondeterministic Computation

Fundamentals

@ A computer program is deterministic in that given the initial state and input, the
execution trace is fixed, i.e., there are no choices for the program to make.

@ A nondeterministic program can make several possible choices at each step. For
instance, consider the instruction:
goto both line, lines.

© The computation then becomes a tree instead of a straight line.

© The output of a nondeterministic program is “yes”, if any of the computations in the
tree leads to a an accepting state and “no” otherwise.

© The running time of a nondeterministic program is the height of its computation
tree.

Non-deterministic Polynomial Time

Nondeterministic Computation

Fundamentals

@ A computer program is deterministic in that given the initial state and input, the
execution trace is fixed, i.e., there are no choices for the program to make.

@ A nondeterministic program can make several possible choices at each step. For
instance, consider the instruction:
goto both line, lines.

© The computation then becomes a tree instead of a straight line.

© The output of a nondeterministic program is “yes”, if any of the computations in the
tree leads to a an accepting state and “no” otherwise.

© The running time of a nondeterministic program is the height of its computation
tree.

Write a nondeterministic program for 3SAT.

Non-deterministic Polynomial Time

Final definition of NP

Non-deterministic Polynomial Time

Final definition of NP

Definition

Non-deterministic Polynomial Time

Final definition of NP

Definition

NP is the class of problems for which a nondeterministic program exists that runs in
time poly(n), on instances of length n,

Non-deterministic Polynomial Time

Final definition of NP

Definition

NP is the class of problems for which a nondeterministic program exists that runs in
time poly(n), on instances of length n, such that the input is a yes-instance if and only
if there exists a computation path that returns “yes.”

Non-deterministic Polynomial Time

Final definition of NP

Definition

NP is the class of problems for which a nondeterministic program exists that runs in

time poly(n), on instances of length n, such that the input is a yes-instance if and only
if there exists a computation path that returns “yes.”

v

A\

Non-deterministic Polynomial Time

Final definition of NP

Definition

NP is the class of problems for which a nondeterministic program exists that runs in

time poly(n), on instances of length n, such that the input is a yes-instance if and only
if there exists a computation path that returns “yes.”

Definition

| 5\

NTIME(f(n)) is the class of problems for which a nondeterministic program exists that
runs in time O(f(n)), on instances of length n,

A\

Non-deterministic Polynomial Time

Final definition of NP

NP is the class of problems for which a nondeterministic program exists that runs in

time poly(n), on instances of length n, such that the input is a yes-instance if and only
if there exists a computation path that returns “yes.”

Definition

| 5\

NTIME(f(n)) is the class of problems for which a nondeterministic program exists that
runs in time O(f(n)), on instances of length n, such that the input is a yes-instance if
and only if there exists a computation path that returns “yes.”

A\

Non-deterministic Polynomial Time

Linear Programming

Non-deterministic Polynomial Time

Linear Programming

The Problem (LP)

Non-deterministic Polynomial Time

Linear Programming

The Problem (LP)

Ix A-Xx

IV IA

Non-deterministic Polynomial Time

Linear Programming

The Problem (LP)

Ix A-x <
>

v

Non-deterministic Polynomial Time

Linear Programming

The Problem (LP)

Ix A-x <
>

v

@ /sLPinNP?

Non-deterministic Polynomial Time

Linear Programming

The Problem (LP)

Ix A-x <
>

v

@ /s LP inNP? Does Guess and Verify work?

Non-deterministic Polynomial Time

Linear Programming

The Problem (LP)

Ix A-x <
>

v

@ /s LP inNP? Does Guess and Verify work?
@Q IsLP incoNP?

Non-deterministic Polynomial Time

Complexity

Non-deterministic Polynomial Time

Complexity

Fundamentals

Non-deterministic Polynomial Time

Complexity

Fundamentals

@ Assume that A has m rows and n columns.

Non-deterministic Polynomial Time

Complexity

Fundamentals

@ Assume that A has m rows and n columns.

© Observe that with the introduction of slack variables, we can rewrite the Linear
programming problem as:

dx A-Xx
X

v
o T

where m<n

Non-deterministic Polynomial Time

Complexity

Fundamentals

@ Assume that A has m rows and n columns.

© Observe that with the introduction of slack variables, we can rewrite the Linear
programming problem as:

dx A-Xx
X

v
o T

where m<n
© A basis of the above system is a collection of m linearly independent columns.

Non-deterministic Polynomial Time

Complexity

Fundamentals

@ Assume that A has m rows and n columns.

© Observe that with the introduction of slack variables, we can rewrite the Linear
programming problem as:

dx A-Xx
X

v
o T

where m<n
© A basis of the above system is a collection of m linearly independent columns.
© A basic solution is obtained by solving the system B - xg + N - xy = b, x5y = 0.

Non-deterministic Polynomial Time

Complexity

Fundamentals

@ Assume that A has m rows and n columns.

© Observe that with the introduction of slack variables, we can rewrite the Linear
programming problem as:

dx A-Xx
X

v
o T

where m<n
© A basis of the above system is a collection of m linearly independent columns.
© A basic solution is obtained by solving the system B - xg + N - xy = b, x5y = 0.
© The basic solution is feasible if every element of xg is non-negative.

Non-deterministic Polynomial Time

Complexity

Fundamentals

© Assume that A has m rows and n columns.

© Observe that with the introduction of slack variables, we can rewrite the Linear
programming problem as:

dx A-Xx

X

v
o T

where m<n
© A basis of the above system is a collection of m linearly independent columns.
© A basic solution is obtained by solving the system B - xg + N - xy = b, x5y = 0.
© The basic solution is feasible if every element of xg is non-negative.
Q The above system is feasible if and only if it has a basic feasible solution.

Non-deterministic Polynomial Time

Complexity

Fundamentals

© Assume that A has m rows and n columns.

© Observe that with the introduction of slack variables, we can rewrite the Linear
programming problem as:

dx A-Xx

X

v
o T

where m<n
© A basis of the above system is a collection of m linearly independent columns.
© A basic solution is obtained by solving the system B - xg + N - xy = b, x5y = 0.
© The basic solution is feasible if every element of xg is non-negative.
Q The above system is feasible if and only if it has a basic feasible solution.

@ So all that we have to do now is to show that the basic solutions are polynomial in
the size of the input.

Non-deterministic Polynomial Time

Linear Programming theorem

Non-deterministic Polynomial Time

Linear Programming theorem

Non-deterministic Polynomial Time

Linear Programming theorem

Letx = [xq,X2,...,Xm,0,0,... ,O]T be a basic solution of the system

Non-deterministic Polynomial Time

Linear Programming theorem

Letx = [xq,X2,...,Xm,0,0,... ,O]T be a basic solution of the system
Ix A-x = b
x > 0

Non-deterministic Polynomial Time

Linear Programming theorem

Theorem
Letx = [xq,X2,...,Xm,0,0,... ,O]T be a basic solution of the system
Ix A-x = b
x > 0
Then,

x| <m-a™ "8

where,

Non-deterministic Polynomial Time

Linear Programming theorem

Theorem
Letx = [xq,X2,...,Xm,0,0,... ,O]T be a basic solution of the system
Ix A-x = b
x > 0
Then,
x| <m-a™ "8
where,
a = max|al
i
g = max|b
J

Non-deterministic Polynomial Time

Farkas’ Lemma

Non-deterministic Polynomial Time

Farkas’ Lemma

Non-deterministic Polynomial Time

Farkas’ Lemma

Either,

Ix A-Xx

IV IA

Non-deterministic Polynomial Time

Farkas’ Lemma

Either,

Ix A-Xx
X

IV IA

or (mutually exclusively)

Non-deterministic Polynomial Time

Farkas’ Lemma

Either,
x A-x < b
x > 0
or (mutually exclusively)
Jyy-A > 0
y > 0
y-b < 0

Non-deterministic Polynomial Time

Primality testing

Non-deterministic Polynomial Time

Primality testing

Non-deterministic Polynomial Time

Primality testing

Given a number N, determine whether it is a prime number, i.e., divisible only by one
and itself.

Non-deterministic Polynomial Time

Primality testing

PRIMES

Given a number N, determine whether it is a prime number, i.e., divisible only by one
and itself.

<

Exercise

Non-deterministic Polynomial Time

Primality testing

PRIMES

Given a number N, determine whether it is a prime number, i.e., divisible only by one
and itself.

<

Exercise

@ Show that PRIMES is in coNP.

Non-deterministic Polynomial Time

Primality testing

PRIMES

Given a number N, determine whether it is a prime number, i.e., divisible only by one
and itself.

<

Exercise

@ Show that PRIMES is in coNP.
© Show that PRIMES is in NP.

Non-deterministic Polynomial Time

Notations

Non-deterministic Polynomial Time

Notations

Logarithms and natural numbers

Non-deterministic Polynomial Time

Notations

Logarithms and natural numbers

Normally, when taking a logarithm, we get a real number.

Non-deterministic Polynomial Time

Notations

Logarithms and natural numbers

Normally, when taking a logarithm, we get a real number. In order to work with natural
numbers, we adopt the following convention:

Non-deterministic Polynomial Time

Notations

Logarithms and natural numbers

Normally, when taking a logarithm, we get a real number. In order to work with natural
numbers, we adopt the following convention:

log x = [log, X].

Non-deterministic Polynomial Time

The Lucas test for primality

Non-deterministic Polynomial Time

The Lucas test for primality

Non-deterministic Polynomial Time

The Lucas test for primality

A number p > 1 is prime if and only if and only if there exists a number r,

Non-deterministic Polynomial Time

The Lucas test for primality

A number p > 1 is prime if and only if and only if there exists a numberr,1 < r < p,

Non-deterministic Polynomial Time

The Lucas test for primality

A number p > 1 is prime if and only if and only if there exists a numberr,1 < r < p,
such that rP~' =1 mod p

Non-deterministic Polynomial Time

The Lucas test for primality

A number p > 1 is prime if and only if and only if there exists a numberr,1 < r < p,
such that r°P=' = 1 mod p and furthermore,

Non-deterministic Polynomial Time

The Lucas test for primality

A number p > 1 is prime if and only if and only If there exists a numberr,1 < r < p,
such that r°P=' = 1 mod p and furthermore, r a % 1 mod p for all prime divisors q of

(p—1).

Non-deterministic Polynomial Time

The Lucas test for primality

Theorem

A number p > 1 is prime if and only if and only If there exists a numberr,1 < r < p,
such that r°P=' = 1 mod p and furthermore, r a % 1 mod p for all prime divisors q of

(p—1).

<

Exercise

Non-deterministic Polynomial Time

The Lucas test for primality

Theorem

A number p > 1 is prime if and only if and only If there exists a numberr,1 < r < p,
such that r°P=' = 1 mod p and furthermore, r a % 1 mod p for all prime divisors q of

(p—1).

Exercise

| N

Can you design a nondeterministic algorithm for PRIMES ?

Non-deterministic Polynomial Time

The Lucas test for primality

Theorem

A number p > 1 is prime if and only if and only If there exists a numberr,1 < r < p,
such that r°P=' = 1 mod p and furthermore, r a % 1 mod p for all prime divisors q of

(p—1).

Exercise

| A\

Can you design a nondeterministic algorithm for PRIMES ?

We have to bound the number of prime divisors.

Non-deterministic Polynomial Time

The Lucas test for primality

Theorem

A number p > 1 is prime if and only if and only If there exists a numberr,1 < r < p,
such that r°P=' = 1 mod p and furthermore, r a % 1 mod p for all prime divisors q of

(p—1).

Exercise

| A\

Can you design a nondeterministic algorithm for PRIMES ?
We have to bound the number of prime divisors.

How many prime divisors can p have?

Non-deterministic Polynomial Time

The Lucas test for primality

Theorem

A number p > 1 is prime if and only if and only If there exists a numberr,1 < r < p,
such that r°P=' = 1 mod p and furthermore, r a % 1 mod p for all prime divisors q of

(p—1).

Exercise

| A\

Can you design a nondeterministic algorithm for PRIMES ?
We have to bound the number of prime divisors.

How many prime divisors can p have? At mostlog p.

Non-deterministic Polynomial Time

Non-deterministic Polynomial T

FUNCTION PRIMALITY CHECKING(p)

Non-deterministic Polynomial Time

FUNCTION PRIMALITY CHECKING(p)
1: Guess r.

Non-deterministic Polynomial Time

FUNCTION PRIMALITY CHECKING(p)

1: Guess r.
2. if (=1 %1 mod p) then

Non-determi c Polynomial Time

FUNCTION PRIMALITY CHECKING(p)
1: Guess r.

2. if (=1 %1 mod p) then

3: return(“no”).

Non-deterministic Polynomial Time

FUNCTION PRIMALITY CHECKING(p)
1: Guess r.

2. if (=1 %1 mod p) then

3: return(“no”).

4: else

Non-deterministic Polynomial Time

FUNCTION PRIMALITY CHECKING(p)
1: Guess r.
if ("' %1 mod p) then
return(“no”).
. else
Guess g1, Qo, - - - gk as the prime divisors of (p — 1).

P

Non-deterministic Polynomial Time

FUNCTION PRIMALITY CHECKING(p)
1: Guess r.
if ("' %1 mod p) then
return(“no”).
: else
Guess g1, Qo, - - - gk as the prime divisors of (p — 1).
if (any g; is not a prime divisor of (p — 1)) then

Non-deterministic Polynomial Time

FUNCTION PRIMALITY CHECKING(p)
1: Guess r.
2. if (=1 %1 mod p) then
3: return(“no”).
: else
Guess g1, Qo, - - - gk as the prime divisors of (p — 1).
if (any g; is not a prime divisor of (p — 1)) then
return(“no”).

N o a s

Non-deterministic Polynomial Time

FUNCTION PRIMALITY CHECKING(p)

1: Guess r.

2. if (=1 %1 mod p) then

3: return(“no”).

: else

Guess g1, Qo, - - - gk as the prime divisors of (p — 1).

if (any g; is not a prime divisor of (p — 1)) then
return(“no”).

end if

o NS gk

Non-deterministic Polynomial Time

FUNCTION PRIMALITY CHECKING(p)

1: Guess r.

2. if (=1 %1 mod p) then

3: return(“no”).

4: else

5: Guess gy, Qo, - - - gk as the prime divisors of (p — 1).
6: if (any g; is not a prime divisor of (p — 1)) then
7 return(“no”).
8 endif
9: end if

Non-deterministic Polynomial Time

FUNCTION PRIMALITY CHECKING(p)

1: Guess r.

2. if (=1 %1 mod p) then

3: return(“no”).

4: else

5: Guess gy, Qo, - - - gk as the prime divisors of (p — 1).
6: if (any g; is not a prime divisor of (p — 1)) then

7 return(“no”).

8 endif

9: end if

o: for (i=1to k) do

Non-deterministic Polynomial Time

FUNCTION PRIMALITY CHECKING(p)

1: Guess r.

2. if (=1 %1 mod p) then

3: return(“no”).

: else

Guess g1, Qo, - - - gk as the prime divisors of (p — 1).

if (any g; is not a prime divisor of (p — 1)) then
return(“no”).

end if

: end if

: for (i

S © o N a bk

=1to k) do
p—1

11: if(r ¢ =1 mod p) then

Non-deterministic Polynomial Time

FUNCTION PRIMALITY CHECKING(p)
1: Guess r.

2. if (=1 %1 mod p) then

3: return(“no”).

4: else

5: Guess gy, Qo, - - - gk as the prime divisors of (p — 1).
6: if (any g; is not a prime divisor of (p — 1)) then

7: return(“no”).

8: endif

9: end if

0

: for (i=1to k)do

—1
11: if (rpT =1 mod p) then
return(“no”).

N

Non-deterministic Polynomial Time

FUNCTION PRIMALITY CHECKING(p)
1: Guess r.

2. if (=1 %1 mod p) then

3: return(“no”).

4: else

5: Guess gy, Qo, - - - gk as the prime divisors of (p — 1).
6: if (any g; is not a prime divisor of (p — 1)) then

7: return(“no”).

8: endif

9: end if

0

: for (i=1to k)do

—1
11: if (rpT =1 mod p) then
return(“no”).
3 endif

N

Non-deterministic Polynomial Time

FUNCTION PRIMALITY CHECKING(p)

1: Guess r.

2. if (=1 %1 mod p) then

3: return(“no”).

4: else

5: Guess gy, Qo, - - - gk as the prime divisors of (p — 1).
6: if (any g; is not a prime divisor of (p — 1)) then

7: return(“no”).

8 endif

9: end if

o: for (i=1to k) do

=1
11: if (rpT =1 mod p) then

12: return(“no”).
13: end if
14: end for

Non-deterministic Polynomial Time

FUNCTION PRIMALITY CHECKING(p)

1: Guess r.

2. if (=1 %1 mod p) then

3: return(“no”).

4: else

5: Guess gy, Qo, - - - gk as the prime divisors of (p — 1).
6: if (any g; is not a prime divisor of (p — 1)) then

7: return(“no”).

8 endif

9: end if

o: for (i=1to k) do

=1
11: if (rpT =1 mod p) then

12: return(“no”).
13: end if
14: end for

15: return(“yes”).

Algorithm 6.17: A nondeterministic algorithm for PRIMES

Non-deterministic Polynomial Time

Details

Non-deterministic Polynomial Ti

Details

Hidden details

Non-deterministic Polynomial Time

Details

Hidden details

@ How do we check that the g; represent all the divisors of p?

Non-deterministic Polynomial Time

Details

Hidden details

@ How do we check that the g; represent all the divisors of p? Repeated division.

Non-deterministic Polynomial Time

Details

Hidden details

@ How do we check that the g; represent all the divisors of p? Repeated division.
© How do we check that the g;s are prime?

Non-deterministic Polynomial Time

Details

Hidden details

@ How do we check that the g; represent all the divisors of p? Repeated division.
© How do we check that the g;s are prime? Recursively!

Non-deterministic Polynomial Time

Details

Hidden details

@ How do we check that the g; represent all the divisors of p? Repeated division.

© How do we check that the g;s are prime? Recursively! Guess their certificates as
well.

Non-deterministic Polynomial Time

Details

Hidden details

@ How do we check that the g; represent all the divisors of p? Repeated division.

© How do we check that the g;s are prime? Recursively! Guess their certificates as
well.

© Accordingly, the certificate for p, will have the following form:

Non-deterministic Polynomial Time

Details

Hidden details

@ How do we check that the g; represent all the divisors of p? Repeated division.

© How do we check that the g;s are prime? Recursively! Guess their certificates as
well.

© Accordingly, the certificate for p, will have the following form:

(r

Non-deterministic Polynomial Time

Details

Hidden details

@ How do we check that the g; represent all the divisors of p? Repeated division.

© How do we check that the g;s are prime? Recursively! Guess their certificates as
well.

© Accordingly, the certificate for p, will have the following form:

(rian;

Non-deterministic Polynomial Time

Details

Hidden details

@ How do we check that the g; represent all the divisors of p? Repeated division.

© How do we check that the g;s are prime? Recursively! Guess their certificates as
well.

© Accordingly, the certificate for p, will have the following form:

(r; 91 C(qn);

Non-deterministic Polynomial Time

Details

Hidden details

@ How do we check that the g; represent all the divisors of p? Repeated division.

© How do we check that the g;s are prime? Recursively! Guess their certificates as
well.

© Accordingly, the certificate for p, will have the following form:

(rig1; C(q1); g2

Non-deterministic Polynomial Time

Details

Hidden details

@ How do we check that the g; represent all the divisors of p? Repeated division.

© How do we check that the g;s are prime? Recursively! Guess their certificates as
well.

© Accordingly, the certificate for p, will have the following form:

(r;g1: C(q1); 92; C(q2) - - - Gk

Non-deterministic Polynomial Time

Details

Hidden details

@ How do we check that the g; represent all the divisors of p? Repeated division.

© How do we check that the g;s are prime? Recursively! Guess their certificates as
well.

© Accordingly, the certificate for p, will have the following form:

(r; 1; C(q1); g2; C(qe) - - - Gk; C(qk))

Non-deterministic Polynomial Time

Details

Hidden details

@ How do we check that the g; represent all the divisors of p? Repeated division.

© How do we check that the g;s are prime? Recursively! Guess their certificates as
well.

© Accordingly, the certificate for p, will have the following form:

(r; 1; C(q1); g2; C(qe) - - - Gk; C(qk))

© Unless p = 2, p will be odd and hence g; = 2.

Non-deterministic Polynomial Time

Details

Hidden details

@ How do we check that the g; represent all the divisors of p? Repeated division.

© How do we check that the g;s are prime? Recursively! Guess their certificates as
well.

© Accordingly, the certificate for p, will have the following form:

(r; 1; C(q1); g2; C(qe) - - - Gk; C(qk))

© Unless p = 2, p will be odd and hence g; = 2. So without loss of generality, the
certificate for p will have the following form:

Non-deterministic Polynomial Time

Details

Hidden details

@ How do we check that the g; represent all the divisors of p? Repeated division.

© How do we check that the g;s are prime? Recursively! Guess their certificates as
well.

© Accordingly, the certificate for p, will have the following form:

(r; 1; C(q1); g2; C(qe) - - - Gk; C(qk))

© Unless p = 2, p will be odd and hence g; = 2. So without loss of generality, the
certificate for p will have the following form:

(r;

Non-deterministic Polynomial Time

Details

Hidden details

@ How do we check that the g; represent all the divisors of p? Repeated division.

© How do we check that the g;s are prime? Recursively! Guess their certificates as
well.

© Accordingly, the certificate for p, will have the following form:

(r; 1; C(q1); g2; C(qe) - - - Gk; C(qk))

© Unless p = 2, p will be odd and hence g; = 2. So without loss of generality, the
certificate for p will have the following form:

(r;2;

Non-deterministic Polynomial Time

Details

Hidden details

@ How do we check that the g; represent all the divisors of p? Repeated division.

© How do we check that the g;s are prime? Recursively! Guess their certificates as
well.

© Accordingly, the certificate for p, will have the following form:

(r; 1; C(q1); g2; C(qe) - - - Gk; C(qk))

© Unless p = 2, p will be odd and hence g; = 2. So without loss of generality, the
certificate for p will have the following form:

(r;2;(1);

Non-deterministic Polynomial Time

Details

Hidden details

@ How do we check that the g; represent all the divisors of p? Repeated division.

© How do we check that the g;s are prime? Recursively! Guess their certificates as
well.

© Accordingly, the certificate for p, will have the following form:

(r; 1; C(q1); g2; C(qe) - - - Gk; C(qk))

© Unless p = 2, p will be odd and hence g; = 2. So without loss of generality, the
certificate for p will have the following form:

(r;2;(1); g2

Non-deterministic Polynomial Time

Details

Hidden details

@ How do we check that the g; represent all the divisors of p? Repeated division.

© How do we check that the g;s are prime? Recursively! Guess their certificates as
well.

© Accordingly, the certificate for p, will have the following form:

(r; 1; C(q1); g2; C(qe) - - - Gk; C(qk))

© Unless p = 2, p will be odd and hence g; = 2. So without loss of generality, the
certificate for p will have the following form:

(r;2;(1); 92: C(Q2) - - - Gk;

Non-deterministic Polynomial Time

Details

Hidden details

@ How do we check that the g; represent all the divisors of p? Repeated division.

© How do we check that the g;s are prime? Recursively! Guess their certificates as
well.

© Accordingly, the certificate for p, will have the following form:

(r; 1; C(q1); g2; C(qe) - - - Gk; C(qk))

© Unless p = 2, p will be odd and hence g; = 2. So without loss of generality, the
certificate for p will have the following form:

(r:2;(1); 92: C(q2) - - - gk: C(qk))

Non-deterministic Polynomial Time

Details

Hidden details

@ How do we check that the g; represent all the divisors of p? Repeated division.

© How do we check that the g;s are prime? Recursively! Guess their certificates as
well.

© Accordingly, the certificate for p, will have the following form:

(r; 1; C(q1); g2; C(qe) - - - Gk; C(qk))

© Unless p = 2, p will be odd and hence g; = 2. So without loss of generality, the
certificate for p will have the following form:

(r:2;(1); 92: C(q2) - - - gk: C(qk))

For instance, the certificate for 67 is:

Non-deterministic Polynomial Time

Details

Hidden details

@ How do we check that the g; represent all the divisors of p? Repeated division.

© How do we check that the g;s are prime? Recursively! Guess their certificates as
well.

© Accordingly, the certificate for p, will have the following form:

(r; 1; C(q1); g2; C(qe) - - - Gk; C(qk))

© Unless p = 2, p will be odd and hence g; = 2. So without loss of generality, the
certificate for p will have the following form:

(r;2;(1); g2: C(a2) - - - gk: C(ak))
For instance, the certificate for 67 is:

(2:2;(1):3:(2:2; (1)) 11:(8;2;(1): 5 (3:2: (1))

Non-deterministic Polynomial Time

Non-deterministic Polynomial T

Letx ={(,),0,1,;}.

Non-deterministic Polynomial Time

Lets ={(,),0,1,;}. The size of p’s certificate in ¥ is at most 4 - log® p.

Non-deterministic Polynomial Time

Lets = {(,),0,1,;}. The size of p’s certificate in ¥ is at most 4 - log® p.

Non-deterministic Polynomial Time

Lets = {(,),0,1,;}. The size of p’s certificate in ¥ is at most 4 - log® p.

@ Clearly true forp=2and p = 3.

Non-deterministic Polynomial Time

Lets = {(,),0,1,;}. The size of p’s certificate in ¥ is at most 4 - log® p.

@ Clearly true forp=2and p = 3.
Q q1,%,0as,. ..,k are prime divisors of (p — 1) (k < log p.).

Non-deterministic Polynomial Time

Lets = {(,),0,1,;}. The size of p’s certificate in ¥ is at most 4 - log® p.

@ Clearly true forp=2and p = 3.
Q q1,%,Gs, ...,k are prime divisors of (p — 1) (kK < logp.). Hence,
Q- Qqz..-Qk < "2;1-

Non-deterministic Polynomial Time

Lets = {(,),0,1,;}. The size of p’s certificate in ¥ is at most 4 - log® p.

Proof

@ Clearly true forp=2and p = 3.

Q q1,%,Gs, ...,k are prime divisors of (p — 1) (kK < logp.). Hence,
Q- Q... gk < "2;1-

© Total number of symbols needed to represent r is at most log p.

Non-deterministic Polynomial Time

Lets = {(,),0,1,;}. The size of p’s certificate in ¥ is at most 4 - log® p.

Proof

@ Clearly true forp=2and p = 3.
Q q1,%,Gs, ...,k are prime divisors of (p — 1) (kK < logp.). Hence,
Q- Q... gk < "2;1-
© Total number of symbols needed to represent r is at most log p.
© Total number of symbols needed to represent 2 and its certificate (1) is 5.

Non-deterministic Polynomial Time

Lets = {(,),0,1,;}. The size of p’s certificate in ¥ is at most 4 - log® p.

@ Clearly true forp=2and p = 3.
Q q1,%,Gs, ...,k are prime divisors of (p — 1) (kK < logp.). Hence,
Q- Q... gk < "2;1-
© Total number of symbols needed to represent r is at most log p.
© Total number of symbols needed to represent 2 and its certificate (1) is 5.

© Total number of symbols needed to represent all the g;s, i = 2,3, . .. p is at most
2-(log(2;')) < 2-(logp — 1).

Non-deterministic Polynomial Time

Lets = {(,),0,1,;}. The size of p’s certificate in ¥ is at most 4 - log® p.

@ Clearly true forp=2and p = 3.

Q q1,%,Gs, ...,k are prime divisors of (p — 1) (kK < logp.). Hence,
Q- Q... gk < "2;1-

© Total number of symbols needed to represent r is at most log p.

© Total number of symbols needed to represent 2 and its certificate (1) is 5.

© Total number of symbols needed to represent all the g;s, i = 2,3, . .. p is at most
2 (log(Bz1)) <2 (logp — 1).

Q Total number of symbols needed to represent all the delimiters is 2 - k < 2 - log p.

Non-deterministic Polynomial Time

Lets = {(,),0,1,;}. The size of p’s certificate in ¥ is at most 4 - log® p.

@ Clearly true forp=2and p = 3.

Q q1,%,Gs, ...,k are prime divisors of (p — 1) (kK < logp.). Hence,
Q- Q... gk < "2;1-

© Total number of symbols needed to represent r is at most log p.

© Total number of symbols needed to represent 2 and its certificate (1) is 5.

© Total number of symbols needed to represent all the g;s, i = 2,3, . .. p is at most
2 (log(Bz1)) <2 (logp — 1).

Q Total number of symbols needed to represent all the delimiters is 2 - k < 2 - log p.

@ Total number of parentheses is 2.

Non-deterministic Polynomial Time

Lets = {(,),0,1,;}. The size of p’s certificate in ¥ is at most 4 - log® p.

@ Clearly true forp=2and p = 3.

Q q1,%,Gs, ...,k are prime divisors of (p — 1) (kK < logp.). Hence,
Q- Q... gk < "2;1-

© Total number of symbols needed to represent r is at most log p.

© Total number of symbols needed to represent 2 and its certificate (1) is 5.

© Total number of symbols needed to represent all the g;s, i = 2,3, . .. p is at most
2 (log(Bz1)) <2 (logp — 1).

Q Total number of symbols needed to represent all the delimiters is 2 - k < 2 - log p.

@ Total number of parentheses is 2.

@ By induction |C(g;)| < 4 - log? g;.

Non-deterministic Polynomial Time

Non-deterministic Polynomial T

It follows that:

k
IC(p)l < logp+5+2-(logp—1)+2-logp+2+4-> log®q;
=2

Non-deterministic Polynomial Time

It follows that:

k
IC(p)l < logp+5+2-(logp—1)+2-logp+2+4-> log®q;
=2
k
< 5-logp+5+4-) log® g
=2

Non-deterministic Polynomial Time

It follows that:

k
IC(p)l < logp+5+2-(logp—1)+2-logp+2+4-> log®q;
i=2
k
< 5-logp+5+4-) log® g
i=2
k
< 5-logp+5+4-(>_logg)?
i=2

Non-deterministic Polynomial Time

It follows that:

k
IC(p)l < logp+5+2-(logp—1)+2-logp+2+4-> log®q;
i=2
k
< 5-logp+5+4-) log® g
i=2
k
< 5-logp+5+4-(>_logg)?
i=2

= 5-logp+5-+4-log®(qe - ... - Gk)

Non-deterministic Polynomial Time

It follows that:

k
IC(p)l < logp+5+2-(logp—1)+2-logp+2+4-> log®q;
i=2
k
< 5-logp+5+4-) log® g
i=2
k
< 5-logp+5+4-(>_logg)?

i=2
= 5-logp+5+4-log*(qz - .. - Gk)

5-Iogp+5+4-(|og%)z

Non-deterministic Polynomial Time

It follows that:

k
IC(p)] < logp+5+2-(logp—1)+2-logp+2+4-> log® g
i=2
k
logp+5+4- log® g
i=2
k
logp+5+4-(>_logq;)?
i=2
= 5-logp+5+4-log*(qz - .. - Gk)
p—1,
4§ﬁ

IN
[&)]

IN
()]

IN
(&)

-logp+5+4 - (log

IN
o

-logp+5+4-(logp—1)2

Non-deterministic Polynomial Time

It follows that:

k
IC(p)l < logp+5+2-(logp—1)+2-logp+2+4-> log®q;
i=2
k
logp+5+4- log® g
i=2
k
logp+5+4-(>_logq;)?
i=2

= 5-logp+5-+4-log®(qe - ... - Gk)

IN
[&)]

IN
()]

1
< 5-Iogp+5+4-(long)2
< 5.logp+5+4-(logp—1)2
< 4log’?p+9—3-logp

Non-deterministic Polynomial Time

It follows that:

k
IC(p)l < logp+5+2-(logp—1)+2-logp+2+4-> log®q;
i=2
k
logp+5+4- log® g
i=2
k
logp+5+4-(>_logq;)?
i=2

5-logp+5+4-l0g®(qe - ... - Gk)

IN
[&)]

IN
()]

1
< 5-Iogp+5+4-(long)2
< 5.logp+5+4-(logp—1)2
< 4log’?p+9—3-logp

< 4log?p,

Non-deterministic Polynomial Time

It follows that:

k
IC(p)l < logp+5+2-(logp—1)+2-logp+2+4-> log®q;
i=2
k
logp+5+4- log® g
i=2
k
logp+5+4-(>_logq;)?
i=2

5-logp+5+4-l0g®(qe - ... - Gk)

IN
[&)]

IN
()]

1
< 5-Iogp+5+4-(long)2
< 5.logp+5+4-(logp—1)2
< 4log’?p+9—3-logp
< 4log®p, when p > 5.

Non-deterministic Polynomial Time

Non-deterministic Polynomial T

Binary alphabet

Non-deterministic Polynomial Time

Binary alphabet

How many bits one needs in order to represent p's certificate?

Non-deterministic Polynomial Time

Binary alphabet
How many bits one needs in order to represent p’s certificate?

Lety' = {oy,...,0¢} be any alphabet with |<'| > 2, and let x be a string in *'.

Non-deterministic Polynomial Time

Binary alphabet
How many bits one needs in order to represent p’s certificate?

Lety' = {oy,...,0t} be any alphabet with |<’| > 2, and let x be a string in X'. Then x
can be represented using |x| - log |[¥’| bits,

Non-deterministic Polynomial Time

Binary alphabet
How many bits one needs in order to represent p’s certificate?

Lety' = {oy,...,0t} be any alphabet with |<’| > 2, and let x be a string in X'. Then x
can be represented using |x| - log |X’| bits, where |x| is the number of symbols from ¥’
present in x.

Non-deterministic Polynomial Time

Binary alphabet
How many bits one needs in order to represent p’s certificate?

Lety' = {oy,...,0t} be any alphabet with |<’| > 2, and let x be a string in X'. Then x
can be represented using |x| - log |X’| bits, where |x| is the number of symbols from ¥’
present in x.

Non-deterministic Polynomial Time

Binary alphabet
How many bits one needs in order to represent p’s certificate?

Lety' = {oy,...,0t} be any alphabet with |<’| > 2, and let x be a string in X'. Then x
can be represented using |x| - log |X’| bits, where |x| is the number of symbols from ¥’
present in x.

p’s certificate requires at most 12 - log? p bits.

Non-deterministic Polynomial Time

	Outline
	Main Talk
	Reductions and Completeness
	The Class NP
	Sample problems in NP
	Search, Existence and Non-determinism
	Linear Programming and Primality

