Algorithmic Insights I - Recursion and Divide and Conquer

K. Subramani¹

¹Lane Department of Computer Science and Electrical Engineering West Virginia University

February 9, 2015

Algorithmic Insights

Algorithmic Insights

Review

Review

Main concepts

Review

Main concepts

Instance, Problem, Solutions.

Review

Main concepts

Instance, Problem, Solutions. (Chess, Eulerian graphs).

Review

Main concepts

Instance, Problem, Solutions. (Chess, Eulerian graphs).

2 Time and scaling.

Review

- Instance, Problem, Solutions. (Chess, Eulerian graphs).
- **2** Time and scaling. Matrix multiplication.

Review

- Instance, Problem, Solutions. (Chess, Eulerian graphs).
- 2 Time and scaling. Matrix multiplication.
- Olynomial time and tractability.

Review

- Instance, Problem, Solutions. (Chess, Eulerian graphs).
- 2 Time and scaling. Matrix multiplication.
- Olynomial time and tractability.
- Robustness of P.

Review

- Instance, Problem, Solutions. (Chess, Eulerian graphs).
- 2 Time and scaling. Matrix multiplication.
- Olynomial time and tractability.
- O Robustness of P.
- In P or not in P.

Review

- Instance, Problem, Solutions. (Chess, Eulerian graphs).
- 2 Time and scaling. Matrix multiplication.
- Olynomial time and tractability.
- O Robustness of P.
- In P or not in P. Less emphasis on most efficient algorithms.

Algorithmic Insights

Algorithmic Insights

Main concepts

Algorithmic Insights

Main concepts

Algorithmic Insights

Main concepts

What makes a problem tractable?

Recursion.

Algorithmic Insights

Main concepts

- Recursion.
- 2 Divide and Conquer.

Algorithmic Insights

Main concepts

- Recursion.
- 2 Divide and Conquer.
- Greedy.

Algorithmic Insights

Main concepts

- Recursion.
- 2 Divide and Conquer.
- Greedy.
- Dynamic Programming.

Algorithmic Insights

Main concepts

- Recursion.
- 2 Divide and Conquer.
- Greedy.
- Dynamic Programming.
- Iterative approaches (Rewriting).

Algorithmic Insights

Main concepts

- Recursion.
- 2 Divide and Conquer.
- Greedy.
- Dynamic Programming.
- Iterative approaches (Rewriting).
- Transformations and reductions.

Recursion

Recursion

Main Idea

Recursion

Main Idea

O Break a large problem into smaller problems having identical form.

Recursion

Main Idea

- Break a large problem into smaller problems having identical form.
- Ocntinue breaking sub-problems into even smaller sub-problems, until the problems become trivial

Recursion

Main Idea

- Break a large problem into smaller problems having identical form.
- Ocntinue breaking sub-problems into even smaller sub-problems, until the problems become trivial (Base case).

The Array-Max problem

The Array-Max problem

Problem

The Array-Max problem

Problem

Given an array of n integers, find the maximum element.

The Array-Max problem

Problem

Given an array of n integers, find the maximum element.

Algorithm

The Array-Max problem

Problem

Given an array of n integers, find the maximum element.

Algorithm

FunctionARRAY-MAX(A, n)

The Array-Max problem

Problem

Given an array of n integers, find the maximum element.

Algorithm

FunctionArray-Max(A, n)

if (n = 1) then

The Array-Max problem

Problem

Given an array of n integers, find the maximum element.

Algorithm

FunctionARRAY-MAX(A, n)

if (n = 1) then return(A[n])
The Array-Max problem

Problem

Given an array of n integers, find the maximum element.

```
FunctionARRAY-MAX(A, n)
```

```
if (n = 1) then
return(A[n])
else
```

The Array-Max problem

Problem

Given an array of n integers, find the maximum element.

```
FunctionARRAY-MAX(A, n)
```

```
if (n = 1) then
return(A[n])
else
return (max(A[n], ARRAY-MAX(\mathbf{A}, n - 1))).
```

The Array-Max problem

Problem

Given an array of n integers, find the maximum element.

Algorithm

```
FunctionARRAY-MAX(A, n)
if (n = 1) then
return(A[n])
else
return (max(A[n], ARRAY-MAX(A, n - 1))).
end if
```

Algorithm 4.10: Finding the maximum element in an array

The Array-Max problem

Problem

Given an array of n integers, find the maximum element.

Algorithm

FunctionARRAY-MAX(A, n)

```
if (n = 1) then
return(A[n])
else
return (max(A[n], ARRAY-MAX(\mathbf{A}, n - 1))).
end if
```

Algorithm 4.11: Finding the maximum element in an array

Analysis

T(n) =

The Array-Max problem

Problem

Given an array of n integers, find the maximum element.

Algorithm

FunctionARRAY-MAX(A, n)

```
if (n = 1) then
return(A[n])
else
return (max(A[n], ARRAY-MAX(\mathbf{A}, n - 1))).
end if
```

Algorithm 4.12: Finding the maximum element in an array

Analysis $T(n) = \begin{cases} 0, & \text{if } n = 0, \end{cases}$

The Array-Max problem

Problem

Given an array of n integers, find the maximum element.

Algorithm

FunctionARRAY-MAX(A, n)

```
if (n = 1) then
return(A[n])
else
return (max(A[n], ARRAY-MAX(\mathbf{A}, n - 1))).
end if
```

Algorithm 4.13: Finding the maximum element in an array

Analysis

$$T(n) = \begin{cases} 0, & \text{if } n = 0, \\ T(n-1) + 1, & \text{otherwise} \end{cases}$$

The Array-Max problem

Problem

Given an array of n integers, find the maximum element.

Algorithm

FunctionARRAY-MAX(A, n)

```
if (n = 1) then
return(A[n])
else
return (max(A[n], ARRAY-MAX(\mathbf{A}, n - 1))).
end if
```

Algorithm 4.14: Finding the maximum element in an array

Analysis

$$T(n) = \begin{cases} 0, & \text{if } n = 0, \\ T(n-1) + 1, & \text{otherwise} \end{cases} \Rightarrow T(n) = (n-1).$$

The Array-Search problem

Problem

Algorithmic Insights Computational Complexity

The Array-Search problem

Problem

Given an array of n integers, and a key k, return **true** if any of the array elements is equal to k and **false** otherwise.

Algorithm

Algorithm

Algorithmic Insights Computational Complexity

Algorithm

Algorithm

FunctionARRAY-SEARCH(A, n, k)

Algorithm

Algorithm

FunctionARRAY-SEARCH(A, n, k)

if (n = 1) then

Algorithm

Algorithm

FunctionARRAY-SEARCH(\mathbf{A} , n, k) if (n = 1) then

if (A[n] = k) then

Algorithm

Algorithm

```
FunctionARRAY-SEARCH(\mathbf{A}, n, k)
```

if (n = 1) then if (A[n] = k) then return(true)

Algorithm

```
FunctionARRAY-SEARCH(\mathbf{A}, n, k)
if (n = 1) then
if (A[n] = k) then
return(true)
else
```

Algorithm

```
FunctionARRAY-SEARCH(\mathbf{A}, n, k)

if (n = 1) then

if (A[n] = k) then

return(true)

else

return(false)
```

Algorithm

```
FunctionARRAY-SEARCH(\mathbf{A}, n, k)

if (n = 1) then

if (A[n] = k) then

return(true)

else

return(false)

end if
```

Algorithm

```
FunctionARRAY-SEARCH(\mathbf{A}, n, k)

if (n = 1) then

if (A[n] = k) then

return(true)

else

return(false)

end if

else
```

Algorithm

```
FunctionARRAY-SEARCH(\mathbf{A}, n, k)

if (n = 1) then

if (A[n] = k) then

return(true)

else

return(false)

end if

else

if (A[n] = k) then
```

Algorithm

```
FunctionARRAY-SEARCH(\mathbf{A}, n, k)

if (n = 1) then

if (A[n] = k) then

return(true)

else

return(false)

end if

else

if (A[n] = k) then

return(true)
```

Algorithm

```
FunctionARRAY-SEARCH(\mathbf{A}, n, k)

if (n = 1) then

if (A[n] = k) then

return(true)

else

return(false)

end if

else

if (A[n] = k) then

return(true)

else
```

Algorithm

```
FunctionARRAY-SEARCH(\mathbf{A}, n, k)

if (n = 1) then

if (A[n] = k) then

return(true)

else

return(false)

end if

else

if (A[n] = k) then

return(true)

else

return(ARRAY-SEARCH(\mathbf{A}, n - 1, k)).
```

Algorithm

```
FunctionARRAY-SEARCH(\mathbf{A}, n, k)

if (n = 1) then

if (A[n] = k) then

return(true)

else

return(false)

end if

else

if (A[n] = k) then

return(true)

else

return(ARRAY-SEARCH(\mathbf{A}, n - 1, k)).

end if
```

Algorithm

Algorithm

```
FunctionARRAY-SEARCH(\mathbf{A}, n, k)

if (n = 1) then

if (A[n] = k) then

return(true)

else

return(false)

end if

else

if (A[n] = k) then

return(true)

else

return(ARRAY-SEARCH(\mathbf{A}, n - 1, k)).

end if

end if
```

Algorithm 4.30: Searching for a key in an array

Analysis

Analysis

Analysis

T(n) =

Algorithmic Insights Computational Complexity

Analysis

Analysis $T(n) = \begin{cases} 1, & \text{if } n = 1, \end{cases}$

Analysis

Analysis

$$T(n) = \begin{cases} 1, & \text{if } n = 1, \\ T(n-1) + 1, & \text{otherwise} \end{cases}$$

Analysis

Analysis

$$T(n) = \begin{cases} 1, & \text{if } n = 1, \\ T(n-1) + 1, & \text{otherwise} \end{cases} \Rightarrow T(n) = n.$$

The Towers of Hanoi problem

The Towers of Hanoi problem

Problem

Algorithmic Insights Computational Complexity

The Towers of Hanoi problem

Problem

You are given three pegs, viz., A, B and C.

The Towers of Hanoi problem

Problem

You are given three pegs, viz., A, B and C.

n disks are stacked on peg A, in decreasing order of size, with the largest disk at the bottom of the stack.

The Towers of Hanoi problem

Problem

You are given three pegs, viz., A, B and C.

n disks are stacked on peg A, in decreasing order of size, with the largest disk at the bottom of the stack.

You need to move the disks from peg A to peg B, ensuring that at no time a disk is placed on another disk of smaller size.
Algorithm

Main idea

Algorithmic Insights Computational Complexity

Algorithm

Main idea

Break the task into three sub-tasks.

Algorithm

Main idea

Break the task into three sub-tasks.

• Move the first (n-1) disks from A to C, using B.

Algorithm

Main idea

Break the task into three sub-tasks.

- Move the first (n-1) disks from A to C, using B.
- Over the largest disk from A to B.

Algorithm

Main idea

Break the task into three sub-tasks.

- Move the first (n-1) disks from A to C, using B.
- Over the largest disk from A to B.
- Move the (n-1) disks from *C* to *B*, using *A*.

Algorithm

Main idea

Break the task into three sub-tasks.

- Move the first (n-1) disks from A to C, using B.
- Over the largest disk from A to B.
- 3 Move the (n-1) disks from C to B, using A.

Algorithm

Main idea

Break the task into three sub-tasks.

- Move the first (n-1) disks from A to C, using B.
- Over the largest disk from A to B.
- Move the (n-1) disks from *C* to *B*, using *A*.

$$T(n) = \begin{cases} 1, & \text{if } n = 0 \end{cases}$$

Algorithm

Main idea

Break the task into three sub-tasks.

- Move the first (n-1) disks from A to C, using B.
- Over the largest disk from A to B.
- 3 Move the (n-1) disks from C to B, using A.

$$T(n) = \begin{cases} 1, & \text{if } n = 0\\ 2 \cdot T(n-1) + 1, & \text{otherwise} \end{cases}$$

Algorithm

Main idea

Break the task into three sub-tasks.

- Move the first (n-1) disks from A to C, using B.
- Over the largest disk from A to B.
- Move the (n-1) disks from *C* to *B*, using *A*.

$$T(n) = \begin{cases} 1, & \text{if } n = 0\\ 2 \cdot T(n-1) + 1, & \text{otherwise} \end{cases} \Rightarrow T(n) = 2^n - 1$$

Approach

Approach

Main Concepts

Algorithmic Insights Computational Complexity

Approach

Main Concepts

Some problems can be broken up into independent sub-problems

Approach

Main Concepts

Some problems can be broken up into independent sub-problems

O Divide the problem into smaller sub-problems.

Approach

Main Concepts

Some problems can be broken up into independent sub-problems

- **O Divide** the problem into smaller sub-problems.
- **2 Conquer** the sub-problems either through recursion or through brute-force.

Approach

Main Concepts

Some problems can be broken up into independent sub-problems

- **O Divide** the problem into smaller sub-problems.
- **2 Conquer** the sub-problems either through recursion or through brute-force.
- Combine the solutions to the sub-problems to get the solution of the original problem.

Divide and Conquer

Divide and Conquer

The Master Theorem

Divide and Conquer

The Master Theorem

Let *a* be an integer greater than or equal to 1 and *b* be a real number greater than 1.

Divide and Conquer

The Master Theorem

Let *a* be an integer greater than or equal to 1 and *b* be a real number greater than 1.

Let f(n) be an increasing function of n and d a nonnegative real number.

Divide and Conquer

The Master Theorem

Let *a* be an integer greater than or equal to 1 and *b* be a real number greater than 1. Let f(n) be an increasing function of *n* and *d* a nonnegative real number. Consider a recurrence of the form:

$$T(n) = \begin{cases} a \cdot T(\frac{n}{b}) + f(n), \text{ if } n > 1\\ d, \text{ if } n = 1 \end{cases}$$

Divide and Conquer

The Master Theorem

Let *a* be an integer greater than or equal to 1 and *b* be a real number greater than 1. Let f(n) be an increasing function of *n* and *d* a nonnegative real number.

Consider a recurrence of the form:

$$T(n) = \begin{cases} \mathbf{a} \cdot T(\frac{n}{b}) + f(n), \text{ if } n > 1\\ \mathbf{d}, \text{ if } n = 1 \end{cases}$$

Then,

Divide and Conquer

The Master Theorem

Let *a* be an integer greater than or equal to 1 and *b* be a real number greater than 1. Let f(n) be an increasing function of *n* and *d* a nonnegative real number. Consider a recurrence of the form:

$$T(n) = \begin{cases} a \cdot T(\frac{n}{b}) + f(n), \text{ if } n > 1\\ d, \text{ if } n = 1 \end{cases}$$

Then,

• If
$$f(n) = \Theta(n^c)$$
, where $\log_b a < c$, then $T(n) = \Theta(n^c)$.

Divide and Conquer

The Master Theorem

Let *a* be an integer greater than or equal to 1 and *b* be a real number greater than 1. Let f(n) be an increasing function of *n* and *d* a nonnegative real number. Consider a recurrence of the form:

$$T(n) = \begin{cases} a \cdot T(\frac{n}{b}) + f(n), \text{ if } n > 1\\ d, \text{ if } n = 1 \end{cases}$$

Then,

If f(n) = Θ(n^c), where log_b a < c, then T(n) = Θ(n^c).
If f(n) = Θ(n^c), where log_b a = c, then T(n) = Θ(n^{log_b a} · log_b n).

Divide and Conquer

The Master Theorem

Let *a* be an integer greater than or equal to 1 and *b* be a real number greater than 1. Let f(n) be an increasing function of *n* and *d* a nonnegative real number. Consider a recurrence of the form:

$$T(n) = \begin{cases} a \cdot T(\frac{n}{b}) + f(n), \text{ if } n > 1\\ d, \text{ if } n = 1 \end{cases}$$

Then,

The Merge-Sort Algorithm

The Merge-Sort Algorithm

Sorting through Merging

Function MERGE-SORT(A, low, high)

The Merge-Sort Algorithm

Sorting through Merging

Function MERGE-SORT(A, low, high)

if (low < high) then

The Merge-Sort Algorithm

Sorting through Merging

Function MERGE-SORT(A, low, high)

if
$$(low < high)$$
 then
 $mid = \frac{low + high}{2}$.

The Merge-Sort Algorithm

Sorting through Merging

Function MERGE-SORT(A, low, high)

if (low < high) then $mid = \frac{low+high}{2}$. MERGE-SORT(**A**, low, mid).

The Merge-Sort Algorithm

Sorting through Merging

Function MERGE-SORT(A, low, high)

The Merge-Sort Algorithm

Sorting through Merging

Function MERGE-SORT(A, low, high)

```
      if (low < high) then \\            mid = \frac{low+high}{2}. \\            Merge-Sort(\mathbf{A}, low, mid). \\            Merge-Sort(\mathbf{A}, mid + 1, high). \\            Merge(\mathbf{A}, low, mid, high). \\            Merge(\mathbf{A}, low, mid, high).
```

The Merge-Sort Algorithm

Sorting through Merging

Function MERGE-SORT(A, low, high)

```
\begin{array}{l} \text{if } (\textit{low} < \textit{high}) \text{ then} \\ \textit{mid} = \frac{\textit{low}+\textit{high}}{2}. \\ \text{MERGE-SORT}(\textbf{A},\textit{low},\textit{mid}). \\ \text{MERGE-SORT}(\textbf{A},\textit{mid}+1,\textit{high}). \\ \text{MERGE}(\textbf{A},\textit{low},\textit{mid},\textit{high}). \\ \text{end if} \end{array}
```

Algorithm 5.8: MergeSort

Analyzing Time and Space

Analyzing Time and Space

Analysis

Algorithmic Insights Computational Complexity

Analyzing Time and Space

Analysis

T(n) =

Algorithmic Insights Computational Complexity

Analyzing Time and Space

$$T(n) = 2 \cdot T(\frac{n}{2}) + n$$
Analyzing Time and Space

Analysis

$$T(n) = 2 \cdot T(\frac{n}{2}) + n$$

 $\in \Theta(n \cdot \log n)$

Analyzing Time and Space

Analysis

$$T(n) = 2 \cdot T(\frac{n}{2}) + n$$

 $\in \Theta(n \cdot \log n)$

$$S(n) \in \Theta(n)$$

The Quick-Sort Algorithm

The Quick-Sort Algorithm

Sorting through Partitioning

Function QUICK-SORT(A, low, high)

The Quick-Sort Algorithm

Sorting through Partitioning

Function QUICK-SORT(A, *low*, *high*) if (*low* < *high*) then

The Quick-Sort Algorithm

Sorting through Partitioning

Function QUICK-SORT(A, low, high)

if (*low* < *high*) then Partition **A** about *A*[*low*].

The Quick-Sort Algorithm

Sorting through Partitioning

Function QUICK-SORT(A, low, high)

if (low < high) then
Partition A about A[low].
Let *j* denote the index of A[low] after partitioning.

The Quick-Sort Algorithm

Sorting through Partitioning

```
Function QUICK-SORT(A, low, high)
```

if (low < high) then Partition **A** about A[low]. Let *j* denote the index of A[low] after partitioning. QUICK-SORT(**A**, low, j - 1).

The Quick-Sort Algorithm

Sorting through Partitioning

```
Function QUICK-SORT(A, low, high)
```

if (low < high) then Partition A about A[low]. Let *j* denote the index of A[low] after partitioning. QUICK-SORT(A, low, j - 1). QUICK-SORT(A, j + 1, high).

The Quick-Sort Algorithm

Sorting through Partitioning

```
Function QUICK-SORT(A, low, high)
```

if (low < high) then Partition **A** about A[low]. Let *j* denote the index of A[low] after partitioning. QUICK-SORT(**A**, *low*, *j* - 1). QUICK-SORT(**A**, *j* + 1, *high*). end if

Algorithm 5.16: Quicksort

The Quick-Sort Algorithm

Sorting through Partitioning

```
Function QUICK-SORT(A, low, high)
```

if (low < high) then Partition **A** about A[low]. Let *j* denote the index of A[low] after partitioning. QUICK-SORT(**A**, *low*, *j* - 1). QUICK-SORT(**A**, *j* + 1, *high*). end if

Algorithm 5.17: Quicksort

Analysis (Space)

The Quick-Sort Algorithm

Sorting through Partitioning

Function QUICK-SORT(A, low, high)

if (low < high) then Partition **A** about A[low]. Let *j* denote the index of A[low] after partitioning. QUICK-SORT(**A**, *low*, *j* - 1). QUICK-SORT(**A**, *j* + 1, *high*). end if

Algorithm 5.18: Quicksort

Analysis (Space)

Quick-Sort() uses O(1) extra space.

The Quick-Sort Algorithm

Sorting through Partitioning

Function QUICK-SORT(A, low, high)

if (low < high) then Partition **A** about A[low]. Let *j* denote the index of A[low] after partitioning. QUICK-SORT(**A**, *low*, *j* - 1). QUICK-SORT(**A**, *j* + 1, *high*). end if

Algorithm 5.19: Quicksort

Analysis (Space)

Quick-Sort() uses O(1) extra space. Partitioning can be done in-place.

Analysis of running time

Analysis of running time

Best Case

Algorithmic Insights Computational Complexity

Analysis of running time

Best Case

$$T(n) =$$

Analysis of running time

Best Case

$$T(n) = 2 \cdot T(\frac{n-1}{2}) + (n-1)$$

Analysis of running time

Best Case

$$T(n) = 2 \cdot T(\frac{n-1}{2}) + (n-1)$$

$$\in \Theta(n \cdot \log n)$$

Analysis of running time

Best Case

$$T(n) = 2 \cdot T(\frac{n-1}{2}) + (n-1)$$

$$\in \Theta(n \cdot \log n)$$

Analysis of running time

Best Case

$$T(n) = 2 \cdot T(\frac{n-1}{2}) + (n-1)$$

$$\in \Theta(n \cdot \log n)$$

$$T(n) =$$

Analysis of running time

Best Case

$$T(n) = 2 \cdot T(\frac{n-1}{2}) + (n-1)$$

$$\in \Theta(n \cdot \log n)$$

$$T(n) = T(n-1) + (n-1)$$

Analysis of running time

Best Case

$$T(n) = 2 \cdot T(\frac{n-1}{2}) + (n-1)$$

$$\in \Theta(n \cdot \log n)$$

$$T(n) = T(n-1) + (n-1)$$

$$\in \Theta(n^2)$$

Average case analysis

Average case analysis

Average case

$$T(n) =$$

Algorithmic Insights Computational Complexity

Average case analysis

$$T(n) = (n-1) + \frac{1}{n} \cdot \sum_{r=1}^{n} [T(r-1) + T(n-r)]$$

Average case analysis

$$T(n) = (n-1) + \frac{1}{n} \cdot \sum_{r=1}^{n} [T(r-1) + T(n-r)]$$
$$= (n-1) +$$

Average case analysis

$$T(n) = (n-1) + \frac{1}{n} \cdot \sum_{r=1}^{n} [T(r-1) + T(n-r)]$$
$$= (n-1) + \frac{2}{n} \cot \sum_{r=1}^{n} T(r-1)$$

Average case analysis

$$T(n) = (n-1) + \frac{1}{n} \cdot \sum_{r=1}^{n} [T(r-1) + T(n-r)]$$

= $(n-1) + \frac{2}{n} \cot \sum_{r=1}^{n} T(r-1)$
 $\approx 2 \cdot n \cdot \ln n$

Modular Exponentiation

Modular Exponentiation

Problem

Algorithmic Insights Computational Complexity

Modular Exponentiation

Problem

Given two n digit integers x and y, compute $x^y \mod p$.

Modular Exponentiation

Problem

Given two n digit integers x and y, compute $x^y \mod p$. Useful in cryptography and primality checking.

Modular Exponentiation

Problem

Given two n digit integers x and y, compute $x^y \mod p$. Useful in cryptography and primality checking.

Approach I

```
Function MOD-EXP(x, y, p)

if (y = 0) then

return(1).

end if

r = 1.

for (i = 1 to y) do

r = x \cdot r \mod p.

end for

return(y).
```

Algorithm 5.24: Modular Exponentiation

Time Analysis

Time Analysis

Analysis

Algorithmic Insights Computational Complexity

Time Analysis

Analysis

Assuming x and y have n digits, the number of multiplications is proportional to
Time Analysis

Analysis

Assuming x and y have n digits, the number of multiplications is proportional to y, which is exponentially large!

A better approach

A better approach

Approach II

Function MOD-EXP(*x*, *y*, *p*)

A better approach

Approach II

Function MOD-EXP(x, y, p)if (y = 0) then

A better approach

Approach II

```
Function MOD-EXP(x, y, p)
```

if (y = 0) then return(1).

A better approach

```
Function MOD-EXP(x, y, p)
if (y = 0) then
return(1).
else
```

A better approach

```
Function MOD-EXP(x, y, p)
if (y = 0) then
return(1).
else
```

```
t = \text{MOD-Exp}(x, \lfloor \frac{y}{2} \rfloor, p).
```

A better approach

Approach II

```
Function MOD-EXP(x, y, p)
if (y = 0) then
```

```
return(1).
```

else

```
t = \text{MOD-EXP}(x, \lfloor \frac{y}{2} \rfloor, p).
if (y is even) then
```

A better approach

```
Function MOD-EXP(x, y, p)

if (y = 0) then

return(1).

else

t = MOD-EXP(x, \lfloor \frac{y}{2} \rfloor, p).

if (y \text{ is even}) then

return(t^2 \mod p).
```

A better approach

```
Function MOD-EXP(x, y, p)

if (y = 0) then

return(1).

else

t = MOD-EXP(x, \lfloor \frac{y}{2} \rfloor, p).

if (y is even) then

return(t^2 \mod p).

else
```

A better approach

```
Function MOD-EXP(x, y, p)

if (y = 0) then

return(1).

else

t = MOD-EXP(x, \lfloor \frac{y}{2} \rfloor, p).

if (y is even) then

return(t^2 \mod p).

else

return(x \cdot t^2 \mod p).
```

A better approach

```
Function MOD-EXP(x, y, p)

if (y = 0) then

return(1).

else

t = MOD-EXP(x, \lfloor \frac{y}{2} \rfloor, p).

if (y is even) then

return(t^2 \mod p).

else

return(x \cdot t^2 \mod p).

end if
```

A better approach

Approach II

```
Function MOD-EXP(x, y, p)

if (y = 0) then

return(1).

else

t = MOD-EXP(x, \lfloor \frac{y}{2} \rfloor, p).

if (y is even) then

return(t^2 \mod p).

else

return(x \cdot t^2 \mod p).

end if

end if
```

Algorithm 5.36: Faster Modular Exponentiation

Time Analysis

Time Analysis

Analysis

Time Analysis

Analysis

If y is a power of 2, it is clear that,

Time Analysis

Analysis

If y is a power of 2, it is clear that,

T(n) =

Time Analysis

Analysis

If y is a power of 2, it is clear that,

$$T(n) = T(\frac{n}{2}) + 1$$

Time Analysis

Analysis

If y is a power of 2, it is clear that,

$$T(n) = T(\frac{n}{2}) + 1$$
$$= \log_2 n$$

Time Analysis

Analysis

If y is a power of 2, it is clear that,

$$T(n) = T(\frac{n}{2}) + 1$$
$$= \log_2 n$$

If *n* is not a power of 2, find all the powers of *x* up to the largest power of 2 less than *y*.

Time Analysis

Analysis

If y is a power of 2, it is clear that,

$$T(n) = T(\frac{n}{2}) + 1$$
$$= \log_2 n$$

If *n* is not a power of 2, find all the powers of *x* up to the largest power of 2 less than *y*. Then combine these products to get $x^y \mod p$.

Time Analysis

Analysis

If y is a power of 2, it is clear that,

$$T(n) = T(\frac{n}{2}) + 1$$
$$= \log_2 n$$

If *n* is not a power of 2, find all the powers of *x* up to the largest power of 2 less than *y*.

Then combine these products to get $x^y \mod p$.

The number of multiplications is still $O(\log_2 n)$.

Matrix multiplication

Matrix multiplication

Problem

Matrix multiplication

Problem

Given two square $n \times n$ matrices **A** and **B**, compute their product **C** = **A** \cdot **B**.

Matrix multiplication

Problem

Given two square $n \times n$ matrices **A** and **B**, compute their product **C** = **A** \cdot **B**.

Matrix multiplication

Problem

Given two square $n \times n$ matrices **A** and **B**, compute their product **C** = **A** · **B**.

Approach I

Ocompute C_{ii} as the dot product between the *i*th row vector from **A** (**a**ⁱ)

Matrix multiplication

Problem

Given two square $n \times n$ matrices **A** and **B**, compute their product **C** = **A** · **B**.

Approach I

Compute C_{ij} as the dot product between the *ith* row vector from A (aⁱ) and the *jth* column of B (b_i).

Matrix multiplication

Problem

Given two square $n \times n$ matrices **A** and **B**, compute their product **C** = **A** · **B**.

Approach I

Compute C_{ij} as the dot product between the *ith* row vector from A (aⁱ) and the *jth* column of B (b_j).

Analysis

Matrix multiplication

Problem

Given two square $n \times n$ matrices **A** and **B**, compute their product **C** = **A** · **B**.

Approach I

Compute C_{ij} as the dot product between the *ith* row vector from A (aⁱ) and the *jth* column of B (b_j).

Analysis

Computing each product takes $\Theta(n)$ multiplications and $\Theta(n)$ additions.

Since there are n^2 entries in **C**, it follows that the algorithm takes $\Theta(n^3)$ multiplications and $\Theta(n^3)$ additions.

A divide and conquer approach

A divide and conquer approach

D and C approach

Function MAT-MULT(A, B, n)

A divide and conquer approach

D and C approach

```
Function MAT-MULT(\mathbf{A}, \mathbf{B}, n)
if (n = 1) then
```

A divide and conquer approach

D and C approach

```
Function MAT-MULT(\mathbf{A}, \mathbf{B}, n)
if (n = 1) then
return(A_{11} \cdot B_{11}).
```

A divide and conquer approach

D and C approach

```
Function MAT-MULT(\mathbf{A}, \mathbf{B}, n)
if (n = 1) then
return(A_{11} \cdot B_{11}).
else
```

A divide and conquer approach

D and C approach

```
Function MAT-MULT(A, B, n)
```

```
if (n = 1) then
return(A_{11} \cdot B_{11}).
```

else

Partition **A** into 4 square sub-matrices of dimensions $\frac{n}{2} \times \frac{n}{2}$ as shown:
A divide and conquer approach

D and C approach

```
Function MAT-MULT(A, B, n)
```

```
if (n = 1) then
return(A_{11} \cdot B_{11}).
```

else

Partition **A** into 4 square sub-matrices of dimensions $\frac{n}{2} \times \frac{n}{2}$ as shown:

$$\mathbf{A} = egin{bmatrix} \mathbf{A}_{11} & \mathbf{A}_{12} \ \mathbf{A}_{21} & \mathbf{A}_{22} \end{bmatrix}$$

A divide and conquer approach

D and C approach

Function MAT-MULT(A, B, n)

if (n = 1) then return $(A_{11} \cdot B_{11})$.

else

Partition **A** into 4 square sub-matrices of dimensions $\frac{n}{2} \times \frac{n}{2}$ as shown:

$$\mathbf{A} = egin{bmatrix} \mathbf{A}_{11} & \mathbf{A}_{12} \ \mathbf{A}_{21} & \mathbf{A}_{22} \end{bmatrix}$$

Partition **B** into 4 square sub-matrices of dimensions $\frac{n}{2} \times \frac{n}{2}$ as shown:

A divide and conquer approach

D and C approach

Function MAT-MULT(A, B, n)

if (n = 1) then return $(A_{11} \cdot B_{11})$.

else

Partition **A** into 4 square sub-matrices of dimensions $\frac{n}{2} \times \frac{n}{2}$ as shown:

$$\mathbf{A} = egin{bmatrix} \mathbf{A}_{11} & \mathbf{A}_{12} \ \mathbf{A}_{21} & \mathbf{A}_{22} \end{bmatrix}$$

Partition **B** into 4 square sub-matrices of dimensions $\frac{n}{2} \times \frac{n}{2}$ as shown:

$$\mathbf{B} = \begin{bmatrix} \mathbf{B}_{11} & \mathbf{B}_{12} \\ \mathbf{B}_{21} & \mathbf{B}_{22} \end{bmatrix}$$

end if

Algorithm 5.45: A Divide and Conquer matrix multiplication algorithm

Algorithm (contd.)

Algorithm (contd.)

D and C approach (contd.)

if (n > 1) then

Algorithm (contd.)

D and C approach (contd.)

if (n > 1) then Let $C_{11} = MAT-MULT(A_{11}, B_{11}, \frac{n}{2}) + MAT-MULT(A_{12}, B_{21}, \frac{n}{2}).$

Algorithm (contd.)

D and C approach (contd.)

Algorithm (contd.)

D and C approach (contd.)

Algorithm (contd.)

D and C approach (contd.)

Algorithm (contd.)

D and C approach (contd.)

 $\begin{array}{l} \text{if } (n>1) \text{ then} \\ \text{Let } \textbf{C}_{11} = \text{MAT-MULT}(\textbf{A}_{11}, \textbf{B}_{11}, \frac{n}{2}) + \text{MAT-MULT}(\textbf{A}_{12}, \textbf{B}_{21}, \frac{n}{2}). \\ \text{Let } \textbf{C}_{12} = \text{MAT-MULT}(\textbf{A}_{11}, \textbf{B}_{12}, \frac{n}{2}) + \text{MAT-MULT}(\textbf{A}_{12}, \textbf{B}_{22}, \frac{n}{2}). \\ \text{Let } \textbf{C}_{21} = \text{MAT-MULT}(\textbf{A}_{21}, \textbf{B}_{11}, \frac{n}{2}) + \text{MAT-MULT}(\textbf{A}_{22}, \textbf{B}_{21}, \frac{n}{2}). \\ \text{Let } \textbf{C}_{22} = \text{MAT-MULT}(\textbf{A}_{21}, \textbf{B}_{12}, \frac{n}{2}) + \text{MAT-MULT}(\textbf{A}_{22}, \textbf{B}_{22}, \frac{n}{2}). \\ \text{return} \\ \textbf{C} = \begin{bmatrix} \textbf{C}_{11} & \textbf{C}_{12} \\ \textbf{C}_{21} & \textbf{C}_{22} \end{bmatrix} \\ \text{end if} \end{array}$

Analyzing the D and C algorthm

Analyzing the D and C algorthm

Analysis

Algorithmic Insights Computational Complexity

Analyzing the D and C algorthm

$$T(n) =$$

Analyzing the D and C algorthm

$$T(n) = 8 \cdot T(\frac{n}{2})$$

Analyzing the D and C algorthm

$$T(n) = 8 \cdot T(\frac{n}{2}) + O(n^2)$$

Analyzing the D and C algorthm

$$T(n) = 8 \cdot T(\frac{n}{2}) + O(n^2)$$

 $\in \Theta(n^3)$

The Strassen approach

The Strassen approach

Clever sub-matrix multiplication

The Strassen approach

Clever sub-matrix multiplication

The Strassen approach

Clever sub-matrix multiplication

$$S_1 = A_{11} \cdot (B_{12} - B_{22}).$$

The Strassen approach

Clever sub-matrix multiplication

$$\begin{aligned} \mathbf{S}_{1} &= & \mathbf{A}_{11} \cdot (\mathbf{B}_{12} - \mathbf{B}_{22}). \\ \mathbf{S}_{2} &= & (\mathbf{A}_{11} + \mathbf{A}_{12}) \cdot \mathbf{B}_{22}. \end{aligned}$$

The Strassen approach

Clever sub-matrix multiplication

$$\begin{array}{rcl} S_1 & = & A_{11} \cdot (B_{12} - B_{22}). \\ S_2 & = & (A_{11} + A_{12}) \cdot B_{22}. \\ S_3 & = & (A_{21} + A_{22}) \cdot B_{11}. \end{array}$$

The Strassen approach

Clever sub-matrix multiplication

$$\begin{array}{rcl} S_1 & = & A_{11} \cdot (B_{12} - B_{22}). \\ S_2 & = & (A_{11} + A_{12}) \cdot B_{22}. \\ S_3 & = & (A_{21} + A_{22}) \cdot B_{11}. \\ S_4 & = & A_{22} \cdot (B_{21} - B_{11}). \end{array}$$

The Strassen approach

Clever sub-matrix multiplication

$$\begin{array}{rcl} S_1 &=& A_{11} \cdot (B_{12} - B_{22}). \\ S_2 &=& (A_{11} + A_{12}) \cdot B_{22}. \\ S_3 &=& (A_{21} + A_{22}) \cdot B_{11}. \\ S_4 &=& A_{22} \cdot (B_{21} - B_{11}). \\ S_5 &=& (A_{11} + A_{22}) \cdot (B_{11} + B_{22}). \end{array}$$

The Strassen approach

Clever sub-matrix multiplication

$$\begin{array}{rcl} S_1 &=& A_{11} \cdot (B_{12} - B_{22}). \\ S_2 &=& (A_{11} + A_{12}) \cdot B_{22}. \\ S_3 &=& (A_{21} + A_{22}) \cdot B_{11}. \\ S_4 &=& A_{22} \cdot (B_{21} - B_{11}). \\ S_5 &=& (A_{11} + A_{22}) \cdot (B_{11} + B_{22}) \\ S_6 &=& (A_{12} - A_{22}) \cdot (B_{21} + B_{22}) \end{array}$$

The Strassen approach

Clever sub-matrix multiplication

$$\begin{array}{rcl} S_1 &=& A_{11} \cdot (B_{12}-B_{22}). \\ S_2 &=& (A_{11}+A_{12}) \cdot B_{22}. \\ S_3 &=& (A_{21}+A_{22}) \cdot B_{11}. \\ S_4 &=& A_{22} \cdot (B_{21}-B_{11}). \\ S_5 &=& (A_{11}+A_{22}) \cdot (B_{11}+B_{22}). \\ S_6 &=& (A_{12}-A_{22}) \cdot (B_{21}+B_{22}). \\ S_7 &=& (A_{11}-A_{21}) \cdot (B_{11}+B_{21}). \end{array}$$

Strassen (contd.)

Strassen (contd.)

Completing the algorithm

Strassen (contd.)

Completing the algorithm

Strassen (contd.)

Completing the algorithm Observe that, C₁₁ =

Algorithmic Insights Computational Complexity

Strassen (contd.)

Completing the algorithm

$$C_{11} = S_4 + S_5 + S_6 - S_2$$

Strassen (contd.)

Completing the algorithm

$$\begin{array}{rcl} C_{11} & = & S_4 + S_5 + S_6 - S_2 \\ C_{12} & = & S_1 + S_2 \end{array}$$

Strassen (contd.)

Completing the algorithm

$$\begin{array}{rcl} C_{11} & = & S_4 + S_5 + S_6 - S_2 \\ C_{12} & = & S_1 + S_2 \\ C_{21} & = & S_3 + S_4 \end{array}$$

Strassen (contd.)

Completing the algorithm

$$\begin{array}{rcl} C_{11} & = & S_4 + S_5 + S_6 - S_2 \\ C_{12} & = & S_1 + S_2 \\ C_{21} & = & S_3 + S_4 \\ C_{22} & = & S_1 - S_3 + S_5 - S_7 \end{array}$$

Analysis of Strassen

Analysis of Strassen

Running Time

Algorithmic Insights Computational Complexity
Review of concepts Algorithmic Insights Recursion Divide and Conquer

Analysis of Strassen

Running Time

$$T(n) =$$

Algorithmic Insights Computational Complexity

Review of concepts Algorithmic Insights Recursion Divide and Conquer

Analysis of Strassen

Running Time

$$T(n) = 7 \cdot T(\frac{n}{2}) + O(n^2)$$

Review of concepts Algorithmic Insights Recursion Divide and Conquer

Analysis of Strassen

Running Time

$$T(n) = 7 \cdot T(\frac{n}{2}) + O(n^2)$$

$$\in O(n^{\log_2 7})$$