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Difficulty

The Meaning of P vs NP

The biggest consequence of the relationship between P and NP is whether it is harder
to find solutions than it is to check solutions.

Intuition leads one to believe that it is.

Big Consequences of P = NP

We will see that P = NP leads to a great many complexity classes to also be equal to P

One such example is P = coNP , since one can easily switch the outputs “yes” and
“no” of polynomial-time algorithms.
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More Complexity Classes

NP and coNP

NP and coNP can be thought of as P problems which ask for existence (or lack there
of).

This is because the definition of NP is ∃w : B(x ,w) where w is the witness and B is in
P , and coNP is ∀w : B(x ,w).

Extending the Idea

One can extend this idea by adding more and more quantifiers.
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The Class Π2P

Π2P

The class of properties A of the form

A(x) = ∀y : ∃z : B(x , y , z)

where B is in P , and where |y | and |z| are polynomial in |x |.

Smallest Boolean Circuit

Input: A Boolean circuit C that computes a function fC of its input.
Query: Is C the smallest circuit that computes fC?

Logically: ∀C′ < C : ∃x : fC′ (x) 6= fC(x)

Observation

Obviously Smallest Boolean Circuit is in Π2P .
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Further Classes

Σk P

Σk P is the class of properties A of the form

A(x) = ∃y1 : ∀y2 : ∃y3 : · · · : Qyk : B(x , y1, . . . , yk ),

where B is in P , |yi | = poly(|x |) for all i , and Q = ∃ if k is odd, otherwise ∀.

Πk P

Πk P is the class of properties A of the form

A(x) = ∀y1 : ∃y2 : ∀y3 : · · · : Qyk : B(x , y1, . . . , yk ),
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Further Classes

Understanding These Classes

These classes correspond to two-player games that last for k moves.

For instance, consider a Chess game where white claims they can mate in k moves.

This means there exists a move for white, such that for all of black’s replies, there exists
a move for white, ... until white has won.

Given the initial position and the sequence of moves, it is easy to check whether white
has mated black.
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Relationships of the Classes

Subsets

One can easily add quantifiers with dummy variables inside or outside each of the
problems in the classes, so

Σk ⊆ Σk+1,Σk ⊆ Πk+1,Πk ⊆ Σk+1,Πk ⊆ Πk+1

Nondeterminism

As before, each ∃ can be thought of as a layer of nondeterminism that asks whether
there is a witness that makes the statement inside that quantifier true.

So we can say,
Σk P = NΠk−1P .

And since Σ0P = Π0P = P , we have

Σ1P = NP and Π1P = coNP

Or, more generally,
Πk P = coΣk P .

since the negation of ∀ is ∃, and vice versa.
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Polynomial Hierarchy

These complexity classes are known, collectively, as the polynomial hierarchy.

Taking their union over all k gives the class

PH =
∞⋃

k=0

Σk P =
∞⋃

k=0

Πk P ,

which consists of problems that can be phrased with any constant number of quatifiers.

Classes are Distinct

Analogous to the belief that P 6= NP and NP 6= coNP , it is believed that the classes
Σk and Πk are all distinct.

In other words, whenever one adds a quantifier, or a layer of nondeterminism, a
fundamentally deeper kind of problem is obtained.
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If P = NP

If P = NP , then

if B(x , y) ∈ P , then A(x) = ∃y : B(x , y) ∈ P ,

by definition.

Since P = coNP as well, we also absorb ∃ and ∀.

By continually absorbing quantifiers, we get PH = P
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Claim

If NP = coNP , then PH = NP .

Proof

1 Let A(x) = ∃y : B(x , y) be in NP = Σ1P
2 C(x) = ∀z : A(x) is in Π2P
3 A(x) is also in coNP , so A(x) = ∀y : B(x , y)

4 C(x) = ∀z : ∀y : B(x , y)

5 C(x) = ∀(z, y) : B(x , (z, y)) = A(x) So NP = Π2P
6 The inductive proof follows from here.
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Outline

1 What if P = NP ?
The Great Collapse
The Power of Nondeterminism
The Demise of Creativity

2 Upper Bounds are Easy and Lower
Bounds, Hard

3 Diagonalization and Time Hierarchy
Time Hierarchy Theorem
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P vs. NP

Not about Polynomial Time

The common misconception is that P vs. NP is about polynomial time.

In fact, it is really about how powerful nondeterminism is in general.

As in, whether finding solutions is inherently harder than checking them.

EXP

Recall that EXP is the class of problems that one can solve in an exponential amount
of time, where “exponential” is defined as

EXP =
⋃
k

TIME(2nk
) = TIME(2poly(n)).

NEXP

Also recall that NEXP = NTIME(2poly(n)) is the class of problems that one can check a
solution in an exponential amount of time.
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P vs. NP

The Relationship between EXP and NEXP

In analogy to P 6= NP , one can check whether EXP 6= NEXP.

Furthermore, the extension can be made to EXPEXP 6= NEXPEXP, and so on.

Claim

If P = NP then EXP = NEXP, EXPEXP = NEXPEXP, and so on.

Proof

Let problem A be in NEXP, so witnesses can be checked in time t(n) = 2O(nc ), for
some constant c.

Now pad the input, making it t(n) bits long, by adding t(n)− n zeros.

This takes O(t(n)) time, since t(n) is time constructible

This new problem is in NP .

So we can solve it deterministically in time poly(t(n)) = 2O(nc ), since P = NP .

So A is in EXP.

The inductive proof follows similarly.
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Time-Constructible

A function f is called time-constructible if there exists a positive integer n0 and Turing
machine M which, given a string 1n consisting of n ones, stops after exactly f (n) steps
for all n ≥ n0.
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P vs. NP

More Generally

We can say if P = NP , then for any time-constructible function t(n) ≥ n,

NTIME(t(n)) ⊆ TIME(poly(t(n)))

Or for a class of superpolynomial functions such that t(n)c ∈ C for any t(n) ∈ C and
any constant c, then

NTIME(C) = TIME(C)

The Collapse

This applies not only to exponentials 2poly(n), double exponential 22poly(n)
and so on.

So we have EXP = NEXP, EXPEXP = NEXPEXP, and so on up the hierarchy.

It is easy to show that any equality in the hierarchy propagates up, and inequality
propagates down.
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Proof Finding vs. Checking

PROOF CHECKING

Input: A statement S and a proof P
Query: Is P a valid proof of S?

SHORT PROOF

Input: A statement S and an integer n given in unary
Query: Does S have a proof of length n or less?

Observation

Obviously Proof Checking is in P , which implies Short Proof is in NP . Furthermore,
since S can be a SAT formula, Short Proof is NP -complete.
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ELEGANT THEORY

Exhaustive Search

If there are k letters in the alphabet for proofs, there are kn possible proofs.

So we can solve SHORT PROOF in polynomial time precisely if we can do better than
an exhaustive search.

Not Just Computer Science

The consequences of P = NP reach beyond Computer Science, as we can tweak
SHORT PROOF a bit.

ELEGANT THEORY

Input: A set E of experimental data and an integer n given in unary
Query: Is there a theory T of length n or less that explains E?
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Diagonalization and Time Hierarchy

Proving P 6= NP

Strategy

The direct strategy is to prove that for some problem A ∈ NP , A 6∈ P .

So one must prove that every possible polynomial time algorithm that could solve A,
fails.

Which is not easy.

Complexity Classes

This leads us to realize that proving upper bounds on classes is easy compared to
proving lower bounds.

(One just has to find one such algorithm that solves A in polynomial time to increase
the upper bound on P )
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Easy Lower Bounds

Sorting a List

As shown in Chapter 3, sorting a list of numbers has to be done in at least
O(n · log(n)) time, when comparisons between list members are made.

Better Than O(n · log(n))

Radix sort achieves O(mn) time, where m is the number of bits used to represent the
elements.

Billy Hardy P vs NP



What if P = NP ?
Upper Bounds are Easy and Lower Bounds, Hard

Diagonalization and Time Hierarchy

Easy Lower Bounds

Sorting a List

As shown in Chapter 3, sorting a list of numbers has to be done in at least
O(n · log(n)) time,

when comparisons between list members are made.

Better Than O(n · log(n))

Radix sort achieves O(mn) time, where m is the number of bits used to represent the
elements.

Billy Hardy P vs NP



What if P = NP ?
Upper Bounds are Easy and Lower Bounds, Hard

Diagonalization and Time Hierarchy

Easy Lower Bounds

Sorting a List

As shown in Chapter 3, sorting a list of numbers has to be done in at least
O(n · log(n)) time, when comparisons between list members are made.

Better Than O(n · log(n))

Radix sort achieves O(mn) time, where m is the number of bits used to represent the
elements.

Billy Hardy P vs NP



What if P = NP ?
Upper Bounds are Easy and Lower Bounds, Hard

Diagonalization and Time Hierarchy

Easy Lower Bounds

Sorting a List

As shown in Chapter 3, sorting a list of numbers has to be done in at least
O(n · log(n)) time, when comparisons between list members are made.

Better Than O(n · log(n))

Radix sort achieves O(mn) time, where m is the number of bits used to represent the
elements.

Billy Hardy P vs NP



What if P = NP ?
Upper Bounds are Easy and Lower Bounds, Hard

Diagonalization and Time Hierarchy

Easy Lower Bounds

Sorting a List

As shown in Chapter 3, sorting a list of numbers has to be done in at least
O(n · log(n)) time, when comparisons between list members are made.

Better Than O(n · log(n))

Radix sort achieves O(mn) time, where m is the number of bits used to represent the
elements.

Billy Hardy P vs NP



What if P = NP ?
Upper Bounds are Easy and Lower Bounds, Hard

Diagonalization and Time Hierarchy
Time Hierarchy Theorem

Outline

1 What if P = NP ?
The Great Collapse
The Power of Nondeterminism
The Demise of Creativity

2 Upper Bounds are Easy and Lower
Bounds, Hard

3 Diagonalization and Time Hierarchy
Time Hierarchy Theorem

Billy Hardy P vs NP



What if P = NP ?
Upper Bounds are Easy and Lower Bounds, Hard

Diagonalization and Time Hierarchy
Time Hierarchy Theorem

Proving Inequality of Classes

Technique

While proving a particular problem can not be solved in polynomial time appears
daunting.

Our actual stategy for proving problems are outside of P is to construct artificial
problems that any polynomial time algorithm gets incorrect in at least one case.

Thus, for the class C which these problems belong to, we can conclude that P 6= C.

Our Goal

We will use the above technique to prove P 6= EXPTIME.

Or, more generally, that TIME(g(n)) ⊂ TIME(f (n)), for g(n) ∈ o(f (n)).
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Problem Construction

General Problem

For a fixed function f (n), we create the problem PREDICT, which will take in as input a
problem Π and Π’s input x .

PREDICT(Π,x)

Input: A program Π and an input x
Output: If Π halts within f (|x |) steps when given x as input, return its output Π(x).

Otherwise, return “don’t know.”

PREDICT’s Behavior

Since f is fixed, different values of f we get different versions of PREDICT.

PREDICT captures Π’s behavior for precisely f (|x |) steps or less. Not some
constant times f (|x |).
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Diagonalization

CATCH22(Π)

Input: A program Π
Output: If Π halts within f (|Π|) steps when given its own source code as input,

return the negation of its output Π(Π).
Otherwise, return “don’t know.”

Claim

CATCH22 can not be solved in f (n) steps or less.

Proof

Assume the contrary. So ∃Π22 which runs on inputs x in f (|x |) steps or less.

So Π22(Π22) runs within f (|Π22|) steps.

So Π22(Π22) = Π22(Π22)

So there can not exist any program Π22.
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Diagonalization

PREDICT

Since CATCH22 is just a special case of PREDICT and takes one extra step to negate
the result.

This means PREDICT can not be solved in less than f (n) steps, as well.

CATCH22’s Running Time

We can solve CATCH22 by running an interpreter on Π’s source code for f (|Π|)
steps and seeing what happens.

In order to ensure only at most f (|Π|) steps occur, the interpreter takes s(t) steps
to run t steps of Π.

By the previous proof, s(t) > t .

Assuming a random access machine, s(t) = O(t).

So CATCH22 can be solved in s(f (n)) + O(f (n)) = O(s(f (n))) time.
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Time Hierarchy Thereom

Time Hierarchy Thereom

Assume an interpreter can simulate t steps of an arbitrary program Π that runs in at
most f (n) steps, while keeping track of the number of steps computed thus far in s(t)
steps. Then if g(n) = o(f (n)),

TIME(g(n)) ⊂ TIME(s(f (n)))

Proof

Since CATCH22 can not be solved exactly f (n) steps, it can not be solved in O(g(n))
steps for any g(n) = o(f (n)).

This proves the Time Hierarchy Thereom.

More Time Does Mean More Computation

The Time Hierarchy Thereom proves:

P ⊂ EXP ⊂ EXPEXP ⊂ · · ·
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