
Outline

Algorithmic Insights I - Recursion and Divide and Conquer

K. Subramani1

1Lane Department of Computer Science and Electrical Engineering
West Virginia University

February 9, 2015

Algorithmic Insights Computational Complexity



Outline

Outline

1 Review of concepts

2 Algorithmic Insights

3 Recursion

4 Divide and Conquer

Algorithmic Insights Computational Complexity



Outline

Outline

1 Review of concepts

2 Algorithmic Insights

3 Recursion

4 Divide and Conquer

Algorithmic Insights Computational Complexity



Outline

Outline

1 Review of concepts

2 Algorithmic Insights

3 Recursion

4 Divide and Conquer

Algorithmic Insights Computational Complexity



Outline

Outline

1 Review of concepts

2 Algorithmic Insights

3 Recursion

4 Divide and Conquer

Algorithmic Insights Computational Complexity



Review of concepts
Algorithmic Insights

Recursion
Divide and Conquer

Review

Main concepts

1 Instance, Problem, Solutions. (Chess, Eulerian graphs).
2 Time and scaling. Matrix multiplication.
3 Polynomial time and tractability.
4 Robustness of P.
5 In P or not in P. Less emphasis on most efficient algorithms.

Algorithmic Insights Computational Complexity



Review of concepts
Algorithmic Insights

Recursion
Divide and Conquer

Review

Main concepts

1 Instance, Problem, Solutions. (Chess, Eulerian graphs).
2 Time and scaling. Matrix multiplication.
3 Polynomial time and tractability.
4 Robustness of P.
5 In P or not in P. Less emphasis on most efficient algorithms.

Algorithmic Insights Computational Complexity



Review of concepts
Algorithmic Insights

Recursion
Divide and Conquer

Review

Main concepts

1 Instance, Problem, Solutions.

(Chess, Eulerian graphs).
2 Time and scaling. Matrix multiplication.
3 Polynomial time and tractability.
4 Robustness of P.
5 In P or not in P. Less emphasis on most efficient algorithms.

Algorithmic Insights Computational Complexity



Review of concepts
Algorithmic Insights

Recursion
Divide and Conquer

Review

Main concepts

1 Instance, Problem, Solutions. (Chess, Eulerian graphs).

2 Time and scaling. Matrix multiplication.
3 Polynomial time and tractability.
4 Robustness of P.
5 In P or not in P. Less emphasis on most efficient algorithms.

Algorithmic Insights Computational Complexity



Review of concepts
Algorithmic Insights

Recursion
Divide and Conquer

Review

Main concepts

1 Instance, Problem, Solutions. (Chess, Eulerian graphs).
2 Time and scaling.

Matrix multiplication.
3 Polynomial time and tractability.
4 Robustness of P.
5 In P or not in P. Less emphasis on most efficient algorithms.

Algorithmic Insights Computational Complexity



Review of concepts
Algorithmic Insights

Recursion
Divide and Conquer

Review

Main concepts

1 Instance, Problem, Solutions. (Chess, Eulerian graphs).
2 Time and scaling. Matrix multiplication.

3 Polynomial time and tractability.
4 Robustness of P.
5 In P or not in P. Less emphasis on most efficient algorithms.

Algorithmic Insights Computational Complexity



Review of concepts
Algorithmic Insights

Recursion
Divide and Conquer

Review

Main concepts

1 Instance, Problem, Solutions. (Chess, Eulerian graphs).
2 Time and scaling. Matrix multiplication.
3 Polynomial time and tractability.

4 Robustness of P.
5 In P or not in P. Less emphasis on most efficient algorithms.

Algorithmic Insights Computational Complexity



Review of concepts
Algorithmic Insights

Recursion
Divide and Conquer

Review

Main concepts

1 Instance, Problem, Solutions. (Chess, Eulerian graphs).
2 Time and scaling. Matrix multiplication.
3 Polynomial time and tractability.
4 Robustness of P.

5 In P or not in P. Less emphasis on most efficient algorithms.

Algorithmic Insights Computational Complexity



Review of concepts
Algorithmic Insights

Recursion
Divide and Conquer

Review

Main concepts

1 Instance, Problem, Solutions. (Chess, Eulerian graphs).
2 Time and scaling. Matrix multiplication.
3 Polynomial time and tractability.
4 Robustness of P.
5 In P or not in P.

Less emphasis on most efficient algorithms.

Algorithmic Insights Computational Complexity



Review of concepts
Algorithmic Insights

Recursion
Divide and Conquer

Review

Main concepts

1 Instance, Problem, Solutions. (Chess, Eulerian graphs).
2 Time and scaling. Matrix multiplication.
3 Polynomial time and tractability.
4 Robustness of P.
5 In P or not in P. Less emphasis on most efficient algorithms.

Algorithmic Insights Computational Complexity



Review of concepts
Algorithmic Insights

Recursion
Divide and Conquer

Algorithmic Insights

Main concepts

What makes a problem tractable?
1 Recursion.
2 Divide and Conquer.
3 Greedy.
4 Dynamic Programming.
5 Iterative approaches (Rewriting).
6 Transformations and reductions.

Algorithmic Insights Computational Complexity



Review of concepts
Algorithmic Insights

Recursion
Divide and Conquer

Algorithmic Insights

Main concepts

What makes a problem tractable?
1 Recursion.
2 Divide and Conquer.
3 Greedy.
4 Dynamic Programming.
5 Iterative approaches (Rewriting).
6 Transformations and reductions.

Algorithmic Insights Computational Complexity



Review of concepts
Algorithmic Insights

Recursion
Divide and Conquer

Algorithmic Insights

Main concepts

What makes a problem tractable?

1 Recursion.
2 Divide and Conquer.
3 Greedy.
4 Dynamic Programming.
5 Iterative approaches (Rewriting).
6 Transformations and reductions.

Algorithmic Insights Computational Complexity



Review of concepts
Algorithmic Insights

Recursion
Divide and Conquer

Algorithmic Insights

Main concepts

What makes a problem tractable?
1 Recursion.

2 Divide and Conquer.
3 Greedy.
4 Dynamic Programming.
5 Iterative approaches (Rewriting).
6 Transformations and reductions.

Algorithmic Insights Computational Complexity



Review of concepts
Algorithmic Insights

Recursion
Divide and Conquer

Algorithmic Insights

Main concepts

What makes a problem tractable?
1 Recursion.
2 Divide and Conquer.

3 Greedy.
4 Dynamic Programming.
5 Iterative approaches (Rewriting).
6 Transformations and reductions.

Algorithmic Insights Computational Complexity



Review of concepts
Algorithmic Insights

Recursion
Divide and Conquer

Algorithmic Insights

Main concepts

What makes a problem tractable?
1 Recursion.
2 Divide and Conquer.
3 Greedy.

4 Dynamic Programming.
5 Iterative approaches (Rewriting).
6 Transformations and reductions.

Algorithmic Insights Computational Complexity



Review of concepts
Algorithmic Insights

Recursion
Divide and Conquer

Algorithmic Insights

Main concepts

What makes a problem tractable?
1 Recursion.
2 Divide and Conquer.
3 Greedy.
4 Dynamic Programming.

5 Iterative approaches (Rewriting).
6 Transformations and reductions.

Algorithmic Insights Computational Complexity



Review of concepts
Algorithmic Insights

Recursion
Divide and Conquer

Algorithmic Insights

Main concepts

What makes a problem tractable?
1 Recursion.
2 Divide and Conquer.
3 Greedy.
4 Dynamic Programming.
5 Iterative approaches (Rewriting).

6 Transformations and reductions.

Algorithmic Insights Computational Complexity



Review of concepts
Algorithmic Insights

Recursion
Divide and Conquer

Algorithmic Insights

Main concepts

What makes a problem tractable?
1 Recursion.
2 Divide and Conquer.
3 Greedy.
4 Dynamic Programming.
5 Iterative approaches (Rewriting).
6 Transformations and reductions.

Algorithmic Insights Computational Complexity



Review of concepts
Algorithmic Insights

Recursion
Divide and Conquer

Recursion

Main Idea

1 Break a large problem into smaller problems having identical form.
2 Continue breaking sub-problems into even smaller sub-problems, until the

problems become trivial (Base case).

Algorithmic Insights Computational Complexity



Review of concepts
Algorithmic Insights

Recursion
Divide and Conquer

Recursion

Main Idea

1 Break a large problem into smaller problems having identical form.
2 Continue breaking sub-problems into even smaller sub-problems, until the

problems become trivial (Base case).

Algorithmic Insights Computational Complexity



Review of concepts
Algorithmic Insights

Recursion
Divide and Conquer

Recursion

Main Idea

1 Break a large problem into smaller problems having identical form.

2 Continue breaking sub-problems into even smaller sub-problems, until the
problems become trivial (Base case).

Algorithmic Insights Computational Complexity



Review of concepts
Algorithmic Insights

Recursion
Divide and Conquer

Recursion

Main Idea

1 Break a large problem into smaller problems having identical form.
2 Continue breaking sub-problems into even smaller sub-problems, until the

problems become trivial

(Base case).

Algorithmic Insights Computational Complexity



Review of concepts
Algorithmic Insights

Recursion
Divide and Conquer

Recursion

Main Idea

1 Break a large problem into smaller problems having identical form.
2 Continue breaking sub-problems into even smaller sub-problems, until the

problems become trivial (Base case).

Algorithmic Insights Computational Complexity



Review of concepts
Algorithmic Insights

Recursion
Divide and Conquer

The Array-Max problem

Problem

Given an array of n integers, find the maximum element.

Algorithm

FunctionARRAY-MAX(A, n)
if (n = 1) then

return(A[n])
else

return (max(A[n], ARRAY-MAX(A, n − 1))).
end if

Algorithm 4.1: Finding the maximum element in an array

Analysis

T (n) =

{
0, if n = 0,
T (n − 1) + 1, otherwise

⇒ T (n) = (n − 1).

Algorithmic Insights Computational Complexity



Review of concepts
Algorithmic Insights

Recursion
Divide and Conquer

The Array-Max problem

Problem

Given an array of n integers, find the maximum element.

Algorithm

FunctionARRAY-MAX(A, n)
if (n = 1) then

return(A[n])
else

return (max(A[n], ARRAY-MAX(A, n − 1))).
end if

Algorithm 4.2: Finding the maximum element in an array

Analysis

T (n) =

{
0, if n = 0,
T (n − 1) + 1, otherwise

⇒ T (n) = (n − 1).

Algorithmic Insights Computational Complexity



Review of concepts
Algorithmic Insights

Recursion
Divide and Conquer

The Array-Max problem

Problem

Given an array of n integers, find the maximum element.

Algorithm

FunctionARRAY-MAX(A, n)
if (n = 1) then

return(A[n])
else

return (max(A[n], ARRAY-MAX(A, n − 1))).
end if

Algorithm 4.3: Finding the maximum element in an array

Analysis

T (n) =

{
0, if n = 0,
T (n − 1) + 1, otherwise

⇒ T (n) = (n − 1).

Algorithmic Insights Computational Complexity



Review of concepts
Algorithmic Insights

Recursion
Divide and Conquer

The Array-Max problem

Problem

Given an array of n integers, find the maximum element.

Algorithm

FunctionARRAY-MAX(A, n)
if (n = 1) then

return(A[n])
else

return (max(A[n], ARRAY-MAX(A, n − 1))).
end if

Algorithm 4.4: Finding the maximum element in an array

Analysis

T (n) =

{
0, if n = 0,
T (n − 1) + 1, otherwise

⇒ T (n) = (n − 1).

Algorithmic Insights Computational Complexity



Review of concepts
Algorithmic Insights

Recursion
Divide and Conquer

The Array-Max problem

Problem

Given an array of n integers, find the maximum element.

Algorithm

FunctionARRAY-MAX(A, n)

if (n = 1) then
return(A[n])

else
return (max(A[n], ARRAY-MAX(A, n − 1))).

end if

Algorithm 4.5: Finding the maximum element in an array

Analysis

T (n) =

{
0, if n = 0,
T (n − 1) + 1, otherwise

⇒ T (n) = (n − 1).

Algorithmic Insights Computational Complexity



Review of concepts
Algorithmic Insights

Recursion
Divide and Conquer

The Array-Max problem

Problem

Given an array of n integers, find the maximum element.

Algorithm

FunctionARRAY-MAX(A, n)
if (n = 1) then

return(A[n])
else

return (max(A[n], ARRAY-MAX(A, n − 1))).
end if

Algorithm 4.6: Finding the maximum element in an array

Analysis

T (n) =

{
0, if n = 0,
T (n − 1) + 1, otherwise

⇒ T (n) = (n − 1).

Algorithmic Insights Computational Complexity



Review of concepts
Algorithmic Insights

Recursion
Divide and Conquer

The Array-Max problem

Problem

Given an array of n integers, find the maximum element.

Algorithm

FunctionARRAY-MAX(A, n)
if (n = 1) then

return(A[n])

else
return (max(A[n], ARRAY-MAX(A, n − 1))).

end if

Algorithm 4.7: Finding the maximum element in an array

Analysis

T (n) =

{
0, if n = 0,
T (n − 1) + 1, otherwise

⇒ T (n) = (n − 1).

Algorithmic Insights Computational Complexity



Review of concepts
Algorithmic Insights

Recursion
Divide and Conquer

The Array-Max problem

Problem

Given an array of n integers, find the maximum element.

Algorithm

FunctionARRAY-MAX(A, n)
if (n = 1) then

return(A[n])
else

return (max(A[n], ARRAY-MAX(A, n − 1))).
end if

Algorithm 4.8: Finding the maximum element in an array

Analysis

T (n) =

{
0, if n = 0,
T (n − 1) + 1, otherwise

⇒ T (n) = (n − 1).

Algorithmic Insights Computational Complexity



Review of concepts
Algorithmic Insights

Recursion
Divide and Conquer

The Array-Max problem

Problem

Given an array of n integers, find the maximum element.

Algorithm

FunctionARRAY-MAX(A, n)
if (n = 1) then

return(A[n])
else

return (max(A[n], ARRAY-MAX(A, n − 1))).

end if

Algorithm 4.9: Finding the maximum element in an array

Analysis

T (n) =

{
0, if n = 0,
T (n − 1) + 1, otherwise

⇒ T (n) = (n − 1).

Algorithmic Insights Computational Complexity



Review of concepts
Algorithmic Insights

Recursion
Divide and Conquer

The Array-Max problem

Problem

Given an array of n integers, find the maximum element.

Algorithm

FunctionARRAY-MAX(A, n)
if (n = 1) then

return(A[n])
else

return (max(A[n], ARRAY-MAX(A, n − 1))).
end if

Algorithm 4.10: Finding the maximum element in an array

Analysis

T (n) =

{
0, if n = 0,
T (n − 1) + 1, otherwise

⇒ T (n) = (n − 1).

Algorithmic Insights Computational Complexity



Review of concepts
Algorithmic Insights

Recursion
Divide and Conquer

The Array-Max problem

Problem

Given an array of n integers, find the maximum element.

Algorithm

FunctionARRAY-MAX(A, n)
if (n = 1) then

return(A[n])
else

return (max(A[n], ARRAY-MAX(A, n − 1))).
end if

Algorithm 4.11: Finding the maximum element in an array

Analysis

T (n) =

{
0, if n = 0,
T (n − 1) + 1, otherwise

⇒ T (n) = (n − 1).

Algorithmic Insights Computational Complexity



Review of concepts
Algorithmic Insights

Recursion
Divide and Conquer

The Array-Max problem

Problem

Given an array of n integers, find the maximum element.

Algorithm

FunctionARRAY-MAX(A, n)
if (n = 1) then

return(A[n])
else

return (max(A[n], ARRAY-MAX(A, n − 1))).
end if

Algorithm 4.12: Finding the maximum element in an array

Analysis

T (n) =

{
0, if n = 0,

T (n − 1) + 1, otherwise
⇒ T (n) = (n − 1).

Algorithmic Insights Computational Complexity



Review of concepts
Algorithmic Insights

Recursion
Divide and Conquer

The Array-Max problem

Problem

Given an array of n integers, find the maximum element.

Algorithm

FunctionARRAY-MAX(A, n)
if (n = 1) then

return(A[n])
else

return (max(A[n], ARRAY-MAX(A, n − 1))).
end if

Algorithm 4.13: Finding the maximum element in an array

Analysis

T (n) =

{
0, if n = 0,
T (n − 1) + 1, otherwise

⇒ T (n) = (n − 1).

Algorithmic Insights Computational Complexity



Review of concepts
Algorithmic Insights

Recursion
Divide and Conquer

The Array-Max problem

Problem

Given an array of n integers, find the maximum element.

Algorithm

FunctionARRAY-MAX(A, n)
if (n = 1) then

return(A[n])
else

return (max(A[n], ARRAY-MAX(A, n − 1))).
end if

Algorithm 4.14: Finding the maximum element in an array

Analysis

T (n) =

{
0, if n = 0,
T (n − 1) + 1, otherwise

⇒ T (n) = (n − 1).

Algorithmic Insights Computational Complexity



Review of concepts
Algorithmic Insights

Recursion
Divide and Conquer

The Array-Search problem

Problem

Given an array of n integers, and a key k, return true if any of the array elements is
equal to k and false otherwise.

Algorithmic Insights Computational Complexity



Review of concepts
Algorithmic Insights

Recursion
Divide and Conquer

The Array-Search problem

Problem

Given an array of n integers, and a key k, return true if any of the array elements is
equal to k and false otherwise.

Algorithmic Insights Computational Complexity



Review of concepts
Algorithmic Insights

Recursion
Divide and Conquer

Algorithm

Algorithm

FunctionARRAY-SEARCH(A, n, k )
if (n = 1) then

if (A[n] = k ) then
return(true)

else
return(false)

end if
else

if (A[n] = k ) then
return(true)

else
return(ARRAY-SEARCH(A, n − 1, k )).

end if
end if

Algorithm 4.15: Searching for a key in an array

Algorithmic Insights Computational Complexity



Review of concepts
Algorithmic Insights

Recursion
Divide and Conquer

Algorithm

Algorithm

FunctionARRAY-SEARCH(A, n, k )
if (n = 1) then

if (A[n] = k ) then
return(true)

else
return(false)

end if
else

if (A[n] = k ) then
return(true)

else
return(ARRAY-SEARCH(A, n − 1, k )).

end if
end if

Algorithm 4.16: Searching for a key in an array

Algorithmic Insights Computational Complexity



Review of concepts
Algorithmic Insights

Recursion
Divide and Conquer

Algorithm

Algorithm

FunctionARRAY-SEARCH(A, n, k )

if (n = 1) then
if (A[n] = k ) then

return(true)
else

return(false)
end if

else
if (A[n] = k ) then

return(true)
else

return(ARRAY-SEARCH(A, n − 1, k )).
end if

end if

Algorithm 4.17: Searching for a key in an array

Algorithmic Insights Computational Complexity



Review of concepts
Algorithmic Insights

Recursion
Divide and Conquer

Algorithm

Algorithm

FunctionARRAY-SEARCH(A, n, k )
if (n = 1) then

if (A[n] = k ) then
return(true)

else
return(false)

end if
else

if (A[n] = k ) then
return(true)

else
return(ARRAY-SEARCH(A, n − 1, k )).

end if
end if

Algorithm 4.18: Searching for a key in an array

Algorithmic Insights Computational Complexity



Review of concepts
Algorithmic Insights

Recursion
Divide and Conquer

Algorithm

Algorithm

FunctionARRAY-SEARCH(A, n, k )
if (n = 1) then

if (A[n] = k ) then

return(true)
else

return(false)
end if

else
if (A[n] = k ) then

return(true)
else

return(ARRAY-SEARCH(A, n − 1, k )).
end if

end if

Algorithm 4.19: Searching for a key in an array

Algorithmic Insights Computational Complexity



Review of concepts
Algorithmic Insights

Recursion
Divide and Conquer

Algorithm

Algorithm

FunctionARRAY-SEARCH(A, n, k )
if (n = 1) then

if (A[n] = k ) then
return(true)

else
return(false)

end if
else

if (A[n] = k ) then
return(true)

else
return(ARRAY-SEARCH(A, n − 1, k )).

end if
end if

Algorithm 4.20: Searching for a key in an array

Algorithmic Insights Computational Complexity



Review of concepts
Algorithmic Insights

Recursion
Divide and Conquer

Algorithm

Algorithm

FunctionARRAY-SEARCH(A, n, k )
if (n = 1) then

if (A[n] = k ) then
return(true)

else

return(false)
end if

else
if (A[n] = k ) then

return(true)
else

return(ARRAY-SEARCH(A, n − 1, k )).
end if

end if

Algorithm 4.21: Searching for a key in an array

Algorithmic Insights Computational Complexity



Review of concepts
Algorithmic Insights

Recursion
Divide and Conquer

Algorithm

Algorithm

FunctionARRAY-SEARCH(A, n, k )
if (n = 1) then

if (A[n] = k ) then
return(true)

else
return(false)

end if
else

if (A[n] = k ) then
return(true)

else
return(ARRAY-SEARCH(A, n − 1, k )).

end if
end if

Algorithm 4.22: Searching for a key in an array

Algorithmic Insights Computational Complexity



Review of concepts
Algorithmic Insights

Recursion
Divide and Conquer

Algorithm

Algorithm

FunctionARRAY-SEARCH(A, n, k )
if (n = 1) then

if (A[n] = k ) then
return(true)

else
return(false)

end if

else
if (A[n] = k ) then

return(true)
else

return(ARRAY-SEARCH(A, n − 1, k )).
end if

end if

Algorithm 4.23: Searching for a key in an array

Algorithmic Insights Computational Complexity



Review of concepts
Algorithmic Insights

Recursion
Divide and Conquer

Algorithm

Algorithm

FunctionARRAY-SEARCH(A, n, k )
if (n = 1) then

if (A[n] = k ) then
return(true)

else
return(false)

end if
else

if (A[n] = k ) then
return(true)

else
return(ARRAY-SEARCH(A, n − 1, k )).

end if
end if

Algorithm 4.24: Searching for a key in an array

Algorithmic Insights Computational Complexity



Review of concepts
Algorithmic Insights

Recursion
Divide and Conquer

Algorithm

Algorithm

FunctionARRAY-SEARCH(A, n, k )
if (n = 1) then

if (A[n] = k ) then
return(true)

else
return(false)

end if
else

if (A[n] = k ) then

return(true)
else

return(ARRAY-SEARCH(A, n − 1, k )).
end if

end if

Algorithm 4.25: Searching for a key in an array

Algorithmic Insights Computational Complexity



Review of concepts
Algorithmic Insights

Recursion
Divide and Conquer

Algorithm

Algorithm

FunctionARRAY-SEARCH(A, n, k )
if (n = 1) then

if (A[n] = k ) then
return(true)

else
return(false)

end if
else

if (A[n] = k ) then
return(true)

else
return(ARRAY-SEARCH(A, n − 1, k )).

end if
end if

Algorithm 4.26: Searching for a key in an array

Algorithmic Insights Computational Complexity



Review of concepts
Algorithmic Insights

Recursion
Divide and Conquer

Algorithm

Algorithm

FunctionARRAY-SEARCH(A, n, k )
if (n = 1) then

if (A[n] = k ) then
return(true)

else
return(false)

end if
else

if (A[n] = k ) then
return(true)

else

return(ARRAY-SEARCH(A, n − 1, k )).
end if

end if

Algorithm 4.27: Searching for a key in an array

Algorithmic Insights Computational Complexity



Review of concepts
Algorithmic Insights

Recursion
Divide and Conquer

Algorithm

Algorithm

FunctionARRAY-SEARCH(A, n, k )
if (n = 1) then

if (A[n] = k ) then
return(true)

else
return(false)

end if
else

if (A[n] = k ) then
return(true)

else
return(ARRAY-SEARCH(A, n − 1, k )).

end if
end if

Algorithm 4.28: Searching for a key in an array

Algorithmic Insights Computational Complexity



Review of concepts
Algorithmic Insights

Recursion
Divide and Conquer

Algorithm

Algorithm

FunctionARRAY-SEARCH(A, n, k )
if (n = 1) then

if (A[n] = k ) then
return(true)

else
return(false)

end if
else

if (A[n] = k ) then
return(true)

else
return(ARRAY-SEARCH(A, n − 1, k )).

end if

end if

Algorithm 4.29: Searching for a key in an array

Algorithmic Insights Computational Complexity



Review of concepts
Algorithmic Insights

Recursion
Divide and Conquer

Algorithm

Algorithm

FunctionARRAY-SEARCH(A, n, k )
if (n = 1) then

if (A[n] = k ) then
return(true)

else
return(false)

end if
else

if (A[n] = k ) then
return(true)

else
return(ARRAY-SEARCH(A, n − 1, k )).

end if
end if

Algorithm 4.30: Searching for a key in an array

Algorithmic Insights Computational Complexity



Review of concepts
Algorithmic Insights

Recursion
Divide and Conquer

Analysis

Analysis

T (n) =

{
1, if n = 1,
T (n − 1) + 1, otherwise

⇒ T (n) = n.

Algorithmic Insights Computational Complexity



Review of concepts
Algorithmic Insights

Recursion
Divide and Conquer

Analysis

Analysis

T (n) =

{
1, if n = 1,
T (n − 1) + 1, otherwise

⇒ T (n) = n.

Algorithmic Insights Computational Complexity



Review of concepts
Algorithmic Insights

Recursion
Divide and Conquer

Analysis

Analysis

T (n) =

{
1, if n = 1,

T (n − 1) + 1, otherwise
⇒ T (n) = n.

Algorithmic Insights Computational Complexity



Review of concepts
Algorithmic Insights

Recursion
Divide and Conquer

Analysis

Analysis

T (n) =

{
1, if n = 1,
T (n − 1) + 1, otherwise

⇒ T (n) = n.

Algorithmic Insights Computational Complexity



Review of concepts
Algorithmic Insights

Recursion
Divide and Conquer

Analysis

Analysis

T (n) =

{
1, if n = 1,
T (n − 1) + 1, otherwise

⇒ T (n) = n.

Algorithmic Insights Computational Complexity



Review of concepts
Algorithmic Insights

Recursion
Divide and Conquer

The Towers of Hanoi problem

Problem

You are given three pegs, viz., A, B and C.

n disks are stacked on peg A, in decreasing order of size, with the largest disk at the
bottom of the stack.

You need to move the disks from peg A to peg B, ensuring that at no time a disk is
placed on another disk of smaller size.

Algorithmic Insights Computational Complexity



Review of concepts
Algorithmic Insights

Recursion
Divide and Conquer

The Towers of Hanoi problem

Problem

You are given three pegs, viz., A, B and C.

n disks are stacked on peg A, in decreasing order of size, with the largest disk at the
bottom of the stack.

You need to move the disks from peg A to peg B, ensuring that at no time a disk is
placed on another disk of smaller size.

Algorithmic Insights Computational Complexity



Review of concepts
Algorithmic Insights

Recursion
Divide and Conquer

The Towers of Hanoi problem

Problem

You are given three pegs, viz., A, B and C.

n disks are stacked on peg A, in decreasing order of size, with the largest disk at the
bottom of the stack.

You need to move the disks from peg A to peg B, ensuring that at no time a disk is
placed on another disk of smaller size.

Algorithmic Insights Computational Complexity



Review of concepts
Algorithmic Insights

Recursion
Divide and Conquer

The Towers of Hanoi problem

Problem

You are given three pegs, viz., A, B and C.

n disks are stacked on peg A, in decreasing order of size, with the largest disk at the
bottom of the stack.

You need to move the disks from peg A to peg B, ensuring that at no time a disk is
placed on another disk of smaller size.

Algorithmic Insights Computational Complexity



Review of concepts
Algorithmic Insights

Recursion
Divide and Conquer

The Towers of Hanoi problem

Problem

You are given three pegs, viz., A, B and C.

n disks are stacked on peg A, in decreasing order of size, with the largest disk at the
bottom of the stack.

You need to move the disks from peg A to peg B, ensuring that at no time a disk is
placed on another disk of smaller size.

Algorithmic Insights Computational Complexity



Review of concepts
Algorithmic Insights

Recursion
Divide and Conquer

Algorithm

Main idea

Break the task into three sub-tasks.
1 Move the first (n − 1) disks from A to C, using B.
2 Move the largest disk from A to B.
3 Move the (n − 1) disks from C to B, using A.

Analysis

T (n) =

{
1, if n = 0
2 · T (n − 1) + 1, otherwise

⇒ T (n) = 2n − 1

Algorithmic Insights Computational Complexity



Review of concepts
Algorithmic Insights

Recursion
Divide and Conquer

Algorithm

Main idea

Break the task into three sub-tasks.
1 Move the first (n − 1) disks from A to C, using B.
2 Move the largest disk from A to B.
3 Move the (n − 1) disks from C to B, using A.

Analysis

T (n) =

{
1, if n = 0
2 · T (n − 1) + 1, otherwise

⇒ T (n) = 2n − 1

Algorithmic Insights Computational Complexity



Review of concepts
Algorithmic Insights

Recursion
Divide and Conquer

Algorithm

Main idea

Break the task into three sub-tasks.

1 Move the first (n − 1) disks from A to C, using B.
2 Move the largest disk from A to B.
3 Move the (n − 1) disks from C to B, using A.

Analysis

T (n) =

{
1, if n = 0
2 · T (n − 1) + 1, otherwise

⇒ T (n) = 2n − 1

Algorithmic Insights Computational Complexity



Review of concepts
Algorithmic Insights

Recursion
Divide and Conquer

Algorithm

Main idea

Break the task into three sub-tasks.
1 Move the first (n − 1) disks from A to C, using B.

2 Move the largest disk from A to B.
3 Move the (n − 1) disks from C to B, using A.

Analysis

T (n) =

{
1, if n = 0
2 · T (n − 1) + 1, otherwise

⇒ T (n) = 2n − 1

Algorithmic Insights Computational Complexity



Review of concepts
Algorithmic Insights

Recursion
Divide and Conquer

Algorithm

Main idea

Break the task into three sub-tasks.
1 Move the first (n − 1) disks from A to C, using B.
2 Move the largest disk from A to B.

3 Move the (n − 1) disks from C to B, using A.

Analysis

T (n) =

{
1, if n = 0
2 · T (n − 1) + 1, otherwise

⇒ T (n) = 2n − 1

Algorithmic Insights Computational Complexity



Review of concepts
Algorithmic Insights

Recursion
Divide and Conquer

Algorithm

Main idea

Break the task into three sub-tasks.
1 Move the first (n − 1) disks from A to C, using B.
2 Move the largest disk from A to B.
3 Move the (n − 1) disks from C to B, using A.

Analysis

T (n) =

{
1, if n = 0
2 · T (n − 1) + 1, otherwise

⇒ T (n) = 2n − 1

Algorithmic Insights Computational Complexity



Review of concepts
Algorithmic Insights

Recursion
Divide and Conquer

Algorithm

Main idea

Break the task into three sub-tasks.
1 Move the first (n − 1) disks from A to C, using B.
2 Move the largest disk from A to B.
3 Move the (n − 1) disks from C to B, using A.

Analysis

T (n) =

{
1, if n = 0
2 · T (n − 1) + 1, otherwise

⇒ T (n) = 2n − 1

Algorithmic Insights Computational Complexity



Review of concepts
Algorithmic Insights

Recursion
Divide and Conquer

Algorithm

Main idea

Break the task into three sub-tasks.
1 Move the first (n − 1) disks from A to C, using B.
2 Move the largest disk from A to B.
3 Move the (n − 1) disks from C to B, using A.

Analysis

T (n) =

{
1, if n = 0

2 · T (n − 1) + 1, otherwise
⇒ T (n) = 2n − 1

Algorithmic Insights Computational Complexity



Review of concepts
Algorithmic Insights

Recursion
Divide and Conquer

Algorithm

Main idea

Break the task into three sub-tasks.
1 Move the first (n − 1) disks from A to C, using B.
2 Move the largest disk from A to B.
3 Move the (n − 1) disks from C to B, using A.

Analysis

T (n) =

{
1, if n = 0
2 · T (n − 1) + 1, otherwise

⇒ T (n) = 2n − 1

Algorithmic Insights Computational Complexity



Review of concepts
Algorithmic Insights

Recursion
Divide and Conquer

Algorithm

Main idea

Break the task into three sub-tasks.
1 Move the first (n − 1) disks from A to C, using B.
2 Move the largest disk from A to B.
3 Move the (n − 1) disks from C to B, using A.

Analysis

T (n) =

{
1, if n = 0
2 · T (n − 1) + 1, otherwise

⇒ T (n) = 2n − 1

Algorithmic Insights Computational Complexity



Review of concepts
Algorithmic Insights

Recursion
Divide and Conquer

Approach

Main Concepts

Some problems can be broken up into independent sub-problems
1 Divide the problem into smaller sub-problems.
2 Conquer the sub-problems either through recursion or through brute-force.
3 Combine the solutions to the sub-problems to get the solution of the original

problem.

Algorithmic Insights Computational Complexity



Review of concepts
Algorithmic Insights

Recursion
Divide and Conquer

Approach

Main Concepts

Some problems can be broken up into independent sub-problems
1 Divide the problem into smaller sub-problems.
2 Conquer the sub-problems either through recursion or through brute-force.
3 Combine the solutions to the sub-problems to get the solution of the original

problem.

Algorithmic Insights Computational Complexity



Review of concepts
Algorithmic Insights

Recursion
Divide and Conquer

Approach

Main Concepts

Some problems can be broken up into independent sub-problems

1 Divide the problem into smaller sub-problems.
2 Conquer the sub-problems either through recursion or through brute-force.
3 Combine the solutions to the sub-problems to get the solution of the original

problem.

Algorithmic Insights Computational Complexity



Review of concepts
Algorithmic Insights

Recursion
Divide and Conquer

Approach

Main Concepts

Some problems can be broken up into independent sub-problems
1 Divide the problem into smaller sub-problems.

2 Conquer the sub-problems either through recursion or through brute-force.
3 Combine the solutions to the sub-problems to get the solution of the original

problem.

Algorithmic Insights Computational Complexity



Review of concepts
Algorithmic Insights

Recursion
Divide and Conquer

Approach

Main Concepts

Some problems can be broken up into independent sub-problems
1 Divide the problem into smaller sub-problems.
2 Conquer the sub-problems either through recursion or through brute-force.

3 Combine the solutions to the sub-problems to get the solution of the original
problem.

Algorithmic Insights Computational Complexity



Review of concepts
Algorithmic Insights

Recursion
Divide and Conquer

Approach

Main Concepts

Some problems can be broken up into independent sub-problems
1 Divide the problem into smaller sub-problems.
2 Conquer the sub-problems either through recursion or through brute-force.
3 Combine the solutions to the sub-problems to get the solution of the original

problem.

Algorithmic Insights Computational Complexity



Review of concepts
Algorithmic Insights

Recursion
Divide and Conquer

Divide and Conquer

The Master Theorem

Let a be an integer greater than or equal to 1 and b be a real number greater than 1.

Let f (n) be an increasing function of n and d a nonnegative real number.

Consider a recurrence of the form:

T (n) =

a · T (
n
b

) + f (n), if n > 1

d , if n = 1

Then,
1 If f (n) = Θ(nc), where logb a < c, then T (n) = Θ(nc).
2 If f (n) = Θ(nc), where logb a = c, then T (n) = Θ(nlogb a · logb n).
3 If f (n) = Θ(nc), where logb a > c, then T (n) = Θ(nlogb a).

Algorithmic Insights Computational Complexity



Review of concepts
Algorithmic Insights

Recursion
Divide and Conquer

Divide and Conquer

The Master Theorem

Let a be an integer greater than or equal to 1 and b be a real number greater than 1.

Let f (n) be an increasing function of n and d a nonnegative real number.

Consider a recurrence of the form:

T (n) =

a · T (
n
b

) + f (n), if n > 1

d , if n = 1

Then,
1 If f (n) = Θ(nc), where logb a < c, then T (n) = Θ(nc).
2 If f (n) = Θ(nc), where logb a = c, then T (n) = Θ(nlogb a · logb n).
3 If f (n) = Θ(nc), where logb a > c, then T (n) = Θ(nlogb a).

Algorithmic Insights Computational Complexity



Review of concepts
Algorithmic Insights

Recursion
Divide and Conquer

Divide and Conquer

The Master Theorem

Let a be an integer greater than or equal to 1 and b be a real number greater than 1.

Let f (n) be an increasing function of n and d a nonnegative real number.

Consider a recurrence of the form:

T (n) =

a · T (
n
b

) + f (n), if n > 1

d , if n = 1

Then,
1 If f (n) = Θ(nc), where logb a < c, then T (n) = Θ(nc).
2 If f (n) = Θ(nc), where logb a = c, then T (n) = Θ(nlogb a · logb n).
3 If f (n) = Θ(nc), where logb a > c, then T (n) = Θ(nlogb a).

Algorithmic Insights Computational Complexity



Review of concepts
Algorithmic Insights

Recursion
Divide and Conquer

Divide and Conquer

The Master Theorem

Let a be an integer greater than or equal to 1 and b be a real number greater than 1.

Let f (n) be an increasing function of n and d a nonnegative real number.

Consider a recurrence of the form:

T (n) =

a · T (
n
b

) + f (n), if n > 1

d , if n = 1

Then,
1 If f (n) = Θ(nc), where logb a < c, then T (n) = Θ(nc).
2 If f (n) = Θ(nc), where logb a = c, then T (n) = Θ(nlogb a · logb n).
3 If f (n) = Θ(nc), where logb a > c, then T (n) = Θ(nlogb a).

Algorithmic Insights Computational Complexity



Review of concepts
Algorithmic Insights

Recursion
Divide and Conquer

Divide and Conquer

The Master Theorem

Let a be an integer greater than or equal to 1 and b be a real number greater than 1.

Let f (n) be an increasing function of n and d a nonnegative real number.

Consider a recurrence of the form:

T (n) =

a · T (
n
b

) + f (n), if n > 1

d , if n = 1

Then,
1 If f (n) = Θ(nc), where logb a < c, then T (n) = Θ(nc).
2 If f (n) = Θ(nc), where logb a = c, then T (n) = Θ(nlogb a · logb n).
3 If f (n) = Θ(nc), where logb a > c, then T (n) = Θ(nlogb a).

Algorithmic Insights Computational Complexity



Review of concepts
Algorithmic Insights

Recursion
Divide and Conquer

Divide and Conquer

The Master Theorem

Let a be an integer greater than or equal to 1 and b be a real number greater than 1.

Let f (n) be an increasing function of n and d a nonnegative real number.

Consider a recurrence of the form:

T (n) =

a · T (
n
b

) + f (n), if n > 1

d , if n = 1

Then,

1 If f (n) = Θ(nc), where logb a < c, then T (n) = Θ(nc).
2 If f (n) = Θ(nc), where logb a = c, then T (n) = Θ(nlogb a · logb n).
3 If f (n) = Θ(nc), where logb a > c, then T (n) = Θ(nlogb a).

Algorithmic Insights Computational Complexity



Review of concepts
Algorithmic Insights

Recursion
Divide and Conquer

Divide and Conquer

The Master Theorem

Let a be an integer greater than or equal to 1 and b be a real number greater than 1.

Let f (n) be an increasing function of n and d a nonnegative real number.

Consider a recurrence of the form:

T (n) =

a · T (
n
b

) + f (n), if n > 1

d , if n = 1

Then,
1 If f (n) = Θ(nc), where logb a < c, then T (n) = Θ(nc).

2 If f (n) = Θ(nc), where logb a = c, then T (n) = Θ(nlogb a · logb n).
3 If f (n) = Θ(nc), where logb a > c, then T (n) = Θ(nlogb a).

Algorithmic Insights Computational Complexity



Review of concepts
Algorithmic Insights

Recursion
Divide and Conquer

Divide and Conquer

The Master Theorem

Let a be an integer greater than or equal to 1 and b be a real number greater than 1.

Let f (n) be an increasing function of n and d a nonnegative real number.

Consider a recurrence of the form:

T (n) =

a · T (
n
b

) + f (n), if n > 1

d , if n = 1

Then,
1 If f (n) = Θ(nc), where logb a < c, then T (n) = Θ(nc).
2 If f (n) = Θ(nc), where logb a = c, then T (n) = Θ(nlogb a · logb n).

3 If f (n) = Θ(nc), where logb a > c, then T (n) = Θ(nlogb a).

Algorithmic Insights Computational Complexity



Review of concepts
Algorithmic Insights

Recursion
Divide and Conquer

Divide and Conquer

The Master Theorem

Let a be an integer greater than or equal to 1 and b be a real number greater than 1.

Let f (n) be an increasing function of n and d a nonnegative real number.

Consider a recurrence of the form:

T (n) =

a · T (
n
b

) + f (n), if n > 1

d , if n = 1

Then,
1 If f (n) = Θ(nc), where logb a < c, then T (n) = Θ(nc).
2 If f (n) = Θ(nc), where logb a = c, then T (n) = Θ(nlogb a · logb n).
3 If f (n) = Θ(nc), where logb a > c, then T (n) = Θ(nlogb a).

Algorithmic Insights Computational Complexity



Review of concepts
Algorithmic Insights

Recursion
Divide and Conquer

The Merge-Sort Algorithm

Sorting through Merging

Function MERGE-SORT(A, low , high)

if (low < high) then
mid = low+high

2 .
MERGE-SORT(A, low ,mid).
MERGE-SORT(A,mid + 1, high).
MERGE(A, low ,mid , high).

end if

Algorithm 5.1: MergeSort

Algorithmic Insights Computational Complexity



Review of concepts
Algorithmic Insights

Recursion
Divide and Conquer

The Merge-Sort Algorithm

Sorting through Merging

Function MERGE-SORT(A, low , high)

if (low < high) then
mid = low+high

2 .
MERGE-SORT(A, low ,mid).
MERGE-SORT(A,mid + 1, high).
MERGE(A, low ,mid , high).

end if

Algorithm 5.2: MergeSort

Algorithmic Insights Computational Complexity



Review of concepts
Algorithmic Insights

Recursion
Divide and Conquer

The Merge-Sort Algorithm

Sorting through Merging

Function MERGE-SORT(A, low , high)

if (low < high) then

mid = low+high
2 .

MERGE-SORT(A, low ,mid).
MERGE-SORT(A,mid + 1, high).
MERGE(A, low ,mid , high).

end if

Algorithm 5.3: MergeSort

Algorithmic Insights Computational Complexity



Review of concepts
Algorithmic Insights

Recursion
Divide and Conquer

The Merge-Sort Algorithm

Sorting through Merging

Function MERGE-SORT(A, low , high)

if (low < high) then
mid = low+high

2 .

MERGE-SORT(A, low ,mid).
MERGE-SORT(A,mid + 1, high).
MERGE(A, low ,mid , high).

end if

Algorithm 5.4: MergeSort

Algorithmic Insights Computational Complexity



Review of concepts
Algorithmic Insights

Recursion
Divide and Conquer

The Merge-Sort Algorithm

Sorting through Merging

Function MERGE-SORT(A, low , high)

if (low < high) then
mid = low+high

2 .
MERGE-SORT(A, low ,mid).

MERGE-SORT(A,mid + 1, high).
MERGE(A, low ,mid , high).

end if

Algorithm 5.5: MergeSort

Algorithmic Insights Computational Complexity



Review of concepts
Algorithmic Insights

Recursion
Divide and Conquer

The Merge-Sort Algorithm

Sorting through Merging

Function MERGE-SORT(A, low , high)

if (low < high) then
mid = low+high

2 .
MERGE-SORT(A, low ,mid).
MERGE-SORT(A,mid + 1, high).

MERGE(A, low ,mid , high).
end if

Algorithm 5.6: MergeSort

Algorithmic Insights Computational Complexity



Review of concepts
Algorithmic Insights

Recursion
Divide and Conquer

The Merge-Sort Algorithm

Sorting through Merging

Function MERGE-SORT(A, low , high)

if (low < high) then
mid = low+high

2 .
MERGE-SORT(A, low ,mid).
MERGE-SORT(A,mid + 1, high).
MERGE(A, low ,mid , high).

end if

Algorithm 5.7: MergeSort

Algorithmic Insights Computational Complexity



Review of concepts
Algorithmic Insights

Recursion
Divide and Conquer

The Merge-Sort Algorithm

Sorting through Merging

Function MERGE-SORT(A, low , high)

if (low < high) then
mid = low+high

2 .
MERGE-SORT(A, low ,mid).
MERGE-SORT(A,mid + 1, high).
MERGE(A, low ,mid , high).

end if

Algorithm 5.8: MergeSort

Algorithmic Insights Computational Complexity



Review of concepts
Algorithmic Insights

Recursion
Divide and Conquer

Analyzing Time and Space

Analysis

T (n) = 2 · T (
n
2

) + n

∈ Θ(n · log n)

S(n) ∈ Θ(n)

Algorithmic Insights Computational Complexity



Review of concepts
Algorithmic Insights

Recursion
Divide and Conquer

Analyzing Time and Space

Analysis

T (n) = 2 · T (
n
2

) + n

∈ Θ(n · log n)

S(n) ∈ Θ(n)

Algorithmic Insights Computational Complexity



Review of concepts
Algorithmic Insights

Recursion
Divide and Conquer

Analyzing Time and Space

Analysis

T (n) =

2 · T (
n
2

) + n

∈ Θ(n · log n)

S(n) ∈ Θ(n)

Algorithmic Insights Computational Complexity



Review of concepts
Algorithmic Insights

Recursion
Divide and Conquer

Analyzing Time and Space

Analysis

T (n) = 2 · T (
n
2

) + n

∈ Θ(n · log n)

S(n) ∈ Θ(n)

Algorithmic Insights Computational Complexity



Review of concepts
Algorithmic Insights

Recursion
Divide and Conquer

Analyzing Time and Space

Analysis

T (n) = 2 · T (
n
2

) + n

∈ Θ(n · log n)

S(n) ∈ Θ(n)

Algorithmic Insights Computational Complexity



Review of concepts
Algorithmic Insights

Recursion
Divide and Conquer

Analyzing Time and Space

Analysis

T (n) = 2 · T (
n
2

) + n

∈ Θ(n · log n)

S(n) ∈ Θ(n)

Algorithmic Insights Computational Complexity



Review of concepts
Algorithmic Insights

Recursion
Divide and Conquer

The Quick-Sort Algorithm

Sorting through Partitioning

Function QUICK-SORT(A, low , high)
if (low < high) then

Partition A about A[low ].
Let j denote the index of A[low ] after partitioning.
QUICK-SORT(A, low , j − 1).
QUICK-SORT(A, j + 1, high).

end if

Algorithm 5.9: Quicksort

Analysis (Space)

Quick-Sort() uses O(1) extra space. Partitioning can be done in-place.

Algorithmic Insights Computational Complexity



Review of concepts
Algorithmic Insights

Recursion
Divide and Conquer

The Quick-Sort Algorithm

Sorting through Partitioning

Function QUICK-SORT(A, low , high)

if (low < high) then
Partition A about A[low ].
Let j denote the index of A[low ] after partitioning.
QUICK-SORT(A, low , j − 1).
QUICK-SORT(A, j + 1, high).

end if

Algorithm 5.10: Quicksort

Analysis (Space)

Quick-Sort() uses O(1) extra space. Partitioning can be done in-place.

Algorithmic Insights Computational Complexity



Review of concepts
Algorithmic Insights

Recursion
Divide and Conquer

The Quick-Sort Algorithm

Sorting through Partitioning

Function QUICK-SORT(A, low , high)
if (low < high) then

Partition A about A[low ].
Let j denote the index of A[low ] after partitioning.
QUICK-SORT(A, low , j − 1).
QUICK-SORT(A, j + 1, high).

end if

Algorithm 5.11: Quicksort

Analysis (Space)

Quick-Sort() uses O(1) extra space. Partitioning can be done in-place.

Algorithmic Insights Computational Complexity



Review of concepts
Algorithmic Insights

Recursion
Divide and Conquer

The Quick-Sort Algorithm

Sorting through Partitioning

Function QUICK-SORT(A, low , high)
if (low < high) then

Partition A about A[low ].

Let j denote the index of A[low ] after partitioning.
QUICK-SORT(A, low , j − 1).
QUICK-SORT(A, j + 1, high).

end if

Algorithm 5.12: Quicksort

Analysis (Space)

Quick-Sort() uses O(1) extra space. Partitioning can be done in-place.

Algorithmic Insights Computational Complexity



Review of concepts
Algorithmic Insights

Recursion
Divide and Conquer

The Quick-Sort Algorithm

Sorting through Partitioning

Function QUICK-SORT(A, low , high)
if (low < high) then

Partition A about A[low ].
Let j denote the index of A[low ] after partitioning.

QUICK-SORT(A, low , j − 1).
QUICK-SORT(A, j + 1, high).

end if

Algorithm 5.13: Quicksort

Analysis (Space)

Quick-Sort() uses O(1) extra space. Partitioning can be done in-place.

Algorithmic Insights Computational Complexity



Review of concepts
Algorithmic Insights

Recursion
Divide and Conquer

The Quick-Sort Algorithm

Sorting through Partitioning

Function QUICK-SORT(A, low , high)
if (low < high) then

Partition A about A[low ].
Let j denote the index of A[low ] after partitioning.
QUICK-SORT(A, low , j − 1).

QUICK-SORT(A, j + 1, high).
end if

Algorithm 5.14: Quicksort

Analysis (Space)

Quick-Sort() uses O(1) extra space. Partitioning can be done in-place.

Algorithmic Insights Computational Complexity



Review of concepts
Algorithmic Insights

Recursion
Divide and Conquer

The Quick-Sort Algorithm

Sorting through Partitioning

Function QUICK-SORT(A, low , high)
if (low < high) then

Partition A about A[low ].
Let j denote the index of A[low ] after partitioning.
QUICK-SORT(A, low , j − 1).
QUICK-SORT(A, j + 1, high).

end if

Algorithm 5.15: Quicksort

Analysis (Space)

Quick-Sort() uses O(1) extra space. Partitioning can be done in-place.

Algorithmic Insights Computational Complexity



Review of concepts
Algorithmic Insights

Recursion
Divide and Conquer

The Quick-Sort Algorithm

Sorting through Partitioning

Function QUICK-SORT(A, low , high)
if (low < high) then

Partition A about A[low ].
Let j denote the index of A[low ] after partitioning.
QUICK-SORT(A, low , j − 1).
QUICK-SORT(A, j + 1, high).

end if

Algorithm 5.16: Quicksort

Analysis (Space)

Quick-Sort() uses O(1) extra space. Partitioning can be done in-place.

Algorithmic Insights Computational Complexity



Review of concepts
Algorithmic Insights

Recursion
Divide and Conquer

The Quick-Sort Algorithm

Sorting through Partitioning

Function QUICK-SORT(A, low , high)
if (low < high) then

Partition A about A[low ].
Let j denote the index of A[low ] after partitioning.
QUICK-SORT(A, low , j − 1).
QUICK-SORT(A, j + 1, high).

end if

Algorithm 5.17: Quicksort

Analysis (Space)

Quick-Sort() uses O(1) extra space. Partitioning can be done in-place.

Algorithmic Insights Computational Complexity



Review of concepts
Algorithmic Insights

Recursion
Divide and Conquer

The Quick-Sort Algorithm

Sorting through Partitioning

Function QUICK-SORT(A, low , high)
if (low < high) then

Partition A about A[low ].
Let j denote the index of A[low ] after partitioning.
QUICK-SORT(A, low , j − 1).
QUICK-SORT(A, j + 1, high).

end if

Algorithm 5.18: Quicksort

Analysis (Space)

Quick-Sort() uses O(1) extra space.

Partitioning can be done in-place.

Algorithmic Insights Computational Complexity



Review of concepts
Algorithmic Insights

Recursion
Divide and Conquer

The Quick-Sort Algorithm

Sorting through Partitioning

Function QUICK-SORT(A, low , high)
if (low < high) then

Partition A about A[low ].
Let j denote the index of A[low ] after partitioning.
QUICK-SORT(A, low , j − 1).
QUICK-SORT(A, j + 1, high).

end if

Algorithm 5.19: Quicksort

Analysis (Space)

Quick-Sort() uses O(1) extra space. Partitioning can be done in-place.

Algorithmic Insights Computational Complexity



Review of concepts
Algorithmic Insights

Recursion
Divide and Conquer

Analysis of running time

Best Case

T (n) = 2 · T (
n − 1

2
) + (n − 1)

∈ Θ(n · log n)

Worst-case

T (n) = T (n − 1) + (n − 1)

∈ Θ(n2)

Algorithmic Insights Computational Complexity



Review of concepts
Algorithmic Insights

Recursion
Divide and Conquer

Analysis of running time

Best Case

T (n) = 2 · T (
n − 1

2
) + (n − 1)

∈ Θ(n · log n)

Worst-case

T (n) = T (n − 1) + (n − 1)

∈ Θ(n2)

Algorithmic Insights Computational Complexity



Review of concepts
Algorithmic Insights

Recursion
Divide and Conquer

Analysis of running time

Best Case

T (n) =

2 · T (
n − 1

2
) + (n − 1)

∈ Θ(n · log n)

Worst-case

T (n) = T (n − 1) + (n − 1)

∈ Θ(n2)

Algorithmic Insights Computational Complexity



Review of concepts
Algorithmic Insights

Recursion
Divide and Conquer

Analysis of running time

Best Case

T (n) = 2 · T (
n − 1

2
) + (n − 1)

∈ Θ(n · log n)

Worst-case

T (n) = T (n − 1) + (n − 1)

∈ Θ(n2)

Algorithmic Insights Computational Complexity



Review of concepts
Algorithmic Insights

Recursion
Divide and Conquer

Analysis of running time

Best Case

T (n) = 2 · T (
n − 1

2
) + (n − 1)

∈ Θ(n · log n)

Worst-case

T (n) = T (n − 1) + (n − 1)

∈ Θ(n2)

Algorithmic Insights Computational Complexity



Review of concepts
Algorithmic Insights

Recursion
Divide and Conquer

Analysis of running time

Best Case

T (n) = 2 · T (
n − 1

2
) + (n − 1)

∈ Θ(n · log n)

Worst-case

T (n) = T (n − 1) + (n − 1)

∈ Θ(n2)

Algorithmic Insights Computational Complexity



Review of concepts
Algorithmic Insights

Recursion
Divide and Conquer

Analysis of running time

Best Case

T (n) = 2 · T (
n − 1

2
) + (n − 1)

∈ Θ(n · log n)

Worst-case

T (n) =

T (n − 1) + (n − 1)

∈ Θ(n2)

Algorithmic Insights Computational Complexity



Review of concepts
Algorithmic Insights

Recursion
Divide and Conquer

Analysis of running time

Best Case

T (n) = 2 · T (
n − 1

2
) + (n − 1)

∈ Θ(n · log n)

Worst-case

T (n) = T (n − 1) + (n − 1)

∈ Θ(n2)

Algorithmic Insights Computational Complexity



Review of concepts
Algorithmic Insights

Recursion
Divide and Conquer

Analysis of running time

Best Case

T (n) = 2 · T (
n − 1

2
) + (n − 1)

∈ Θ(n · log n)

Worst-case

T (n) = T (n − 1) + (n − 1)

∈ Θ(n2)

Algorithmic Insights Computational Complexity



Review of concepts
Algorithmic Insights

Recursion
Divide and Conquer

Average case analysis

Average case

T (n) = (n − 1) +
1
n
·

n∑
r=1

[T (r − 1) + T (n − r)]

= (n − 1) +
2
n

cot
n∑

r=1

T (r − 1)

≈ 2 · n · ln n

Algorithmic Insights Computational Complexity



Review of concepts
Algorithmic Insights

Recursion
Divide and Conquer

Average case analysis

Average case

T (n) =

(n − 1) +
1
n
·

n∑
r=1

[T (r − 1) + T (n − r)]

= (n − 1) +
2
n

cot
n∑

r=1

T (r − 1)

≈ 2 · n · ln n

Algorithmic Insights Computational Complexity



Review of concepts
Algorithmic Insights

Recursion
Divide and Conquer

Average case analysis

Average case

T (n) = (n − 1) +
1
n
·

n∑
r=1

[T (r − 1) + T (n − r)]

= (n − 1) +
2
n

cot
n∑

r=1

T (r − 1)

≈ 2 · n · ln n

Algorithmic Insights Computational Complexity



Review of concepts
Algorithmic Insights

Recursion
Divide and Conquer

Average case analysis

Average case

T (n) = (n − 1) +
1
n
·

n∑
r=1

[T (r − 1) + T (n − r)]

= (n − 1) +

2
n

cot
n∑

r=1

T (r − 1)

≈ 2 · n · ln n

Algorithmic Insights Computational Complexity



Review of concepts
Algorithmic Insights

Recursion
Divide and Conquer

Average case analysis

Average case

T (n) = (n − 1) +
1
n
·

n∑
r=1

[T (r − 1) + T (n − r)]

= (n − 1) +
2
n

cot
n∑

r=1

T (r − 1)

≈ 2 · n · ln n

Algorithmic Insights Computational Complexity



Review of concepts
Algorithmic Insights

Recursion
Divide and Conquer

Average case analysis

Average case

T (n) = (n − 1) +
1
n
·

n∑
r=1

[T (r − 1) + T (n − r)]

= (n − 1) +
2
n

cot
n∑

r=1

T (r − 1)

≈ 2 · n · ln n

Algorithmic Insights Computational Complexity



Review of concepts
Algorithmic Insights

Recursion
Divide and Conquer

Modular Exponentiation

Problem

Given two n digit integers x and y, compute xy mod p. Useful in cryptography and
primality checking.

Approach I

Function MOD-EXP(x , y , p)
if (y = 0) then

return(1).
end if
r = 1.
for (i = 1 to y ) do

r = x · r mod p .
end for
return(y ).

Algorithm 5.20: Modular Exponentiation

Algorithmic Insights Computational Complexity



Review of concepts
Algorithmic Insights

Recursion
Divide and Conquer

Modular Exponentiation

Problem

Given two n digit integers x and y, compute xy mod p. Useful in cryptography and
primality checking.

Approach I

Function MOD-EXP(x , y , p)
if (y = 0) then

return(1).
end if
r = 1.
for (i = 1 to y ) do

r = x · r mod p .
end for
return(y ).

Algorithm 5.21: Modular Exponentiation

Algorithmic Insights Computational Complexity



Review of concepts
Algorithmic Insights

Recursion
Divide and Conquer

Modular Exponentiation

Problem

Given two n digit integers x and y, compute xy mod p.

Useful in cryptography and
primality checking.

Approach I

Function MOD-EXP(x , y , p)
if (y = 0) then

return(1).
end if
r = 1.
for (i = 1 to y ) do

r = x · r mod p .
end for
return(y ).

Algorithm 5.22: Modular Exponentiation

Algorithmic Insights Computational Complexity



Review of concepts
Algorithmic Insights

Recursion
Divide and Conquer

Modular Exponentiation

Problem

Given two n digit integers x and y, compute xy mod p. Useful in cryptography and
primality checking.

Approach I

Function MOD-EXP(x , y , p)
if (y = 0) then

return(1).
end if
r = 1.
for (i = 1 to y ) do

r = x · r mod p .
end for
return(y ).

Algorithm 5.23: Modular Exponentiation

Algorithmic Insights Computational Complexity



Review of concepts
Algorithmic Insights

Recursion
Divide and Conquer

Modular Exponentiation

Problem

Given two n digit integers x and y, compute xy mod p. Useful in cryptography and
primality checking.

Approach I

Function MOD-EXP(x , y , p)
if (y = 0) then

return(1).
end if
r = 1.
for (i = 1 to y ) do

r = x · r mod p .
end for
return(y ).

Algorithm 5.24: Modular Exponentiation

Algorithmic Insights Computational Complexity



Review of concepts
Algorithmic Insights

Recursion
Divide and Conquer

Time Analysis

Analysis

Assuming x and y have n digits, the number of multiplications is proportional to y ,
which is exponentially large!

Algorithmic Insights Computational Complexity



Review of concepts
Algorithmic Insights

Recursion
Divide and Conquer

Time Analysis

Analysis

Assuming x and y have n digits, the number of multiplications is proportional to y ,
which is exponentially large!

Algorithmic Insights Computational Complexity



Review of concepts
Algorithmic Insights

Recursion
Divide and Conquer

Time Analysis

Analysis

Assuming x and y have n digits, the number of multiplications is proportional to

y ,
which is exponentially large!

Algorithmic Insights Computational Complexity



Review of concepts
Algorithmic Insights

Recursion
Divide and Conquer

Time Analysis

Analysis

Assuming x and y have n digits, the number of multiplications is proportional to y ,
which is exponentially large!

Algorithmic Insights Computational Complexity



Review of concepts
Algorithmic Insights

Recursion
Divide and Conquer

A better approach

Approach II

Function MOD-EXP(x , y , p)
if (y = 0) then

return(1).
else

t =MOD-EXP(x , b y
2 c, p).

if (y is even) then
return(t2 mod p).

else
return(x · t2 mod p).

end if
end if

Algorithm 5.25: Faster Modular Exponentiation

Algorithmic Insights Computational Complexity



Review of concepts
Algorithmic Insights

Recursion
Divide and Conquer

A better approach

Approach II

Function MOD-EXP(x , y , p)

if (y = 0) then
return(1).

else
t =MOD-EXP(x , b y

2 c, p).
if (y is even) then

return(t2 mod p).
else

return(x · t2 mod p).
end if

end if

Algorithm 5.26: Faster Modular Exponentiation

Algorithmic Insights Computational Complexity



Review of concepts
Algorithmic Insights

Recursion
Divide and Conquer

A better approach

Approach II

Function MOD-EXP(x , y , p)
if (y = 0) then

return(1).
else

t =MOD-EXP(x , b y
2 c, p).

if (y is even) then
return(t2 mod p).

else
return(x · t2 mod p).

end if
end if

Algorithm 5.27: Faster Modular Exponentiation

Algorithmic Insights Computational Complexity



Review of concepts
Algorithmic Insights

Recursion
Divide and Conquer

A better approach

Approach II

Function MOD-EXP(x , y , p)
if (y = 0) then

return(1).

else
t =MOD-EXP(x , b y

2 c, p).
if (y is even) then

return(t2 mod p).
else

return(x · t2 mod p).
end if

end if

Algorithm 5.28: Faster Modular Exponentiation

Algorithmic Insights Computational Complexity



Review of concepts
Algorithmic Insights

Recursion
Divide and Conquer

A better approach

Approach II

Function MOD-EXP(x , y , p)
if (y = 0) then

return(1).
else

t =MOD-EXP(x , b y
2 c, p).

if (y is even) then
return(t2 mod p).

else
return(x · t2 mod p).

end if
end if

Algorithm 5.29: Faster Modular Exponentiation

Algorithmic Insights Computational Complexity



Review of concepts
Algorithmic Insights

Recursion
Divide and Conquer

A better approach

Approach II

Function MOD-EXP(x , y , p)
if (y = 0) then

return(1).
else

t =MOD-EXP(x , b y
2 c, p).

if (y is even) then
return(t2 mod p).

else
return(x · t2 mod p).

end if
end if

Algorithm 5.30: Faster Modular Exponentiation

Algorithmic Insights Computational Complexity



Review of concepts
Algorithmic Insights

Recursion
Divide and Conquer

A better approach

Approach II

Function MOD-EXP(x , y , p)
if (y = 0) then

return(1).
else

t =MOD-EXP(x , b y
2 c, p).

if (y is even) then

return(t2 mod p).
else

return(x · t2 mod p).
end if

end if

Algorithm 5.31: Faster Modular Exponentiation

Algorithmic Insights Computational Complexity



Review of concepts
Algorithmic Insights

Recursion
Divide and Conquer

A better approach

Approach II

Function MOD-EXP(x , y , p)
if (y = 0) then

return(1).
else

t =MOD-EXP(x , b y
2 c, p).

if (y is even) then
return(t2 mod p).

else
return(x · t2 mod p).

end if
end if

Algorithm 5.32: Faster Modular Exponentiation

Algorithmic Insights Computational Complexity



Review of concepts
Algorithmic Insights

Recursion
Divide and Conquer

A better approach

Approach II

Function MOD-EXP(x , y , p)
if (y = 0) then

return(1).
else

t =MOD-EXP(x , b y
2 c, p).

if (y is even) then
return(t2 mod p).

else

return(x · t2 mod p).
end if

end if

Algorithm 5.33: Faster Modular Exponentiation

Algorithmic Insights Computational Complexity



Review of concepts
Algorithmic Insights

Recursion
Divide and Conquer

A better approach

Approach II

Function MOD-EXP(x , y , p)
if (y = 0) then

return(1).
else

t =MOD-EXP(x , b y
2 c, p).

if (y is even) then
return(t2 mod p).

else
return(x · t2 mod p).

end if
end if

Algorithm 5.34: Faster Modular Exponentiation

Algorithmic Insights Computational Complexity



Review of concepts
Algorithmic Insights

Recursion
Divide and Conquer

A better approach

Approach II

Function MOD-EXP(x , y , p)
if (y = 0) then

return(1).
else

t =MOD-EXP(x , b y
2 c, p).

if (y is even) then
return(t2 mod p).

else
return(x · t2 mod p).

end if

end if

Algorithm 5.35: Faster Modular Exponentiation

Algorithmic Insights Computational Complexity



Review of concepts
Algorithmic Insights

Recursion
Divide and Conquer

A better approach

Approach II

Function MOD-EXP(x , y , p)
if (y = 0) then

return(1).
else

t =MOD-EXP(x , b y
2 c, p).

if (y is even) then
return(t2 mod p).

else
return(x · t2 mod p).

end if
end if

Algorithm 5.36: Faster Modular Exponentiation

Algorithmic Insights Computational Complexity



Review of concepts
Algorithmic Insights

Recursion
Divide and Conquer

Time Analysis

Analysis

If y is a power of 2, it is clear that,

T (n) = T (
n
2

) + 1

= log2 n

If n is not a power of 2, find all the powers of x up to the largest power of 2 less than y .

Then combine these products to get xy mod p.

The number of multiplications is still O(log2 n).

Algorithmic Insights Computational Complexity



Review of concepts
Algorithmic Insights

Recursion
Divide and Conquer

Time Analysis

Analysis

If y is a power of 2, it is clear that,

T (n) = T (
n
2

) + 1

= log2 n

If n is not a power of 2, find all the powers of x up to the largest power of 2 less than y .

Then combine these products to get xy mod p.

The number of multiplications is still O(log2 n).

Algorithmic Insights Computational Complexity



Review of concepts
Algorithmic Insights

Recursion
Divide and Conquer

Time Analysis

Analysis

If y is a power of 2, it is clear that,

T (n) = T (
n
2

) + 1

= log2 n

If n is not a power of 2, find all the powers of x up to the largest power of 2 less than y .

Then combine these products to get xy mod p.

The number of multiplications is still O(log2 n).

Algorithmic Insights Computational Complexity



Review of concepts
Algorithmic Insights

Recursion
Divide and Conquer

Time Analysis

Analysis

If y is a power of 2, it is clear that,

T (n) =

T (
n
2

) + 1

= log2 n

If n is not a power of 2, find all the powers of x up to the largest power of 2 less than y .

Then combine these products to get xy mod p.

The number of multiplications is still O(log2 n).

Algorithmic Insights Computational Complexity



Review of concepts
Algorithmic Insights

Recursion
Divide and Conquer

Time Analysis

Analysis

If y is a power of 2, it is clear that,

T (n) = T (
n
2

) + 1

= log2 n

If n is not a power of 2, find all the powers of x up to the largest power of 2 less than y .

Then combine these products to get xy mod p.

The number of multiplications is still O(log2 n).

Algorithmic Insights Computational Complexity



Review of concepts
Algorithmic Insights

Recursion
Divide and Conquer

Time Analysis

Analysis

If y is a power of 2, it is clear that,

T (n) = T (
n
2

) + 1

= log2 n

If n is not a power of 2, find all the powers of x up to the largest power of 2 less than y .

Then combine these products to get xy mod p.

The number of multiplications is still O(log2 n).

Algorithmic Insights Computational Complexity



Review of concepts
Algorithmic Insights

Recursion
Divide and Conquer

Time Analysis

Analysis

If y is a power of 2, it is clear that,

T (n) = T (
n
2

) + 1

= log2 n

If n is not a power of 2, find all the powers of x up to the largest power of 2 less than y .

Then combine these products to get xy mod p.

The number of multiplications is still O(log2 n).

Algorithmic Insights Computational Complexity



Review of concepts
Algorithmic Insights

Recursion
Divide and Conquer

Time Analysis

Analysis

If y is a power of 2, it is clear that,

T (n) = T (
n
2

) + 1

= log2 n

If n is not a power of 2, find all the powers of x up to the largest power of 2 less than y .

Then combine these products to get xy mod p.

The number of multiplications is still O(log2 n).

Algorithmic Insights Computational Complexity



Review of concepts
Algorithmic Insights

Recursion
Divide and Conquer

Time Analysis

Analysis

If y is a power of 2, it is clear that,

T (n) = T (
n
2

) + 1

= log2 n

If n is not a power of 2, find all the powers of x up to the largest power of 2 less than y .

Then combine these products to get xy mod p.

The number of multiplications is still O(log2 n).

Algorithmic Insights Computational Complexity



Review of concepts
Algorithmic Insights

Recursion
Divide and Conquer

Matrix multiplication

Problem

Given two square n × n matrices A and B, compute their product C = A · B.

Approach I

1 Compute Cij as the dot product between the i th row vector from A (ai) and the j th
column of B (bj).

Analysis

Computing each product takes Θ(n) multiplications and Θ(n) additions.

Since there are n2 entries in C, it follows that the algorithm takes Θ(n3) multiplications
and Θ(n3) additions.

Algorithmic Insights Computational Complexity



Review of concepts
Algorithmic Insights

Recursion
Divide and Conquer

Matrix multiplication

Problem

Given two square n × n matrices A and B, compute their product C = A · B.

Approach I

1 Compute Cij as the dot product between the i th row vector from A (ai) and the j th
column of B (bj).

Analysis

Computing each product takes Θ(n) multiplications and Θ(n) additions.

Since there are n2 entries in C, it follows that the algorithm takes Θ(n3) multiplications
and Θ(n3) additions.

Algorithmic Insights Computational Complexity



Review of concepts
Algorithmic Insights

Recursion
Divide and Conquer

Matrix multiplication

Problem

Given two square n × n matrices A and B, compute their product C = A · B.

Approach I

1 Compute Cij as the dot product between the i th row vector from A (ai) and the j th
column of B (bj).

Analysis

Computing each product takes Θ(n) multiplications and Θ(n) additions.

Since there are n2 entries in C, it follows that the algorithm takes Θ(n3) multiplications
and Θ(n3) additions.

Algorithmic Insights Computational Complexity



Review of concepts
Algorithmic Insights

Recursion
Divide and Conquer

Matrix multiplication

Problem

Given two square n × n matrices A and B, compute their product C = A · B.

Approach I

1 Compute Cij as the dot product between the i th row vector from A (ai) and the j th
column of B (bj).

Analysis

Computing each product takes Θ(n) multiplications and Θ(n) additions.

Since there are n2 entries in C, it follows that the algorithm takes Θ(n3) multiplications
and Θ(n3) additions.

Algorithmic Insights Computational Complexity



Review of concepts
Algorithmic Insights

Recursion
Divide and Conquer

Matrix multiplication

Problem

Given two square n × n matrices A and B, compute their product C = A · B.

Approach I

1 Compute Cij as the dot product between the i th row vector from A (ai)

and the j th
column of B (bj).

Analysis

Computing each product takes Θ(n) multiplications and Θ(n) additions.

Since there are n2 entries in C, it follows that the algorithm takes Θ(n3) multiplications
and Θ(n3) additions.

Algorithmic Insights Computational Complexity



Review of concepts
Algorithmic Insights

Recursion
Divide and Conquer

Matrix multiplication

Problem

Given two square n × n matrices A and B, compute their product C = A · B.

Approach I

1 Compute Cij as the dot product between the i th row vector from A (ai) and the j th
column of B (bj).

Analysis

Computing each product takes Θ(n) multiplications and Θ(n) additions.

Since there are n2 entries in C, it follows that the algorithm takes Θ(n3) multiplications
and Θ(n3) additions.

Algorithmic Insights Computational Complexity



Review of concepts
Algorithmic Insights

Recursion
Divide and Conquer

Matrix multiplication

Problem

Given two square n × n matrices A and B, compute their product C = A · B.

Approach I

1 Compute Cij as the dot product between the i th row vector from A (ai) and the j th
column of B (bj).

Analysis

Computing each product takes Θ(n) multiplications and Θ(n) additions.

Since there are n2 entries in C, it follows that the algorithm takes Θ(n3) multiplications
and Θ(n3) additions.

Algorithmic Insights Computational Complexity



Review of concepts
Algorithmic Insights

Recursion
Divide and Conquer

Matrix multiplication

Problem

Given two square n × n matrices A and B, compute their product C = A · B.

Approach I

1 Compute Cij as the dot product between the i th row vector from A (ai) and the j th
column of B (bj).

Analysis

Computing each product takes Θ(n) multiplications and Θ(n) additions.

Since there are n2 entries in C, it follows that the algorithm takes Θ(n3) multiplications
and Θ(n3) additions.

Algorithmic Insights Computational Complexity



Review of concepts
Algorithmic Insights

Recursion
Divide and Conquer

A divide and conquer approach

D and C approach

Function MAT-MULT(A,B, n)
if (n = 1) then

return(A11 · B11).
else

Partition A into 4 square sub-matrices of dimensions n
2 ×

n
2 as shown:

A =

[
A11 A12
A21 A22

]
Partition B into 4 square sub-matrices of dimensions n

2 ×
n
2 as shown:

B =

[
B11 B12
B21 B22

]
end if

Algorithm 5.37: A Divide and Conquer matrix multiplication algorithm

Algorithmic Insights Computational Complexity



Review of concepts
Algorithmic Insights

Recursion
Divide and Conquer

A divide and conquer approach

D and C approach

Function MAT-MULT(A,B, n)

if (n = 1) then
return(A11 · B11).

else
Partition A into 4 square sub-matrices of dimensions n

2 ×
n
2 as shown:

A =

[
A11 A12
A21 A22

]
Partition B into 4 square sub-matrices of dimensions n

2 ×
n
2 as shown:

B =

[
B11 B12
B21 B22

]
end if

Algorithm 5.38: A Divide and Conquer matrix multiplication algorithm

Algorithmic Insights Computational Complexity



Review of concepts
Algorithmic Insights

Recursion
Divide and Conquer

A divide and conquer approach

D and C approach

Function MAT-MULT(A,B, n)
if (n = 1) then

return(A11 · B11).
else

Partition A into 4 square sub-matrices of dimensions n
2 ×

n
2 as shown:

A =

[
A11 A12
A21 A22

]
Partition B into 4 square sub-matrices of dimensions n

2 ×
n
2 as shown:

B =

[
B11 B12
B21 B22

]
end if

Algorithm 5.39: A Divide and Conquer matrix multiplication algorithm

Algorithmic Insights Computational Complexity



Review of concepts
Algorithmic Insights

Recursion
Divide and Conquer

A divide and conquer approach

D and C approach

Function MAT-MULT(A,B, n)
if (n = 1) then

return(A11 · B11).

else
Partition A into 4 square sub-matrices of dimensions n

2 ×
n
2 as shown:

A =

[
A11 A12
A21 A22

]
Partition B into 4 square sub-matrices of dimensions n

2 ×
n
2 as shown:

B =

[
B11 B12
B21 B22

]
end if

Algorithm 5.40: A Divide and Conquer matrix multiplication algorithm

Algorithmic Insights Computational Complexity



Review of concepts
Algorithmic Insights

Recursion
Divide and Conquer

A divide and conquer approach

D and C approach

Function MAT-MULT(A,B, n)
if (n = 1) then

return(A11 · B11).
else

Partition A into 4 square sub-matrices of dimensions n
2 ×

n
2 as shown:

A =

[
A11 A12
A21 A22

]
Partition B into 4 square sub-matrices of dimensions n

2 ×
n
2 as shown:

B =

[
B11 B12
B21 B22

]
end if

Algorithm 5.41: A Divide and Conquer matrix multiplication algorithm

Algorithmic Insights Computational Complexity



Review of concepts
Algorithmic Insights

Recursion
Divide and Conquer

A divide and conquer approach

D and C approach

Function MAT-MULT(A,B, n)
if (n = 1) then

return(A11 · B11).
else

Partition A into 4 square sub-matrices of dimensions n
2 ×

n
2 as shown:

A =

[
A11 A12
A21 A22

]
Partition B into 4 square sub-matrices of dimensions n

2 ×
n
2 as shown:

B =

[
B11 B12
B21 B22

]
end if

Algorithm 5.42: A Divide and Conquer matrix multiplication algorithm

Algorithmic Insights Computational Complexity



Review of concepts
Algorithmic Insights

Recursion
Divide and Conquer

A divide and conquer approach

D and C approach

Function MAT-MULT(A,B, n)
if (n = 1) then

return(A11 · B11).
else

Partition A into 4 square sub-matrices of dimensions n
2 ×

n
2 as shown:

A =

[
A11 A12
A21 A22

]

Partition B into 4 square sub-matrices of dimensions n
2 ×

n
2 as shown:

B =

[
B11 B12
B21 B22

]
end if

Algorithm 5.43: A Divide and Conquer matrix multiplication algorithm

Algorithmic Insights Computational Complexity



Review of concepts
Algorithmic Insights

Recursion
Divide and Conquer

A divide and conquer approach

D and C approach

Function MAT-MULT(A,B, n)
if (n = 1) then

return(A11 · B11).
else

Partition A into 4 square sub-matrices of dimensions n
2 ×

n
2 as shown:

A =

[
A11 A12
A21 A22

]
Partition B into 4 square sub-matrices of dimensions n

2 ×
n
2 as shown:

B =

[
B11 B12
B21 B22

]
end if

Algorithm 5.44: A Divide and Conquer matrix multiplication algorithm

Algorithmic Insights Computational Complexity



Review of concepts
Algorithmic Insights

Recursion
Divide and Conquer

A divide and conquer approach

D and C approach

Function MAT-MULT(A,B, n)
if (n = 1) then

return(A11 · B11).
else

Partition A into 4 square sub-matrices of dimensions n
2 ×

n
2 as shown:

A =

[
A11 A12
A21 A22

]
Partition B into 4 square sub-matrices of dimensions n

2 ×
n
2 as shown:

B =

[
B11 B12
B21 B22

]
end if

Algorithm 5.45: A Divide and Conquer matrix multiplication algorithm

Algorithmic Insights Computational Complexity



Review of concepts
Algorithmic Insights

Recursion
Divide and Conquer

Algorithm (contd.)

D and C approach (contd.)

if (n > 1) then
Let C11 = MAT-MULT(A11,B11,

n
2 ) + MAT-MULT(A12,B21,

n
2 ).

Let C12 = MAT-MULT(A11,B12,
n
2 ) + MAT-MULT(A12,B22,

n
2 ).

Let C21 = MAT-MULT(A21,B11,
n
2 ) + MAT-MULT(A22,B21,

n
2 ).

Let C22 = MAT-MULT(A21,B12,
n
2 ) + MAT-MULT(A22,B22,

n
2 ).

return

C =

[
C11 C12
C21 C22

]
end if

Algorithmic Insights Computational Complexity



Review of concepts
Algorithmic Insights

Recursion
Divide and Conquer

Algorithm (contd.)

D and C approach (contd.)

if (n > 1) then

Let C11 = MAT-MULT(A11,B11,
n
2 ) + MAT-MULT(A12,B21,

n
2 ).

Let C12 = MAT-MULT(A11,B12,
n
2 ) + MAT-MULT(A12,B22,

n
2 ).

Let C21 = MAT-MULT(A21,B11,
n
2 ) + MAT-MULT(A22,B21,

n
2 ).

Let C22 = MAT-MULT(A21,B12,
n
2 ) + MAT-MULT(A22,B22,

n
2 ).

return

C =

[
C11 C12
C21 C22

]
end if

Algorithmic Insights Computational Complexity



Review of concepts
Algorithmic Insights

Recursion
Divide and Conquer

Algorithm (contd.)

D and C approach (contd.)

if (n > 1) then
Let C11 = MAT-MULT(A11,B11,

n
2 ) + MAT-MULT(A12,B21,

n
2 ).

Let C12 = MAT-MULT(A11,B12,
n
2 ) + MAT-MULT(A12,B22,

n
2 ).

Let C21 = MAT-MULT(A21,B11,
n
2 ) + MAT-MULT(A22,B21,

n
2 ).

Let C22 = MAT-MULT(A21,B12,
n
2 ) + MAT-MULT(A22,B22,

n
2 ).

return

C =

[
C11 C12
C21 C22

]
end if

Algorithmic Insights Computational Complexity



Review of concepts
Algorithmic Insights

Recursion
Divide and Conquer

Algorithm (contd.)

D and C approach (contd.)

if (n > 1) then
Let C11 = MAT-MULT(A11,B11,

n
2 ) + MAT-MULT(A12,B21,

n
2 ).

Let C12 = MAT-MULT(A11,B12,
n
2 ) + MAT-MULT(A12,B22,

n
2 ).

Let C21 = MAT-MULT(A21,B11,
n
2 ) + MAT-MULT(A22,B21,

n
2 ).

Let C22 = MAT-MULT(A21,B12,
n
2 ) + MAT-MULT(A22,B22,

n
2 ).

return

C =

[
C11 C12
C21 C22

]
end if

Algorithmic Insights Computational Complexity



Review of concepts
Algorithmic Insights

Recursion
Divide and Conquer

Algorithm (contd.)

D and C approach (contd.)

if (n > 1) then
Let C11 = MAT-MULT(A11,B11,

n
2 ) + MAT-MULT(A12,B21,

n
2 ).

Let C12 = MAT-MULT(A11,B12,
n
2 ) + MAT-MULT(A12,B22,

n
2 ).

Let C21 = MAT-MULT(A21,B11,
n
2 ) + MAT-MULT(A22,B21,

n
2 ).

Let C22 = MAT-MULT(A21,B12,
n
2 ) + MAT-MULT(A22,B22,

n
2 ).

return

C =

[
C11 C12
C21 C22

]
end if

Algorithmic Insights Computational Complexity



Review of concepts
Algorithmic Insights

Recursion
Divide and Conquer

Algorithm (contd.)

D and C approach (contd.)

if (n > 1) then
Let C11 = MAT-MULT(A11,B11,

n
2 ) + MAT-MULT(A12,B21,

n
2 ).

Let C12 = MAT-MULT(A11,B12,
n
2 ) + MAT-MULT(A12,B22,

n
2 ).

Let C21 = MAT-MULT(A21,B11,
n
2 ) + MAT-MULT(A22,B21,

n
2 ).

Let C22 = MAT-MULT(A21,B12,
n
2 ) + MAT-MULT(A22,B22,

n
2 ).

return

C =

[
C11 C12
C21 C22

]
end if

Algorithmic Insights Computational Complexity



Review of concepts
Algorithmic Insights

Recursion
Divide and Conquer

Algorithm (contd.)

D and C approach (contd.)

if (n > 1) then
Let C11 = MAT-MULT(A11,B11,

n
2 ) + MAT-MULT(A12,B21,

n
2 ).

Let C12 = MAT-MULT(A11,B12,
n
2 ) + MAT-MULT(A12,B22,

n
2 ).

Let C21 = MAT-MULT(A21,B11,
n
2 ) + MAT-MULT(A22,B21,

n
2 ).

Let C22 = MAT-MULT(A21,B12,
n
2 ) + MAT-MULT(A22,B22,

n
2 ).

return

C =

[
C11 C12
C21 C22

]
end if

Algorithmic Insights Computational Complexity



Review of concepts
Algorithmic Insights

Recursion
Divide and Conquer

Analyzing the D and C algorthm

Analysis

T (n) = 8 · T (
n
2

) + O(n2)

∈ Θ(n3)

Algorithmic Insights Computational Complexity



Review of concepts
Algorithmic Insights

Recursion
Divide and Conquer

Analyzing the D and C algorthm

Analysis

T (n) = 8 · T (
n
2

) + O(n2)

∈ Θ(n3)

Algorithmic Insights Computational Complexity



Review of concepts
Algorithmic Insights

Recursion
Divide and Conquer

Analyzing the D and C algorthm

Analysis

T (n) =

8 · T (
n
2

) + O(n2)

∈ Θ(n3)

Algorithmic Insights Computational Complexity



Review of concepts
Algorithmic Insights

Recursion
Divide and Conquer

Analyzing the D and C algorthm

Analysis

T (n) = 8 · T (
n
2

)

+ O(n2)

∈ Θ(n3)

Algorithmic Insights Computational Complexity



Review of concepts
Algorithmic Insights

Recursion
Divide and Conquer

Analyzing the D and C algorthm

Analysis

T (n) = 8 · T (
n
2

) + O(n2)

∈ Θ(n3)

Algorithmic Insights Computational Complexity



Review of concepts
Algorithmic Insights

Recursion
Divide and Conquer

Analyzing the D and C algorthm

Analysis

T (n) = 8 · T (
n
2

) + O(n2)

∈ Θ(n3)

Algorithmic Insights Computational Complexity



Review of concepts
Algorithmic Insights

Recursion
Divide and Conquer

The Strassen approach

Clever sub-matrix multiplication

1 Compute the following matrix products:

S1 = A11 · (B12 − B22).

S2 = (A11 + A12) · B22.

S3 = (A21 + A22) · B11.

S4 = A22 · (B21 − B11).

S5 = (A11 + A22) · (B11 + B22).

S6 = (A12 − A22) · (B21 + B22).

S7 = (A11 − A21) · (B11 + B21).

Algorithmic Insights Computational Complexity



Review of concepts
Algorithmic Insights

Recursion
Divide and Conquer

The Strassen approach

Clever sub-matrix multiplication

1 Compute the following matrix products:

S1 = A11 · (B12 − B22).

S2 = (A11 + A12) · B22.

S3 = (A21 + A22) · B11.

S4 = A22 · (B21 − B11).

S5 = (A11 + A22) · (B11 + B22).

S6 = (A12 − A22) · (B21 + B22).

S7 = (A11 − A21) · (B11 + B21).

Algorithmic Insights Computational Complexity



Review of concepts
Algorithmic Insights

Recursion
Divide and Conquer

The Strassen approach

Clever sub-matrix multiplication

1 Compute the following matrix products:

S1 = A11 · (B12 − B22).

S2 = (A11 + A12) · B22.

S3 = (A21 + A22) · B11.

S4 = A22 · (B21 − B11).

S5 = (A11 + A22) · (B11 + B22).

S6 = (A12 − A22) · (B21 + B22).

S7 = (A11 − A21) · (B11 + B21).

Algorithmic Insights Computational Complexity



Review of concepts
Algorithmic Insights

Recursion
Divide and Conquer

The Strassen approach

Clever sub-matrix multiplication

1 Compute the following matrix products:

S1 = A11 · (B12 − B22).

S2 = (A11 + A12) · B22.

S3 = (A21 + A22) · B11.

S4 = A22 · (B21 − B11).

S5 = (A11 + A22) · (B11 + B22).

S6 = (A12 − A22) · (B21 + B22).

S7 = (A11 − A21) · (B11 + B21).

Algorithmic Insights Computational Complexity



Review of concepts
Algorithmic Insights

Recursion
Divide and Conquer

The Strassen approach

Clever sub-matrix multiplication

1 Compute the following matrix products:

S1 = A11 · (B12 − B22).

S2 = (A11 + A12) · B22.

S3 = (A21 + A22) · B11.

S4 = A22 · (B21 − B11).

S5 = (A11 + A22) · (B11 + B22).

S6 = (A12 − A22) · (B21 + B22).

S7 = (A11 − A21) · (B11 + B21).

Algorithmic Insights Computational Complexity



Review of concepts
Algorithmic Insights

Recursion
Divide and Conquer

The Strassen approach

Clever sub-matrix multiplication

1 Compute the following matrix products:

S1 = A11 · (B12 − B22).

S2 = (A11 + A12) · B22.

S3 = (A21 + A22) · B11.

S4 = A22 · (B21 − B11).

S5 = (A11 + A22) · (B11 + B22).

S6 = (A12 − A22) · (B21 + B22).

S7 = (A11 − A21) · (B11 + B21).

Algorithmic Insights Computational Complexity



Review of concepts
Algorithmic Insights

Recursion
Divide and Conquer

The Strassen approach

Clever sub-matrix multiplication

1 Compute the following matrix products:

S1 = A11 · (B12 − B22).

S2 = (A11 + A12) · B22.

S3 = (A21 + A22) · B11.

S4 = A22 · (B21 − B11).

S5 = (A11 + A22) · (B11 + B22).

S6 = (A12 − A22) · (B21 + B22).

S7 = (A11 − A21) · (B11 + B21).

Algorithmic Insights Computational Complexity



Review of concepts
Algorithmic Insights

Recursion
Divide and Conquer

The Strassen approach

Clever sub-matrix multiplication

1 Compute the following matrix products:

S1 = A11 · (B12 − B22).

S2 = (A11 + A12) · B22.

S3 = (A21 + A22) · B11.

S4 = A22 · (B21 − B11).

S5 = (A11 + A22) · (B11 + B22).

S6 = (A12 − A22) · (B21 + B22).

S7 = (A11 − A21) · (B11 + B21).

Algorithmic Insights Computational Complexity



Review of concepts
Algorithmic Insights

Recursion
Divide and Conquer

The Strassen approach

Clever sub-matrix multiplication

1 Compute the following matrix products:

S1 = A11 · (B12 − B22).

S2 = (A11 + A12) · B22.

S3 = (A21 + A22) · B11.

S4 = A22 · (B21 − B11).

S5 = (A11 + A22) · (B11 + B22).

S6 = (A12 − A22) · (B21 + B22).

S7 = (A11 − A21) · (B11 + B21).

Algorithmic Insights Computational Complexity



Review of concepts
Algorithmic Insights

Recursion
Divide and Conquer

The Strassen approach

Clever sub-matrix multiplication

1 Compute the following matrix products:

S1 = A11 · (B12 − B22).

S2 = (A11 + A12) · B22.

S3 = (A21 + A22) · B11.

S4 = A22 · (B21 − B11).

S5 = (A11 + A22) · (B11 + B22).

S6 = (A12 − A22) · (B21 + B22).

S7 = (A11 − A21) · (B11 + B21).

Algorithmic Insights Computational Complexity



Review of concepts
Algorithmic Insights

Recursion
Divide and Conquer

Strassen (contd.)

Completing the algorithm

1 Observe that,

C11 = S4 + S5 + S6 − S2

C12 = S1 + S2

C21 = S3 + S4

C22 = S1 − S3 + S5 − S7

Algorithmic Insights Computational Complexity



Review of concepts
Algorithmic Insights

Recursion
Divide and Conquer

Strassen (contd.)

Completing the algorithm

1 Observe that,

C11 = S4 + S5 + S6 − S2

C12 = S1 + S2

C21 = S3 + S4

C22 = S1 − S3 + S5 − S7

Algorithmic Insights Computational Complexity



Review of concepts
Algorithmic Insights

Recursion
Divide and Conquer

Strassen (contd.)

Completing the algorithm

1 Observe that,

C11 = S4 + S5 + S6 − S2

C12 = S1 + S2

C21 = S3 + S4

C22 = S1 − S3 + S5 − S7

Algorithmic Insights Computational Complexity



Review of concepts
Algorithmic Insights

Recursion
Divide and Conquer

Strassen (contd.)

Completing the algorithm

1 Observe that,

C11 =

S4 + S5 + S6 − S2

C12 = S1 + S2

C21 = S3 + S4

C22 = S1 − S3 + S5 − S7

Algorithmic Insights Computational Complexity



Review of concepts
Algorithmic Insights

Recursion
Divide and Conquer

Strassen (contd.)

Completing the algorithm

1 Observe that,

C11 = S4 + S5 + S6 − S2

C12 = S1 + S2

C21 = S3 + S4

C22 = S1 − S3 + S5 − S7

Algorithmic Insights Computational Complexity



Review of concepts
Algorithmic Insights

Recursion
Divide and Conquer

Strassen (contd.)

Completing the algorithm

1 Observe that,

C11 = S4 + S5 + S6 − S2

C12 = S1 + S2

C21 = S3 + S4

C22 = S1 − S3 + S5 − S7

Algorithmic Insights Computational Complexity



Review of concepts
Algorithmic Insights

Recursion
Divide and Conquer

Strassen (contd.)

Completing the algorithm

1 Observe that,

C11 = S4 + S5 + S6 − S2

C12 = S1 + S2

C21 = S3 + S4

C22 = S1 − S3 + S5 − S7

Algorithmic Insights Computational Complexity



Review of concepts
Algorithmic Insights

Recursion
Divide and Conquer

Strassen (contd.)

Completing the algorithm

1 Observe that,

C11 = S4 + S5 + S6 − S2

C12 = S1 + S2

C21 = S3 + S4

C22 = S1 − S3 + S5 − S7

Algorithmic Insights Computational Complexity



Review of concepts
Algorithmic Insights

Recursion
Divide and Conquer

Analysis of Strassen

Running Time

T (n) = 7 · T (
n
2

) + O(n2)

∈ O(nlog2 7)

Algorithmic Insights Computational Complexity



Review of concepts
Algorithmic Insights

Recursion
Divide and Conquer

Analysis of Strassen

Running Time

T (n) = 7 · T (
n
2

) + O(n2)

∈ O(nlog2 7)

Algorithmic Insights Computational Complexity



Review of concepts
Algorithmic Insights

Recursion
Divide and Conquer

Analysis of Strassen

Running Time

T (n) =

7 · T (
n
2

) + O(n2)

∈ O(nlog2 7)

Algorithmic Insights Computational Complexity



Review of concepts
Algorithmic Insights

Recursion
Divide and Conquer

Analysis of Strassen

Running Time

T (n) = 7 · T (
n
2

) + O(n2)

∈ O(nlog2 7)

Algorithmic Insights Computational Complexity



Review of concepts
Algorithmic Insights

Recursion
Divide and Conquer

Analysis of Strassen

Running Time

T (n) = 7 · T (
n
2

) + O(n2)

∈ O(nlog2 7)

Algorithmic Insights Computational Complexity


	Review of concepts
	Algorithmic Insights
	Recursion
	Divide and Conquer

