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Transformations and Reductions

Maximum Flow

The Problem

Given a directed graph G = 〈V ,E〉 with n vertices and m edges and a capacity
function c : E → Z , find the value of the maximum flow from s to t .

Properties

Any flow f : V × V → Z must satisfy the following properties:
1 f (u, v) ≥ 0, ∀(u, v) ∈ E .
2 f (u, v) ≤ c(u, v), ∀(u, v) ∈ E .
3 The net flow into any vertex other than s and t is 0.

Note

The value of a flow is the net flow out of s (or the net flow into t) and it is denoted by |f |.
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Some observations

Observations

1 Flow can be increased on an edge, only if there is some residual capacity on that
edge.

2 We can increase flow along a path from s to t, only if every edge on that path has
some residual capacity.

3 Construct the residual network Gf , where edge has capacity cf (e) = c(e)− f (e).
4 Note that in the residual graph there could be edges which are not edges in the

original graph. This permits us to reverse flow if needed.

Indeed, there will be a reverse edge for every edge on which there is some positive
flow and the capacity of that edge will be f (e). In other words, cf (ē) = f (e).

The reverse edge corresponding to edge e, is denoted by ē.
5 Any path from s to t in Gf is called an augmenting path.

Example

Draw the residual graph corresponding to the flow in Figure 2.
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5 Any path from s to t in Gf is called an augmenting path.

Example

Draw the residual graph corresponding to the flow in Figure 2.

Algorithmic Insights Computational Complexity



Maximum Flow
Min Cuts

Transformations and Reductions

Some observations

Observations

1 Flow can be increased on an edge, only if there is some residual capacity on that
edge.

2 We can increase flow along a path from s to t, only if every edge on that path has
some residual capacity.

3 Construct the residual network Gf , where edge has capacity cf (e) = c(e)− f (e).

4 Note that in the residual graph there could be edges which are not edges in the
original graph. This permits us to reverse flow if needed.

Indeed, there will be a reverse edge for every edge on which there is some positive
flow and the capacity of that edge will be f (e). In other words, cf (ē) = f (e).
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Augmenting path theorem

Theorem

A flow f is maximal if and only if there is no augmenting path in Gf .

If there is an augmenting path, increasing flow along that path, produces a flow of
greater value.

Proof

We will prove the following equivalent statement:
A flow f is not maximal if and only of there is an augmenting path in Gf .

Only If: Assume there exists an augmenting path δ in Gf .

Clearly, we can increase flow by at least one unit along this path so that all the flow
constraints are met.

Since the net flow out of s is increased by at least one unit, it follows that f is not
optimal.
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Only If: Assume there exists an augmenting path δ in Gf .

Clearly, we can increase flow by at least one unit along this path so that all the flow
constraints are met.

Since the net flow out of s is increased by at least one unit, it follows that f is not
optimal.
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Proof of Augmenting path theorem

Proof (contd.)

If: Assume that f is not maximal. There exists a flow f ′ such that |f ′| > |f |.

Consider the differential flow ∆ defined as follows:

∆(e) = max(0, f ′(e)− f (e))

∆(e′) = max(0, f (e)− f ′(e))

It is not hard to see that the flow ∆ satisfies all the properties of a flow in Gf , i.e., it is a
legal flow on Gf . Furthermore, ∆ = |f ′| − |f | > 0.

But this is possible only if there is a path composed of edges with non-zero capacity
from s to t in Gf !
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If: Assume that f is not maximal. There exists a flow f ′ such that |f ′| > |f |.

Consider the differential flow ∆ defined as follows:
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But this is possible only if there is a path composed of edges with non-zero capacity
from s to t in Gf !
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The Ford-Fulkerson Algorithm

Ford-Fulkerson Algorithm

Function FORD-FULKERSON(G, c)
1: Start with the everywhere 0 flow, f .
2: Construct the residual network Gf .
3: while (there exists a path from s to t in Gf ) do
4: Augment flow along this path by 1.
5: Set f to the new flow.
6: Compute Gf .
7: end while

Algorithm 2.1: The Ford-Fulkerson procedure
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Ford-Fulkerson Algorithm

Function FORD-FULKERSON(G, c)
1: Start with the everywhere 0 flow, f .
2: Construct the residual network Gf .

3: while (there exists a path from s to t in Gf ) do
4: Augment flow along this path by 1.
5: Set f to the new flow.
6: Compute Gf .
7: end while

Algorithm 2.4: The Ford-Fulkerson procedure
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The Ford-Fulkerson Algorithm

Ford-Fulkerson Algorithm

Function FORD-FULKERSON(G, c)
1: Start with the everywhere 0 flow, f .
2: Construct the residual network Gf .
3: while (there exists a path from s to t in Gf ) do

4: Augment flow along this path by 1.
5: Set f to the new flow.
6: Compute Gf .
7: end while

Algorithm 2.5: The Ford-Fulkerson procedure
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The Ford-Fulkerson Algorithm

Ford-Fulkerson Algorithm

Function FORD-FULKERSON(G, c)
1: Start with the everywhere 0 flow, f .
2: Construct the residual network Gf .
3: while (there exists a path from s to t in Gf ) do
4: Augment flow along this path by 1.

5: Set f to the new flow.
6: Compute Gf .
7: end while

Algorithm 2.6: The Ford-Fulkerson procedure
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The Ford-Fulkerson Algorithm

Ford-Fulkerson Algorithm

Function FORD-FULKERSON(G, c)
1: Start with the everywhere 0 flow, f .
2: Construct the residual network Gf .
3: while (there exists a path from s to t in Gf ) do
4: Augment flow along this path by 1.
5: Set f to the new flow.

6: Compute Gf .
7: end while

Algorithm 2.7: The Ford-Fulkerson procedure
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The Ford-Fulkerson Algorithm

Ford-Fulkerson Algorithm

Function FORD-FULKERSON(G, c)
1: Start with the everywhere 0 flow, f .
2: Construct the residual network Gf .
3: while (there exists a path from s to t in Gf ) do
4: Augment flow along this path by 1.
5: Set f to the new flow.
6: Compute Gf .

7: end while

Algorithm 2.8: The Ford-Fulkerson procedure
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The Ford-Fulkerson Algorithm

Ford-Fulkerson Algorithm

Function FORD-FULKERSON(G, c)
1: Start with the everywhere 0 flow, f .
2: Construct the residual network Gf .
3: while (there exists a path from s to t in Gf ) do
4: Augment flow along this path by 1.
5: Set f to the new flow.
6: Compute Gf .
7: end while

Algorithm 2.9: The Ford-Fulkerson procedure
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More observations

Observations

1 The running time of the above procedure is exponential in n.
2 Augmenting along the shortest path from s to t gives polynomial time convergence

(Edmonds-Karp algorithm).
3 Alternatively, augmenting along the path with the largest “bottleneck” capacity

establishes polynomial time convergence.
4 If the capacities are integers, there is a maximal flow f , where f (e) is integral for

all e ∈ E.
5 If reverse edges are not allowed, then it is possible for the Ford-Fulkerson

procedure to get stuck in a local minimum.
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Min Cuts

Definition

Given a capacitated graph G = 〈V ,E〉, with source s and destination t , a cut C is a set
of edges whose removal separates s from t .

Alternatively, a cut is partitioning of the vertices of G into two disjoint sets S and T ,
such that s ∈ S and t ∈ T . Then, C consists of the edges that cross from S to T .

The weight of a cut is the sum of the weights of the edges in that cut.

The Problem

Given a capacitated graph G = 〈V ,E〉, with source s and destination t , find the weight
of the minimum cut that separates s from t .
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Observations

Observations

1 The value of the any flow is at most the value of any cut.
2 Thus, the value of the maximum flow is at most the value of the minimum cut.
3 Given a flow f and given a cut (S,T ), the net flow across a cut is the value of that

flow, i.e., f (S,T ) = |f |.
4 With some thought, it should be clear that the value of the maximum flow is equal

the value of the minimum cut (Max-Flow Min cut theorem)
5 The Max Flow and Min Cut problems are thus dual to each other.
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Transformations and Reductions

Max-Flow Min-Cut Theorem

Proof

1 Let S denote the set of vertices reachable from s in Gf . Let T denote the rest of
the vertices, including t .

2 Consider an edge e, crossing from s to t . It is clear that cf (e) = 0. It follows that
f (e) = c(e).

3 Each cut edge is saturated by f .
4 The weight of the cut (S,T ) is equal to the sum of the weights of the saturated

edges, which is clearly |f |.
5 The above theorem can also be proved using linear programming duality.
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Maximum Flow
Min Cuts

Transformations and Reductions

Notion of reduction

Definition

A reduction from problem A to problem B, is a transformation function f that maps
“yes”-instances of A into “yes”-instances of B, and “no”-instances of A into
“no”-instances of B.

Definition

A reduction is said to be polynomial time (or log space) the transformation function f ()
can be computed in polynomial time (or log space).
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Maximum Flow
Min Cuts

Transformations and Reductions

Important Observations

Observations

1 We write A ≤f B to denote that A can be reduced to B through f ().
2 We can solve A, If we know how to solve B, using B as a sub-routine.
3 B is at least as hard as A.
4 B generalizes A or A is a special case of B.
5 If B is in P, then so is A.
6 If A is not in P, then so is B. (Reduction in NP).
7 The function f () needs to be circumscribed severely if conclusions are to be

meaningful. (Reduce TSP to graph reachability).
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Transformations and Reductions

Simple Reductions

Sorting and Find-Min

1 Reduce the Find-Min problem to sorting.
2 Reduce the Sorting problem to FInd-Min.
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Maximum Flow
Min Cuts

Transformations and Reductions

The perfect matching problem

Definition

Given an undirected graph G = 〈V ,E〉, a matching M is any collection of
vertex-disjoint edges.

The matching is said to be perfect, if |M| = n
2 .

The Problem

Given a bipartite graph G = 〈L,R,E〉, does G have a perfect matching? We can

assume that |L| = |R|, or else the problem is trivial.

The following problem generalizes the Perfect Matching problem:
Given a bipartite graph G = 〈L,R,E〉, what is the maximum matching in G?
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Maximum Flow
Min Cuts

Transformations and Reductions

The transformation of bipartite matching to Max-Flow

Reduction

1 Create a new vertex s and draw an arc from s to all the vertices in L.
2 Create a new vertex t and draw an arch from each vertex in R to t .
3 All edges have capacity 1.
4 G has a perfect matching if and only if the maximum flow from s to t in the

transformed graph is |L|.
5 More generally,

Max-Bipartite Matching ≤ Max-Flow
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