
Outline

Algorithmic Insights III - Flows, Cuts and Transformations

K. Subramani1

1Lane Department of Computer Science and Electrical Engineering
West Virginia University

March 2, 2015

Algorithmic Insights Computational Complexity

Outline

Outline

1 Maximum Flow

2 Min Cuts

3 Transformations and Reductions

Algorithmic Insights Computational Complexity

Outline

Outline

1 Maximum Flow

2 Min Cuts

3 Transformations and Reductions

Algorithmic Insights Computational Complexity

Outline

Outline

1 Maximum Flow

2 Min Cuts

3 Transformations and Reductions

Algorithmic Insights Computational Complexity

Maximum Flow
Min Cuts

Transformations and Reductions

Maximum Flow

The Problem

Given a directed graph G = 〈V ,E〉 with n vertices and m edges and a capacity
function c : E → Z , find the value of the maximum flow from s to t .

Properties

Any flow f : V × V → Z must satisfy the following properties:
1 f (u, v) ≥ 0, ∀(u, v) ∈ E .
2 f (u, v) ≤ c(u, v), ∀(u, v) ∈ E .
3 The net flow into any vertex other than s and t is 0.

Note

The value of a flow is the net flow out of s (or the net flow into t) and it is denoted by |f |.

Algorithmic Insights Computational Complexity

Maximum Flow
Min Cuts

Transformations and Reductions

Maximum Flow

The Problem

Given a directed graph G = 〈V ,E〉 with n vertices and m edges and a capacity
function c : E → Z , find the value of the maximum flow from s to t .

Properties

Any flow f : V × V → Z must satisfy the following properties:
1 f (u, v) ≥ 0, ∀(u, v) ∈ E .
2 f (u, v) ≤ c(u, v), ∀(u, v) ∈ E .
3 The net flow into any vertex other than s and t is 0.

Note

The value of a flow is the net flow out of s (or the net flow into t) and it is denoted by |f |.

Algorithmic Insights Computational Complexity

Maximum Flow
Min Cuts

Transformations and Reductions

Maximum Flow

The Problem

Given a directed graph G = 〈V ,E〉 with n vertices and m edges and a capacity
function c : E → Z , find the value of the maximum flow from s to t .

Properties

Any flow f : V × V → Z must satisfy the following properties:
1 f (u, v) ≥ 0, ∀(u, v) ∈ E .
2 f (u, v) ≤ c(u, v), ∀(u, v) ∈ E .
3 The net flow into any vertex other than s and t is 0.

Note

The value of a flow is the net flow out of s (or the net flow into t) and it is denoted by |f |.

Algorithmic Insights Computational Complexity

Maximum Flow
Min Cuts

Transformations and Reductions

Maximum Flow

The Problem

Given a directed graph G = 〈V ,E〉 with n vertices and m edges and a capacity
function c : E → Z , find the value of the maximum flow from s to t .

Properties

Any flow f : V × V → Z must satisfy the following properties:
1 f (u, v) ≥ 0, ∀(u, v) ∈ E .
2 f (u, v) ≤ c(u, v), ∀(u, v) ∈ E .
3 The net flow into any vertex other than s and t is 0.

Note

The value of a flow is the net flow out of s (or the net flow into t) and it is denoted by |f |.

Algorithmic Insights Computational Complexity

Maximum Flow
Min Cuts

Transformations and Reductions

Maximum Flow

The Problem

Given a directed graph G = 〈V ,E〉 with n vertices and m edges and a capacity
function c : E → Z , find the value of the maximum flow from s to t .

Properties

Any flow f : V × V → Z must satisfy the following properties:

1 f (u, v) ≥ 0, ∀(u, v) ∈ E .
2 f (u, v) ≤ c(u, v), ∀(u, v) ∈ E .
3 The net flow into any vertex other than s and t is 0.

Note

The value of a flow is the net flow out of s (or the net flow into t) and it is denoted by |f |.

Algorithmic Insights Computational Complexity

Maximum Flow
Min Cuts

Transformations and Reductions

Maximum Flow

The Problem

Given a directed graph G = 〈V ,E〉 with n vertices and m edges and a capacity
function c : E → Z , find the value of the maximum flow from s to t .

Properties

Any flow f : V × V → Z must satisfy the following properties:
1 f (u, v) ≥ 0, ∀(u, v) ∈ E .

2 f (u, v) ≤ c(u, v), ∀(u, v) ∈ E .
3 The net flow into any vertex other than s and t is 0.

Note

The value of a flow is the net flow out of s (or the net flow into t) and it is denoted by |f |.

Algorithmic Insights Computational Complexity

Maximum Flow
Min Cuts

Transformations and Reductions

Maximum Flow

The Problem

Given a directed graph G = 〈V ,E〉 with n vertices and m edges and a capacity
function c : E → Z , find the value of the maximum flow from s to t .

Properties

Any flow f : V × V → Z must satisfy the following properties:
1 f (u, v) ≥ 0, ∀(u, v) ∈ E .
2 f (u, v) ≤ c(u, v), ∀(u, v) ∈ E .

3 The net flow into any vertex other than s and t is 0.

Note

The value of a flow is the net flow out of s (or the net flow into t) and it is denoted by |f |.

Algorithmic Insights Computational Complexity

Maximum Flow
Min Cuts

Transformations and Reductions

Maximum Flow

The Problem

Given a directed graph G = 〈V ,E〉 with n vertices and m edges and a capacity
function c : E → Z , find the value of the maximum flow from s to t .

Properties

Any flow f : V × V → Z must satisfy the following properties:
1 f (u, v) ≥ 0, ∀(u, v) ∈ E .
2 f (u, v) ≤ c(u, v), ∀(u, v) ∈ E .
3 The net flow into any vertex other than s and t is

0.

Note

The value of a flow is the net flow out of s (or the net flow into t) and it is denoted by |f |.

Algorithmic Insights Computational Complexity

Maximum Flow
Min Cuts

Transformations and Reductions

Maximum Flow

The Problem

Given a directed graph G = 〈V ,E〉 with n vertices and m edges and a capacity
function c : E → Z , find the value of the maximum flow from s to t .

Properties

Any flow f : V × V → Z must satisfy the following properties:
1 f (u, v) ≥ 0, ∀(u, v) ∈ E .
2 f (u, v) ≤ c(u, v), ∀(u, v) ∈ E .
3 The net flow into any vertex other than s and t is 0.

Note

The value of a flow is the net flow out of s (or the net flow into t) and it is denoted by |f |.

Algorithmic Insights Computational Complexity

Maximum Flow
Min Cuts

Transformations and Reductions

Maximum Flow

The Problem

Given a directed graph G = 〈V ,E〉 with n vertices and m edges and a capacity
function c : E → Z , find the value of the maximum flow from s to t .

Properties

Any flow f : V × V → Z must satisfy the following properties:
1 f (u, v) ≥ 0, ∀(u, v) ∈ E .
2 f (u, v) ≤ c(u, v), ∀(u, v) ∈ E .
3 The net flow into any vertex other than s and t is 0.

Note

The value of a flow is the net flow out of s (or the net flow into t) and it is denoted by |f |.

Algorithmic Insights Computational Complexity

Maximum Flow
Min Cuts

Transformations and Reductions

Maximum Flow

The Problem

Given a directed graph G = 〈V ,E〉 with n vertices and m edges and a capacity
function c : E → Z , find the value of the maximum flow from s to t .

Properties

Any flow f : V × V → Z must satisfy the following properties:
1 f (u, v) ≥ 0, ∀(u, v) ∈ E .
2 f (u, v) ≤ c(u, v), ∀(u, v) ∈ E .
3 The net flow into any vertex other than s and t is 0.

Note

The value of a flow is the net flow out of s

(or the net flow into t) and it is denoted by |f |.

Algorithmic Insights Computational Complexity

Maximum Flow
Min Cuts

Transformations and Reductions

Maximum Flow

The Problem

Given a directed graph G = 〈V ,E〉 with n vertices and m edges and a capacity
function c : E → Z , find the value of the maximum flow from s to t .

Properties

Any flow f : V × V → Z must satisfy the following properties:
1 f (u, v) ≥ 0, ∀(u, v) ∈ E .
2 f (u, v) ≤ c(u, v), ∀(u, v) ∈ E .
3 The net flow into any vertex other than s and t is 0.

Note

The value of a flow is the net flow out of s (or the net flow into t) and it is denoted by |f |.

Algorithmic Insights Computational Complexity

Maximum Flow
Min Cuts

Transformations and Reductions

Problem example

Example

s t

2

2

2

2

1

Algorithmic Insights Computational Complexity

Maximum Flow
Min Cuts

Transformations and Reductions

Problem example

Example

s t

2

2

2

2

1

Algorithmic Insights Computational Complexity

Maximum Flow
Min Cuts

Transformations and Reductions

Sample flows

Example

s t

1

2

2

1

1

Algorithmic Insights Computational Complexity

Maximum Flow
Min Cuts

Transformations and Reductions

Sample flows

Example

s t

1

2

2

1

1

Algorithmic Insights Computational Complexity

Maximum Flow
Min Cuts

Transformations and Reductions

Sample flows

Example

s t

1

2

2

1

1

Algorithmic Insights Computational Complexity

Maximum Flow
Min Cuts

Transformations and Reductions

Another flow

Example

s t

2

2

2

2

0

Algorithmic Insights Computational Complexity

Maximum Flow
Min Cuts

Transformations and Reductions

Another flow

Example

s t

2

2

2

2

0

Algorithmic Insights Computational Complexity

Maximum Flow
Min Cuts

Transformations and Reductions

Some observations

Observations

1 Flow can be increased on an edge, only if there is some residual capacity on that
edge.

2 We can increase flow along a path from s to t, only if every edge on that path has
some residual capacity.

3 Construct the residual network Gf , where edge has capacity cf (e) = c(e)− f (e).
4 Note that in the residual graph there could be edges which are not edges in the

original graph. This permits us to reverse flow if needed.

Indeed, there will be a reverse edge for every edge on which there is some positive
flow and the capacity of that edge will be f (e). In other words, cf (ē) = f (e).

The reverse edge corresponding to edge e, is denoted by ē.
5 Any path from s to t in Gf is called an augmenting path.

Example

Draw the residual graph corresponding to the flow in Figure 2.

Algorithmic Insights Computational Complexity

Maximum Flow
Min Cuts

Transformations and Reductions

Some observations

Observations

1 Flow can be increased on an edge, only if there is some residual capacity on that
edge.

2 We can increase flow along a path from s to t, only if every edge on that path has
some residual capacity.

3 Construct the residual network Gf , where edge has capacity cf (e) = c(e)− f (e).
4 Note that in the residual graph there could be edges which are not edges in the

original graph. This permits us to reverse flow if needed.

Indeed, there will be a reverse edge for every edge on which there is some positive
flow and the capacity of that edge will be f (e). In other words, cf (ē) = f (e).

The reverse edge corresponding to edge e, is denoted by ē.
5 Any path from s to t in Gf is called an augmenting path.

Example

Draw the residual graph corresponding to the flow in Figure 2.

Algorithmic Insights Computational Complexity

Maximum Flow
Min Cuts

Transformations and Reductions

Some observations

Observations

1 Flow can be increased on an edge, only if there is some residual capacity on that
edge.

2 We can increase flow along a path from s to t, only if every edge on that path has
some residual capacity.

3 Construct the residual network Gf , where edge has capacity cf (e) = c(e)− f (e).
4 Note that in the residual graph there could be edges which are not edges in the

original graph. This permits us to reverse flow if needed.

Indeed, there will be a reverse edge for every edge on which there is some positive
flow and the capacity of that edge will be f (e). In other words, cf (ē) = f (e).

The reverse edge corresponding to edge e, is denoted by ē.
5 Any path from s to t in Gf is called an augmenting path.

Example

Draw the residual graph corresponding to the flow in Figure 2.

Algorithmic Insights Computational Complexity

Maximum Flow
Min Cuts

Transformations and Reductions

Some observations

Observations

1 Flow can be increased on an edge, only if there is some residual capacity on that
edge.

2 We can increase flow along a path from s to t, only if every edge on that path has
some residual capacity.

3 Construct the residual network Gf , where edge has capacity cf (e) = c(e)− f (e).
4 Note that in the residual graph there could be edges which are not edges in the

original graph. This permits us to reverse flow if needed.

Indeed, there will be a reverse edge for every edge on which there is some positive
flow and the capacity of that edge will be f (e). In other words, cf (ē) = f (e).

The reverse edge corresponding to edge e, is denoted by ē.
5 Any path from s to t in Gf is called an augmenting path.

Example

Draw the residual graph corresponding to the flow in Figure 2.

Algorithmic Insights Computational Complexity

Maximum Flow
Min Cuts

Transformations and Reductions

Some observations

Observations

1 Flow can be increased on an edge, only if there is some residual capacity on that
edge.

2 We can increase flow along a path from s to t, only if every edge on that path has
some residual capacity.

3 Construct the residual network Gf , where edge has capacity cf (e) = c(e)− f (e).

4 Note that in the residual graph there could be edges which are not edges in the
original graph. This permits us to reverse flow if needed.

Indeed, there will be a reverse edge for every edge on which there is some positive
flow and the capacity of that edge will be f (e). In other words, cf (ē) = f (e).

The reverse edge corresponding to edge e, is denoted by ē.
5 Any path from s to t in Gf is called an augmenting path.

Example

Draw the residual graph corresponding to the flow in Figure 2.

Algorithmic Insights Computational Complexity

Maximum Flow
Min Cuts

Transformations and Reductions

Some observations

Observations

1 Flow can be increased on an edge, only if there is some residual capacity on that
edge.

2 We can increase flow along a path from s to t, only if every edge on that path has
some residual capacity.

3 Construct the residual network Gf , where edge has capacity cf (e) = c(e)− f (e).
4 Note that in the residual graph there could be edges which are not edges in the

original graph.

This permits us to reverse flow if needed.

Indeed, there will be a reverse edge for every edge on which there is some positive
flow and the capacity of that edge will be f (e). In other words, cf (ē) = f (e).

The reverse edge corresponding to edge e, is denoted by ē.
5 Any path from s to t in Gf is called an augmenting path.

Example

Draw the residual graph corresponding to the flow in Figure 2.

Algorithmic Insights Computational Complexity

Maximum Flow
Min Cuts

Transformations and Reductions

Some observations

Observations

1 Flow can be increased on an edge, only if there is some residual capacity on that
edge.

2 We can increase flow along a path from s to t, only if every edge on that path has
some residual capacity.

3 Construct the residual network Gf , where edge has capacity cf (e) = c(e)− f (e).
4 Note that in the residual graph there could be edges which are not edges in the

original graph. This permits us to reverse flow if needed.

Indeed, there will be a reverse edge for every edge on which there is some positive
flow and the capacity of that edge will be f (e). In other words, cf (ē) = f (e).

The reverse edge corresponding to edge e, is denoted by ē.
5 Any path from s to t in Gf is called an augmenting path.

Example

Draw the residual graph corresponding to the flow in Figure 2.

Algorithmic Insights Computational Complexity

Maximum Flow
Min Cuts

Transformations and Reductions

Some observations

Observations

1 Flow can be increased on an edge, only if there is some residual capacity on that
edge.

2 We can increase flow along a path from s to t, only if every edge on that path has
some residual capacity.

3 Construct the residual network Gf , where edge has capacity cf (e) = c(e)− f (e).
4 Note that in the residual graph there could be edges which are not edges in the

original graph. This permits us to reverse flow if needed.

Indeed, there will be a reverse edge for every edge on which there is some positive
flow and the capacity of that edge will be f (e).

In other words, cf (ē) = f (e).

The reverse edge corresponding to edge e, is denoted by ē.
5 Any path from s to t in Gf is called an augmenting path.

Example

Draw the residual graph corresponding to the flow in Figure 2.

Algorithmic Insights Computational Complexity

Maximum Flow
Min Cuts

Transformations and Reductions

Some observations

Observations

1 Flow can be increased on an edge, only if there is some residual capacity on that
edge.

2 We can increase flow along a path from s to t, only if every edge on that path has
some residual capacity.

3 Construct the residual network Gf , where edge has capacity cf (e) = c(e)− f (e).
4 Note that in the residual graph there could be edges which are not edges in the

original graph. This permits us to reverse flow if needed.

Indeed, there will be a reverse edge for every edge on which there is some positive
flow and the capacity of that edge will be f (e). In other words, cf (ē) = f (e).

The reverse edge corresponding to edge e, is denoted by ē.
5 Any path from s to t in Gf is called an augmenting path.

Example

Draw the residual graph corresponding to the flow in Figure 2.

Algorithmic Insights Computational Complexity

Maximum Flow
Min Cuts

Transformations and Reductions

Some observations

Observations

1 Flow can be increased on an edge, only if there is some residual capacity on that
edge.

2 We can increase flow along a path from s to t, only if every edge on that path has
some residual capacity.

3 Construct the residual network Gf , where edge has capacity cf (e) = c(e)− f (e).
4 Note that in the residual graph there could be edges which are not edges in the

original graph. This permits us to reverse flow if needed.

Indeed, there will be a reverse edge for every edge on which there is some positive
flow and the capacity of that edge will be f (e). In other words, cf (ē) = f (e).

The reverse edge corresponding to edge e, is denoted by ē.

5 Any path from s to t in Gf is called an augmenting path.

Example

Draw the residual graph corresponding to the flow in Figure 2.

Algorithmic Insights Computational Complexity

Maximum Flow
Min Cuts

Transformations and Reductions

Some observations

Observations

1 Flow can be increased on an edge, only if there is some residual capacity on that
edge.

2 We can increase flow along a path from s to t, only if every edge on that path has
some residual capacity.

3 Construct the residual network Gf , where edge has capacity cf (e) = c(e)− f (e).
4 Note that in the residual graph there could be edges which are not edges in the

original graph. This permits us to reverse flow if needed.

Indeed, there will be a reverse edge for every edge on which there is some positive
flow and the capacity of that edge will be f (e). In other words, cf (ē) = f (e).

The reverse edge corresponding to edge e, is denoted by ē.
5 Any path from s to t in Gf is called an augmenting path.

Example

Draw the residual graph corresponding to the flow in Figure 2.

Algorithmic Insights Computational Complexity

Maximum Flow
Min Cuts

Transformations and Reductions

Some observations

Observations

1 Flow can be increased on an edge, only if there is some residual capacity on that
edge.

2 We can increase flow along a path from s to t, only if every edge on that path has
some residual capacity.

3 Construct the residual network Gf , where edge has capacity cf (e) = c(e)− f (e).
4 Note that in the residual graph there could be edges which are not edges in the

original graph. This permits us to reverse flow if needed.

Indeed, there will be a reverse edge for every edge on which there is some positive
flow and the capacity of that edge will be f (e). In other words, cf (ē) = f (e).

The reverse edge corresponding to edge e, is denoted by ē.
5 Any path from s to t in Gf is called an augmenting path.

Example

Draw the residual graph corresponding to the flow in Figure 2.

Algorithmic Insights Computational Complexity

Maximum Flow
Min Cuts

Transformations and Reductions

Some observations

Observations

1 Flow can be increased on an edge, only if there is some residual capacity on that
edge.

2 We can increase flow along a path from s to t, only if every edge on that path has
some residual capacity.

3 Construct the residual network Gf , where edge has capacity cf (e) = c(e)− f (e).
4 Note that in the residual graph there could be edges which are not edges in the

original graph. This permits us to reverse flow if needed.

Indeed, there will be a reverse edge for every edge on which there is some positive
flow and the capacity of that edge will be f (e). In other words, cf (ē) = f (e).

The reverse edge corresponding to edge e, is denoted by ē.
5 Any path from s to t in Gf is called an augmenting path.

Example

Draw the residual graph corresponding to the flow in Figure 2.

Algorithmic Insights Computational Complexity

Maximum Flow
Min Cuts

Transformations and Reductions

Augmenting path theorem

Theorem

A flow f is maximal if and only if there is no augmenting path in Gf .

If there is an augmenting path, increasing flow along that path, produces a flow of
greater value.

Proof

We will prove the following equivalent statement:
A flow f is not maximal if and only of there is an augmenting path in Gf .

Only If: Assume there exists an augmenting path δ in Gf .

Clearly, we can increase flow by at least one unit along this path so that all the flow
constraints are met.

Since the net flow out of s is increased by at least one unit, it follows that f is not
optimal.

Algorithmic Insights Computational Complexity

Maximum Flow
Min Cuts

Transformations and Reductions

Augmenting path theorem

Theorem

A flow f is maximal if and only if there is no augmenting path in Gf .

If there is an augmenting path, increasing flow along that path, produces a flow of
greater value.

Proof

We will prove the following equivalent statement:
A flow f is not maximal if and only of there is an augmenting path in Gf .

Only If: Assume there exists an augmenting path δ in Gf .

Clearly, we can increase flow by at least one unit along this path so that all the flow
constraints are met.

Since the net flow out of s is increased by at least one unit, it follows that f is not
optimal.

Algorithmic Insights Computational Complexity

Maximum Flow
Min Cuts

Transformations and Reductions

Augmenting path theorem

Theorem

A flow f is maximal if and only if there is no augmenting path in Gf .

If there is an augmenting path, increasing flow along that path, produces a flow of
greater value.

Proof

We will prove the following equivalent statement:
A flow f is not maximal if and only of there is an augmenting path in Gf .

Only If: Assume there exists an augmenting path δ in Gf .

Clearly, we can increase flow by at least one unit along this path so that all the flow
constraints are met.

Since the net flow out of s is increased by at least one unit, it follows that f is not
optimal.

Algorithmic Insights Computational Complexity

Maximum Flow
Min Cuts

Transformations and Reductions

Augmenting path theorem

Theorem

A flow f is maximal if and only if there is no augmenting path in Gf .

If there is an augmenting path, increasing flow along that path, produces a flow of
greater value.

Proof

We will prove the following equivalent statement:
A flow f is not maximal if and only of there is an augmenting path in Gf .

Only If: Assume there exists an augmenting path δ in Gf .

Clearly, we can increase flow by at least one unit along this path so that all the flow
constraints are met.

Since the net flow out of s is increased by at least one unit, it follows that f is not
optimal.

Algorithmic Insights Computational Complexity

Maximum Flow
Min Cuts

Transformations and Reductions

Augmenting path theorem

Theorem

A flow f is maximal if and only if there is no augmenting path in Gf .

If there is an augmenting path, increasing flow along that path, produces a flow of
greater value.

Proof

We will prove the following equivalent statement:

A flow f is not maximal if and only of there is an augmenting path in Gf .

Only If: Assume there exists an augmenting path δ in Gf .

Clearly, we can increase flow by at least one unit along this path so that all the flow
constraints are met.

Since the net flow out of s is increased by at least one unit, it follows that f is not
optimal.

Algorithmic Insights Computational Complexity

Maximum Flow
Min Cuts

Transformations and Reductions

Augmenting path theorem

Theorem

A flow f is maximal if and only if there is no augmenting path in Gf .

If there is an augmenting path, increasing flow along that path, produces a flow of
greater value.

Proof

We will prove the following equivalent statement:
A flow f is not maximal if and only of there is an augmenting path in Gf .

Only If: Assume there exists an augmenting path δ in Gf .

Clearly, we can increase flow by at least one unit along this path so that all the flow
constraints are met.

Since the net flow out of s is increased by at least one unit, it follows that f is not
optimal.

Algorithmic Insights Computational Complexity

Maximum Flow
Min Cuts

Transformations and Reductions

Augmenting path theorem

Theorem

A flow f is maximal if and only if there is no augmenting path in Gf .

If there is an augmenting path, increasing flow along that path, produces a flow of
greater value.

Proof

We will prove the following equivalent statement:
A flow f is not maximal if and only of there is an augmenting path in Gf .

Only If:

Assume there exists an augmenting path δ in Gf .

Clearly, we can increase flow by at least one unit along this path so that all the flow
constraints are met.

Since the net flow out of s is increased by at least one unit, it follows that f is not
optimal.

Algorithmic Insights Computational Complexity

Maximum Flow
Min Cuts

Transformations and Reductions

Augmenting path theorem

Theorem

A flow f is maximal if and only if there is no augmenting path in Gf .

If there is an augmenting path, increasing flow along that path, produces a flow of
greater value.

Proof

We will prove the following equivalent statement:
A flow f is not maximal if and only of there is an augmenting path in Gf .

Only If: Assume there exists an augmenting path δ in Gf .

Clearly, we can increase flow by at least one unit along this path so that all the flow
constraints are met.

Since the net flow out of s is increased by at least one unit, it follows that f is not
optimal.

Algorithmic Insights Computational Complexity

Maximum Flow
Min Cuts

Transformations and Reductions

Augmenting path theorem

Theorem

A flow f is maximal if and only if there is no augmenting path in Gf .

If there is an augmenting path, increasing flow along that path, produces a flow of
greater value.

Proof

We will prove the following equivalent statement:
A flow f is not maximal if and only of there is an augmenting path in Gf .

Only If: Assume there exists an augmenting path δ in Gf .

Clearly, we can increase flow by at least one unit along this path so that all the flow
constraints are met.

Since the net flow out of s is increased by at least one unit, it follows that f is not
optimal.

Algorithmic Insights Computational Complexity

Maximum Flow
Min Cuts

Transformations and Reductions

Augmenting path theorem

Theorem

A flow f is maximal if and only if there is no augmenting path in Gf .

If there is an augmenting path, increasing flow along that path, produces a flow of
greater value.

Proof

We will prove the following equivalent statement:
A flow f is not maximal if and only of there is an augmenting path in Gf .

Only If: Assume there exists an augmenting path δ in Gf .

Clearly, we can increase flow by at least one unit along this path so that all the flow
constraints are met.

Since the net flow out of s is increased by at least one unit, it follows that f is not
optimal.

Algorithmic Insights Computational Complexity

Maximum Flow
Min Cuts

Transformations and Reductions

Augmenting path theorem

Theorem

A flow f is maximal if and only if there is no augmenting path in Gf .

If there is an augmenting path, increasing flow along that path, produces a flow of
greater value.

Proof

We will prove the following equivalent statement:
A flow f is not maximal if and only of there is an augmenting path in Gf .

Only If: Assume there exists an augmenting path δ in Gf .

Clearly, we can increase flow by at least one unit along this path so that all the flow
constraints are met.

Since the net flow out of s is increased by at least one unit, it follows that f is not
optimal.

Algorithmic Insights Computational Complexity

Maximum Flow
Min Cuts

Transformations and Reductions

Proof of Augmenting path theorem

Proof (contd.)

If: Assume that f is not maximal. There exists a flow f ′ such that |f ′| > |f |.

Consider the differential flow ∆ defined as follows:

∆(e) = max(0, f ′(e)− f (e))

∆(e′) = max(0, f (e)− f ′(e))

It is not hard to see that the flow ∆ satisfies all the properties of a flow in Gf , i.e., it is a
legal flow on Gf . Furthermore, ∆ = |f ′| − |f | > 0.

But this is possible only if there is a path composed of edges with non-zero capacity
from s to t in Gf !

Algorithmic Insights Computational Complexity

Maximum Flow
Min Cuts

Transformations and Reductions

Proof of Augmenting path theorem

Proof (contd.)

If:

Assume that f is not maximal. There exists a flow f ′ such that |f ′| > |f |.

Consider the differential flow ∆ defined as follows:

∆(e) = max(0, f ′(e)− f (e))

∆(e′) = max(0, f (e)− f ′(e))

It is not hard to see that the flow ∆ satisfies all the properties of a flow in Gf , i.e., it is a
legal flow on Gf . Furthermore, ∆ = |f ′| − |f | > 0.

But this is possible only if there is a path composed of edges with non-zero capacity
from s to t in Gf !

Algorithmic Insights Computational Complexity

Maximum Flow
Min Cuts

Transformations and Reductions

Proof of Augmenting path theorem

Proof (contd.)

If: Assume that f is not maximal.

There exists a flow f ′ such that |f ′| > |f |.

Consider the differential flow ∆ defined as follows:

∆(e) = max(0, f ′(e)− f (e))

∆(e′) = max(0, f (e)− f ′(e))

It is not hard to see that the flow ∆ satisfies all the properties of a flow in Gf , i.e., it is a
legal flow on Gf . Furthermore, ∆ = |f ′| − |f | > 0.

But this is possible only if there is a path composed of edges with non-zero capacity
from s to t in Gf !

Algorithmic Insights Computational Complexity

Maximum Flow
Min Cuts

Transformations and Reductions

Proof of Augmenting path theorem

Proof (contd.)

If: Assume that f is not maximal. There exists a flow f ′ such that |f ′| > |f |.

Consider the differential flow ∆ defined as follows:

∆(e) = max(0, f ′(e)− f (e))

∆(e′) = max(0, f (e)− f ′(e))

It is not hard to see that the flow ∆ satisfies all the properties of a flow in Gf , i.e., it is a
legal flow on Gf . Furthermore, ∆ = |f ′| − |f | > 0.

But this is possible only if there is a path composed of edges with non-zero capacity
from s to t in Gf !

Algorithmic Insights Computational Complexity

Maximum Flow
Min Cuts

Transformations and Reductions

Proof of Augmenting path theorem

Proof (contd.)

If: Assume that f is not maximal. There exists a flow f ′ such that |f ′| > |f |.

Consider the differential flow ∆ defined as follows:

∆(e) = max(0, f ′(e)− f (e))

∆(e′) = max(0, f (e)− f ′(e))

It is not hard to see that the flow ∆ satisfies all the properties of a flow in Gf , i.e., it is a
legal flow on Gf . Furthermore, ∆ = |f ′| − |f | > 0.

But this is possible only if there is a path composed of edges with non-zero capacity
from s to t in Gf !

Algorithmic Insights Computational Complexity

Maximum Flow
Min Cuts

Transformations and Reductions

Proof of Augmenting path theorem

Proof (contd.)

If: Assume that f is not maximal. There exists a flow f ′ such that |f ′| > |f |.

Consider the differential flow ∆ defined as follows:

∆(e) = max(0, f ′(e)− f (e))

∆(e′) = max(0, f (e)− f ′(e))

It is not hard to see that the flow ∆ satisfies all the properties of a flow in Gf , i.e., it is a
legal flow on Gf . Furthermore, ∆ = |f ′| − |f | > 0.

But this is possible only if there is a path composed of edges with non-zero capacity
from s to t in Gf !

Algorithmic Insights Computational Complexity

Maximum Flow
Min Cuts

Transformations and Reductions

Proof of Augmenting path theorem

Proof (contd.)

If: Assume that f is not maximal. There exists a flow f ′ such that |f ′| > |f |.

Consider the differential flow ∆ defined as follows:

∆(e) =

max(0, f ′(e)− f (e))

∆(e′) = max(0, f (e)− f ′(e))

It is not hard to see that the flow ∆ satisfies all the properties of a flow in Gf , i.e., it is a
legal flow on Gf . Furthermore, ∆ = |f ′| − |f | > 0.

But this is possible only if there is a path composed of edges with non-zero capacity
from s to t in Gf !

Algorithmic Insights Computational Complexity

Maximum Flow
Min Cuts

Transformations and Reductions

Proof of Augmenting path theorem

Proof (contd.)

If: Assume that f is not maximal. There exists a flow f ′ such that |f ′| > |f |.

Consider the differential flow ∆ defined as follows:

∆(e) = max(0, f ′(e)− f (e))

∆(e′) = max(0, f (e)− f ′(e))

It is not hard to see that the flow ∆ satisfies all the properties of a flow in Gf , i.e., it is a
legal flow on Gf . Furthermore, ∆ = |f ′| − |f | > 0.

But this is possible only if there is a path composed of edges with non-zero capacity
from s to t in Gf !

Algorithmic Insights Computational Complexity

Maximum Flow
Min Cuts

Transformations and Reductions

Proof of Augmenting path theorem

Proof (contd.)

If: Assume that f is not maximal. There exists a flow f ′ such that |f ′| > |f |.

Consider the differential flow ∆ defined as follows:

∆(e) = max(0, f ′(e)− f (e))

∆(e′) =

max(0, f (e)− f ′(e))

It is not hard to see that the flow ∆ satisfies all the properties of a flow in Gf , i.e., it is a
legal flow on Gf . Furthermore, ∆ = |f ′| − |f | > 0.

But this is possible only if there is a path composed of edges with non-zero capacity
from s to t in Gf !

Algorithmic Insights Computational Complexity

Maximum Flow
Min Cuts

Transformations and Reductions

Proof of Augmenting path theorem

Proof (contd.)

If: Assume that f is not maximal. There exists a flow f ′ such that |f ′| > |f |.

Consider the differential flow ∆ defined as follows:

∆(e) = max(0, f ′(e)− f (e))

∆(e′) = max(0, f (e)− f ′(e))

It is not hard to see that the flow ∆ satisfies all the properties of a flow in Gf , i.e., it is a
legal flow on Gf . Furthermore, ∆ = |f ′| − |f | > 0.

But this is possible only if there is a path composed of edges with non-zero capacity
from s to t in Gf !

Algorithmic Insights Computational Complexity

Maximum Flow
Min Cuts

Transformations and Reductions

Proof of Augmenting path theorem

Proof (contd.)

If: Assume that f is not maximal. There exists a flow f ′ such that |f ′| > |f |.

Consider the differential flow ∆ defined as follows:

∆(e) = max(0, f ′(e)− f (e))

∆(e′) = max(0, f (e)− f ′(e))

It is not hard to see that the flow ∆ satisfies all the properties of a flow in Gf ,

i.e., it is a
legal flow on Gf . Furthermore, ∆ = |f ′| − |f | > 0.

But this is possible only if there is a path composed of edges with non-zero capacity
from s to t in Gf !

Algorithmic Insights Computational Complexity

Maximum Flow
Min Cuts

Transformations and Reductions

Proof of Augmenting path theorem

Proof (contd.)

If: Assume that f is not maximal. There exists a flow f ′ such that |f ′| > |f |.

Consider the differential flow ∆ defined as follows:

∆(e) = max(0, f ′(e)− f (e))

∆(e′) = max(0, f (e)− f ′(e))

It is not hard to see that the flow ∆ satisfies all the properties of a flow in Gf , i.e., it is a
legal flow on Gf .

Furthermore, ∆ = |f ′| − |f | > 0.

But this is possible only if there is a path composed of edges with non-zero capacity
from s to t in Gf !

Algorithmic Insights Computational Complexity

Maximum Flow
Min Cuts

Transformations and Reductions

Proof of Augmenting path theorem

Proof (contd.)

If: Assume that f is not maximal. There exists a flow f ′ such that |f ′| > |f |.

Consider the differential flow ∆ defined as follows:

∆(e) = max(0, f ′(e)− f (e))

∆(e′) = max(0, f (e)− f ′(e))

It is not hard to see that the flow ∆ satisfies all the properties of a flow in Gf , i.e., it is a
legal flow on Gf . Furthermore, ∆ = |f ′| − |f |

> 0.

But this is possible only if there is a path composed of edges with non-zero capacity
from s to t in Gf !

Algorithmic Insights Computational Complexity

Maximum Flow
Min Cuts

Transformations and Reductions

Proof of Augmenting path theorem

Proof (contd.)

If: Assume that f is not maximal. There exists a flow f ′ such that |f ′| > |f |.

Consider the differential flow ∆ defined as follows:

∆(e) = max(0, f ′(e)− f (e))

∆(e′) = max(0, f (e)− f ′(e))

It is not hard to see that the flow ∆ satisfies all the properties of a flow in Gf , i.e., it is a
legal flow on Gf . Furthermore, ∆ = |f ′| − |f | > 0.

But this is possible only if there is a path composed of edges with non-zero capacity
from s to t in Gf !

Algorithmic Insights Computational Complexity

Maximum Flow
Min Cuts

Transformations and Reductions

Proof of Augmenting path theorem

Proof (contd.)

If: Assume that f is not maximal. There exists a flow f ′ such that |f ′| > |f |.

Consider the differential flow ∆ defined as follows:

∆(e) = max(0, f ′(e)− f (e))

∆(e′) = max(0, f (e)− f ′(e))

It is not hard to see that the flow ∆ satisfies all the properties of a flow in Gf , i.e., it is a
legal flow on Gf . Furthermore, ∆ = |f ′| − |f | > 0.

But this is possible only if there is a path composed of edges with non-zero capacity
from s to t in Gf !

Algorithmic Insights Computational Complexity

Maximum Flow
Min Cuts

Transformations and Reductions

The Ford-Fulkerson Algorithm

Ford-Fulkerson Algorithm

Function FORD-FULKERSON(G, c)
1: Start with the everywhere 0 flow, f .
2: Construct the residual network Gf .
3: while (there exists a path from s to t in Gf) do
4: Augment flow along this path by 1.
5: Set f to the new flow.
6: Compute Gf .
7: end while

Algorithm 2.1: The Ford-Fulkerson procedure

Algorithmic Insights Computational Complexity

Maximum Flow
Min Cuts

Transformations and Reductions

The Ford-Fulkerson Algorithm

Ford-Fulkerson Algorithm

Function FORD-FULKERSON(G, c)

1: Start with the everywhere 0 flow, f .
2: Construct the residual network Gf .
3: while (there exists a path from s to t in Gf) do
4: Augment flow along this path by 1.
5: Set f to the new flow.
6: Compute Gf .
7: end while

Algorithm 2.2: The Ford-Fulkerson procedure

Algorithmic Insights Computational Complexity

Maximum Flow
Min Cuts

Transformations and Reductions

The Ford-Fulkerson Algorithm

Ford-Fulkerson Algorithm

Function FORD-FULKERSON(G, c)
1: Start with the everywhere 0 flow, f .

2: Construct the residual network Gf .
3: while (there exists a path from s to t in Gf) do
4: Augment flow along this path by 1.
5: Set f to the new flow.
6: Compute Gf .
7: end while

Algorithm 2.3: The Ford-Fulkerson procedure

Algorithmic Insights Computational Complexity

Maximum Flow
Min Cuts

Transformations and Reductions

The Ford-Fulkerson Algorithm

Ford-Fulkerson Algorithm

Function FORD-FULKERSON(G, c)
1: Start with the everywhere 0 flow, f .
2: Construct the residual network Gf .

3: while (there exists a path from s to t in Gf) do
4: Augment flow along this path by 1.
5: Set f to the new flow.
6: Compute Gf .
7: end while

Algorithm 2.4: The Ford-Fulkerson procedure

Algorithmic Insights Computational Complexity

Maximum Flow
Min Cuts

Transformations and Reductions

The Ford-Fulkerson Algorithm

Ford-Fulkerson Algorithm

Function FORD-FULKERSON(G, c)
1: Start with the everywhere 0 flow, f .
2: Construct the residual network Gf .
3: while (there exists a path from s to t in Gf) do

4: Augment flow along this path by 1.
5: Set f to the new flow.
6: Compute Gf .
7: end while

Algorithm 2.5: The Ford-Fulkerson procedure

Algorithmic Insights Computational Complexity

Maximum Flow
Min Cuts

Transformations and Reductions

The Ford-Fulkerson Algorithm

Ford-Fulkerson Algorithm

Function FORD-FULKERSON(G, c)
1: Start with the everywhere 0 flow, f .
2: Construct the residual network Gf .
3: while (there exists a path from s to t in Gf) do
4: Augment flow along this path by 1.

5: Set f to the new flow.
6: Compute Gf .
7: end while

Algorithm 2.6: The Ford-Fulkerson procedure

Algorithmic Insights Computational Complexity

Maximum Flow
Min Cuts

Transformations and Reductions

The Ford-Fulkerson Algorithm

Ford-Fulkerson Algorithm

Function FORD-FULKERSON(G, c)
1: Start with the everywhere 0 flow, f .
2: Construct the residual network Gf .
3: while (there exists a path from s to t in Gf) do
4: Augment flow along this path by 1.
5: Set f to the new flow.

6: Compute Gf .
7: end while

Algorithm 2.7: The Ford-Fulkerson procedure

Algorithmic Insights Computational Complexity

Maximum Flow
Min Cuts

Transformations and Reductions

The Ford-Fulkerson Algorithm

Ford-Fulkerson Algorithm

Function FORD-FULKERSON(G, c)
1: Start with the everywhere 0 flow, f .
2: Construct the residual network Gf .
3: while (there exists a path from s to t in Gf) do
4: Augment flow along this path by 1.
5: Set f to the new flow.
6: Compute Gf .

7: end while

Algorithm 2.8: The Ford-Fulkerson procedure

Algorithmic Insights Computational Complexity

Maximum Flow
Min Cuts

Transformations and Reductions

The Ford-Fulkerson Algorithm

Ford-Fulkerson Algorithm

Function FORD-FULKERSON(G, c)
1: Start with the everywhere 0 flow, f .
2: Construct the residual network Gf .
3: while (there exists a path from s to t in Gf) do
4: Augment flow along this path by 1.
5: Set f to the new flow.
6: Compute Gf .
7: end while

Algorithm 2.9: The Ford-Fulkerson procedure

Algorithmic Insights Computational Complexity

Maximum Flow
Min Cuts

Transformations and Reductions

More observations

Observations

1 The running time of the above procedure is exponential in n.
2 Augmenting along the shortest path from s to t gives polynomial time convergence

(Edmonds-Karp algorithm).
3 Alternatively, augmenting along the path with the largest “bottleneck” capacity

establishes polynomial time convergence.
4 If the capacities are integers, there is a maximal flow f , where f (e) is integral for

all e ∈ E.
5 If reverse edges are not allowed, then it is possible for the Ford-Fulkerson

procedure to get stuck in a local minimum.

Algorithmic Insights Computational Complexity

Maximum Flow
Min Cuts

Transformations and Reductions

More observations

Observations

1 The running time of the above procedure is exponential in n.
2 Augmenting along the shortest path from s to t gives polynomial time convergence

(Edmonds-Karp algorithm).
3 Alternatively, augmenting along the path with the largest “bottleneck” capacity

establishes polynomial time convergence.
4 If the capacities are integers, there is a maximal flow f , where f (e) is integral for

all e ∈ E.
5 If reverse edges are not allowed, then it is possible for the Ford-Fulkerson

procedure to get stuck in a local minimum.

Algorithmic Insights Computational Complexity

Maximum Flow
Min Cuts

Transformations and Reductions

More observations

Observations

1 The running time of the above procedure is exponential in n.

2 Augmenting along the shortest path from s to t gives polynomial time convergence
(Edmonds-Karp algorithm).

3 Alternatively, augmenting along the path with the largest “bottleneck” capacity
establishes polynomial time convergence.

4 If the capacities are integers, there is a maximal flow f , where f (e) is integral for
all e ∈ E.

5 If reverse edges are not allowed, then it is possible for the Ford-Fulkerson
procedure to get stuck in a local minimum.

Algorithmic Insights Computational Complexity

Maximum Flow
Min Cuts

Transformations and Reductions

More observations

Observations

1 The running time of the above procedure is exponential in n.
2 Augmenting along the shortest path from s to t gives polynomial time convergence

(Edmonds-Karp algorithm).
3 Alternatively, augmenting along the path with the largest “bottleneck” capacity

establishes polynomial time convergence.
4 If the capacities are integers, there is a maximal flow f , where f (e) is integral for

all e ∈ E.
5 If reverse edges are not allowed, then it is possible for the Ford-Fulkerson

procedure to get stuck in a local minimum.

Algorithmic Insights Computational Complexity

Maximum Flow
Min Cuts

Transformations and Reductions

More observations

Observations

1 The running time of the above procedure is exponential in n.
2 Augmenting along the shortest path from s to t gives polynomial time convergence

(Edmonds-Karp algorithm).

3 Alternatively, augmenting along the path with the largest “bottleneck” capacity
establishes polynomial time convergence.

4 If the capacities are integers, there is a maximal flow f , where f (e) is integral for
all e ∈ E.

5 If reverse edges are not allowed, then it is possible for the Ford-Fulkerson
procedure to get stuck in a local minimum.

Algorithmic Insights Computational Complexity

Maximum Flow
Min Cuts

Transformations and Reductions

More observations

Observations

1 The running time of the above procedure is exponential in n.
2 Augmenting along the shortest path from s to t gives polynomial time convergence

(Edmonds-Karp algorithm).
3 Alternatively, augmenting along the path with the largest “bottleneck” capacity

establishes polynomial time convergence.

4 If the capacities are integers, there is a maximal flow f , where f (e) is integral for
all e ∈ E.

5 If reverse edges are not allowed, then it is possible for the Ford-Fulkerson
procedure to get stuck in a local minimum.

Algorithmic Insights Computational Complexity

Maximum Flow
Min Cuts

Transformations and Reductions

More observations

Observations

1 The running time of the above procedure is exponential in n.
2 Augmenting along the shortest path from s to t gives polynomial time convergence

(Edmonds-Karp algorithm).
3 Alternatively, augmenting along the path with the largest “bottleneck” capacity

establishes polynomial time convergence.
4 If the capacities are integers, there is a maximal flow f , where f (e) is integral for

all e ∈ E.

5 If reverse edges are not allowed, then it is possible for the Ford-Fulkerson
procedure to get stuck in a local minimum.

Algorithmic Insights Computational Complexity

Maximum Flow
Min Cuts

Transformations and Reductions

More observations

Observations

1 The running time of the above procedure is exponential in n.
2 Augmenting along the shortest path from s to t gives polynomial time convergence

(Edmonds-Karp algorithm).
3 Alternatively, augmenting along the path with the largest “bottleneck” capacity

establishes polynomial time convergence.
4 If the capacities are integers, there is a maximal flow f , where f (e) is integral for

all e ∈ E.
5 If reverse edges are not allowed, then it is possible for the Ford-Fulkerson

procedure to get stuck in a local minimum.

Algorithmic Insights Computational Complexity

Maximum Flow
Min Cuts

Transformations and Reductions

Min Cuts

Definition

Given a capacitated graph G = 〈V ,E〉, with source s and destination t , a cut C is a set
of edges whose removal separates s from t .

Alternatively, a cut is partitioning of the vertices of G into two disjoint sets S and T ,
such that s ∈ S and t ∈ T . Then, C consists of the edges that cross from S to T .

The weight of a cut is the sum of the weights of the edges in that cut.

The Problem

Given a capacitated graph G = 〈V ,E〉, with source s and destination t , find the weight
of the minimum cut that separates s from t .

Algorithmic Insights Computational Complexity

Maximum Flow
Min Cuts

Transformations and Reductions

Min Cuts

Definition

Given a capacitated graph G = 〈V ,E〉, with source s and destination t , a cut C is a set
of edges whose removal separates s from t .

Alternatively, a cut is partitioning of the vertices of G into two disjoint sets S and T ,
such that s ∈ S and t ∈ T . Then, C consists of the edges that cross from S to T .

The weight of a cut is the sum of the weights of the edges in that cut.

The Problem

Given a capacitated graph G = 〈V ,E〉, with source s and destination t , find the weight
of the minimum cut that separates s from t .

Algorithmic Insights Computational Complexity

Maximum Flow
Min Cuts

Transformations and Reductions

Min Cuts

Definition

Given a capacitated graph G = 〈V ,E〉, with source s and destination t , a cut C is a set
of edges whose removal separates s from t .

Alternatively, a cut is partitioning of the vertices of G into two disjoint sets S and T ,
such that s ∈ S and t ∈ T . Then, C consists of the edges that cross from S to T .

The weight of a cut is the sum of the weights of the edges in that cut.

The Problem

Given a capacitated graph G = 〈V ,E〉, with source s and destination t , find the weight
of the minimum cut that separates s from t .

Algorithmic Insights Computational Complexity

Maximum Flow
Min Cuts

Transformations and Reductions

Min Cuts

Definition

Given a capacitated graph G = 〈V ,E〉, with source s and destination t , a cut C is a set
of edges whose removal separates s from t .

Alternatively, a cut is partitioning of the vertices of G into two disjoint sets S and T ,
such that s ∈ S and t ∈ T . Then, C consists of the edges that cross from S to T .

The weight of a cut is the sum of the weights of the edges in that cut.

The Problem

Given a capacitated graph G = 〈V ,E〉, with source s and destination t , find the weight
of the minimum cut that separates s from t .

Algorithmic Insights Computational Complexity

Maximum Flow
Min Cuts

Transformations and Reductions

Min Cuts

Definition

Given a capacitated graph G = 〈V ,E〉, with source s and destination t , a cut C is a set
of edges whose removal separates s from t .

Alternatively, a cut is partitioning of the vertices of G into two disjoint sets S and T ,
such that s ∈ S and t ∈ T . Then, C consists of the edges that cross from S to T .

The weight of a cut is the sum of the weights of the edges in that cut.

The Problem

Given a capacitated graph G = 〈V ,E〉, with source s and destination t , find the weight
of the minimum cut that separates s from t .

Algorithmic Insights Computational Complexity

Maximum Flow
Min Cuts

Transformations and Reductions

Min Cuts

Definition

Given a capacitated graph G = 〈V ,E〉, with source s and destination t , a cut C is a set
of edges whose removal separates s from t .

Alternatively, a cut is partitioning of the vertices of G into two disjoint sets S and T ,
such that s ∈ S and t ∈ T . Then, C consists of the edges that cross from S to T .

The weight of a cut is the sum of the weights of the edges in that cut.

The Problem

Given a capacitated graph G = 〈V ,E〉, with source s and destination t , find the weight
of the minimum cut that separates s from t .

Algorithmic Insights Computational Complexity

Maximum Flow
Min Cuts

Transformations and Reductions

Observations

Observations

1 The value of the any flow is at most the value of any cut.
2 Thus, the value of the maximum flow is at most the value of the minimum cut.
3 Given a flow f and given a cut (S,T), the net flow across a cut is the value of that

flow, i.e., f (S,T) = |f |.
4 With some thought, it should be clear that the value of the maximum flow is equal

the value of the minimum cut (Max-Flow Min cut theorem)
5 The Max Flow and Min Cut problems are thus dual to each other.

Algorithmic Insights Computational Complexity

Maximum Flow
Min Cuts

Transformations and Reductions

Observations

Observations

1 The value of the any flow is at most the value of any cut.
2 Thus, the value of the maximum flow is at most the value of the minimum cut.
3 Given a flow f and given a cut (S,T), the net flow across a cut is the value of that

flow, i.e., f (S,T) = |f |.
4 With some thought, it should be clear that the value of the maximum flow is equal

the value of the minimum cut (Max-Flow Min cut theorem)
5 The Max Flow and Min Cut problems are thus dual to each other.

Algorithmic Insights Computational Complexity

Maximum Flow
Min Cuts

Transformations and Reductions

Observations

Observations

1 The value of the any flow is at most the value of any cut.

2 Thus, the value of the maximum flow is at most the value of the minimum cut.
3 Given a flow f and given a cut (S,T), the net flow across a cut is the value of that

flow, i.e., f (S,T) = |f |.
4 With some thought, it should be clear that the value of the maximum flow is equal

the value of the minimum cut (Max-Flow Min cut theorem)
5 The Max Flow and Min Cut problems are thus dual to each other.

Algorithmic Insights Computational Complexity

Maximum Flow
Min Cuts

Transformations and Reductions

Observations

Observations

1 The value of the any flow is at most the value of any cut.
2 Thus, the value of the maximum flow is at most the value of the minimum cut.

3 Given a flow f and given a cut (S,T), the net flow across a cut is the value of that
flow, i.e., f (S,T) = |f |.

4 With some thought, it should be clear that the value of the maximum flow is equal
the value of the minimum cut (Max-Flow Min cut theorem)

5 The Max Flow and Min Cut problems are thus dual to each other.

Algorithmic Insights Computational Complexity

Maximum Flow
Min Cuts

Transformations and Reductions

Observations

Observations

1 The value of the any flow is at most the value of any cut.
2 Thus, the value of the maximum flow is at most the value of the minimum cut.
3 Given a flow f and given a cut (S,T), the net flow across a cut is the value of that

flow,

i.e., f (S,T) = |f |.
4 With some thought, it should be clear that the value of the maximum flow is equal

the value of the minimum cut (Max-Flow Min cut theorem)
5 The Max Flow and Min Cut problems are thus dual to each other.

Algorithmic Insights Computational Complexity

Maximum Flow
Min Cuts

Transformations and Reductions

Observations

Observations

1 The value of the any flow is at most the value of any cut.
2 Thus, the value of the maximum flow is at most the value of the minimum cut.
3 Given a flow f and given a cut (S,T), the net flow across a cut is the value of that

flow, i.e., f (S,T) = |f |.

4 With some thought, it should be clear that the value of the maximum flow is equal
the value of the minimum cut (Max-Flow Min cut theorem)

5 The Max Flow and Min Cut problems are thus dual to each other.

Algorithmic Insights Computational Complexity

Maximum Flow
Min Cuts

Transformations and Reductions

Observations

Observations

1 The value of the any flow is at most the value of any cut.
2 Thus, the value of the maximum flow is at most the value of the minimum cut.
3 Given a flow f and given a cut (S,T), the net flow across a cut is the value of that

flow, i.e., f (S,T) = |f |.
4 With some thought, it should be clear that the value of the maximum flow is equal

the value of the minimum cut

(Max-Flow Min cut theorem)
5 The Max Flow and Min Cut problems are thus dual to each other.

Algorithmic Insights Computational Complexity

Maximum Flow
Min Cuts

Transformations and Reductions

Observations

Observations

1 The value of the any flow is at most the value of any cut.
2 Thus, the value of the maximum flow is at most the value of the minimum cut.
3 Given a flow f and given a cut (S,T), the net flow across a cut is the value of that

flow, i.e., f (S,T) = |f |.
4 With some thought, it should be clear that the value of the maximum flow is equal

the value of the minimum cut (Max-Flow Min cut theorem)

5 The Max Flow and Min Cut problems are thus dual to each other.

Algorithmic Insights Computational Complexity

Maximum Flow
Min Cuts

Transformations and Reductions

Observations

Observations

1 The value of the any flow is at most the value of any cut.
2 Thus, the value of the maximum flow is at most the value of the minimum cut.
3 Given a flow f and given a cut (S,T), the net flow across a cut is the value of that

flow, i.e., f (S,T) = |f |.
4 With some thought, it should be clear that the value of the maximum flow is equal

the value of the minimum cut (Max-Flow Min cut theorem)
5 The Max Flow and Min Cut problems are thus dual to each other.

Algorithmic Insights Computational Complexity

Maximum Flow
Min Cuts

Transformations and Reductions

Max-Flow Min-Cut Theorem

Proof

1 Let S denote the set of vertices reachable from s in Gf . Let T denote the rest of
the vertices, including t .

2 Consider an edge e, crossing from s to t . It is clear that cf (e) = 0. It follows that
f (e) = c(e).

3 Each cut edge is saturated by f .
4 The weight of the cut (S,T) is equal to the sum of the weights of the saturated

edges, which is clearly |f |.
5 The above theorem can also be proved using linear programming duality.

Algorithmic Insights Computational Complexity

Maximum Flow
Min Cuts

Transformations and Reductions

Max-Flow Min-Cut Theorem

Proof

1 Let S denote the set of vertices reachable from s in Gf . Let T denote the rest of
the vertices, including t .

2 Consider an edge e, crossing from s to t . It is clear that cf (e) = 0. It follows that
f (e) = c(e).

3 Each cut edge is saturated by f .
4 The weight of the cut (S,T) is equal to the sum of the weights of the saturated

edges, which is clearly |f |.
5 The above theorem can also be proved using linear programming duality.

Algorithmic Insights Computational Complexity

Maximum Flow
Min Cuts

Transformations and Reductions

Max-Flow Min-Cut Theorem

Proof

1 Let S denote the set of vertices reachable from s in Gf .

Let T denote the rest of
the vertices, including t .

2 Consider an edge e, crossing from s to t . It is clear that cf (e) = 0. It follows that
f (e) = c(e).

3 Each cut edge is saturated by f .
4 The weight of the cut (S,T) is equal to the sum of the weights of the saturated

edges, which is clearly |f |.
5 The above theorem can also be proved using linear programming duality.

Algorithmic Insights Computational Complexity

Maximum Flow
Min Cuts

Transformations and Reductions

Max-Flow Min-Cut Theorem

Proof

1 Let S denote the set of vertices reachable from s in Gf . Let T denote the rest of
the vertices, including t .

2 Consider an edge e, crossing from s to t . It is clear that cf (e) = 0. It follows that
f (e) = c(e).

3 Each cut edge is saturated by f .
4 The weight of the cut (S,T) is equal to the sum of the weights of the saturated

edges, which is clearly |f |.
5 The above theorem can also be proved using linear programming duality.

Algorithmic Insights Computational Complexity

Maximum Flow
Min Cuts

Transformations and Reductions

Max-Flow Min-Cut Theorem

Proof

1 Let S denote the set of vertices reachable from s in Gf . Let T denote the rest of
the vertices, including t .

2 Consider an edge e, crossing from s to t .

It is clear that cf (e) = 0. It follows that
f (e) = c(e).

3 Each cut edge is saturated by f .
4 The weight of the cut (S,T) is equal to the sum of the weights of the saturated

edges, which is clearly |f |.
5 The above theorem can also be proved using linear programming duality.

Algorithmic Insights Computational Complexity

Maximum Flow
Min Cuts

Transformations and Reductions

Max-Flow Min-Cut Theorem

Proof

1 Let S denote the set of vertices reachable from s in Gf . Let T denote the rest of
the vertices, including t .

2 Consider an edge e, crossing from s to t . It is clear that cf (e) = 0. It follows that
f (e) = c(e).

3 Each cut edge is saturated by f .
4 The weight of the cut (S,T) is equal to the sum of the weights of the saturated

edges, which is clearly |f |.
5 The above theorem can also be proved using linear programming duality.

Algorithmic Insights Computational Complexity

Maximum Flow
Min Cuts

Transformations and Reductions

Max-Flow Min-Cut Theorem

Proof

1 Let S denote the set of vertices reachable from s in Gf . Let T denote the rest of
the vertices, including t .

2 Consider an edge e, crossing from s to t . It is clear that cf (e) = 0. It follows that
f (e) = c(e).

3 Each cut edge is saturated by f .

4 The weight of the cut (S,T) is equal to the sum of the weights of the saturated
edges, which is clearly |f |.

5 The above theorem can also be proved using linear programming duality.

Algorithmic Insights Computational Complexity

Maximum Flow
Min Cuts

Transformations and Reductions

Max-Flow Min-Cut Theorem

Proof

1 Let S denote the set of vertices reachable from s in Gf . Let T denote the rest of
the vertices, including t .

2 Consider an edge e, crossing from s to t . It is clear that cf (e) = 0. It follows that
f (e) = c(e).

3 Each cut edge is saturated by f .
4 The weight of the cut (S,T) is equal to the sum of the weights of the saturated

edges, which is clearly |f |.

5 The above theorem can also be proved using linear programming duality.

Algorithmic Insights Computational Complexity

Maximum Flow
Min Cuts

Transformations and Reductions

Max-Flow Min-Cut Theorem

Proof

1 Let S denote the set of vertices reachable from s in Gf . Let T denote the rest of
the vertices, including t .

2 Consider an edge e, crossing from s to t . It is clear that cf (e) = 0. It follows that
f (e) = c(e).

3 Each cut edge is saturated by f .
4 The weight of the cut (S,T) is equal to the sum of the weights of the saturated

edges, which is clearly |f |.
5 The above theorem can also be proved using linear programming duality.

Algorithmic Insights Computational Complexity

Maximum Flow
Min Cuts

Transformations and Reductions

Notion of reduction

Definition

A reduction from problem A to problem B, is a transformation function f that maps
“yes”-instances of A into “yes”-instances of B, and “no”-instances of A into
“no”-instances of B.

Definition

A reduction is said to be polynomial time (or log space) the transformation function f ()
can be computed in polynomial time (or log space).

Algorithmic Insights Computational Complexity

Maximum Flow
Min Cuts

Transformations and Reductions

Notion of reduction

Definition

A reduction from problem A to problem B,

is a transformation function f that maps
“yes”-instances of A into “yes”-instances of B, and “no”-instances of A into
“no”-instances of B.

Definition

A reduction is said to be polynomial time (or log space) the transformation function f ()
can be computed in polynomial time (or log space).

Algorithmic Insights Computational Complexity

Maximum Flow
Min Cuts

Transformations and Reductions

Notion of reduction

Definition

A reduction from problem A to problem B, is a transformation function f that maps
“yes”-instances of A into “yes”-instances of B,

and “no”-instances of A into
“no”-instances of B.

Definition

A reduction is said to be polynomial time (or log space) the transformation function f ()
can be computed in polynomial time (or log space).

Algorithmic Insights Computational Complexity

Maximum Flow
Min Cuts

Transformations and Reductions

Notion of reduction

Definition

A reduction from problem A to problem B, is a transformation function f that maps
“yes”-instances of A into “yes”-instances of B, and “no”-instances of A into
“no”-instances of B.

Definition

A reduction is said to be polynomial time (or log space) the transformation function f ()
can be computed in polynomial time (or log space).

Algorithmic Insights Computational Complexity

Maximum Flow
Min Cuts

Transformations and Reductions

Notion of reduction

Definition

A reduction from problem A to problem B, is a transformation function f that maps
“yes”-instances of A into “yes”-instances of B, and “no”-instances of A into
“no”-instances of B.

Definition

A reduction is said to be polynomial time

(or log space) the transformation function f ()
can be computed in polynomial time (or log space).

Algorithmic Insights Computational Complexity

Maximum Flow
Min Cuts

Transformations and Reductions

Notion of reduction

Definition

A reduction from problem A to problem B, is a transformation function f that maps
“yes”-instances of A into “yes”-instances of B, and “no”-instances of A into
“no”-instances of B.

Definition

A reduction is said to be polynomial time (or log space) the transformation function f ()
can be computed in polynomial time

(or log space).

Algorithmic Insights Computational Complexity

Maximum Flow
Min Cuts

Transformations and Reductions

Notion of reduction

Definition

A reduction from problem A to problem B, is a transformation function f that maps
“yes”-instances of A into “yes”-instances of B, and “no”-instances of A into
“no”-instances of B.

Definition

A reduction is said to be polynomial time (or log space) the transformation function f ()
can be computed in polynomial time (or log space).

Algorithmic Insights Computational Complexity

Maximum Flow
Min Cuts

Transformations and Reductions

Important Observations

Observations

1 We write A ≤f B to denote that A can be reduced to B through f ().
2 We can solve A, If we know how to solve B, using B as a sub-routine.
3 B is at least as hard as A.
4 B generalizes A or A is a special case of B.
5 If B is in P, then so is A.
6 If A is not in P, then so is B. (Reduction in NP).
7 The function f () needs to be circumscribed severely if conclusions are to be

meaningful. (Reduce TSP to graph reachability).

Algorithmic Insights Computational Complexity

Maximum Flow
Min Cuts

Transformations and Reductions

Important Observations

Observations

1 We write A ≤f B to denote that A can be reduced to B through f ().
2 We can solve A, If we know how to solve B, using B as a sub-routine.
3 B is at least as hard as A.
4 B generalizes A or A is a special case of B.
5 If B is in P, then so is A.
6 If A is not in P, then so is B. (Reduction in NP).
7 The function f () needs to be circumscribed severely if conclusions are to be

meaningful. (Reduce TSP to graph reachability).

Algorithmic Insights Computational Complexity

Maximum Flow
Min Cuts

Transformations and Reductions

Important Observations

Observations

1 We write A ≤f B to denote that A can be reduced to B through f ().

2 We can solve A, If we know how to solve B, using B as a sub-routine.
3 B is at least as hard as A.
4 B generalizes A or A is a special case of B.
5 If B is in P, then so is A.
6 If A is not in P, then so is B. (Reduction in NP).
7 The function f () needs to be circumscribed severely if conclusions are to be

meaningful. (Reduce TSP to graph reachability).

Algorithmic Insights Computational Complexity

Maximum Flow
Min Cuts

Transformations and Reductions

Important Observations

Observations

1 We write A ≤f B to denote that A can be reduced to B through f ().
2 We can solve A,

If we know how to solve B, using B as a sub-routine.
3 B is at least as hard as A.
4 B generalizes A or A is a special case of B.
5 If B is in P, then so is A.
6 If A is not in P, then so is B. (Reduction in NP).
7 The function f () needs to be circumscribed severely if conclusions are to be

meaningful. (Reduce TSP to graph reachability).

Algorithmic Insights Computational Complexity

Maximum Flow
Min Cuts

Transformations and Reductions

Important Observations

Observations

1 We write A ≤f B to denote that A can be reduced to B through f ().
2 We can solve A, If we know how to solve B, using B as a sub-routine.

3 B is at least as hard as A.
4 B generalizes A or A is a special case of B.
5 If B is in P, then so is A.
6 If A is not in P, then so is B. (Reduction in NP).
7 The function f () needs to be circumscribed severely if conclusions are to be

meaningful. (Reduce TSP to graph reachability).

Algorithmic Insights Computational Complexity

Maximum Flow
Min Cuts

Transformations and Reductions

Important Observations

Observations

1 We write A ≤f B to denote that A can be reduced to B through f ().
2 We can solve A, If we know how to solve B, using B as a sub-routine.
3 B is at least as hard as A.

4 B generalizes A or A is a special case of B.
5 If B is in P, then so is A.
6 If A is not in P, then so is B. (Reduction in NP).
7 The function f () needs to be circumscribed severely if conclusions are to be

meaningful. (Reduce TSP to graph reachability).

Algorithmic Insights Computational Complexity

Maximum Flow
Min Cuts

Transformations and Reductions

Important Observations

Observations

1 We write A ≤f B to denote that A can be reduced to B through f ().
2 We can solve A, If we know how to solve B, using B as a sub-routine.
3 B is at least as hard as A.
4 B generalizes A

or A is a special case of B.
5 If B is in P, then so is A.
6 If A is not in P, then so is B. (Reduction in NP).
7 The function f () needs to be circumscribed severely if conclusions are to be

meaningful. (Reduce TSP to graph reachability).

Algorithmic Insights Computational Complexity

Maximum Flow
Min Cuts

Transformations and Reductions

Important Observations

Observations

1 We write A ≤f B to denote that A can be reduced to B through f ().
2 We can solve A, If we know how to solve B, using B as a sub-routine.
3 B is at least as hard as A.
4 B generalizes A or A is a special case of B.

5 If B is in P, then so is A.
6 If A is not in P, then so is B. (Reduction in NP).
7 The function f () needs to be circumscribed severely if conclusions are to be

meaningful. (Reduce TSP to graph reachability).

Algorithmic Insights Computational Complexity

Maximum Flow
Min Cuts

Transformations and Reductions

Important Observations

Observations

1 We write A ≤f B to denote that A can be reduced to B through f ().
2 We can solve A, If we know how to solve B, using B as a sub-routine.
3 B is at least as hard as A.
4 B generalizes A or A is a special case of B.
5 If B is in P, then so is A.

6 If A is not in P, then so is B. (Reduction in NP).
7 The function f () needs to be circumscribed severely if conclusions are to be

meaningful. (Reduce TSP to graph reachability).

Algorithmic Insights Computational Complexity

Maximum Flow
Min Cuts

Transformations and Reductions

Important Observations

Observations

1 We write A ≤f B to denote that A can be reduced to B through f ().
2 We can solve A, If we know how to solve B, using B as a sub-routine.
3 B is at least as hard as A.
4 B generalizes A or A is a special case of B.
5 If B is in P, then so is A.
6 If A is not in P, then so is B.

(Reduction in NP).
7 The function f () needs to be circumscribed severely if conclusions are to be

meaningful. (Reduce TSP to graph reachability).

Algorithmic Insights Computational Complexity

Maximum Flow
Min Cuts

Transformations and Reductions

Important Observations

Observations

1 We write A ≤f B to denote that A can be reduced to B through f ().
2 We can solve A, If we know how to solve B, using B as a sub-routine.
3 B is at least as hard as A.
4 B generalizes A or A is a special case of B.
5 If B is in P, then so is A.
6 If A is not in P, then so is B. (Reduction in NP).

7 The function f () needs to be circumscribed severely if conclusions are to be
meaningful. (Reduce TSP to graph reachability).

Algorithmic Insights Computational Complexity

Maximum Flow
Min Cuts

Transformations and Reductions

Important Observations

Observations

1 We write A ≤f B to denote that A can be reduced to B through f ().
2 We can solve A, If we know how to solve B, using B as a sub-routine.
3 B is at least as hard as A.
4 B generalizes A or A is a special case of B.
5 If B is in P, then so is A.
6 If A is not in P, then so is B. (Reduction in NP).
7 The function f () needs to be circumscribed severely if conclusions are to be

meaningful.

(Reduce TSP to graph reachability).

Algorithmic Insights Computational Complexity

Maximum Flow
Min Cuts

Transformations and Reductions

Important Observations

Observations

1 We write A ≤f B to denote that A can be reduced to B through f ().
2 We can solve A, If we know how to solve B, using B as a sub-routine.
3 B is at least as hard as A.
4 B generalizes A or A is a special case of B.
5 If B is in P, then so is A.
6 If A is not in P, then so is B. (Reduction in NP).
7 The function f () needs to be circumscribed severely if conclusions are to be

meaningful. (Reduce TSP to graph reachability).

Algorithmic Insights Computational Complexity

Maximum Flow
Min Cuts

Transformations and Reductions

Simple Reductions

Sorting and Find-Min

1 Reduce the Find-Min problem to sorting.
2 Reduce the Sorting problem to FInd-Min.

Algorithmic Insights Computational Complexity

Maximum Flow
Min Cuts

Transformations and Reductions

Simple Reductions

Sorting and Find-Min

1 Reduce the Find-Min problem to sorting.
2 Reduce the Sorting problem to FInd-Min.

Algorithmic Insights Computational Complexity

Maximum Flow
Min Cuts

Transformations and Reductions

Simple Reductions

Sorting and Find-Min

1 Reduce the Find-Min problem to sorting.

2 Reduce the Sorting problem to FInd-Min.

Algorithmic Insights Computational Complexity

Maximum Flow
Min Cuts

Transformations and Reductions

Simple Reductions

Sorting and Find-Min

1 Reduce the Find-Min problem to sorting.
2 Reduce the Sorting problem to FInd-Min.

Algorithmic Insights Computational Complexity

Maximum Flow
Min Cuts

Transformations and Reductions

The perfect matching problem

Definition

Given an undirected graph G = 〈V ,E〉, a matching M is any collection of
vertex-disjoint edges.

The matching is said to be perfect, if |M| = n
2 .

The Problem

Given a bipartite graph G = 〈L,R,E〉, does G have a perfect matching? We can

assume that |L| = |R|, or else the problem is trivial.

The following problem generalizes the Perfect Matching problem:
Given a bipartite graph G = 〈L,R,E〉, what is the maximum matching in G?

Algorithmic Insights Computational Complexity

Maximum Flow
Min Cuts

Transformations and Reductions

The perfect matching problem

Definition

Given an undirected graph G = 〈V ,E〉, a matching M is any collection of
vertex-disjoint edges.

The matching is said to be perfect, if |M| = n
2 .

The Problem

Given a bipartite graph G = 〈L,R,E〉, does G have a perfect matching? We can

assume that |L| = |R|, or else the problem is trivial.

The following problem generalizes the Perfect Matching problem:
Given a bipartite graph G = 〈L,R,E〉, what is the maximum matching in G?

Algorithmic Insights Computational Complexity

Maximum Flow
Min Cuts

Transformations and Reductions

The perfect matching problem

Definition

Given an undirected graph G = 〈V ,E〉,

a matching M is any collection of
vertex-disjoint edges.

The matching is said to be perfect, if |M| = n
2 .

The Problem

Given a bipartite graph G = 〈L,R,E〉, does G have a perfect matching? We can

assume that |L| = |R|, or else the problem is trivial.

The following problem generalizes the Perfect Matching problem:
Given a bipartite graph G = 〈L,R,E〉, what is the maximum matching in G?

Algorithmic Insights Computational Complexity

Maximum Flow
Min Cuts

Transformations and Reductions

The perfect matching problem

Definition

Given an undirected graph G = 〈V ,E〉, a matching M is any collection of
vertex-disjoint edges.

The matching is said to be perfect, if |M| = n
2 .

The Problem

Given a bipartite graph G = 〈L,R,E〉, does G have a perfect matching? We can

assume that |L| = |R|, or else the problem is trivial.

The following problem generalizes the Perfect Matching problem:
Given a bipartite graph G = 〈L,R,E〉, what is the maximum matching in G?

Algorithmic Insights Computational Complexity

Maximum Flow
Min Cuts

Transformations and Reductions

The perfect matching problem

Definition

Given an undirected graph G = 〈V ,E〉, a matching M is any collection of
vertex-disjoint edges.

The matching is said to be perfect, if |M| = n
2 .

The Problem

Given a bipartite graph G = 〈L,R,E〉,

does G have a perfect matching? We can

assume that |L| = |R|, or else the problem is trivial.

The following problem generalizes the Perfect Matching problem:
Given a bipartite graph G = 〈L,R,E〉, what is the maximum matching in G?

Algorithmic Insights Computational Complexity

Maximum Flow
Min Cuts

Transformations and Reductions

The perfect matching problem

Definition

Given an undirected graph G = 〈V ,E〉, a matching M is any collection of
vertex-disjoint edges.

The matching is said to be perfect, if |M| = n
2 .

The Problem

Given a bipartite graph G = 〈L,R,E〉, does G have a perfect matching?

We can

assume that |L| = |R|, or else the problem is trivial.

The following problem generalizes the Perfect Matching problem:
Given a bipartite graph G = 〈L,R,E〉, what is the maximum matching in G?

Algorithmic Insights Computational Complexity

Maximum Flow
Min Cuts

Transformations and Reductions

The perfect matching problem

Definition

Given an undirected graph G = 〈V ,E〉, a matching M is any collection of
vertex-disjoint edges.

The matching is said to be perfect, if |M| = n
2 .

The Problem

Given a bipartite graph G = 〈L,R,E〉, does G have a perfect matching? We can

assume that |L| = |R|, or else the problem is trivial.

The following problem generalizes the Perfect Matching problem:
Given a bipartite graph G = 〈L,R,E〉, what is the maximum matching in G?

Algorithmic Insights Computational Complexity

Maximum Flow
Min Cuts

Transformations and Reductions

The perfect matching problem

Definition

Given an undirected graph G = 〈V ,E〉, a matching M is any collection of
vertex-disjoint edges.

The matching is said to be perfect, if |M| = n
2 .

The Problem

Given a bipartite graph G = 〈L,R,E〉, does G have a perfect matching? We can

assume that |L| = |R|, or else the problem is trivial.

The following problem generalizes the Perfect Matching problem:

Given a bipartite graph G = 〈L,R,E〉, what is the maximum matching in G?

Algorithmic Insights Computational Complexity

Maximum Flow
Min Cuts

Transformations and Reductions

The perfect matching problem

Definition

Given an undirected graph G = 〈V ,E〉, a matching M is any collection of
vertex-disjoint edges.

The matching is said to be perfect, if |M| = n
2 .

The Problem

Given a bipartite graph G = 〈L,R,E〉, does G have a perfect matching? We can

assume that |L| = |R|, or else the problem is trivial.

The following problem generalizes the Perfect Matching problem:
Given a bipartite graph G = 〈L,R,E〉,

what is the maximum matching in G?

Algorithmic Insights Computational Complexity

Maximum Flow
Min Cuts

Transformations and Reductions

The perfect matching problem

Definition

Given an undirected graph G = 〈V ,E〉, a matching M is any collection of
vertex-disjoint edges.

The matching is said to be perfect, if |M| = n
2 .

The Problem

Given a bipartite graph G = 〈L,R,E〉, does G have a perfect matching? We can

assume that |L| = |R|, or else the problem is trivial.

The following problem generalizes the Perfect Matching problem:
Given a bipartite graph G = 〈L,R,E〉, what is the maximum matching in G?

Algorithmic Insights Computational Complexity

Maximum Flow
Min Cuts

Transformations and Reductions

The transformation of bipartite matching to Max-Flow

Reduction

1 Create a new vertex s and draw an arc from s to all the vertices in L.
2 Create a new vertex t and draw an arch from each vertex in R to t .
3 All edges have capacity 1.
4 G has a perfect matching if and only if the maximum flow from s to t in the

transformed graph is |L|.
5 More generally,

Max-Bipartite Matching ≤ Max-Flow

Algorithmic Insights Computational Complexity

Maximum Flow
Min Cuts

Transformations and Reductions

The transformation of bipartite matching to Max-Flow

Reduction

1 Create a new vertex s and draw an arc from s to all the vertices in L.
2 Create a new vertex t and draw an arch from each vertex in R to t .
3 All edges have capacity 1.
4 G has a perfect matching if and only if the maximum flow from s to t in the

transformed graph is |L|.
5 More generally,

Max-Bipartite Matching ≤ Max-Flow

Algorithmic Insights Computational Complexity

Maximum Flow
Min Cuts

Transformations and Reductions

The transformation of bipartite matching to Max-Flow

Reduction

1 Create a new vertex s and draw an arc from s to all the vertices in L.

2 Create a new vertex t and draw an arch from each vertex in R to t .
3 All edges have capacity 1.
4 G has a perfect matching if and only if the maximum flow from s to t in the

transformed graph is |L|.
5 More generally,

Max-Bipartite Matching ≤ Max-Flow

Algorithmic Insights Computational Complexity

Maximum Flow
Min Cuts

Transformations and Reductions

The transformation of bipartite matching to Max-Flow

Reduction

1 Create a new vertex s and draw an arc from s to all the vertices in L.
2 Create a new vertex t and draw an arch from each vertex in R to t .

3 All edges have capacity 1.
4 G has a perfect matching if and only if the maximum flow from s to t in the

transformed graph is |L|.
5 More generally,

Max-Bipartite Matching ≤ Max-Flow

Algorithmic Insights Computational Complexity

Maximum Flow
Min Cuts

Transformations and Reductions

The transformation of bipartite matching to Max-Flow

Reduction

1 Create a new vertex s and draw an arc from s to all the vertices in L.
2 Create a new vertex t and draw an arch from each vertex in R to t .
3 All edges have capacity 1.

4 G has a perfect matching if and only if the maximum flow from s to t in the
transformed graph is |L|.

5 More generally,
Max-Bipartite Matching ≤ Max-Flow

Algorithmic Insights Computational Complexity

Maximum Flow
Min Cuts

Transformations and Reductions

The transformation of bipartite matching to Max-Flow

Reduction

1 Create a new vertex s and draw an arc from s to all the vertices in L.
2 Create a new vertex t and draw an arch from each vertex in R to t .
3 All edges have capacity 1.
4 G has a perfect matching if and only if the maximum flow from s to t in the

transformed graph is |L|.

5 More generally,
Max-Bipartite Matching ≤ Max-Flow

Algorithmic Insights Computational Complexity

Maximum Flow
Min Cuts

Transformations and Reductions

The transformation of bipartite matching to Max-Flow

Reduction

1 Create a new vertex s and draw an arc from s to all the vertices in L.
2 Create a new vertex t and draw an arch from each vertex in R to t .
3 All edges have capacity 1.
4 G has a perfect matching if and only if the maximum flow from s to t in the

transformed graph is |L|.
5 More generally,

Max-Bipartite Matching ≤ Max-Flow

Algorithmic Insights Computational Complexity

	Outline
	Main Talk
	Maximum Flow
	Min Cuts
	Transformations and Reductions

