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The Greedy Approach

Main Idea

1 Formulate a greedy criterion (usually a simple one).
2 Start with an empty solution set, which must be feasible.
3 Prove that the greedy choice is always safe. (Usually involves an exchange

argument).
4 Add items one at a time to the current feasible solution, using the greedy criterion.
5 Terminate when all items have been considered or a maximum feasible subset

has been reached.
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The file storage problem

Problem

1 You are given n files F1, F2 . . . , Fn, which have to be stored on tape.
2 File Fi has length li , i.e., it has li records.
3 The cost of accessing a file is equal to its position on the tape. Thus, the cost of

accessing the k th file is:
∑k

i=1 li .
4 Assuming that each file is equally likely to be accessed, the expected cost of

accessing a random file is: E[cost] = 1
n ·

∑n
i=1

∑i
j=1 lj .

5 Different orders of file storage give rise to different expected costs.
6 In what order should the files be stored, so that the expected cost is minimized?
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File storage

Solution

1 The files should be stored in increasing order of length on the tape, i.e., if li ≤ lj ,
then Fi must precede Fj on the tape.

Proof

1 Assume that there exists an optimal solution in which the files on the tape are not
in increasing order of length.

2 So there must be files Fi and Fj such that li < lj , but Fi is stored after Fj .
3 Without loss of generality, we assume that Fi and Fj are adjacent files. (Why can

we assume this?)

4 Switch these two files! The expected cost decreases by:
(lj−li )

n .

5 Thus, a non-ordered organization cannot be optimal.
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The Minimum Spanning Tree problem

Problem

Given an edge-weighted, undirected graph G = 〈V ,E , c〉, find a spanning tree of
minimum weight.

Greedy Approach

1: Order the edges in E in ascending order of weight.
2: W.l.o.g. assume that c(e1) ≤ c(e2) ≤ . . . c(em).
3: T → ∅.
4: for (i = 1 to m) do
5: if ( (T ∪ {ei}) does not have a cycle) then
6: T → (T ∪ {ei}).
7: end if
8: end for

Algorithm 3.1: Kruskal’s algorithm
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2: W.l.o.g. assume that c(e1) ≤ c(e2) ≤ . . . c(em).
3: T → ∅.
4: for (i = 1 to m) do
5: if ( (T ∪ {ei}) does not have a cycle) then
6: T → (T ∪ {ei}).
7: end if
8: end for

Algorithm 3.6: Kruskal’s algorithm
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The Minimum Spanning Tree problem

Problem

Given an edge-weighted, undirected graph G = 〈V ,E , c〉, find a spanning tree of
minimum weight.

Greedy Approach

1: Order the edges in E in ascending order of weight.
2: W.l.o.g. assume that c(e1) ≤ c(e2) ≤ . . . c(em).
3: T → ∅.
4: for (i = 1 to m) do
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Review of concepts
The Greedy Approach

Dynamic Programming

Proof of Kruskal

Definition

A cut in an undirected graph is any partition of the vertices into two disjoint subsets.
Any cut determines a cut-set.

Theorem

Let C denote a cut-set corresponding to some cut in an undirected graph G. There is
an MST of G, which includes the lightest edge in C.
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Review of concepts
The Greedy Approach

Dynamic Programming

The fractional knapsack problem

The Problem

1 You are given n objects oi , i = 1, 2, . . . , n.
2 Object oi has weight wi and profit pi .
3 You are given a knapsack of capacity W .
4 You are permitted to choose a fraction of an object.

Pack the objects into the knapsack, so as to maximize profit, without violating the
capacity constraint.

Greedy Algorithm

1: W.l.o.g. assume that p1
w1
≥ p2

w2
. . . ≥ pn

wn
.

2: for (i = 1 to n) do
3: Pack as much of object oi as you can in the knapsack.
4: end for
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Review of concepts
The Greedy Approach

Dynamic Programming

Correctness

Proof of correctness

1 Note that the greedy solution will have structure 〈1, 1, α, 0, . . .〉.
2 Assume that there exists an optimal solution which is superior to the greedy

solution.
3 Let k be the first index at which the optimal solution differs from the greedy

solution.
4 Let αk and α′k denote the fractions of the greedy and optimal solutions

respectively.
5 Observe that αk must be greater than α′k .
6 Use an exchange argument.
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Review of concepts
The Greedy Approach

Dynamic Programming

Scheduling with profits and deadlines

The problem

1 You are given n unit time jobs, Ji , i = 1, 2, . . . , n.
2 Job Ji has a deadline di and a profit pi .
3 If a job commences execution after its deadline, its profit is 0.

Schedule the jobs so as to maximize profit.

Greedy Algorithm

1: Order the jobs in descending order of profit.
2: Assume that p1 ≥ p2 . . . ≥ pn.
3: Let S = ∅.
4: for (i = 1 t0 n) do
5: if (S ∪ {Ji} is feasible) then
6: S → S ∪ {Ji}.
7: end if
8: end for

Algorithm 3.14: Job scheduling
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Correctness

Theorem

A set of jobs S is feasible if and only if the sequence obtained by ordering the jobs
according to nondecreasing deadlines is feasible.

Proof of correctness

Exchange argument.
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Dynamic Programming

The process scheduling problem

The Problem

1 You are given a collection of processes Pi , i = 1, 2, . . . , n.
2 Associated with process Pi is its start time si and finish time fi .
3 Process Pi must start at si and is guaranteed to finish at fi .
4 Any machine can execute only one process at a time.
5 Processes Pi and Pj are said to be non-conflicting if fi ≤ sj or fj ≤ si .
6 Two processes cannot be scheduled on the same machine if they conflict.

Schedule all the processes, while minimizing the number of machines used.
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Dynamic Programming

The Greedy Algorithm

The Greedy Approach

1: Order the processes in non-decreasing order of start time.
2: W.l.o.g. assume that s1 ≤ s2 ≤ . . . sn.
3: for (i = 1 to n) do
4: Assign Pi to the first available machine.
5: if (no machine is available) then
6: Assign it to a new machine.
7: end if
8: end for

Correctness

Assume that the greedy approach requires k machines, but that the optimal solution
requires (k − 1) machines.

Let process PI be the first process assigned to machine k in the greedy approach.

Clearly, Pi conflicts with all the processes on the fist (k − 1) machines.

But these processes also conflict with each other!

Algorithmic Insights Computational Complexity



Review of concepts
The Greedy Approach

Dynamic Programming

The Greedy Algorithm

The Greedy Approach

1: Order the processes in non-decreasing order of start time.
2: W.l.o.g. assume that s1 ≤ s2 ≤ . . . sn.
3: for (i = 1 to n) do
4: Assign Pi to the first available machine.
5: if (no machine is available) then
6: Assign it to a new machine.
7: end if
8: end for

Correctness

Assume that the greedy approach requires k machines, but that the optimal solution
requires (k − 1) machines.

Let process PI be the first process assigned to machine k in the greedy approach.

Clearly, Pi conflicts with all the processes on the fist (k − 1) machines.

But these processes also conflict with each other!

Algorithmic Insights Computational Complexity



Review of concepts
The Greedy Approach

Dynamic Programming

The Greedy Algorithm

The Greedy Approach

1: Order the processes in non-decreasing order of start time.
2: W.l.o.g. assume that s1 ≤ s2 ≤ . . . sn.
3: for (i = 1 to n) do
4: Assign Pi to the first available machine.
5: if (no machine is available) then
6: Assign it to a new machine.
7: end if
8: end for

Correctness

Assume that the greedy approach requires k machines, but that the optimal solution
requires (k − 1) machines.

Let process PI be the first process assigned to machine k in the greedy approach.

Clearly, Pi conflicts with all the processes on the fist (k − 1) machines.

But these processes also conflict with each other!

Algorithmic Insights Computational Complexity



Review of concepts
The Greedy Approach

Dynamic Programming

The Greedy Algorithm

The Greedy Approach

1: Order the processes in non-decreasing order of start time.

2: W.l.o.g. assume that s1 ≤ s2 ≤ . . . sn.
3: for (i = 1 to n) do
4: Assign Pi to the first available machine.
5: if (no machine is available) then
6: Assign it to a new machine.
7: end if
8: end for

Correctness

Assume that the greedy approach requires k machines, but that the optimal solution
requires (k − 1) machines.

Let process PI be the first process assigned to machine k in the greedy approach.

Clearly, Pi conflicts with all the processes on the fist (k − 1) machines.

But these processes also conflict with each other!

Algorithmic Insights Computational Complexity



Review of concepts
The Greedy Approach

Dynamic Programming

The Greedy Algorithm

The Greedy Approach

1: Order the processes in non-decreasing order of start time.
2: W.l.o.g. assume that s1 ≤ s2 ≤ . . . sn.

3: for (i = 1 to n) do
4: Assign Pi to the first available machine.
5: if (no machine is available) then
6: Assign it to a new machine.
7: end if
8: end for

Correctness

Assume that the greedy approach requires k machines, but that the optimal solution
requires (k − 1) machines.

Let process PI be the first process assigned to machine k in the greedy approach.

Clearly, Pi conflicts with all the processes on the fist (k − 1) machines.

But these processes also conflict with each other!

Algorithmic Insights Computational Complexity



Review of concepts
The Greedy Approach

Dynamic Programming

The Greedy Algorithm

The Greedy Approach

1: Order the processes in non-decreasing order of start time.
2: W.l.o.g. assume that s1 ≤ s2 ≤ . . . sn.
3: for (i = 1 to n) do

4: Assign Pi to the first available machine.
5: if (no machine is available) then
6: Assign it to a new machine.
7: end if
8: end for

Correctness

Assume that the greedy approach requires k machines, but that the optimal solution
requires (k − 1) machines.

Let process PI be the first process assigned to machine k in the greedy approach.

Clearly, Pi conflicts with all the processes on the fist (k − 1) machines.

But these processes also conflict with each other!

Algorithmic Insights Computational Complexity



Review of concepts
The Greedy Approach

Dynamic Programming

The Greedy Algorithm

The Greedy Approach

1: Order the processes in non-decreasing order of start time.
2: W.l.o.g. assume that s1 ≤ s2 ≤ . . . sn.
3: for (i = 1 to n) do
4: Assign Pi to the first available machine.

5: if (no machine is available) then
6: Assign it to a new machine.
7: end if
8: end for

Correctness

Assume that the greedy approach requires k machines, but that the optimal solution
requires (k − 1) machines.

Let process PI be the first process assigned to machine k in the greedy approach.

Clearly, Pi conflicts with all the processes on the fist (k − 1) machines.

But these processes also conflict with each other!

Algorithmic Insights Computational Complexity



Review of concepts
The Greedy Approach

Dynamic Programming

The Greedy Algorithm

The Greedy Approach

1: Order the processes in non-decreasing order of start time.
2: W.l.o.g. assume that s1 ≤ s2 ≤ . . . sn.
3: for (i = 1 to n) do
4: Assign Pi to the first available machine.
5: if (no machine is available) then

6: Assign it to a new machine.
7: end if
8: end for

Correctness

Assume that the greedy approach requires k machines, but that the optimal solution
requires (k − 1) machines.

Let process PI be the first process assigned to machine k in the greedy approach.

Clearly, Pi conflicts with all the processes on the fist (k − 1) machines.

But these processes also conflict with each other!

Algorithmic Insights Computational Complexity



Review of concepts
The Greedy Approach

Dynamic Programming

The Greedy Algorithm

The Greedy Approach

1: Order the processes in non-decreasing order of start time.
2: W.l.o.g. assume that s1 ≤ s2 ≤ . . . sn.
3: for (i = 1 to n) do
4: Assign Pi to the first available machine.
5: if (no machine is available) then
6: Assign it to a new machine.

7: end if
8: end for

Correctness

Assume that the greedy approach requires k machines, but that the optimal solution
requires (k − 1) machines.

Let process PI be the first process assigned to machine k in the greedy approach.

Clearly, Pi conflicts with all the processes on the fist (k − 1) machines.

But these processes also conflict with each other!

Algorithmic Insights Computational Complexity



Review of concepts
The Greedy Approach

Dynamic Programming

The Greedy Algorithm

The Greedy Approach

1: Order the processes in non-decreasing order of start time.
2: W.l.o.g. assume that s1 ≤ s2 ≤ . . . sn.
3: for (i = 1 to n) do
4: Assign Pi to the first available machine.
5: if (no machine is available) then
6: Assign it to a new machine.
7: end if

8: end for

Correctness

Assume that the greedy approach requires k machines, but that the optimal solution
requires (k − 1) machines.

Let process PI be the first process assigned to machine k in the greedy approach.

Clearly, Pi conflicts with all the processes on the fist (k − 1) machines.

But these processes also conflict with each other!

Algorithmic Insights Computational Complexity



Review of concepts
The Greedy Approach

Dynamic Programming

The Greedy Algorithm

The Greedy Approach

1: Order the processes in non-decreasing order of start time.
2: W.l.o.g. assume that s1 ≤ s2 ≤ . . . sn.
3: for (i = 1 to n) do
4: Assign Pi to the first available machine.
5: if (no machine is available) then
6: Assign it to a new machine.
7: end if
8: end for

Correctness

Assume that the greedy approach requires k machines, but that the optimal solution
requires (k − 1) machines.

Let process PI be the first process assigned to machine k in the greedy approach.

Clearly, Pi conflicts with all the processes on the fist (k − 1) machines.

But these processes also conflict with each other!

Algorithmic Insights Computational Complexity



Review of concepts
The Greedy Approach

Dynamic Programming

The Greedy Algorithm

The Greedy Approach

1: Order the processes in non-decreasing order of start time.
2: W.l.o.g. assume that s1 ≤ s2 ≤ . . . sn.
3: for (i = 1 to n) do
4: Assign Pi to the first available machine.
5: if (no machine is available) then
6: Assign it to a new machine.
7: end if
8: end for

Correctness

Assume that the greedy approach requires k machines, but that the optimal solution
requires (k − 1) machines.

Let process PI be the first process assigned to machine k in the greedy approach.

Clearly, Pi conflicts with all the processes on the fist (k − 1) machines.

But these processes also conflict with each other!

Algorithmic Insights Computational Complexity



Review of concepts
The Greedy Approach

Dynamic Programming

The Greedy Algorithm

The Greedy Approach

1: Order the processes in non-decreasing order of start time.
2: W.l.o.g. assume that s1 ≤ s2 ≤ . . . sn.
3: for (i = 1 to n) do
4: Assign Pi to the first available machine.
5: if (no machine is available) then
6: Assign it to a new machine.
7: end if
8: end for

Correctness

Assume that the greedy approach requires k machines, but that the optimal solution
requires (k − 1) machines.

Let process PI be the first process assigned to machine k in the greedy approach.

Clearly, Pi conflicts with all the processes on the fist (k − 1) machines.

But these processes also conflict with each other!

Algorithmic Insights Computational Complexity



Review of concepts
The Greedy Approach

Dynamic Programming

The Greedy Algorithm

The Greedy Approach

1: Order the processes in non-decreasing order of start time.
2: W.l.o.g. assume that s1 ≤ s2 ≤ . . . sn.
3: for (i = 1 to n) do
4: Assign Pi to the first available machine.
5: if (no machine is available) then
6: Assign it to a new machine.
7: end if
8: end for

Correctness

Assume that the greedy approach requires k machines, but that the optimal solution
requires (k − 1) machines.

Let process PI be the first process assigned to machine k in the greedy approach.

Clearly, Pi conflicts with all the processes on the fist (k − 1) machines.

But these processes also conflict with each other!

Algorithmic Insights Computational Complexity



Review of concepts
The Greedy Approach

Dynamic Programming

The Greedy Algorithm

The Greedy Approach

1: Order the processes in non-decreasing order of start time.
2: W.l.o.g. assume that s1 ≤ s2 ≤ . . . sn.
3: for (i = 1 to n) do
4: Assign Pi to the first available machine.
5: if (no machine is available) then
6: Assign it to a new machine.
7: end if
8: end for

Correctness

Assume that the greedy approach requires k machines, but that the optimal solution
requires (k − 1) machines.

Let process PI be the first process assigned to machine k in the greedy approach.

Clearly, Pi conflicts with all the processes on the fist (k − 1) machines.

But these processes also conflict with each other!

Algorithmic Insights Computational Complexity



Review of concepts
The Greedy Approach

Dynamic Programming

The Greedy Algorithm

The Greedy Approach

1: Order the processes in non-decreasing order of start time.
2: W.l.o.g. assume that s1 ≤ s2 ≤ . . . sn.
3: for (i = 1 to n) do
4: Assign Pi to the first available machine.
5: if (no machine is available) then
6: Assign it to a new machine.
7: end if
8: end for

Correctness

Assume that the greedy approach requires k machines, but that the optimal solution
requires (k − 1) machines.

Let process PI be the first process assigned to machine k in the greedy approach.

Clearly, Pi conflicts with all the processes on the fist (k − 1) machines.

But these processes also conflict with each other!

Algorithmic Insights Computational Complexity



Review of concepts
The Greedy Approach

Dynamic Programming

The minimum weight matroid problem

Definition

A matroid M is a finite set E(M) together with a subset I(M) of 2E(M) that satisfies the
following properties:

1 ∅ ∈ I(M).
2 (Y ∈ I(M) ∧ (X ⊆ Y )⇒ X ∈ I(M).
3 (X ,Y ∈ I(M) ∧ (|Y | > |X |)⇒ ∃e ∈ Y\X , such that X ∪ {e} ∈ I(M).

The above axioms are called independence axioms.

A maximal independent set is said to be a basis.

The Problem

1 Let E(M) = {s1, s2, . . . , sn}.
2 Let wi denote the weight of si .

Find a basis of minimum weight.
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∧ (|Y | > |X |)⇒ ∃e ∈ Y\X , such that X ∪ {e} ∈ I(M).

The above axioms are called independence axioms.

A maximal independent set is said to be a basis.

The Problem

1 Let E(M) = {s1, s2, . . . , sn}.
2 Let wi denote the weight of si .

Find a basis of minimum weight.
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Review of concepts
The Greedy Approach

Dynamic Programming

The matroid lemma

Lemma

Let S be a set where the family of independent sets forms a matroid.
Suppose an independent set F is contained in a minimum-weight basis.
Let v be one of the lightest elements of S such that F ∪ {v} is also independent.
Then F ∪ {v} is also contained in a minimum-weight basis.
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Review of concepts
The Greedy Approach

Dynamic Programming

Dynamic Programming

Main ideas

1 Characterize the structure of an optimal solution.
2 Recursively define the value of an optimal solution.
3 Compute the value of an optimal solution, typically in a bottom-up fashion.
4 Construct an optimal solution from computed information.
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Review of concepts
The Greedy Approach

Dynamic Programming

The Rod Cutting problem

The Problem

Given a rod of n inches, and a table of prices pi , i = 1, 2, . . . , n, determine the
maximum revenue rn obtainable by cutting up the rod and selling it into pieces. How
many possibilities?

Example

Length i 1 2 3 4 5 6 7
Price pi 1 5 8 9 10 17 17

Compute ri , i = 1, 2, . . . 6.
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Review of concepts
The Greedy Approach

Dynamic Programming

Optimal substructure property

Recurrence

Observe that once the first cut is made, you get two independent subproblems which
must be solved optimally. (Why?)

This is called the optimal substructure property. Hence, we can write,

rn = max(pn, r1 + rn−1, r2 + rn−2, . . . rn−1 + r1). (1)

Unlike Divide-and-Conquer, the subproblems could overlap.

Recurrence (1) can be expressed more succinctly as:

rn = max
1≤i≤n

(pi + rn−i ) (2)

r0 = 0

Why are Recurrence (1) and Recurrence (2) equivalent?
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The Greedy Approach

Dynamic Programming

A recursive implementation

Recursive Algorithm

Function CUT-ROD(p, n)
1: if (n = 0) then
2: return(0).
3: end if
4: q = −∞.
5: for (i = 1 to n) do
6: q = max(q, p[i]+ CUT-ROD(p, n − i)).
7: end for

Algorithm 4.1: The recursive rod-cutting algorithm

Analysis

T (n) =

{
1, if n = 0
1 +

∑n
j=1 T (n − j), otherwise
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Recursive Algorithm

Function CUT-ROD(p, n)
1: if (n = 0) then
2: return(0).
3: end if
4: q = −∞.
5: for (i = 1 to n) do
6: q = max(q,

p[i]+ CUT-ROD(p, n − i)).
7: end for

Algorithm 4.10: The recursive rod-cutting algorithm

Analysis

T (n) =

{
1, if n = 0
1 +

∑n
j=1 T (n − j), otherwise
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A recursive implementation

Recursive Algorithm

Function CUT-ROD(p, n)
1: if (n = 0) then
2: return(0).
3: end if
4: q = −∞.
5: for (i = 1 to n) do
6: q = max(q, p[i]+ CUT-ROD(p, n − i)).

7: end for

Algorithm 4.11: The recursive rod-cutting algorithm

Analysis

T (n) =

{
1, if n = 0
1 +

∑n
j=1 T (n − j), otherwise
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A recursive implementation

Recursive Algorithm

Function CUT-ROD(p, n)
1: if (n = 0) then
2: return(0).
3: end if
4: q = −∞.
5: for (i = 1 to n) do
6: q = max(q, p[i]+ CUT-ROD(p, n − i)).
7: end for

Algorithm 4.12: The recursive rod-cutting algorithm

Analysis

T (n) =

{
1, if n = 0
1 +

∑n
j=1 T (n − j), otherwise
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A recursive implementation

Recursive Algorithm

Function CUT-ROD(p, n)
1: if (n = 0) then
2: return(0).
3: end if
4: q = −∞.
5: for (i = 1 to n) do
6: q = max(q, p[i]+ CUT-ROD(p, n − i)).
7: end for

Algorithm 4.13: The recursive rod-cutting algorithm

Analysis

T (n) =

{
1, if n = 0
1 +

∑n
j=1 T (n − j), otherwise
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A recursive implementation

Recursive Algorithm

Function CUT-ROD(p, n)
1: if (n = 0) then
2: return(0).
3: end if
4: q = −∞.
5: for (i = 1 to n) do
6: q = max(q, p[i]+ CUT-ROD(p, n − i)).
7: end for

Algorithm 4.14: The recursive rod-cutting algorithm

Analysis

T (n) =

{
1, if n = 0
1 +

∑n
j=1 T (n − j), otherwise
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A recursive implementation

Recursive Algorithm

Function CUT-ROD(p, n)
1: if (n = 0) then
2: return(0).
3: end if
4: q = −∞.
5: for (i = 1 to n) do
6: q = max(q, p[i]+ CUT-ROD(p, n − i)).
7: end for

Algorithm 4.15: The recursive rod-cutting algorithm

Analysis

T (n) =

{
1, if n = 0

1 +
∑n

j=1 T (n − j), otherwise
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Dynamic Programming

A recursive implementation

Recursive Algorithm

Function CUT-ROD(p, n)
1: if (n = 0) then
2: return(0).
3: end if
4: q = −∞.
5: for (i = 1 to n) do
6: q = max(q, p[i]+ CUT-ROD(p, n − i)).
7: end for

Algorithm 4.16: The recursive rod-cutting algorithm

Analysis

T (n) =

{
1, if n = 0
1 +

∑n
j=1 T (n − j), otherwise
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Dynamic Programming

Analysis of the recursive algorithm

Analysis (contd.)

T (n) =

{
1, if n = 0
1 +

∑n−1
k=0 T (k), otherwise

It is not hard to see that T (n) = 2n.
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{
1, if n = 0
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k=0 T (k), otherwise

It is not hard to see that T (n) =
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Analysis (contd.)

T (n) =

{
1, if n = 0
1 +

∑n−1
k=0 T (k), otherwise

It is not hard to see that T (n) = 2n.
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The Greedy Approach

Dynamic Programming

The Bottom-up approach

The bottom-up algorithm

Function BOTTOM-ROD-CUT(p, n)
1: Let r [0 · ·n] be a new array.
2: r [0] = 0.
3: for (j = 1 to n) do
4: q = −∞.
5: for (i = 1 to j) do
6: q = max(q, p[i] + r [j − i]).
7: end for
8: r [j] = q.
9: end for

10: return(r [n]).

Algorithm 4.17: Bottom-up rod-cutting
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Dynamic Programming

The Bottom-up approach

The bottom-up algorithm

Function BOTTOM-ROD-CUT(p, n)
1: Let r [0 · ·n] be a new array.
2: r [0] = 0.
3: for (j = 1 to n) do
4: q = −∞.
5: for (i = 1 to j) do
6: q = max(q, p[i] + r [j − i]).
7: end for
8: r [j] = q.
9: end for

10: return(r [n]).

Algorithm 4.18: Bottom-up rod-cutting
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Dynamic Programming

The Bottom-up approach

The bottom-up algorithm

Function BOTTOM-ROD-CUT(p, n)

1: Let r [0 · ·n] be a new array.
2: r [0] = 0.
3: for (j = 1 to n) do
4: q = −∞.
5: for (i = 1 to j) do
6: q = max(q, p[i] + r [j − i]).
7: end for
8: r [j] = q.
9: end for

10: return(r [n]).

Algorithm 4.19: Bottom-up rod-cutting
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Dynamic Programming

The Bottom-up approach

The bottom-up algorithm

Function BOTTOM-ROD-CUT(p, n)
1: Let r [0 · ·n] be a new array.

2: r [0] = 0.
3: for (j = 1 to n) do
4: q = −∞.
5: for (i = 1 to j) do
6: q = max(q, p[i] + r [j − i]).
7: end for
8: r [j] = q.
9: end for

10: return(r [n]).

Algorithm 4.20: Bottom-up rod-cutting
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Dynamic Programming

The Bottom-up approach

The bottom-up algorithm

Function BOTTOM-ROD-CUT(p, n)
1: Let r [0 · ·n] be a new array.
2: r [0] = 0.

3: for (j = 1 to n) do
4: q = −∞.
5: for (i = 1 to j) do
6: q = max(q, p[i] + r [j − i]).
7: end for
8: r [j] = q.
9: end for

10: return(r [n]).

Algorithm 4.21: Bottom-up rod-cutting
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Dynamic Programming

The Bottom-up approach

The bottom-up algorithm

Function BOTTOM-ROD-CUT(p, n)
1: Let r [0 · ·n] be a new array.
2: r [0] = 0.
3: for (j = 1 to n) do

4: q = −∞.
5: for (i = 1 to j) do
6: q = max(q, p[i] + r [j − i]).
7: end for
8: r [j] = q.
9: end for

10: return(r [n]).

Algorithm 4.22: Bottom-up rod-cutting
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Dynamic Programming

The Bottom-up approach

The bottom-up algorithm

Function BOTTOM-ROD-CUT(p, n)
1: Let r [0 · ·n] be a new array.
2: r [0] = 0.
3: for (j = 1 to n) do
4: q = −∞.

5: for (i = 1 to j) do
6: q = max(q, p[i] + r [j − i]).
7: end for
8: r [j] = q.
9: end for

10: return(r [n]).

Algorithm 4.23: Bottom-up rod-cutting
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The Bottom-up approach

The bottom-up algorithm

Function BOTTOM-ROD-CUT(p, n)
1: Let r [0 · ·n] be a new array.
2: r [0] = 0.
3: for (j = 1 to n) do
4: q = −∞.
5: for (i = 1 to j) do

6: q = max(q, p[i] + r [j − i]).
7: end for
8: r [j] = q.
9: end for

10: return(r [n]).

Algorithm 4.24: Bottom-up rod-cutting
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Dynamic Programming

The Bottom-up approach

The bottom-up algorithm

Function BOTTOM-ROD-CUT(p, n)
1: Let r [0 · ·n] be a new array.
2: r [0] = 0.
3: for (j = 1 to n) do
4: q = −∞.
5: for (i = 1 to j) do
6: q = max(q, p[i] + r [j − i]).

7: end for
8: r [j] = q.
9: end for

10: return(r [n]).

Algorithm 4.25: Bottom-up rod-cutting
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Dynamic Programming

The Bottom-up approach

The bottom-up algorithm

Function BOTTOM-ROD-CUT(p, n)
1: Let r [0 · ·n] be a new array.
2: r [0] = 0.
3: for (j = 1 to n) do
4: q = −∞.
5: for (i = 1 to j) do
6: q = max(q, p[i] + r [j − i]).
7: end for

8: r [j] = q.
9: end for

10: return(r [n]).

Algorithm 4.26: Bottom-up rod-cutting
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Dynamic Programming

The Bottom-up approach

The bottom-up algorithm

Function BOTTOM-ROD-CUT(p, n)
1: Let r [0 · ·n] be a new array.
2: r [0] = 0.
3: for (j = 1 to n) do
4: q = −∞.
5: for (i = 1 to j) do
6: q = max(q, p[i] + r [j − i]).
7: end for
8: r [j] = q.

9: end for
10: return(r [n]).

Algorithm 4.27: Bottom-up rod-cutting
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Dynamic Programming

The Bottom-up approach

The bottom-up algorithm

Function BOTTOM-ROD-CUT(p, n)
1: Let r [0 · ·n] be a new array.
2: r [0] = 0.
3: for (j = 1 to n) do
4: q = −∞.
5: for (i = 1 to j) do
6: q = max(q, p[i] + r [j − i]).
7: end for
8: r [j] = q.
9: end for

10: return(r [n]).

Algorithm 4.28: Bottom-up rod-cutting
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The Greedy Approach

Dynamic Programming

The Bottom-up approach

The bottom-up algorithm

Function BOTTOM-ROD-CUT(p, n)
1: Let r [0 · ·n] be a new array.
2: r [0] = 0.
3: for (j = 1 to n) do
4: q = −∞.
5: for (i = 1 to j) do
6: q = max(q, p[i] + r [j − i]).
7: end for
8: r [j] = q.
9: end for

10: return(r [n]).

Algorithm 4.29: Bottom-up rod-cutting
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Review of concepts
The Greedy Approach

Dynamic Programming

Analyzing the bottom-up approach

Analysis

The running time of the algorithm can be approximated by the number of times that
Line (6) is executed.

Accordingly,

T (n) =

{
0, if n = 0∑n

j=1
∑j

i=1 1, otherwise

It is not hard to see that T (n) = Θ(n2).
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The running time of the algorithm can be approximated by the number of times that
Line (6) is executed.

Accordingly,
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i=1 1, otherwise

It is not hard to see that T (n) = Θ(n2).
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Analyzing the bottom-up approach

Analysis

The running time of the algorithm can be approximated by the number of times that
Line (6) is executed.

Accordingly,

T (n) =

{
0, if n = 0

∑n
j=1

∑j
i=1 1, otherwise

It is not hard to see that T (n) = Θ(n2).
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Analyzing the bottom-up approach

Analysis

The running time of the algorithm can be approximated by the number of times that
Line (6) is executed.

Accordingly,

T (n) =
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0, if n = 0∑n

j=1
∑j

i=1 1, otherwise

It is not hard to see that T (n) = Θ(n2).
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Analyzing the bottom-up approach

Analysis

The running time of the algorithm can be approximated by the number of times that
Line (6) is executed.

Accordingly,

T (n) =

{
0, if n = 0∑n

j=1
∑j

i=1 1, otherwise

It is not hard to see that T (n) =

Θ(n2).
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Analyzing the bottom-up approach

Analysis

The running time of the algorithm can be approximated by the number of times that
Line (6) is executed.

Accordingly,

T (n) =

{
0, if n = 0∑n

j=1
∑j

i=1 1, otherwise

It is not hard to see that T (n) = Θ(n2).
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Review of concepts
The Greedy Approach

Dynamic Programming

Reconstructing the Solution

The bottom-up algorithm with solution

Function BOTTOM-ROD-CUT(p, n)
1: Let r [0 · ·n] and s[0 · ·n] be new arrays.
2: r [0] = 0.
3: for (j = 1 to n) do
4: q = −∞.
5: for (i = 1 to j) do
6: if (q < p[i] + r [j − i]) then
7: q = p[i] + r [j − i].
8: s[j] = i . {The unsplittable left side is recorded.}
9: end if

10: end for
11: r [j] = q.
12: end for
13: return(r [n]).

Algorithm 4.30: Bottom-up rod-cutting
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The Greedy Approach

Dynamic Programming

Reconstructing the Solution

The bottom-up algorithm with solution

Function BOTTOM-ROD-CUT(p, n)
1: Let r [0 · ·n] and s[0 · ·n] be new arrays.
2: r [0] = 0.
3: for (j = 1 to n) do
4: q = −∞.
5: for (i = 1 to j) do
6: if (q < p[i] + r [j − i]) then
7: q = p[i] + r [j − i].
8: s[j] = i . {The unsplittable left side is recorded.}
9: end if

10: end for
11: r [j] = q.
12: end for
13: return(r [n]).

Algorithm 4.31: Bottom-up rod-cutting
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Dynamic Programming

Reconstructing the Solution

The bottom-up algorithm with solution

Function BOTTOM-ROD-CUT(p, n)

1: Let r [0 · ·n] and s[0 · ·n] be new arrays.
2: r [0] = 0.
3: for (j = 1 to n) do
4: q = −∞.
5: for (i = 1 to j) do
6: if (q < p[i] + r [j − i]) then
7: q = p[i] + r [j − i].
8: s[j] = i . {The unsplittable left side is recorded.}
9: end if

10: end for
11: r [j] = q.
12: end for
13: return(r [n]).

Algorithm 4.32: Bottom-up rod-cutting
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Dynamic Programming

Reconstructing the Solution

The bottom-up algorithm with solution

Function BOTTOM-ROD-CUT(p, n)
1: Let r [0 · ·n] and s[0 · ·n] be new arrays.

2: r [0] = 0.
3: for (j = 1 to n) do
4: q = −∞.
5: for (i = 1 to j) do
6: if (q < p[i] + r [j − i]) then
7: q = p[i] + r [j − i].
8: s[j] = i . {The unsplittable left side is recorded.}
9: end if

10: end for
11: r [j] = q.
12: end for
13: return(r [n]).

Algorithm 4.33: Bottom-up rod-cutting
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Dynamic Programming

Reconstructing the Solution

The bottom-up algorithm with solution

Function BOTTOM-ROD-CUT(p, n)
1: Let r [0 · ·n] and s[0 · ·n] be new arrays.
2: r [0] = 0.

3: for (j = 1 to n) do
4: q = −∞.
5: for (i = 1 to j) do
6: if (q < p[i] + r [j − i]) then
7: q = p[i] + r [j − i].
8: s[j] = i . {The unsplittable left side is recorded.}
9: end if

10: end for
11: r [j] = q.
12: end for
13: return(r [n]).

Algorithm 4.34: Bottom-up rod-cutting
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Dynamic Programming

Reconstructing the Solution

The bottom-up algorithm with solution

Function BOTTOM-ROD-CUT(p, n)
1: Let r [0 · ·n] and s[0 · ·n] be new arrays.
2: r [0] = 0.
3: for (j = 1 to n) do

4: q = −∞.
5: for (i = 1 to j) do
6: if (q < p[i] + r [j − i]) then
7: q = p[i] + r [j − i].
8: s[j] = i . {The unsplittable left side is recorded.}
9: end if

10: end for
11: r [j] = q.
12: end for
13: return(r [n]).

Algorithm 4.35: Bottom-up rod-cutting
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Dynamic Programming

Reconstructing the Solution

The bottom-up algorithm with solution

Function BOTTOM-ROD-CUT(p, n)
1: Let r [0 · ·n] and s[0 · ·n] be new arrays.
2: r [0] = 0.
3: for (j = 1 to n) do
4: q = −∞.

5: for (i = 1 to j) do
6: if (q < p[i] + r [j − i]) then
7: q = p[i] + r [j − i].
8: s[j] = i . {The unsplittable left side is recorded.}
9: end if

10: end for
11: r [j] = q.
12: end for
13: return(r [n]).

Algorithm 4.36: Bottom-up rod-cutting
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Dynamic Programming

Reconstructing the Solution

The bottom-up algorithm with solution

Function BOTTOM-ROD-CUT(p, n)
1: Let r [0 · ·n] and s[0 · ·n] be new arrays.
2: r [0] = 0.
3: for (j = 1 to n) do
4: q = −∞.
5: for (i = 1 to j) do

6: if (q < p[i] + r [j − i]) then
7: q = p[i] + r [j − i].
8: s[j] = i . {The unsplittable left side is recorded.}
9: end if

10: end for
11: r [j] = q.
12: end for
13: return(r [n]).

Algorithm 4.37: Bottom-up rod-cutting
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Dynamic Programming

Reconstructing the Solution

The bottom-up algorithm with solution

Function BOTTOM-ROD-CUT(p, n)
1: Let r [0 · ·n] and s[0 · ·n] be new arrays.
2: r [0] = 0.
3: for (j = 1 to n) do
4: q = −∞.
5: for (i = 1 to j) do
6: if (q < p[i] + r [j − i]) then

7: q = p[i] + r [j − i].
8: s[j] = i . {The unsplittable left side is recorded.}
9: end if

10: end for
11: r [j] = q.
12: end for
13: return(r [n]).

Algorithm 4.38: Bottom-up rod-cutting
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The Greedy Approach

Dynamic Programming

Reconstructing the Solution

The bottom-up algorithm with solution

Function BOTTOM-ROD-CUT(p, n)
1: Let r [0 · ·n] and s[0 · ·n] be new arrays.
2: r [0] = 0.
3: for (j = 1 to n) do
4: q = −∞.
5: for (i = 1 to j) do
6: if (q < p[i] + r [j − i]) then
7: q = p[i] + r [j − i].

8: s[j] = i . {The unsplittable left side is recorded.}
9: end if

10: end for
11: r [j] = q.
12: end for
13: return(r [n]).

Algorithm 4.39: Bottom-up rod-cutting
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The Greedy Approach

Dynamic Programming

Reconstructing the Solution

The bottom-up algorithm with solution

Function BOTTOM-ROD-CUT(p, n)
1: Let r [0 · ·n] and s[0 · ·n] be new arrays.
2: r [0] = 0.
3: for (j = 1 to n) do
4: q = −∞.
5: for (i = 1 to j) do
6: if (q < p[i] + r [j − i]) then
7: q = p[i] + r [j − i].
8: s[j] = i . {The unsplittable left side is recorded.}

9: end if
10: end for
11: r [j] = q.
12: end for
13: return(r [n]).

Algorithm 4.40: Bottom-up rod-cutting
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The Greedy Approach

Dynamic Programming

Reconstructing the Solution

The bottom-up algorithm with solution

Function BOTTOM-ROD-CUT(p, n)
1: Let r [0 · ·n] and s[0 · ·n] be new arrays.
2: r [0] = 0.
3: for (j = 1 to n) do
4: q = −∞.
5: for (i = 1 to j) do
6: if (q < p[i] + r [j − i]) then
7: q = p[i] + r [j − i].
8: s[j] = i . {The unsplittable left side is recorded.}
9: end if

10: end for
11: r [j] = q.
12: end for
13: return(r [n]).

Algorithm 4.41: Bottom-up rod-cutting
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The Greedy Approach

Dynamic Programming

Reconstructing the Solution

The bottom-up algorithm with solution

Function BOTTOM-ROD-CUT(p, n)
1: Let r [0 · ·n] and s[0 · ·n] be new arrays.
2: r [0] = 0.
3: for (j = 1 to n) do
4: q = −∞.
5: for (i = 1 to j) do
6: if (q < p[i] + r [j − i]) then
7: q = p[i] + r [j − i].
8: s[j] = i . {The unsplittable left side is recorded.}
9: end if

10: end for

11: r [j] = q.
12: end for
13: return(r [n]).

Algorithm 4.42: Bottom-up rod-cutting
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Reconstructing the Solution

The bottom-up algorithm with solution

Function BOTTOM-ROD-CUT(p, n)
1: Let r [0 · ·n] and s[0 · ·n] be new arrays.
2: r [0] = 0.
3: for (j = 1 to n) do
4: q = −∞.
5: for (i = 1 to j) do
6: if (q < p[i] + r [j − i]) then
7: q = p[i] + r [j − i].
8: s[j] = i . {The unsplittable left side is recorded.}
9: end if

10: end for
11: r [j] = q.

12: end for
13: return(r [n]).

Algorithm 4.43: Bottom-up rod-cutting
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Reconstructing the Solution

The bottom-up algorithm with solution

Function BOTTOM-ROD-CUT(p, n)
1: Let r [0 · ·n] and s[0 · ·n] be new arrays.
2: r [0] = 0.
3: for (j = 1 to n) do
4: q = −∞.
5: for (i = 1 to j) do
6: if (q < p[i] + r [j − i]) then
7: q = p[i] + r [j − i].
8: s[j] = i . {The unsplittable left side is recorded.}
9: end if

10: end for
11: r [j] = q.
12: end for

13: return(r [n]).

Algorithm 4.44: Bottom-up rod-cutting
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Reconstructing the Solution

The bottom-up algorithm with solution

Function BOTTOM-ROD-CUT(p, n)
1: Let r [0 · ·n] and s[0 · ·n] be new arrays.
2: r [0] = 0.
3: for (j = 1 to n) do
4: q = −∞.
5: for (i = 1 to j) do
6: if (q < p[i] + r [j − i]) then
7: q = p[i] + r [j − i].
8: s[j] = i . {The unsplittable left side is recorded.}
9: end if

10: end for
11: r [j] = q.
12: end for
13: return(r [n]).

Algorithm 4.45: Bottom-up rod-cutting
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Outputting the solution

Printing the Solution

Function PRINT-SOLUTION(p, n)
1: while (n > 0) do
2: print s[n].
3: n = n − s[n].
4: end while

Algorithm 4.46: Extracting the solution
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Outputting the solution

Printing the Solution

Function PRINT-SOLUTION(p, n)
1: while (n > 0) do
2: print s[n].
3: n = n − s[n].
4: end while

Algorithm 4.47: Extracting the solution
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Outputting the solution

Printing the Solution

Function PRINT-SOLUTION(p, n)

1: while (n > 0) do
2: print s[n].
3: n = n − s[n].
4: end while

Algorithm 4.48: Extracting the solution

Algorithmic Insights Computational Complexity



Review of concepts
The Greedy Approach

Dynamic Programming

Outputting the solution

Printing the Solution

Function PRINT-SOLUTION(p, n)
1: while (n > 0) do

2: print s[n].
3: n = n − s[n].
4: end while

Algorithm 4.49: Extracting the solution
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Outputting the solution

Printing the Solution

Function PRINT-SOLUTION(p, n)
1: while (n > 0) do
2: print s[n].

3: n = n − s[n].
4: end while

Algorithm 4.50: Extracting the solution
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Outputting the solution

Printing the Solution

Function PRINT-SOLUTION(p, n)
1: while (n > 0) do
2: print s[n].
3: n = n − s[n].

4: end while

Algorithm 4.51: Extracting the solution
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Outputting the solution

Printing the Solution

Function PRINT-SOLUTION(p, n)
1: while (n > 0) do
2: print s[n].
3: n = n − s[n].
4: end while

Algorithm 4.52: Extracting the solution
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The Matrix Chain Multiplication problem

The Problem

You are required to compute the matrix product A1 · A2 · · ·An, where matrix Ai has
dimensions di−1 × di , while minimizing the number of scalar multiplications.

Observe that,
1 The total number of scalar multiplications when multiplying two matrices of

dimensions p × q and q × r is p · q · r .
2 The entries in the matrices do not affect the optimum solution.

Cost of enumerating all the orders

T (n) =

{
0, if n = 0∑n−1

k=1 T (k) · T (n − k), otherwise

Solving the recurrence gives the nth Catalan number whose growth is Ω( 4n

n
3
2

).
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Dynamic Programming

Optimality Substructure

Substructure

If somebody gave you the first grouping, can the problem be simplified?

Yes! The two subproblems that result must be solved optimally. (Why?)

Therefore, the optimality substructure applies.

Let m[i, j] denote the optimal number of scalar multiplications to multiply the matrices
〈Ai ,Ai+1, . . .Aj 〉.

m[i, j] =

{
0, if j = i
mini≤k<j (m[i, k ] + m[k + 1, j] + di−1 · dk · dj ), if j > i.
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Dynamic Programming

Resource analysis

Analysis

1 For space usage, observe that we need an array m[i, j] and some variable space.
Thus, space usage is Θ(n2).

2 For time, note that each entry requires O(n) time. Since there are Θ(n2) entries to
be filled out, the time taken by out dynamic programming algorithm is O(n3).

Can you show that the time required is Θ(n3)?

Note

We have left out some details in the algorithm; such as extracting the optimal solution.

The technique for extracting the optimal solution is similar to the rod-cutting problem;
keep track of the k that is optimal for m[i, j].

Example

Find the optimal parenthesization for the chain 〈A7×10 · B10×3 · C3×8 · D8×4〉.

Algorithmic Insights Computational Complexity



Review of concepts
The Greedy Approach

Dynamic Programming

Resource analysis

Analysis

1 For space usage, observe that we need an array m[i, j] and some variable space.
Thus, space usage is Θ(n2).

2 For time, note that each entry requires O(n) time. Since there are Θ(n2) entries to
be filled out, the time taken by out dynamic programming algorithm is O(n3).

Can you show that the time required is Θ(n3)?

Note

We have left out some details in the algorithm; such as extracting the optimal solution.

The technique for extracting the optimal solution is similar to the rod-cutting problem;
keep track of the k that is optimal for m[i, j].

Example

Find the optimal parenthesization for the chain 〈A7×10 · B10×3 · C3×8 · D8×4〉.

Algorithmic Insights Computational Complexity



Review of concepts
The Greedy Approach

Dynamic Programming

Resource analysis

Analysis

1 For space usage, observe that we need an array m[i, j] and some variable space.

Thus, space usage is Θ(n2).
2 For time, note that each entry requires O(n) time. Since there are Θ(n2) entries to

be filled out, the time taken by out dynamic programming algorithm is O(n3).

Can you show that the time required is Θ(n3)?

Note

We have left out some details in the algorithm; such as extracting the optimal solution.

The technique for extracting the optimal solution is similar to the rod-cutting problem;
keep track of the k that is optimal for m[i, j].

Example

Find the optimal parenthesization for the chain 〈A7×10 · B10×3 · C3×8 · D8×4〉.

Algorithmic Insights Computational Complexity



Review of concepts
The Greedy Approach

Dynamic Programming

Resource analysis

Analysis

1 For space usage, observe that we need an array m[i, j] and some variable space.
Thus, space usage is Θ(n2).

2 For time, note that each entry requires O(n) time. Since there are Θ(n2) entries to
be filled out, the time taken by out dynamic programming algorithm is O(n3).

Can you show that the time required is Θ(n3)?

Note

We have left out some details in the algorithm; such as extracting the optimal solution.

The technique for extracting the optimal solution is similar to the rod-cutting problem;
keep track of the k that is optimal for m[i, j].

Example

Find the optimal parenthesization for the chain 〈A7×10 · B10×3 · C3×8 · D8×4〉.

Algorithmic Insights Computational Complexity



Review of concepts
The Greedy Approach

Dynamic Programming

Resource analysis

Analysis

1 For space usage, observe that we need an array m[i, j] and some variable space.
Thus, space usage is Θ(n2).

2 For time, note that each entry requires O(n) time.

Since there are Θ(n2) entries to
be filled out, the time taken by out dynamic programming algorithm is O(n3).

Can you show that the time required is Θ(n3)?

Note

We have left out some details in the algorithm; such as extracting the optimal solution.

The technique for extracting the optimal solution is similar to the rod-cutting problem;
keep track of the k that is optimal for m[i, j].

Example

Find the optimal parenthesization for the chain 〈A7×10 · B10×3 · C3×8 · D8×4〉.

Algorithmic Insights Computational Complexity



Review of concepts
The Greedy Approach

Dynamic Programming

Resource analysis

Analysis

1 For space usage, observe that we need an array m[i, j] and some variable space.
Thus, space usage is Θ(n2).

2 For time, note that each entry requires O(n) time. Since there are Θ(n2) entries to
be filled out, the time taken by out dynamic programming algorithm is O(n3).

Can you show that the time required is Θ(n3)?

Note

We have left out some details in the algorithm; such as extracting the optimal solution.

The technique for extracting the optimal solution is similar to the rod-cutting problem;
keep track of the k that is optimal for m[i, j].

Example

Find the optimal parenthesization for the chain 〈A7×10 · B10×3 · C3×8 · D8×4〉.

Algorithmic Insights Computational Complexity



Review of concepts
The Greedy Approach

Dynamic Programming

Resource analysis

Analysis

1 For space usage, observe that we need an array m[i, j] and some variable space.
Thus, space usage is Θ(n2).

2 For time, note that each entry requires O(n) time. Since there are Θ(n2) entries to
be filled out, the time taken by out dynamic programming algorithm is O(n3).

Can you show that the time required is Θ(n3)?

Note

We have left out some details in the algorithm; such as extracting the optimal solution.

The technique for extracting the optimal solution is similar to the rod-cutting problem;
keep track of the k that is optimal for m[i, j].

Example

Find the optimal parenthesization for the chain 〈A7×10 · B10×3 · C3×8 · D8×4〉.

Algorithmic Insights Computational Complexity



Review of concepts
The Greedy Approach

Dynamic Programming

Resource analysis

Analysis

1 For space usage, observe that we need an array m[i, j] and some variable space.
Thus, space usage is Θ(n2).

2 For time, note that each entry requires O(n) time. Since there are Θ(n2) entries to
be filled out, the time taken by out dynamic programming algorithm is O(n3).

Can you show that the time required is Θ(n3)?

Note

We have left out some details in the algorithm;

such as extracting the optimal solution.

The technique for extracting the optimal solution is similar to the rod-cutting problem;
keep track of the k that is optimal for m[i, j].

Example

Find the optimal parenthesization for the chain 〈A7×10 · B10×3 · C3×8 · D8×4〉.

Algorithmic Insights Computational Complexity



Review of concepts
The Greedy Approach

Dynamic Programming

Resource analysis

Analysis

1 For space usage, observe that we need an array m[i, j] and some variable space.
Thus, space usage is Θ(n2).

2 For time, note that each entry requires O(n) time. Since there are Θ(n2) entries to
be filled out, the time taken by out dynamic programming algorithm is O(n3).

Can you show that the time required is Θ(n3)?

Note

We have left out some details in the algorithm; such as extracting the optimal solution.

The technique for extracting the optimal solution is similar to the rod-cutting problem;
keep track of the k that is optimal for m[i, j].

Example

Find the optimal parenthesization for the chain 〈A7×10 · B10×3 · C3×8 · D8×4〉.

Algorithmic Insights Computational Complexity



Review of concepts
The Greedy Approach

Dynamic Programming

Resource analysis

Analysis

1 For space usage, observe that we need an array m[i, j] and some variable space.
Thus, space usage is Θ(n2).

2 For time, note that each entry requires O(n) time. Since there are Θ(n2) entries to
be filled out, the time taken by out dynamic programming algorithm is O(n3).

Can you show that the time required is Θ(n3)?

Note

We have left out some details in the algorithm; such as extracting the optimal solution.

The technique for extracting the optimal solution is similar to the rod-cutting problem;

keep track of the k that is optimal for m[i, j].

Example

Find the optimal parenthesization for the chain 〈A7×10 · B10×3 · C3×8 · D8×4〉.

Algorithmic Insights Computational Complexity



Review of concepts
The Greedy Approach

Dynamic Programming

Resource analysis

Analysis

1 For space usage, observe that we need an array m[i, j] and some variable space.
Thus, space usage is Θ(n2).

2 For time, note that each entry requires O(n) time. Since there are Θ(n2) entries to
be filled out, the time taken by out dynamic programming algorithm is O(n3).

Can you show that the time required is Θ(n3)?

Note

We have left out some details in the algorithm; such as extracting the optimal solution.

The technique for extracting the optimal solution is similar to the rod-cutting problem;
keep track of the k that is optimal for m[i, j].

Example

Find the optimal parenthesization for the chain 〈A7×10 · B10×3 · C3×8 · D8×4〉.

Algorithmic Insights Computational Complexity



Review of concepts
The Greedy Approach

Dynamic Programming

Resource analysis

Analysis

1 For space usage, observe that we need an array m[i, j] and some variable space.
Thus, space usage is Θ(n2).

2 For time, note that each entry requires O(n) time. Since there are Θ(n2) entries to
be filled out, the time taken by out dynamic programming algorithm is O(n3).

Can you show that the time required is Θ(n3)?

Note

We have left out some details in the algorithm; such as extracting the optimal solution.

The technique for extracting the optimal solution is similar to the rod-cutting problem;
keep track of the k that is optimal for m[i, j].

Example

Find the optimal parenthesization for the chain 〈A7×10 · B10×3 · C3×8 · D8×4〉.

Algorithmic Insights Computational Complexity



Review of concepts
The Greedy Approach

Dynamic Programming

Resource analysis

Analysis

1 For space usage, observe that we need an array m[i, j] and some variable space.
Thus, space usage is Θ(n2).

2 For time, note that each entry requires O(n) time. Since there are Θ(n2) entries to
be filled out, the time taken by out dynamic programming algorithm is O(n3).

Can you show that the time required is Θ(n3)?

Note

We have left out some details in the algorithm; such as extracting the optimal solution.

The technique for extracting the optimal solution is similar to the rod-cutting problem;
keep track of the k that is optimal for m[i, j].

Example

Find the optimal parenthesization for the chain 〈A7×10 · B10×3 · C3×8 · D8×4〉.

Algorithmic Insights Computational Complexity



Review of concepts
The Greedy Approach

Dynamic Programming

The Longest Common Subsequence problem

The problem

1 You are given two subsequences of characters X = 〈x1, x2, . . . xm〉 and
Y = 〈y1, y2, . . . yn〉 over an alphabet Σ.

2 A subsequence of a sequence is defined as as a sequence whose characters
occur in the same order as the original sequence (not necessarily contiguous).

Compute the longest common subsequence (LCS) of X and Y .

We use Xi to denote the string 〈x1, x2, . . . xi 〉.

Brute-Force Approach

Assuming m < n, X has 2m possible subsequences.
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Review of concepts
The Greedy Approach

Dynamic Programming

Optimal Substructure

Theorem

Let X = 〈x1, x2, . . . xm〉 and Y = 〈y1, y2, . . . yn〉 be two sequences and let
Z = 〈z1, z2, . . . , zk 〉 denote their LCS.

1 If xm = yn, then zk = xm and Zk−1 is an LCS of Xm−1 and Yn−1.
2 If xm 6= yn, then zk 6= xm implies that Z is an LCS of Xm−1 and Y = Yn.
3 If xm 6= yn, then zk 6= yn implies that Z is an LCS of Xm = X and Yn−1.

Recursive solution

Let c[i, j] denote the length of the LCS between Xi and Yj . Then,

c[i, j] =


0, if i = 0 or j = 0
c[i − 1, j − 1] + 1, if xi = yj

max(c[i, j − 1], c[i − 1, j]), otherwise
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2 If xm 6= yn, then zk 6= xm implies that Z is an LCS of Xm−1 and Y = Yn.
3 If xm 6= yn, then zk 6= yn implies that Z is an LCS of Xm = X and Yn−1.

Recursive solution

Let c[i, j] denote the length of the LCS between Xi and Yj . Then,

c[i, j] =


0,

if i = 0 or j = 0
c[i − 1, j − 1] + 1, if xi = yj

max(c[i, j − 1], c[i − 1, j]), otherwise

Algorithmic Insights Computational Complexity



Review of concepts
The Greedy Approach

Dynamic Programming

Optimal Substructure

Theorem

Let X = 〈x1, x2, . . . xm〉 and Y = 〈y1, y2, . . . yn〉 be two sequences and let
Z = 〈z1, z2, . . . , zk 〉 denote their LCS.

1 If xm = yn, then zk = xm and Zk−1 is an LCS of Xm−1 and Yn−1.
2 If xm 6= yn, then zk 6= xm implies that Z is an LCS of Xm−1 and Y = Yn.
3 If xm 6= yn, then zk 6= yn implies that Z is an LCS of Xm = X and Yn−1.

Recursive solution

Let c[i, j] denote the length of the LCS between Xi and Yj . Then,

c[i, j] =


0, if i = 0 or j = 0

c[i − 1, j − 1] + 1, if xi = yj

max(c[i, j − 1], c[i − 1, j]), otherwise

Algorithmic Insights Computational Complexity



Review of concepts
The Greedy Approach

Dynamic Programming

Optimal Substructure

Theorem

Let X = 〈x1, x2, . . . xm〉 and Y = 〈y1, y2, . . . yn〉 be two sequences and let
Z = 〈z1, z2, . . . , zk 〉 denote their LCS.

1 If xm = yn, then zk = xm and Zk−1 is an LCS of Xm−1 and Yn−1.
2 If xm 6= yn, then zk 6= xm implies that Z is an LCS of Xm−1 and Y = Yn.
3 If xm 6= yn, then zk 6= yn implies that Z is an LCS of Xm = X and Yn−1.

Recursive solution

Let c[i, j] denote the length of the LCS between Xi and Yj . Then,

c[i, j] =


0, if i = 0 or j = 0
c[i − 1, j − 1] + 1,

if xi = yj

max(c[i, j − 1], c[i − 1, j]), otherwise

Algorithmic Insights Computational Complexity



Review of concepts
The Greedy Approach

Dynamic Programming

Optimal Substructure

Theorem

Let X = 〈x1, x2, . . . xm〉 and Y = 〈y1, y2, . . . yn〉 be two sequences and let
Z = 〈z1, z2, . . . , zk 〉 denote their LCS.

1 If xm = yn, then zk = xm and Zk−1 is an LCS of Xm−1 and Yn−1.
2 If xm 6= yn, then zk 6= xm implies that Z is an LCS of Xm−1 and Y = Yn.
3 If xm 6= yn, then zk 6= yn implies that Z is an LCS of Xm = X and Yn−1.

Recursive solution

Let c[i, j] denote the length of the LCS between Xi and Yj . Then,

c[i, j] =


0, if i = 0 or j = 0
c[i − 1, j − 1] + 1, if xi = yj

max(c[i, j − 1], c[i − 1, j]), otherwise

Algorithmic Insights Computational Complexity



Review of concepts
The Greedy Approach

Dynamic Programming

Optimal Substructure

Theorem

Let X = 〈x1, x2, . . . xm〉 and Y = 〈y1, y2, . . . yn〉 be two sequences and let
Z = 〈z1, z2, . . . , zk 〉 denote their LCS.

1 If xm = yn, then zk = xm and Zk−1 is an LCS of Xm−1 and Yn−1.
2 If xm 6= yn, then zk 6= xm implies that Z is an LCS of Xm−1 and Y = Yn.
3 If xm 6= yn, then zk 6= yn implies that Z is an LCS of Xm = X and Yn−1.

Recursive solution

Let c[i, j] denote the length of the LCS between Xi and Yj . Then,

c[i, j] =


0, if i = 0 or j = 0
c[i − 1, j − 1] + 1, if xi = yj

max(c[i, j − 1], c[i − 1, j]),

otherwise

Algorithmic Insights Computational Complexity



Review of concepts
The Greedy Approach

Dynamic Programming

Optimal Substructure

Theorem

Let X = 〈x1, x2, . . . xm〉 and Y = 〈y1, y2, . . . yn〉 be two sequences and let
Z = 〈z1, z2, . . . , zk 〉 denote their LCS.

1 If xm = yn, then zk = xm and Zk−1 is an LCS of Xm−1 and Yn−1.
2 If xm 6= yn, then zk 6= xm implies that Z is an LCS of Xm−1 and Y = Yn.
3 If xm 6= yn, then zk 6= yn implies that Z is an LCS of Xm = X and Yn−1.

Recursive solution

Let c[i, j] denote the length of the LCS between Xi and Yj . Then,

c[i, j] =


0, if i = 0 or j = 0
c[i − 1, j − 1] + 1, if xi = yj

max(c[i, j − 1], c[i − 1, j]), otherwise

Algorithmic Insights Computational Complexity



Review of concepts
The Greedy Approach

Dynamic Programming

Analysis

Resource Analysis

We require to store the matrix c[i, j] and some auxiliary space. Thus, the space
needed is O(m · n).
Each entry in the table can be computed in O(1) time and hence the total time taken is
O(m · n).

Example

Find the LCS of X = 〈A,B,C,B,D,A,B〉 and Y = 〈B,D,C,A,B,A〉.
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Review of concepts
The Greedy Approach

Dynamic Programming

The Pretty Typesetting problem

The Problem

1 You are given n words w1,w2, . . .wn, which need to be packed into a paragraph.
2 Word wi has length li , i = 1, 2, . . . n.
3 On each line, you can pack at most M characters.
4 There needs to be exactly one space (one character) between consecutive words

on a line.
5 The cost of a packing for a given line is the cube of the number of spaces left over.
6 The cost of packing the entire set of words is the sum of the costs of packing over

each line.
7 The cost of a packing is infinity, if the number of words plus the accompanying

spaces exceeds M.
8 There is no cost for packing on the last line

Find the minimum cost of packing the words into lines.
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The Greedy Approach

Dynamic Programming

Formulating the cost function

Cost structure

There are 2 key observations to make:
1 Any optimal solution on k lines consists of p ( say ) words on the first line and the

remaining (n − p) words on the remaining (k − 1) lines.
2 If all the words fit on one line, it is sub-optimal to break up the words into two or

more lines.

We first formulate the cost function.

Let tij denote the space left over on a line, when packing the words wi . . .wj are packed
into that line.

It is not hard to see that tij = M − (j − i)−
∑j

k=i lk .

Let s[i, j] denote the packing cost of packing words wi through wj in one line.
The following equations are immediate:

s[i, j] =


t3
ij , if tij ≥ 0

0, tij ≥ 0 and j = n
∞, tij < 0

(3)

Algorithmic Insights Computational Complexity



Review of concepts
The Greedy Approach

Dynamic Programming

Formulating the cost function

Cost structure

There are 2 key observations to make:
1 Any optimal solution on k lines consists of p ( say ) words on the first line and the

remaining (n − p) words on the remaining (k − 1) lines.
2 If all the words fit on one line, it is sub-optimal to break up the words into two or

more lines.

We first formulate the cost function.

Let tij denote the space left over on a line, when packing the words wi . . .wj are packed
into that line.

It is not hard to see that tij = M − (j − i)−
∑j

k=i lk .

Let s[i, j] denote the packing cost of packing words wi through wj in one line.
The following equations are immediate:

s[i, j] =


t3
ij , if tij ≥ 0

0, tij ≥ 0 and j = n
∞, tij < 0

(3)

Algorithmic Insights Computational Complexity



Review of concepts
The Greedy Approach

Dynamic Programming

Formulating the cost function

Cost structure

There are 2 key observations to make:

1 Any optimal solution on k lines consists of p ( say ) words on the first line and the
remaining (n − p) words on the remaining (k − 1) lines.

2 If all the words fit on one line, it is sub-optimal to break up the words into two or
more lines.

We first formulate the cost function.

Let tij denote the space left over on a line, when packing the words wi . . .wj are packed
into that line.

It is not hard to see that tij = M − (j − i)−
∑j

k=i lk .

Let s[i, j] denote the packing cost of packing words wi through wj in one line.
The following equations are immediate:

s[i, j] =


t3
ij , if tij ≥ 0

0, tij ≥ 0 and j = n
∞, tij < 0

(3)

Algorithmic Insights Computational Complexity



Review of concepts
The Greedy Approach

Dynamic Programming

Formulating the cost function

Cost structure

There are 2 key observations to make:
1 Any optimal solution on k lines consists of p ( say ) words on the first line and the

remaining (n − p) words on the remaining (k − 1) lines.

2 If all the words fit on one line, it is sub-optimal to break up the words into two or
more lines.

We first formulate the cost function.

Let tij denote the space left over on a line, when packing the words wi . . .wj are packed
into that line.

It is not hard to see that tij = M − (j − i)−
∑j

k=i lk .

Let s[i, j] denote the packing cost of packing words wi through wj in one line.
The following equations are immediate:

s[i, j] =


t3
ij , if tij ≥ 0

0, tij ≥ 0 and j = n
∞, tij < 0

(3)

Algorithmic Insights Computational Complexity



Review of concepts
The Greedy Approach

Dynamic Programming

Formulating the cost function

Cost structure

There are 2 key observations to make:
1 Any optimal solution on k lines consists of p ( say ) words on the first line and the

remaining (n − p) words on the remaining (k − 1) lines.
2 If all the words fit on one line, it is sub-optimal to break up the words into two or

more lines.

We first formulate the cost function.

Let tij denote the space left over on a line, when packing the words wi . . .wj are packed
into that line.

It is not hard to see that tij = M − (j − i)−
∑j

k=i lk .

Let s[i, j] denote the packing cost of packing words wi through wj in one line.
The following equations are immediate:

s[i, j] =


t3
ij , if tij ≥ 0

0, tij ≥ 0 and j = n
∞, tij < 0

(3)

Algorithmic Insights Computational Complexity



Review of concepts
The Greedy Approach

Dynamic Programming

Formulating the cost function

Cost structure

There are 2 key observations to make:
1 Any optimal solution on k lines consists of p ( say ) words on the first line and the

remaining (n − p) words on the remaining (k − 1) lines.
2 If all the words fit on one line, it is sub-optimal to break up the words into two or

more lines.

We first formulate the cost function.

Let tij denote the space left over on a line, when packing the words wi . . .wj are packed
into that line.

It is not hard to see that tij = M − (j − i)−
∑j

k=i lk .

Let s[i, j] denote the packing cost of packing words wi through wj in one line.
The following equations are immediate:

s[i, j] =


t3
ij , if tij ≥ 0

0, tij ≥ 0 and j = n
∞, tij < 0

(3)

Algorithmic Insights Computational Complexity



Review of concepts
The Greedy Approach

Dynamic Programming

Formulating the cost function

Cost structure

There are 2 key observations to make:
1 Any optimal solution on k lines consists of p ( say ) words on the first line and the

remaining (n − p) words on the remaining (k − 1) lines.
2 If all the words fit on one line, it is sub-optimal to break up the words into two or

more lines.

We first formulate the cost function.

Let tij denote the space left over on a line, when packing the words wi . . .wj are packed
into that line.

It is not hard to see that tij = M − (j − i)−
∑j

k=i lk .

Let s[i, j] denote the packing cost of packing words wi through wj in one line.
The following equations are immediate:

s[i, j] =


t3
ij , if tij ≥ 0

0, tij ≥ 0 and j = n
∞, tij < 0

(3)

Algorithmic Insights Computational Complexity



Review of concepts
The Greedy Approach

Dynamic Programming

Formulating the cost function

Cost structure

There are 2 key observations to make:
1 Any optimal solution on k lines consists of p ( say ) words on the first line and the

remaining (n − p) words on the remaining (k − 1) lines.
2 If all the words fit on one line, it is sub-optimal to break up the words into two or

more lines.

We first formulate the cost function.

Let tij denote the space left over on a line, when packing the words wi . . .wj are packed
into that line.

It is not hard to see that tij =

M − (j − i)−
∑j

k=i lk .

Let s[i, j] denote the packing cost of packing words wi through wj in one line.
The following equations are immediate:

s[i, j] =


t3
ij , if tij ≥ 0

0, tij ≥ 0 and j = n
∞, tij < 0

(3)

Algorithmic Insights Computational Complexity



Review of concepts
The Greedy Approach

Dynamic Programming

Formulating the cost function

Cost structure

There are 2 key observations to make:
1 Any optimal solution on k lines consists of p ( say ) words on the first line and the

remaining (n − p) words on the remaining (k − 1) lines.
2 If all the words fit on one line, it is sub-optimal to break up the words into two or

more lines.

We first formulate the cost function.

Let tij denote the space left over on a line, when packing the words wi . . .wj are packed
into that line.

It is not hard to see that tij = M − (j − i)−
∑j

k=i lk .

Let s[i, j] denote the packing cost of packing words wi through wj in one line.
The following equations are immediate:

s[i, j] =


t3
ij , if tij ≥ 0

0, tij ≥ 0 and j = n
∞, tij < 0

(3)

Algorithmic Insights Computational Complexity



Review of concepts
The Greedy Approach

Dynamic Programming

Formulating the cost function

Cost structure

There are 2 key observations to make:
1 Any optimal solution on k lines consists of p ( say ) words on the first line and the

remaining (n − p) words on the remaining (k − 1) lines.
2 If all the words fit on one line, it is sub-optimal to break up the words into two or

more lines.

We first formulate the cost function.

Let tij denote the space left over on a line, when packing the words wi . . .wj are packed
into that line.

It is not hard to see that tij = M − (j − i)−
∑j

k=i lk .

Let s[i, j] denote the packing cost of packing words wi through wj

in one line.
The following equations are immediate:

s[i, j] =


t3
ij , if tij ≥ 0

0, tij ≥ 0 and j = n
∞, tij < 0

(3)

Algorithmic Insights Computational Complexity



Review of concepts
The Greedy Approach

Dynamic Programming

Formulating the cost function

Cost structure

There are 2 key observations to make:
1 Any optimal solution on k lines consists of p ( say ) words on the first line and the

remaining (n − p) words on the remaining (k − 1) lines.
2 If all the words fit on one line, it is sub-optimal to break up the words into two or

more lines.

We first formulate the cost function.

Let tij denote the space left over on a line, when packing the words wi . . .wj are packed
into that line.

It is not hard to see that tij = M − (j − i)−
∑j

k=i lk .

Let s[i, j] denote the packing cost of packing words wi through wj in one line.

The following equations are immediate:

s[i, j] =


t3
ij , if tij ≥ 0

0, tij ≥ 0 and j = n
∞, tij < 0

(3)

Algorithmic Insights Computational Complexity



Review of concepts
The Greedy Approach

Dynamic Programming

Formulating the cost function

Cost structure

There are 2 key observations to make:
1 Any optimal solution on k lines consists of p ( say ) words on the first line and the

remaining (n − p) words on the remaining (k − 1) lines.
2 If all the words fit on one line, it is sub-optimal to break up the words into two or

more lines.

We first formulate the cost function.

Let tij denote the space left over on a line, when packing the words wi . . .wj are packed
into that line.

It is not hard to see that tij = M − (j − i)−
∑j

k=i lk .

Let s[i, j] denote the packing cost of packing words wi through wj in one line.
The following equations are immediate:

s[i, j] =


t3
ij , if tij ≥ 0

0, tij ≥ 0 and j = n
∞, tij < 0

(3)

Algorithmic Insights Computational Complexity



Review of concepts
The Greedy Approach

Dynamic Programming

Formulating the cost function

Cost structure

There are 2 key observations to make:
1 Any optimal solution on k lines consists of p ( say ) words on the first line and the

remaining (n − p) words on the remaining (k − 1) lines.
2 If all the words fit on one line, it is sub-optimal to break up the words into two or

more lines.

We first formulate the cost function.

Let tij denote the space left over on a line, when packing the words wi . . .wj are packed
into that line.

It is not hard to see that tij = M − (j − i)−
∑j

k=i lk .

Let s[i, j] denote the packing cost of packing words wi through wj in one line.
The following equations are immediate:

s[i, j] =



t3
ij , if tij ≥ 0

0, tij ≥ 0 and j = n
∞, tij < 0

(3)

Algorithmic Insights Computational Complexity



Review of concepts
The Greedy Approach

Dynamic Programming

Formulating the cost function

Cost structure

There are 2 key observations to make:
1 Any optimal solution on k lines consists of p ( say ) words on the first line and the

remaining (n − p) words on the remaining (k − 1) lines.
2 If all the words fit on one line, it is sub-optimal to break up the words into two or

more lines.

We first formulate the cost function.

Let tij denote the space left over on a line, when packing the words wi . . .wj are packed
into that line.

It is not hard to see that tij = M − (j − i)−
∑j

k=i lk .

Let s[i, j] denote the packing cost of packing words wi through wj in one line.
The following equations are immediate:

s[i, j] =


t3
ij ,

if tij ≥ 0
0, tij ≥ 0 and j = n
∞, tij < 0

(3)

Algorithmic Insights Computational Complexity



Review of concepts
The Greedy Approach

Dynamic Programming

Formulating the cost function

Cost structure

There are 2 key observations to make:
1 Any optimal solution on k lines consists of p ( say ) words on the first line and the

remaining (n − p) words on the remaining (k − 1) lines.
2 If all the words fit on one line, it is sub-optimal to break up the words into two or

more lines.

We first formulate the cost function.

Let tij denote the space left over on a line, when packing the words wi . . .wj are packed
into that line.

It is not hard to see that tij = M − (j − i)−
∑j

k=i lk .

Let s[i, j] denote the packing cost of packing words wi through wj in one line.
The following equations are immediate:

s[i, j] =


t3
ij , if tij ≥ 0

0, tij ≥ 0 and j = n
∞, tij < 0

(3)

Algorithmic Insights Computational Complexity



Review of concepts
The Greedy Approach

Dynamic Programming

Formulating the cost function

Cost structure

There are 2 key observations to make:
1 Any optimal solution on k lines consists of p ( say ) words on the first line and the

remaining (n − p) words on the remaining (k − 1) lines.
2 If all the words fit on one line, it is sub-optimal to break up the words into two or

more lines.

We first formulate the cost function.

Let tij denote the space left over on a line, when packing the words wi . . .wj are packed
into that line.

It is not hard to see that tij = M − (j − i)−
∑j

k=i lk .

Let s[i, j] denote the packing cost of packing words wi through wj in one line.
The following equations are immediate:

s[i, j] =


t3
ij , if tij ≥ 0

0,

tij ≥ 0 and j = n
∞, tij < 0

(3)

Algorithmic Insights Computational Complexity



Review of concepts
The Greedy Approach

Dynamic Programming

Formulating the cost function

Cost structure

There are 2 key observations to make:
1 Any optimal solution on k lines consists of p ( say ) words on the first line and the

remaining (n − p) words on the remaining (k − 1) lines.
2 If all the words fit on one line, it is sub-optimal to break up the words into two or

more lines.

We first formulate the cost function.

Let tij denote the space left over on a line, when packing the words wi . . .wj are packed
into that line.

It is not hard to see that tij = M − (j − i)−
∑j

k=i lk .

Let s[i, j] denote the packing cost of packing words wi through wj in one line.
The following equations are immediate:

s[i, j] =


t3
ij , if tij ≥ 0

0, tij ≥ 0 and j = n

∞, tij < 0
(3)

Algorithmic Insights Computational Complexity



Review of concepts
The Greedy Approach

Dynamic Programming

Formulating the cost function

Cost structure

There are 2 key observations to make:
1 Any optimal solution on k lines consists of p ( say ) words on the first line and the

remaining (n − p) words on the remaining (k − 1) lines.
2 If all the words fit on one line, it is sub-optimal to break up the words into two or

more lines.

We first formulate the cost function.

Let tij denote the space left over on a line, when packing the words wi . . .wj are packed
into that line.

It is not hard to see that tij = M − (j − i)−
∑j

k=i lk .

Let s[i, j] denote the packing cost of packing words wi through wj in one line.
The following equations are immediate:

s[i, j] =


t3
ij , if tij ≥ 0

0, tij ≥ 0 and j = n
∞,

tij < 0
(3)

Algorithmic Insights Computational Complexity



Review of concepts
The Greedy Approach

Dynamic Programming

Formulating the cost function

Cost structure

There are 2 key observations to make:
1 Any optimal solution on k lines consists of p ( say ) words on the first line and the

remaining (n − p) words on the remaining (k − 1) lines.
2 If all the words fit on one line, it is sub-optimal to break up the words into two or

more lines.

We first formulate the cost function.

Let tij denote the space left over on a line, when packing the words wi . . .wj are packed
into that line.

It is not hard to see that tij = M − (j − i)−
∑j

k=i lk .

Let s[i, j] denote the packing cost of packing words wi through wj in one line.
The following equations are immediate:

s[i, j] =


t3
ij , if tij ≥ 0

0, tij ≥ 0 and j = n
∞, tij < 0

(3)

Algorithmic Insights Computational Complexity



Review of concepts
The Greedy Approach

Dynamic Programming

Optimal substructure

Recursive solution

Let m[i, j] be the optimal cost of packing words wi through wj with word wi starting on a
fresh line.

Hence, we are interested in m[1, n].

The following recurrence is immediate:

m[i, j] =

{
s[i, j], if tij ≥ 0
mini≤k≤j (s[i, k ] + m[k + 1, j]), otherwise

(4)

Analyze the resources of the above algorithm.
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Review of concepts
The Greedy Approach

Dynamic Programming

The Reachability problem

The Problem

Given a directed, unweighted graph G = 〈,V ,E〉 and a pair of vertices s, t ∈ V , is
there a dipath from s to t?
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Review of concepts
The Greedy Approach

Dynamic Programming

Graph Exploration

The Exploration Algorithm

Function EXPLORE(G, s, t)
1: Q = {s}.
2: while (Q 6= ∅) do
3: Remove a vertex u from Q. {If u = t , then t is reachable from u.}
4: Mark u.
5: for (all unmarked neighbors v of u) do
6: Insert v into Q.
7: end for
8: end while

Algorithm 4.53: The generic algorithm
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The Exploration Algorithm
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Review of concepts
The Greedy Approach

Dynamic Programming

Two common search techniques

Breadth-first Search

Implement Q as a queue.

Depth-first Search

Implement Q as a stack.

Analysis

Both algorithms run in O(m + n) time.
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Review of concepts
The Greedy Approach

Dynamic Programming

Middle First Search

Definition

The adjacency matrix of a graph with n vertices, is a n × n matrix A where Aij = 1, if
there is an edge from vertex i to j and 0 otherwise.

Observation

Let At denote the matrix product A · A · · ·A (t times). Then, (At )ij is the number of

paths of length t from i to j.
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Dynamic Programming

An Example

Example

Compute the matrix powers of the adjacency matrix of the following graph:

1 2
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Review of concepts
The Greedy Approach

Dynamic Programming

Path Theorem

Theorem

Given a graph G with n vertices and adjacency matrix A, there is a path from s to t if
and only if (I + A)n−1

st is non-zero.

Computing An - The naive approach

1: B = I.
2: for (i = 1 to n) do
3: B→ B · (I + A).
4: end for

Algorithm 4.64: First approach for reachability
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Algorithm 4.67: First approach for reachability
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Given a graph G with n vertices and adjacency matrix A, there is a path from s to t if
and only if (I + A)n−1

st is non-zero.

Computing An - The naive approach

1: B = I.
2: for (i = 1 to n) do
3: B→ B · (I + A).
4: end for

Algorithm 4.68: First approach for reachability
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Computing An - The naive approach

1: B = I.
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3: B→ B · (I + A).
4: end for

Algorithm 4.70: First approach for reachability
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Path Theorem

Theorem

Given a graph G with n vertices and adjacency matrix A, there is a path from s to t if
and only if (I + A)n−1

st is non-zero.

Computing An - The naive approach

1: B = I.
2: for (i = 1 to n) do
3: B→ B · (I + A).

4: end for

Algorithm 4.71: First approach for reachability
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Path Theorem

Theorem

Given a graph G with n vertices and adjacency matrix A, there is a path from s to t if
and only if (I + A)n−1

st is non-zero.

Computing An - The naive approach

1: B = I.
2: for (i = 1 to n) do
3: B→ B · (I + A).
4: end for

Algorithm 4.72: First approach for reachability
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A smarter approach for reachability

Computing An - The smart approach

1: B = I.
2: for (i = 1 to log n) do
3: B→ B · B.
4: end for

Algorithm 4.73: Repeated squaring
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A smarter approach for reachability

Computing An - The smart approach

1: B = I.
2: for (i = 1 to log n) do
3: B→ B · B.
4: end for

Algorithm 4.74: Repeated squaring
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A smarter approach for reachability

Computing An - The smart approach

1: B = I.
2: for (i = 1 to log n) do
3: B→ B · B.
4: end for

Algorithm 4.75: Repeated squaring
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A smarter approach for reachability

Computing An - The smart approach

1: B = I.

2: for (i = 1 to log n) do
3: B→ B · B.
4: end for

Algorithm 4.76: Repeated squaring
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A smarter approach for reachability

Computing An - The smart approach

1: B = I.
2: for (i = 1 to log n) do

3: B→ B · B.
4: end for

Algorithm 4.77: Repeated squaring
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A smarter approach for reachability

Computing An - The smart approach

1: B = I.
2: for (i = 1 to log n) do
3: B→ B · B.

4: end for

Algorithm 4.78: Repeated squaring

Algorithmic Insights Computational Complexity



Review of concepts
The Greedy Approach

Dynamic Programming

A smarter approach for reachability

Computing An - The smart approach

1: B = I.
2: for (i = 1 to log n) do
3: B→ B · B.
4: end for

Algorithm 4.79: Repeated squaring
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Review of concepts
The Greedy Approach

Dynamic Programming

Some observations

Observation

1 A multiplications step is implemented as:

Bij →
∑

k

Bik · Bkj

2 However the case where B is a boolean matrix is sufficient for our needs!
Accordingly, we can replace matrix multiplication with:

Bij → ∨
k

(Bik ∧ Bkj )

3 Strategy is called middle-first search, because we find to try to find a vertex k
between vertices i and j.

4 Strategy is inefficient in terms of time, but efficient in terms of memory.
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Review of concepts
The Greedy Approach

Dynamic Programming

The All-Pairs Shortest Path problem

The Problem

Given a weighted graph G with weights wij on edge eij (W), find the length of the
shortest path from vertex i to vertex j , for all pairs i and j .

Optimality Substructure

Let p denote a shortest path between s and t .

Let r be an intermediate vertex on p.

What can you say about the sub-paths of p from s to r and from r to t?
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Review of concepts
The Greedy Approach

Dynamic Programming

A DP based algorithm

Shortest path algorithm

Function SHORTEST-PATHS(G,W )
1: B = W.
2: for (i = 1 to log n) do
3: B→ B · B.
4: {The multiplication in the above step is actually implemented as:

Bij → min
k

(Bik + Bkj ).

}
5: end for

Algorithm 4.80: Repeated squaring for shortest paths
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Shortest path algorithm

Function SHORTEST-PATHS(G,W )

1: B = W.
2: for (i = 1 to log n) do
3: B→ B · B.
4: {The multiplication in the above step is actually implemented as:

Bij → min
k

(Bik + Bkj ).

}
5: end for

Algorithm 4.81: Repeated squaring for shortest paths
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A DP based algorithm

Shortest path algorithm

Function SHORTEST-PATHS(G,W )
1: B = W.

2: for (i = 1 to log n) do
3: B→ B · B.
4: {The multiplication in the above step is actually implemented as:

Bij → min
k

(Bik + Bkj ).

}
5: end for

Algorithm 4.82: Repeated squaring for shortest paths
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A DP based algorithm

Shortest path algorithm

Function SHORTEST-PATHS(G,W )
1: B = W.
2: for (i = 1 to log n) do

3: B→ B · B.
4: {The multiplication in the above step is actually implemented as:

Bij → min
k

(Bik + Bkj ).

}
5: end for

Algorithm 4.83: Repeated squaring for shortest paths
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A DP based algorithm

Shortest path algorithm

Function SHORTEST-PATHS(G,W )
1: B = W.
2: for (i = 1 to log n) do
3: B→ B · B.

4: {The multiplication in the above step is actually implemented as:

Bij → min
k

(Bik + Bkj ).

}
5: end for

Algorithm 4.84: Repeated squaring for shortest paths
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A DP based algorithm

Shortest path algorithm

Function SHORTEST-PATHS(G,W )
1: B = W.
2: for (i = 1 to log n) do
3: B→ B · B.
4: {The multiplication in the above step is actually implemented as:

Bij → min
k

(Bik + Bkj ).

}
5: end for

Algorithm 4.85: Repeated squaring for shortest paths
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A DP based algorithm

Shortest path algorithm

Function SHORTEST-PATHS(G,W )
1: B = W.
2: for (i = 1 to log n) do
3: B→ B · B.
4: {The multiplication in the above step is actually implemented as:

Bij → min
k

(Bik + Bkj ).

}

5: end for

Algorithm 4.86: Repeated squaring for shortest paths
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A DP based algorithm

Shortest path algorithm

Function SHORTEST-PATHS(G,W )
1: B = W.
2: for (i = 1 to log n) do
3: B→ B · B.
4: {The multiplication in the above step is actually implemented as:

Bij → min
k

(Bik + Bkj ).

}
5: end for

Algorithm 4.87: Repeated squaring for shortest paths
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Iterative All-Pairs shortest path algorithm

Iterative Implementation

Function SHORTEST-PATHS(G,W )
1: Initialize Bij (0) = 0, for all i, j = 1, 2, . . . n.
2: for (m = 1 to log n) do
3: for (i = 1 to n) do
4: for (j = 1 to n) do
5: Bij (m) = Bij (m − 1).
6: for (k = 1 to n) do
7: Bij (m) = min(Bij (m),Bik (m − 1) + Bkj (m − 1)).
8: end for
9: end for

10: end for
11: end for
12: return(B(log n)).

Algorithm 4.88: Implementing the shortest paths algorithm
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Iterative All-Pairs shortest path algorithm

Iterative Implementation

Function SHORTEST-PATHS(G,W )

1: Initialize Bij (0) = 0, for all i, j = 1, 2, . . . n.
2: for (m = 1 to log n) do
3: for (i = 1 to n) do
4: for (j = 1 to n) do
5: Bij (m) = Bij (m − 1).
6: for (k = 1 to n) do
7: Bij (m) = min(Bij (m),Bik (m − 1) + Bkj (m − 1)).
8: end for
9: end for

10: end for
11: end for
12: return(B(log n)).

Algorithm 4.89: Implementing the shortest paths algorithm
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Iterative All-Pairs shortest path algorithm

Iterative Implementation

Function SHORTEST-PATHS(G,W )
1: Initialize Bij (0) = 0, for all i, j = 1, 2, . . . n.

2: for (m = 1 to log n) do
3: for (i = 1 to n) do
4: for (j = 1 to n) do
5: Bij (m) = Bij (m − 1).
6: for (k = 1 to n) do
7: Bij (m) = min(Bij (m),Bik (m − 1) + Bkj (m − 1)).
8: end for
9: end for

10: end for
11: end for
12: return(B(log n)).

Algorithm 4.90: Implementing the shortest paths algorithm
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Iterative All-Pairs shortest path algorithm

Iterative Implementation

Function SHORTEST-PATHS(G,W )
1: Initialize Bij (0) = 0, for all i, j = 1, 2, . . . n.
2: for (m = 1 to log n) do

3: for (i = 1 to n) do
4: for (j = 1 to n) do
5: Bij (m) = Bij (m − 1).
6: for (k = 1 to n) do
7: Bij (m) = min(Bij (m),Bik (m − 1) + Bkj (m − 1)).
8: end for
9: end for

10: end for
11: end for
12: return(B(log n)).

Algorithm 4.91: Implementing the shortest paths algorithm
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Iterative All-Pairs shortest path algorithm

Iterative Implementation

Function SHORTEST-PATHS(G,W )
1: Initialize Bij (0) = 0, for all i, j = 1, 2, . . . n.
2: for (m = 1 to log n) do
3: for (i = 1 to n) do

4: for (j = 1 to n) do
5: Bij (m) = Bij (m − 1).
6: for (k = 1 to n) do
7: Bij (m) = min(Bij (m),Bik (m − 1) + Bkj (m − 1)).
8: end for
9: end for

10: end for
11: end for
12: return(B(log n)).

Algorithm 4.92: Implementing the shortest paths algorithm
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Iterative All-Pairs shortest path algorithm

Iterative Implementation

Function SHORTEST-PATHS(G,W )
1: Initialize Bij (0) = 0, for all i, j = 1, 2, . . . n.
2: for (m = 1 to log n) do
3: for (i = 1 to n) do
4: for (j = 1 to n) do

5: Bij (m) = Bij (m − 1).
6: for (k = 1 to n) do
7: Bij (m) = min(Bij (m),Bik (m − 1) + Bkj (m − 1)).
8: end for
9: end for

10: end for
11: end for
12: return(B(log n)).

Algorithm 4.93: Implementing the shortest paths algorithm
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Iterative All-Pairs shortest path algorithm

Iterative Implementation

Function SHORTEST-PATHS(G,W )
1: Initialize Bij (0) = 0, for all i, j = 1, 2, . . . n.
2: for (m = 1 to log n) do
3: for (i = 1 to n) do
4: for (j = 1 to n) do
5: Bij (m) = Bij (m − 1).

6: for (k = 1 to n) do
7: Bij (m) = min(Bij (m),Bik (m − 1) + Bkj (m − 1)).
8: end for
9: end for

10: end for
11: end for
12: return(B(log n)).

Algorithm 4.94: Implementing the shortest paths algorithm
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Iterative All-Pairs shortest path algorithm

Iterative Implementation

Function SHORTEST-PATHS(G,W )
1: Initialize Bij (0) = 0, for all i, j = 1, 2, . . . n.
2: for (m = 1 to log n) do
3: for (i = 1 to n) do
4: for (j = 1 to n) do
5: Bij (m) = Bij (m − 1).
6: for (k = 1 to n) do

7: Bij (m) = min(Bij (m),Bik (m − 1) + Bkj (m − 1)).
8: end for
9: end for

10: end for
11: end for
12: return(B(log n)).

Algorithm 4.95: Implementing the shortest paths algorithm
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Iterative All-Pairs shortest path algorithm

Iterative Implementation

Function SHORTEST-PATHS(G,W )
1: Initialize Bij (0) = 0, for all i, j = 1, 2, . . . n.
2: for (m = 1 to log n) do
3: for (i = 1 to n) do
4: for (j = 1 to n) do
5: Bij (m) = Bij (m − 1).
6: for (k = 1 to n) do
7: Bij (m) =

min(Bij (m),Bik (m − 1) + Bkj (m − 1)).
8: end for
9: end for

10: end for
11: end for
12: return(B(log n)).

Algorithm 4.96: Implementing the shortest paths algorithm
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Iterative All-Pairs shortest path algorithm

Iterative Implementation

Function SHORTEST-PATHS(G,W )
1: Initialize Bij (0) = 0, for all i, j = 1, 2, . . . n.
2: for (m = 1 to log n) do
3: for (i = 1 to n) do
4: for (j = 1 to n) do
5: Bij (m) = Bij (m − 1).
6: for (k = 1 to n) do
7: Bij (m) = min(Bij (m),Bik (m − 1) + Bkj (m − 1)).

8: end for
9: end for

10: end for
11: end for
12: return(B(log n)).

Algorithm 4.97: Implementing the shortest paths algorithm
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Iterative All-Pairs shortest path algorithm

Iterative Implementation

Function SHORTEST-PATHS(G,W )
1: Initialize Bij (0) = 0, for all i, j = 1, 2, . . . n.
2: for (m = 1 to log n) do
3: for (i = 1 to n) do
4: for (j = 1 to n) do
5: Bij (m) = Bij (m − 1).
6: for (k = 1 to n) do
7: Bij (m) = min(Bij (m),Bik (m − 1) + Bkj (m − 1)).
8: end for

9: end for
10: end for
11: end for
12: return(B(log n)).

Algorithm 4.98: Implementing the shortest paths algorithm
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Iterative All-Pairs shortest path algorithm

Iterative Implementation

Function SHORTEST-PATHS(G,W )
1: Initialize Bij (0) = 0, for all i, j = 1, 2, . . . n.
2: for (m = 1 to log n) do
3: for (i = 1 to n) do
4: for (j = 1 to n) do
5: Bij (m) = Bij (m − 1).
6: for (k = 1 to n) do
7: Bij (m) = min(Bij (m),Bik (m − 1) + Bkj (m − 1)).
8: end for
9: end for

10: end for
11: end for
12: return(B(log n)).

Algorithm 4.99: Implementing the shortest paths algorithm
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Dynamic Programming

Iterative All-Pairs shortest path algorithm

Iterative Implementation

Function SHORTEST-PATHS(G,W )
1: Initialize Bij (0) = 0, for all i, j = 1, 2, . . . n.
2: for (m = 1 to log n) do
3: for (i = 1 to n) do
4: for (j = 1 to n) do
5: Bij (m) = Bij (m − 1).
6: for (k = 1 to n) do
7: Bij (m) = min(Bij (m),Bik (m − 1) + Bkj (m − 1)).
8: end for
9: end for

10: end for

11: end for
12: return(B(log n)).

Algorithm 4.100: Implementing the shortest paths algorithm
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Iterative Implementation

Function SHORTEST-PATHS(G,W )
1: Initialize Bij (0) = 0, for all i, j = 1, 2, . . . n.
2: for (m = 1 to log n) do
3: for (i = 1 to n) do
4: for (j = 1 to n) do
5: Bij (m) = Bij (m − 1).
6: for (k = 1 to n) do
7: Bij (m) = min(Bij (m),Bik (m − 1) + Bkj (m − 1)).
8: end for
9: end for

10: end for
11: end for

12: return(B(log n)).

Algorithm 4.101: Implementing the shortest paths algorithm
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Iterative All-Pairs shortest path algorithm

Iterative Implementation

Function SHORTEST-PATHS(G,W )
1: Initialize Bij (0) = 0, for all i, j = 1, 2, . . . n.
2: for (m = 1 to log n) do
3: for (i = 1 to n) do
4: for (j = 1 to n) do
5: Bij (m) = Bij (m − 1).
6: for (k = 1 to n) do
7: Bij (m) = min(Bij (m),Bik (m − 1) + Bkj (m − 1)).
8: end for
9: end for

10: end for
11: end for
12: return(B(log n)).

Algorithm 4.102: Implementing the shortest paths algorithm
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Analysis

Time bounds

Computing a specific Bij requires Θ(n) time.

Computing B therefore requires Θ(n3) time.

It follows that the algorithm takes Θ(n3 · log n) time.
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Correctness of Dynamic Programming Algorithms

Correctness

1 In case of a typical dynamic programming algorithm, correctness is self-evident.
2 In the event that it is not, correctness is established through induction on the

number of levels of recursion, or the number of types a loop has run.
3 The main idea is that after each loop iteration (level of recursion), concrete

progress has been made. Such partial guarantees are called loop invariants.
4 For instance, proving the correctness of the All-Pairs shortest path algorithm

would consists of establishing the following two invariants:
1 Bij (m), m = 1, 2, . . . , log n is always an upper bound on the length of the shortest path

from i to j .
2 After running the outermost for loop m times, Bij (m) equals the length of the shortest

path from i to j that consists of at most 2m edges.

5 We can immediately conclude that the algorithm is complete, when 2m ≥ n.
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