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Review of concepts
Algorithmic Insights

Recursion
Divide and Conquer

Review

Main concepts

1 Instance, Problem, Solutions. (Chess, Eulerian graphs).
2 Time and scaling. Matrix multiplication.
3 Polynomial time and tractability.
4 Robustness of P.
5 In P or not in P. Less emphasis on most efficient algorithms.
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What makes a problem tractable?
1 Recursion.
2 Divide and Conquer.
3 Greedy.
4 Dynamic Programming.
5 Iterative approaches (Rewriting).
6 Transformations and reductions.
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Main Idea

1 Break a large problem into smaller problems having identical form.
2 Continue breaking sub-problems into even smaller sub-problems, until the

problems become trivial (Base case).
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The Array-Max problem

Problem

Given an array of n integers, find the maximum element.

Algorithm

FunctionARRAY-MAX(A, n)
if (n = 1) then

return(A[n])
else

return (max(A[n], ARRAY-MAX(A, n − 1))).
end if

Algorithm 4.1: Finding the maximum element in an array

Analysis

T (n) =

{
0, if n = 0,
T (n − 1) + 1, otherwise

⇒ T (n) = (n − 1).

Algorithmic Insights Computational Complexity



Review of concepts
Algorithmic Insights

Recursion
Divide and Conquer

The Array-Max problem

Problem

Given an array of n integers, find the maximum element.

Algorithm

FunctionARRAY-MAX(A, n)
if (n = 1) then

return(A[n])
else

return (max(A[n], ARRAY-MAX(A, n − 1))).
end if

Algorithm 4.2: Finding the maximum element in an array

Analysis

T (n) =

{
0, if n = 0,
T (n − 1) + 1, otherwise

⇒ T (n) = (n − 1).

Algorithmic Insights Computational Complexity



Review of concepts
Algorithmic Insights

Recursion
Divide and Conquer

The Array-Max problem

Problem

Given an array of n integers, find the maximum element.

Algorithm

FunctionARRAY-MAX(A, n)
if (n = 1) then

return(A[n])
else

return (max(A[n], ARRAY-MAX(A, n − 1))).
end if

Algorithm 4.3: Finding the maximum element in an array

Analysis

T (n) =

{
0, if n = 0,
T (n − 1) + 1, otherwise

⇒ T (n) = (n − 1).

Algorithmic Insights Computational Complexity



Review of concepts
Algorithmic Insights

Recursion
Divide and Conquer

The Array-Max problem

Problem

Given an array of n integers, find the maximum element.

Algorithm

FunctionARRAY-MAX(A, n)
if (n = 1) then

return(A[n])
else

return (max(A[n], ARRAY-MAX(A, n − 1))).
end if

Algorithm 4.4: Finding the maximum element in an array

Analysis

T (n) =

{
0, if n = 0,
T (n − 1) + 1, otherwise

⇒ T (n) = (n − 1).

Algorithmic Insights Computational Complexity



Review of concepts
Algorithmic Insights

Recursion
Divide and Conquer

The Array-Max problem

Problem

Given an array of n integers, find the maximum element.

Algorithm

FunctionARRAY-MAX(A, n)

if (n = 1) then
return(A[n])

else
return (max(A[n], ARRAY-MAX(A, n − 1))).

end if

Algorithm 4.5: Finding the maximum element in an array

Analysis

T (n) =

{
0, if n = 0,
T (n − 1) + 1, otherwise

⇒ T (n) = (n − 1).

Algorithmic Insights Computational Complexity



Review of concepts
Algorithmic Insights

Recursion
Divide and Conquer

The Array-Max problem

Problem

Given an array of n integers, find the maximum element.

Algorithm

FunctionARRAY-MAX(A, n)
if (n = 1) then

return(A[n])
else

return (max(A[n], ARRAY-MAX(A, n − 1))).
end if

Algorithm 4.6: Finding the maximum element in an array

Analysis

T (n) =

{
0, if n = 0,
T (n − 1) + 1, otherwise

⇒ T (n) = (n − 1).

Algorithmic Insights Computational Complexity



Review of concepts
Algorithmic Insights

Recursion
Divide and Conquer

The Array-Max problem

Problem

Given an array of n integers, find the maximum element.

Algorithm

FunctionARRAY-MAX(A, n)
if (n = 1) then

return(A[n])

else
return (max(A[n], ARRAY-MAX(A, n − 1))).

end if

Algorithm 4.7: Finding the maximum element in an array

Analysis

T (n) =

{
0, if n = 0,
T (n − 1) + 1, otherwise

⇒ T (n) = (n − 1).

Algorithmic Insights Computational Complexity



Review of concepts
Algorithmic Insights

Recursion
Divide and Conquer

The Array-Max problem

Problem

Given an array of n integers, find the maximum element.

Algorithm

FunctionARRAY-MAX(A, n)
if (n = 1) then

return(A[n])
else

return (max(A[n], ARRAY-MAX(A, n − 1))).
end if

Algorithm 4.8: Finding the maximum element in an array

Analysis

T (n) =

{
0, if n = 0,
T (n − 1) + 1, otherwise

⇒ T (n) = (n − 1).

Algorithmic Insights Computational Complexity



Review of concepts
Algorithmic Insights

Recursion
Divide and Conquer

The Array-Max problem

Problem

Given an array of n integers, find the maximum element.

Algorithm

FunctionARRAY-MAX(A, n)
if (n = 1) then

return(A[n])
else

return (max(A[n], ARRAY-MAX(A, n − 1))).

end if

Algorithm 4.9: Finding the maximum element in an array

Analysis

T (n) =

{
0, if n = 0,
T (n − 1) + 1, otherwise

⇒ T (n) = (n − 1).

Algorithmic Insights Computational Complexity



Review of concepts
Algorithmic Insights

Recursion
Divide and Conquer

The Array-Max problem

Problem

Given an array of n integers, find the maximum element.

Algorithm

FunctionARRAY-MAX(A, n)
if (n = 1) then

return(A[n])
else

return (max(A[n], ARRAY-MAX(A, n − 1))).
end if

Algorithm 4.10: Finding the maximum element in an array

Analysis

T (n) =

{
0, if n = 0,
T (n − 1) + 1, otherwise

⇒ T (n) = (n − 1).

Algorithmic Insights Computational Complexity



Review of concepts
Algorithmic Insights

Recursion
Divide and Conquer

The Array-Max problem

Problem

Given an array of n integers, find the maximum element.

Algorithm

FunctionARRAY-MAX(A, n)
if (n = 1) then

return(A[n])
else

return (max(A[n], ARRAY-MAX(A, n − 1))).
end if

Algorithm 4.11: Finding the maximum element in an array

Analysis

T (n) =

{
0, if n = 0,
T (n − 1) + 1, otherwise

⇒ T (n) = (n − 1).

Algorithmic Insights Computational Complexity



Review of concepts
Algorithmic Insights

Recursion
Divide and Conquer

The Array-Max problem

Problem

Given an array of n integers, find the maximum element.

Algorithm

FunctionARRAY-MAX(A, n)
if (n = 1) then

return(A[n])
else

return (max(A[n], ARRAY-MAX(A, n − 1))).
end if

Algorithm 4.12: Finding the maximum element in an array

Analysis

T (n) =

{
0, if n = 0,

T (n − 1) + 1, otherwise
⇒ T (n) = (n − 1).

Algorithmic Insights Computational Complexity



Review of concepts
Algorithmic Insights

Recursion
Divide and Conquer

The Array-Max problem

Problem

Given an array of n integers, find the maximum element.

Algorithm

FunctionARRAY-MAX(A, n)
if (n = 1) then

return(A[n])
else

return (max(A[n], ARRAY-MAX(A, n − 1))).
end if

Algorithm 4.13: Finding the maximum element in an array

Analysis

T (n) =

{
0, if n = 0,
T (n − 1) + 1, otherwise

⇒ T (n) = (n − 1).

Algorithmic Insights Computational Complexity



Review of concepts
Algorithmic Insights

Recursion
Divide and Conquer

The Array-Max problem

Problem

Given an array of n integers, find the maximum element.

Algorithm

FunctionARRAY-MAX(A, n)
if (n = 1) then

return(A[n])
else

return (max(A[n], ARRAY-MAX(A, n − 1))).
end if

Algorithm 4.14: Finding the maximum element in an array

Analysis

T (n) =

{
0, if n = 0,
T (n − 1) + 1, otherwise

⇒ T (n) = (n − 1).

Algorithmic Insights Computational Complexity



Review of concepts
Algorithmic Insights

Recursion
Divide and Conquer

The Array-Search problem

Problem

Given an array of n integers, and a key k, return true if any of the array elements is
equal to k and false otherwise.
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Algorithm

Algorithm

FunctionARRAY-SEARCH(A, n, k )
if (n = 1) then

if (A[n] = k ) then
return(true)

else
return(false)

end if
else

if (A[n] = k ) then
return(true)

else
return(ARRAY-SEARCH(A, n − 1, k )).

end if
end if

Algorithm 4.15: Searching for a key in an array
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Analysis

Analysis

T (n) =

{
1, if n = 1,
T (n − 1) + 1, otherwise

⇒ T (n) = n.
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The Towers of Hanoi problem

Problem

You are given three pegs, viz., A, B and C.

n disks are stacked on peg A, in decreasing order of size, with the largest disk at the
bottom of the stack.

You need to move the disks from peg A to peg B, ensuring that at no time a disk is
placed on another disk of smaller size.
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Algorithm

Main idea

Break the task into three sub-tasks.
1 Move the first (n − 1) disks from A to C, using B.
2 Move the largest disk from A to B.
3 Move the (n − 1) disks from C to B, using A.

Analysis

T (n) =

{
1, if n = 0
2 · T (n − 1) + 1, otherwise

⇒ T (n) = 2n − 1
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Approach

Main Concepts

Some problems can be broken up into independent sub-problems
1 Divide the problem into smaller sub-problems.
2 Conquer the sub-problems either through recursion or through brute-force.
3 Combine the solutions to the sub-problems to get the solution of the original

problem.
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Divide and Conquer

The Master Theorem

Let a be an integer greater than or equal to 1 and b be a real number greater than 1.

Let f (n) be an increasing function of n and d a nonnegative real number.

Consider a recurrence of the form:

T (n) =

a · T (
n
b

) + f (n), if n > 1

d , if n = 1

Then,
1 If f (n) = Θ(nc), where logb a < c, then T (n) = Θ(nc).
2 If f (n) = Θ(nc), where logb a = c, then T (n) = Θ(nlogb a · logb n).
3 If f (n) = Θ(nc), where logb a > c, then T (n) = Θ(nlogb a).
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The Merge-Sort Algorithm

Sorting through Merging

Function MERGE-SORT(A, low , high)

if (low < high) then
mid = low+high

2 .
MERGE-SORT(A, low ,mid).
MERGE-SORT(A,mid + 1, high).
MERGE(A, low ,mid , high).

end if

Algorithm 5.1: MergeSort
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Function MERGE-SORT(A, low , high)

if (low < high) then
mid = low+high

2 .
MERGE-SORT(A, low ,mid).
MERGE-SORT(A,mid + 1, high).
MERGE(A, low ,mid , high).

end if

Algorithm 5.8: MergeSort

Algorithmic Insights Computational Complexity



Review of concepts
Algorithmic Insights

Recursion
Divide and Conquer

Analyzing Time and Space

Analysis

T (n) = 2 · T (
n
2

) + n

∈ Θ(n · log n)

S(n) ∈ Θ(n)
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The Quick-Sort Algorithm

Sorting through Partitioning

Function QUICK-SORT(A, low , high)
if (low < high) then

Partition A about A[low ].
Let j denote the index of A[low ] after partitioning.
QUICK-SORT(A, low , j − 1).
QUICK-SORT(A, j + 1, high).

end if

Algorithm 5.9: Quicksort

Analysis (Space)

Quick-Sort() uses O(1) extra space. Partitioning can be done in-place.
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The Quick-Sort Algorithm

Sorting through Partitioning

Function QUICK-SORT(A, low , high)
if (low < high) then

Partition A about A[low ].
Let j denote the index of A[low ] after partitioning.
QUICK-SORT(A, low , j − 1).
QUICK-SORT(A, j + 1, high).

end if

Algorithm 5.18: Quicksort

Analysis (Space)

Quick-Sort() uses O(1) extra space.

Partitioning can be done in-place.
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The Quick-Sort Algorithm

Sorting through Partitioning

Function QUICK-SORT(A, low , high)
if (low < high) then

Partition A about A[low ].
Let j denote the index of A[low ] after partitioning.
QUICK-SORT(A, low , j − 1).
QUICK-SORT(A, j + 1, high).

end if

Algorithm 5.19: Quicksort

Analysis (Space)

Quick-Sort() uses O(1) extra space. Partitioning can be done in-place.
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Analysis of running time

Best Case

T (n) = 2 · T (
n − 1

2
) + (n − 1)

∈ Θ(n · log n)

Worst-case

T (n) = T (n − 1) + (n − 1)

∈ Θ(n2)
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Average case analysis

Average case

T (n) = (n − 1) +
1
n
·

n∑
r=1

[T (r − 1) + T (n − r)]

= (n − 1) +
2
n

cot
n∑

r=1

T (r − 1)

≈ 2 · n · ln n
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Modular Exponentiation

Problem

Given two n digit integers x and y, compute xy mod p. Useful in cryptography and
primality checking.

Approach I

Function MOD-EXP(x , y , p)
if (y = 0) then

return(1).
end if
r = 1.
for (i = 1 to y ) do

r = x · r mod p .
end for
return(y ).

Algorithm 5.20: Modular Exponentiation
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Modular Exponentiation

Problem

Given two n digit integers x and y, compute xy mod p. Useful in cryptography and
primality checking.

Approach I

Function MOD-EXP(x , y , p)
if (y = 0) then

return(1).
end if
r = 1.
for (i = 1 to y ) do

r = x · r mod p .
end for
return(y ).

Algorithm 5.21: Modular Exponentiation
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Modular Exponentiation

Problem

Given two n digit integers x and y, compute xy mod p.

Useful in cryptography and
primality checking.

Approach I

Function MOD-EXP(x , y , p)
if (y = 0) then

return(1).
end if
r = 1.
for (i = 1 to y ) do

r = x · r mod p .
end for
return(y ).

Algorithm 5.22: Modular Exponentiation
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Modular Exponentiation

Problem

Given two n digit integers x and y, compute xy mod p. Useful in cryptography and
primality checking.

Approach I

Function MOD-EXP(x , y , p)
if (y = 0) then

return(1).
end if
r = 1.
for (i = 1 to y ) do

r = x · r mod p .
end for
return(y ).

Algorithm 5.23: Modular Exponentiation
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Modular Exponentiation

Problem

Given two n digit integers x and y, compute xy mod p. Useful in cryptography and
primality checking.

Approach I

Function MOD-EXP(x , y , p)
if (y = 0) then

return(1).
end if
r = 1.
for (i = 1 to y ) do

r = x · r mod p .
end for
return(y ).

Algorithm 5.24: Modular Exponentiation
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Time Analysis

Analysis

Assuming x and y have n digits, the number of multiplications is proportional to y ,
which is exponentially large!
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Analysis

Assuming x and y have n digits, the number of multiplications is proportional to y ,
which is exponentially large!
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A better approach

Approach II

Function MOD-EXP(x , y , p)
if (y = 0) then

return(1).
else

t =MOD-EXP(x , b y
2 c, p).

if (y is even) then
return(t2 mod p).

else
return(x · t2 mod p).

end if
end if

Algorithm 5.25: Faster Modular Exponentiation
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A better approach

Approach II

Function MOD-EXP(x , y , p)

if (y = 0) then
return(1).

else
t =MOD-EXP(x , b y

2 c, p).
if (y is even) then

return(t2 mod p).
else

return(x · t2 mod p).
end if

end if

Algorithm 5.26: Faster Modular Exponentiation
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A better approach

Approach II

Function MOD-EXP(x , y , p)
if (y = 0) then

return(1).
else

t =MOD-EXP(x , b y
2 c, p).

if (y is even) then
return(t2 mod p).

else
return(x · t2 mod p).

end if
end if

Algorithm 5.27: Faster Modular Exponentiation
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A better approach

Approach II

Function MOD-EXP(x , y , p)
if (y = 0) then

return(1).

else
t =MOD-EXP(x , b y

2 c, p).
if (y is even) then

return(t2 mod p).
else

return(x · t2 mod p).
end if

end if

Algorithm 5.28: Faster Modular Exponentiation
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A better approach

Approach II

Function MOD-EXP(x , y , p)
if (y = 0) then

return(1).
else

t =MOD-EXP(x , b y
2 c, p).

if (y is even) then
return(t2 mod p).

else
return(x · t2 mod p).

end if
end if

Algorithm 5.29: Faster Modular Exponentiation
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A better approach

Approach II

Function MOD-EXP(x , y , p)
if (y = 0) then

return(1).
else

t =MOD-EXP(x , b y
2 c, p).

if (y is even) then
return(t2 mod p).

else
return(x · t2 mod p).

end if
end if

Algorithm 5.30: Faster Modular Exponentiation
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A better approach

Approach II

Function MOD-EXP(x , y , p)
if (y = 0) then

return(1).
else

t =MOD-EXP(x , b y
2 c, p).

if (y is even) then

return(t2 mod p).
else

return(x · t2 mod p).
end if

end if

Algorithm 5.31: Faster Modular Exponentiation
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A better approach

Approach II

Function MOD-EXP(x , y , p)
if (y = 0) then

return(1).
else

t =MOD-EXP(x , b y
2 c, p).

if (y is even) then
return(t2 mod p).

else
return(x · t2 mod p).

end if
end if

Algorithm 5.32: Faster Modular Exponentiation
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A better approach

Approach II

Function MOD-EXP(x , y , p)
if (y = 0) then

return(1).
else

t =MOD-EXP(x , b y
2 c, p).

if (y is even) then
return(t2 mod p).

else

return(x · t2 mod p).
end if

end if

Algorithm 5.33: Faster Modular Exponentiation
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A better approach

Approach II

Function MOD-EXP(x , y , p)
if (y = 0) then

return(1).
else

t =MOD-EXP(x , b y
2 c, p).

if (y is even) then
return(t2 mod p).

else
return(x · t2 mod p).

end if
end if

Algorithm 5.34: Faster Modular Exponentiation
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A better approach

Approach II

Function MOD-EXP(x , y , p)
if (y = 0) then

return(1).
else

t =MOD-EXP(x , b y
2 c, p).

if (y is even) then
return(t2 mod p).

else
return(x · t2 mod p).

end if

end if

Algorithm 5.35: Faster Modular Exponentiation
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A better approach

Approach II

Function MOD-EXP(x , y , p)
if (y = 0) then

return(1).
else

t =MOD-EXP(x , b y
2 c, p).

if (y is even) then
return(t2 mod p).

else
return(x · t2 mod p).

end if
end if

Algorithm 5.36: Faster Modular Exponentiation
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Time Analysis

Analysis

If y is a power of 2, it is clear that,

T (n) = T (
n
2

) + 1

= log2 n

If n is not a power of 2, find all the powers of x up to the largest power of 2 less than y .

Then combine these products to get xy mod p.

The number of multiplications is still O(log2 n).
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Matrix multiplication

Problem

Given two square n × n matrices A and B, compute their product C = A · B.

Approach I

1 Compute Cij as the dot product between the i th row vector from A (ai) and the j th
column of B (bj).

Analysis

Computing each product takes Θ(n) multiplications and Θ(n) additions.

Since there are n2 entries in C, it follows that the algorithm takes Θ(n3) multiplications
and Θ(n3) additions.
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Approach I

1 Compute Cij as the dot product between the i th row vector from A (ai)
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Matrix multiplication

Problem

Given two square n × n matrices A and B, compute their product C = A · B.

Approach I

1 Compute Cij as the dot product between the i th row vector from A (ai) and the j th
column of B (bj).

Analysis

Computing each product takes Θ(n) multiplications and Θ(n) additions.

Since there are n2 entries in C, it follows that the algorithm takes Θ(n3) multiplications
and Θ(n3) additions.
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A divide and conquer approach

D and C approach

Function MAT-MULT(A,B, n)
if (n = 1) then

return(A11 · B11).
else

Partition A into 4 square sub-matrices of dimensions n
2 ×

n
2 as shown:

A =

[
A11 A12
A21 A22

]
Partition B into 4 square sub-matrices of dimensions n

2 ×
n
2 as shown:

B =

[
B11 B12
B21 B22

]
end if

Algorithm 5.37: A Divide and Conquer matrix multiplication algorithm
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A divide and conquer approach

D and C approach

Function MAT-MULT(A,B, n)

if (n = 1) then
return(A11 · B11).

else
Partition A into 4 square sub-matrices of dimensions n

2 ×
n
2 as shown:

A =

[
A11 A12
A21 A22

]
Partition B into 4 square sub-matrices of dimensions n

2 ×
n
2 as shown:

B =

[
B11 B12
B21 B22

]
end if

Algorithm 5.38: A Divide and Conquer matrix multiplication algorithm
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A divide and conquer approach

D and C approach

Function MAT-MULT(A,B, n)
if (n = 1) then

return(A11 · B11).
else

Partition A into 4 square sub-matrices of dimensions n
2 ×

n
2 as shown:

A =

[
A11 A12
A21 A22

]
Partition B into 4 square sub-matrices of dimensions n

2 ×
n
2 as shown:

B =

[
B11 B12
B21 B22

]
end if

Algorithm 5.39: A Divide and Conquer matrix multiplication algorithm
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A divide and conquer approach

D and C approach

Function MAT-MULT(A,B, n)
if (n = 1) then

return(A11 · B11).

else
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Algorithm (contd.)

D and C approach (contd.)

if (n > 1) then
Let C11 = MAT-MULT(A11,B11,

n
2 ) + MAT-MULT(A12,B21,

n
2 ).

Let C12 = MAT-MULT(A11,B12,
n
2 ) + MAT-MULT(A12,B22,

n
2 ).

Let C21 = MAT-MULT(A21,B11,
n
2 ) + MAT-MULT(A22,B21,

n
2 ).

Let C22 = MAT-MULT(A21,B12,
n
2 ) + MAT-MULT(A22,B22,

n
2 ).

return

C =

[
C11 C12
C21 C22

]
end if
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Analyzing the D and C algorthm

Analysis

T (n) = 8 · T (
n
2

) + O(n2)

∈ Θ(n3)
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Recursion
Divide and Conquer

The Strassen approach

Clever sub-matrix multiplication

1 Compute the following matrix products:

S1 = A11 · (B12 − B22).

S2 = (A11 + A12) · B22.

S3 = (A21 + A22) · B11.

S4 = A22 · (B21 − B11).

S5 = (A11 + A22) · (B11 + B22).

S6 = (A12 − A22) · (B21 + B22).

S7 = (A11 − A21) · (B11 + B21).
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Strassen (contd.)

Completing the algorithm

1 Observe that,

C11 = S4 + S5 + S6 − S2

C12 = S1 + S2

C21 = S3 + S4

C22 = S1 − S3 + S5 − S7
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Analysis of Strassen

Running Time

T (n) = 7 · T (
n
2

) + O(n2)

∈ O(nlog2 7)
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