
Outline

Complexity Basics

K. Subramani1

1Lane Department of Computer Science and Electrical Engineering
West Virginia University

February 2, 2015

Basics Computational Complexity



Outline

Outline

1 Review of concepts

2 Problems and Solutions

3 Time, Space and Scaling

4 Intrinsic Complexity

5 Polynomial Time

Basics Computational Complexity



Outline

Outline

1 Review of concepts

2 Problems and Solutions

3 Time, Space and Scaling

4 Intrinsic Complexity

5 Polynomial Time

Basics Computational Complexity



Outline

Outline

1 Review of concepts

2 Problems and Solutions

3 Time, Space and Scaling

4 Intrinsic Complexity

5 Polynomial Time

Basics Computational Complexity



Outline

Outline

1 Review of concepts

2 Problems and Solutions

3 Time, Space and Scaling

4 Intrinsic Complexity

5 Polynomial Time

Basics Computational Complexity



Outline

Outline

1 Review of concepts

2 Problems and Solutions

3 Time, Space and Scaling

4 Intrinsic Complexity

5 Polynomial Time

Basics Computational Complexity



Review of concepts
Problems and Solutions

Time, Space and Scaling
Intrinsic Complexity

Polynomial Time

Review

Main concepts

1 Alphabet, strings and languages.
2 Problems.
3 Connection between problems and languages.
4 Asymptotics and caclulus.
5 Probability and random variables.
6 Abstract Algebra.
7 Upper and lower bounds.
8 Problem paradigms.

Basics Computational Complexity



Review of concepts
Problems and Solutions

Time, Space and Scaling
Intrinsic Complexity

Polynomial Time

Review

Main concepts

1 Alphabet, strings and languages.
2 Problems.
3 Connection between problems and languages.
4 Asymptotics and caclulus.
5 Probability and random variables.
6 Abstract Algebra.
7 Upper and lower bounds.
8 Problem paradigms.

Basics Computational Complexity



Review of concepts
Problems and Solutions

Time, Space and Scaling
Intrinsic Complexity

Polynomial Time

Review

Main concepts

1 Alphabet, strings and languages.

2 Problems.
3 Connection between problems and languages.
4 Asymptotics and caclulus.
5 Probability and random variables.
6 Abstract Algebra.
7 Upper and lower bounds.
8 Problem paradigms.

Basics Computational Complexity



Review of concepts
Problems and Solutions

Time, Space and Scaling
Intrinsic Complexity

Polynomial Time

Review

Main concepts

1 Alphabet, strings and languages.
2 Problems.

3 Connection between problems and languages.
4 Asymptotics and caclulus.
5 Probability and random variables.
6 Abstract Algebra.
7 Upper and lower bounds.
8 Problem paradigms.

Basics Computational Complexity



Review of concepts
Problems and Solutions

Time, Space and Scaling
Intrinsic Complexity

Polynomial Time

Review

Main concepts

1 Alphabet, strings and languages.
2 Problems.
3 Connection between problems and languages.

4 Asymptotics and caclulus.
5 Probability and random variables.
6 Abstract Algebra.
7 Upper and lower bounds.
8 Problem paradigms.

Basics Computational Complexity



Review of concepts
Problems and Solutions

Time, Space and Scaling
Intrinsic Complexity

Polynomial Time

Review

Main concepts

1 Alphabet, strings and languages.
2 Problems.
3 Connection between problems and languages.
4 Asymptotics and caclulus.

5 Probability and random variables.
6 Abstract Algebra.
7 Upper and lower bounds.
8 Problem paradigms.

Basics Computational Complexity



Review of concepts
Problems and Solutions

Time, Space and Scaling
Intrinsic Complexity

Polynomial Time

Review

Main concepts

1 Alphabet, strings and languages.
2 Problems.
3 Connection between problems and languages.
4 Asymptotics and caclulus.
5 Probability and random variables.

6 Abstract Algebra.
7 Upper and lower bounds.
8 Problem paradigms.

Basics Computational Complexity



Review of concepts
Problems and Solutions

Time, Space and Scaling
Intrinsic Complexity

Polynomial Time

Review

Main concepts

1 Alphabet, strings and languages.
2 Problems.
3 Connection between problems and languages.
4 Asymptotics and caclulus.
5 Probability and random variables.
6 Abstract Algebra.

7 Upper and lower bounds.
8 Problem paradigms.

Basics Computational Complexity



Review of concepts
Problems and Solutions

Time, Space and Scaling
Intrinsic Complexity

Polynomial Time

Review

Main concepts

1 Alphabet, strings and languages.
2 Problems.
3 Connection between problems and languages.
4 Asymptotics and caclulus.
5 Probability and random variables.
6 Abstract Algebra.
7 Upper and lower bounds.

8 Problem paradigms.

Basics Computational Complexity



Review of concepts
Problems and Solutions

Time, Space and Scaling
Intrinsic Complexity

Polynomial Time

Review

Main concepts

1 Alphabet, strings and languages.
2 Problems.
3 Connection between problems and languages.
4 Asymptotics and caclulus.
5 Probability and random variables.
6 Abstract Algebra.
7 Upper and lower bounds.
8 Problem paradigms.

Basics Computational Complexity



Review of concepts
Problems and Solutions

Time, Space and Scaling
Intrinsic Complexity

Polynomial Time

Problem

Main points

1 Instance of a problem e.g., Eulerian tour.
2 Finiteness of instance.
3 The Eulerian path problem.
4 The Hamilton circuit problem.
5 The Chess problem.
6 Infinite set of instances.
7 Decision and search problems.

Basics Computational Complexity



Review of concepts
Problems and Solutions

Time, Space and Scaling
Intrinsic Complexity

Polynomial Time

Problem

Main points

1 Instance of a problem e.g., Eulerian tour.
2 Finiteness of instance.
3 The Eulerian path problem.
4 The Hamilton circuit problem.
5 The Chess problem.
6 Infinite set of instances.
7 Decision and search problems.

Basics Computational Complexity



Review of concepts
Problems and Solutions

Time, Space and Scaling
Intrinsic Complexity

Polynomial Time

Problem

Main points

1 Instance of a problem e.g., Eulerian tour.

2 Finiteness of instance.
3 The Eulerian path problem.
4 The Hamilton circuit problem.
5 The Chess problem.
6 Infinite set of instances.
7 Decision and search problems.

Basics Computational Complexity



Review of concepts
Problems and Solutions

Time, Space and Scaling
Intrinsic Complexity

Polynomial Time

Problem

Main points

1 Instance of a problem e.g., Eulerian tour.
2 Finiteness of instance.

3 The Eulerian path problem.
4 The Hamilton circuit problem.
5 The Chess problem.
6 Infinite set of instances.
7 Decision and search problems.

Basics Computational Complexity



Review of concepts
Problems and Solutions

Time, Space and Scaling
Intrinsic Complexity

Polynomial Time

Problem

Main points

1 Instance of a problem e.g., Eulerian tour.
2 Finiteness of instance.
3 The Eulerian path problem.

4 The Hamilton circuit problem.
5 The Chess problem.
6 Infinite set of instances.
7 Decision and search problems.

Basics Computational Complexity



Review of concepts
Problems and Solutions

Time, Space and Scaling
Intrinsic Complexity

Polynomial Time

Problem

Main points

1 Instance of a problem e.g., Eulerian tour.
2 Finiteness of instance.
3 The Eulerian path problem.
4 The Hamilton circuit problem.

5 The Chess problem.
6 Infinite set of instances.
7 Decision and search problems.

Basics Computational Complexity



Review of concepts
Problems and Solutions

Time, Space and Scaling
Intrinsic Complexity

Polynomial Time

Problem

Main points

1 Instance of a problem e.g., Eulerian tour.
2 Finiteness of instance.
3 The Eulerian path problem.
4 The Hamilton circuit problem.
5 The Chess problem.

6 Infinite set of instances.
7 Decision and search problems.

Basics Computational Complexity



Review of concepts
Problems and Solutions

Time, Space and Scaling
Intrinsic Complexity

Polynomial Time

Problem

Main points

1 Instance of a problem e.g., Eulerian tour.
2 Finiteness of instance.
3 The Eulerian path problem.
4 The Hamilton circuit problem.
5 The Chess problem.
6 Infinite set of instances.

7 Decision and search problems.

Basics Computational Complexity



Review of concepts
Problems and Solutions

Time, Space and Scaling
Intrinsic Complexity

Polynomial Time

Problem

Main points

1 Instance of a problem e.g., Eulerian tour.
2 Finiteness of instance.
3 The Eulerian path problem.
4 The Hamilton circuit problem.
5 The Chess problem.
6 Infinite set of instances.
7 Decision and search problems.

Basics Computational Complexity



Review of concepts
Problems and Solutions

Time, Space and Scaling
Intrinsic Complexity

Polynomial Time

Solutions

Main points

1 What is a solution?
2 What is an algorithm?
3 Algorithms as functions.

Basics Computational Complexity



Review of concepts
Problems and Solutions

Time, Space and Scaling
Intrinsic Complexity

Polynomial Time

Solutions

Main points

1 What is a solution?
2 What is an algorithm?
3 Algorithms as functions.

Basics Computational Complexity



Review of concepts
Problems and Solutions

Time, Space and Scaling
Intrinsic Complexity

Polynomial Time

Solutions

Main points

1 What is a solution?

2 What is an algorithm?
3 Algorithms as functions.

Basics Computational Complexity



Review of concepts
Problems and Solutions

Time, Space and Scaling
Intrinsic Complexity

Polynomial Time

Solutions

Main points

1 What is a solution?
2 What is an algorithm?

3 Algorithms as functions.

Basics Computational Complexity



Review of concepts
Problems and Solutions

Time, Space and Scaling
Intrinsic Complexity

Polynomial Time

Solutions

Main points

1 What is a solution?
2 What is an algorithm?
3 Algorithms as functions.

Basics Computational Complexity



Review of concepts
Problems and Solutions

Time, Space and Scaling
Intrinsic Complexity

Polynomial Time

The GCD problem

Definition

Given two positive numbers (integers) a and b, find their greatest common divisor.

Note

1 This problem is referred to as gcd(a, b).
2 It is also well-defined when a and b are not positive, as long as both are not zero.
3 Euclid observed that gcd(a, b) = gcd(b, a mod b).

Basics Computational Complexity



Review of concepts
Problems and Solutions

Time, Space and Scaling
Intrinsic Complexity

Polynomial Time

The GCD problem

Definition

Given two positive numbers (integers) a and b, find their greatest common divisor.

Note

1 This problem is referred to as gcd(a, b).
2 It is also well-defined when a and b are not positive, as long as both are not zero.
3 Euclid observed that gcd(a, b) = gcd(b, a mod b).

Basics Computational Complexity



Review of concepts
Problems and Solutions

Time, Space and Scaling
Intrinsic Complexity

Polynomial Time

The GCD problem

Definition

Given two positive numbers (integers) a and b, find their greatest common divisor.

Note

1 This problem is referred to as gcd(a, b).
2 It is also well-defined when a and b are not positive, as long as both are not zero.
3 Euclid observed that gcd(a, b) = gcd(b, a mod b).

Basics Computational Complexity



Review of concepts
Problems and Solutions

Time, Space and Scaling
Intrinsic Complexity

Polynomial Time

The GCD problem

Definition

Given two positive numbers (integers) a and b, find their greatest common divisor.

Note

1 This problem is referred to as gcd(a, b).
2 It is also well-defined when a and b are not positive, as long as both are not zero.
3 Euclid observed that gcd(a, b) = gcd(b, a mod b).

Basics Computational Complexity



Review of concepts
Problems and Solutions

Time, Space and Scaling
Intrinsic Complexity

Polynomial Time

The GCD problem

Definition

Given two positive numbers (integers) a and b, find their greatest common divisor.

Note

1 This problem is referred to as gcd(a, b).
2 It is also well-defined when a and b are not positive, as long as both are not zero.
3 Euclid observed that gcd(a, b) = gcd(b, a mod b).

Basics Computational Complexity



Review of concepts
Problems and Solutions

Time, Space and Scaling
Intrinsic Complexity

Polynomial Time

The GCD problem

Definition

Given two positive numbers (integers) a and b, find their greatest common divisor.

Note

1 This problem is referred to as gcd(a, b).

2 It is also well-defined when a and b are not positive, as long as both are not zero.
3 Euclid observed that gcd(a, b) = gcd(b, a mod b).

Basics Computational Complexity



Review of concepts
Problems and Solutions

Time, Space and Scaling
Intrinsic Complexity

Polynomial Time

The GCD problem

Definition

Given two positive numbers (integers) a and b, find their greatest common divisor.

Note

1 This problem is referred to as gcd(a, b).
2 It is also well-defined when a and b are not positive,

as long as both are not zero.
3 Euclid observed that gcd(a, b) = gcd(b, a mod b).

Basics Computational Complexity



Review of concepts
Problems and Solutions

Time, Space and Scaling
Intrinsic Complexity

Polynomial Time

The GCD problem

Definition

Given two positive numbers (integers) a and b, find their greatest common divisor.

Note

1 This problem is referred to as gcd(a, b).
2 It is also well-defined when a and b are not positive, as long as both are not zero.

3 Euclid observed that gcd(a, b) = gcd(b, a mod b).

Basics Computational Complexity



Review of concepts
Problems and Solutions

Time, Space and Scaling
Intrinsic Complexity

Polynomial Time

The GCD problem

Definition

Given two positive numbers (integers) a and b, find their greatest common divisor.

Note

1 This problem is referred to as gcd(a, b).
2 It is also well-defined when a and b are not positive, as long as both are not zero.
3 Euclid observed that gcd(a, b) =

gcd(b, a mod b).

Basics Computational Complexity



Review of concepts
Problems and Solutions

Time, Space and Scaling
Intrinsic Complexity

Polynomial Time

The GCD problem

Definition

Given two positive numbers (integers) a and b, find their greatest common divisor.

Note

1 This problem is referred to as gcd(a, b).
2 It is also well-defined when a and b are not positive, as long as both are not zero.
3 Euclid observed that gcd(a, b) = gcd(b, a mod b).

Basics Computational Complexity



Review of concepts
Problems and Solutions

Time, Space and Scaling
Intrinsic Complexity

Polynomial Time

The Euclidean Algorithm

Algorithm

1: FUNCTION GCD(a, b)
2: if (b = 0) then
3: return (a)
4: else
5: return (GCD(b, a mod b)).
6: end if

Basics Computational Complexity



Review of concepts
Problems and Solutions

Time, Space and Scaling
Intrinsic Complexity

Polynomial Time

The Euclidean Algorithm

Algorithm

1: FUNCTION GCD(a, b)
2: if (b = 0) then
3: return (a)
4: else
5: return (GCD(b, a mod b)).
6: end if

Basics Computational Complexity



Review of concepts
Problems and Solutions

Time, Space and Scaling
Intrinsic Complexity

Polynomial Time

Types of Analysis

How to analyze

1 Worst-case.
2 Adversary.
3 Average-case.
4 Other ways.

Basics Computational Complexity



Review of concepts
Problems and Solutions

Time, Space and Scaling
Intrinsic Complexity

Polynomial Time

Types of Analysis

How to analyze

1 Worst-case.
2 Adversary.
3 Average-case.
4 Other ways.

Basics Computational Complexity



Review of concepts
Problems and Solutions

Time, Space and Scaling
Intrinsic Complexity

Polynomial Time

Types of Analysis

How to analyze

1 Worst-case.

2 Adversary.
3 Average-case.
4 Other ways.

Basics Computational Complexity



Review of concepts
Problems and Solutions

Time, Space and Scaling
Intrinsic Complexity

Polynomial Time

Types of Analysis

How to analyze

1 Worst-case.
2 Adversary.

3 Average-case.
4 Other ways.

Basics Computational Complexity



Review of concepts
Problems and Solutions

Time, Space and Scaling
Intrinsic Complexity

Polynomial Time

Types of Analysis

How to analyze

1 Worst-case.
2 Adversary.
3 Average-case.

4 Other ways.

Basics Computational Complexity



Review of concepts
Problems and Solutions

Time, Space and Scaling
Intrinsic Complexity

Polynomial Time

Types of Analysis

How to analyze

1 Worst-case.
2 Adversary.
3 Average-case.
4 Other ways.

Basics Computational Complexity



Review of concepts
Problems and Solutions

Time, Space and Scaling
Intrinsic Complexity

Polynomial Time

Time, Space and Scaling

Main Parameters

1 Notion of time.
2 Notion of space.
3 Notion of input size.
4 Scaling with respect to input size.
5 Analysis of the Euclidean algorithm.

Basics Computational Complexity



Review of concepts
Problems and Solutions

Time, Space and Scaling
Intrinsic Complexity

Polynomial Time

Time, Space and Scaling

Main Parameters

1 Notion of time.
2 Notion of space.
3 Notion of input size.
4 Scaling with respect to input size.
5 Analysis of the Euclidean algorithm.

Basics Computational Complexity



Review of concepts
Problems and Solutions

Time, Space and Scaling
Intrinsic Complexity

Polynomial Time

Time, Space and Scaling

Main Parameters

1 Notion of time.

2 Notion of space.
3 Notion of input size.
4 Scaling with respect to input size.
5 Analysis of the Euclidean algorithm.

Basics Computational Complexity



Review of concepts
Problems and Solutions

Time, Space and Scaling
Intrinsic Complexity

Polynomial Time

Time, Space and Scaling

Main Parameters

1 Notion of time.
2 Notion of space.

3 Notion of input size.
4 Scaling with respect to input size.
5 Analysis of the Euclidean algorithm.

Basics Computational Complexity



Review of concepts
Problems and Solutions

Time, Space and Scaling
Intrinsic Complexity

Polynomial Time

Time, Space and Scaling

Main Parameters

1 Notion of time.
2 Notion of space.
3 Notion of input size.

4 Scaling with respect to input size.
5 Analysis of the Euclidean algorithm.

Basics Computational Complexity



Review of concepts
Problems and Solutions

Time, Space and Scaling
Intrinsic Complexity

Polynomial Time

Time, Space and Scaling

Main Parameters

1 Notion of time.
2 Notion of space.
3 Notion of input size.
4 Scaling with respect to input size.

5 Analysis of the Euclidean algorithm.

Basics Computational Complexity



Review of concepts
Problems and Solutions

Time, Space and Scaling
Intrinsic Complexity

Polynomial Time

Time, Space and Scaling

Main Parameters

1 Notion of time.
2 Notion of space.
3 Notion of input size.
4 Scaling with respect to input size.
5 Analysis of the Euclidean algorithm.

Basics Computational Complexity



Review of concepts
Problems and Solutions

Time, Space and Scaling
Intrinsic Complexity

Polynomial Time

Intrinsic Complexity

Definition

The intrinsic complexity of a problem is the complexity of the most efficient algorithm
that solves it.

Basics Computational Complexity



Review of concepts
Problems and Solutions

Time, Space and Scaling
Intrinsic Complexity

Polynomial Time

Intrinsic Complexity

Definition

The intrinsic complexity of a problem is the complexity of the most efficient algorithm
that solves it.

Basics Computational Complexity



Review of concepts
Problems and Solutions

Time, Space and Scaling
Intrinsic Complexity

Polynomial Time

Intrinsic Complexity

Definition

The intrinsic complexity of a problem is the complexity of the most efficient algorithm
that solves it.

Basics Computational Complexity



Review of concepts
Problems and Solutions

Time, Space and Scaling
Intrinsic Complexity

Polynomial Time

The integer multiplication problem

Two integer multiplication

Compute the product of two numbers a and b having n digits each.

Basics Computational Complexity



Review of concepts
Problems and Solutions

Time, Space and Scaling
Intrinsic Complexity

Polynomial Time

The integer multiplication problem

Two integer multiplication

Compute the product of two numbers a and b having n digits each.

Basics Computational Complexity



Review of concepts
Problems and Solutions

Time, Space and Scaling
Intrinsic Complexity

Polynomial Time

The integer multiplication problem

Two integer multiplication

Compute the product of two numbers a and b having n digits each.

Basics Computational Complexity



Review of concepts
Problems and Solutions

Time, Space and Scaling
Intrinsic Complexity

Polynomial Time

The Master Method for solving certain recurrences

The Master theorem

Consider the recurrence
T (n) = a · T (

n
b

) + f (n).

If f (n) ∈ O(nc), where c < logb a, then T (n) = Θ(nlogb a).

Basics Computational Complexity



Review of concepts
Problems and Solutions

Time, Space and Scaling
Intrinsic Complexity

Polynomial Time

The Master Method for solving certain recurrences

The Master theorem

Consider the recurrence
T (n) = a · T (

n
b

) + f (n).

If f (n) ∈ O(nc), where c < logb a, then T (n) = Θ(nlogb a).

Basics Computational Complexity



Review of concepts
Problems and Solutions

Time, Space and Scaling
Intrinsic Complexity

Polynomial Time

The Master Method for solving certain recurrences

The Master theorem

Consider the recurrence

T (n) = a · T (
n
b

) + f (n).

If f (n) ∈ O(nc), where c < logb a, then T (n) = Θ(nlogb a).

Basics Computational Complexity



Review of concepts
Problems and Solutions

Time, Space and Scaling
Intrinsic Complexity

Polynomial Time

The Master Method for solving certain recurrences

The Master theorem

Consider the recurrence
T (n) = a · T (

n
b

) + f (n).

If f (n) ∈ O(nc), where c < logb a, then T (n) = Θ(nlogb a).

Basics Computational Complexity



Review of concepts
Problems and Solutions

Time, Space and Scaling
Intrinsic Complexity

Polynomial Time

The Master Method for solving certain recurrences

The Master theorem

Consider the recurrence
T (n) = a · T (

n
b

) + f (n).

If f (n) ∈ O(nc), where c < logb a,

then T (n) = Θ(nlogb a).

Basics Computational Complexity



Review of concepts
Problems and Solutions

Time, Space and Scaling
Intrinsic Complexity

Polynomial Time

The Master Method for solving certain recurrences

The Master theorem

Consider the recurrence
T (n) = a · T (

n
b

) + f (n).

If f (n) ∈ O(nc), where c < logb a, then T (n) = Θ(nlogb a).

Basics Computational Complexity



Review of concepts
Problems and Solutions

Time, Space and Scaling
Intrinsic Complexity

Polynomial Time

The Grade school approach

Grade school algorithm

1 Multiply a with each digit of b performing appropriate shifting.
2 Add up the individual products.

Note

The above algorithm requires Θ(n2) multiplications and Θ(n2) additions.

Basics Computational Complexity



Review of concepts
Problems and Solutions

Time, Space and Scaling
Intrinsic Complexity

Polynomial Time

The Grade school approach

Grade school algorithm

1 Multiply a with each digit of b performing appropriate shifting.
2 Add up the individual products.

Note

The above algorithm requires Θ(n2) multiplications and Θ(n2) additions.

Basics Computational Complexity



Review of concepts
Problems and Solutions

Time, Space and Scaling
Intrinsic Complexity

Polynomial Time

The Grade school approach

Grade school algorithm

1 Multiply a with each digit of b performing appropriate shifting.

2 Add up the individual products.

Note

The above algorithm requires Θ(n2) multiplications and Θ(n2) additions.

Basics Computational Complexity



Review of concepts
Problems and Solutions

Time, Space and Scaling
Intrinsic Complexity

Polynomial Time

The Grade school approach

Grade school algorithm

1 Multiply a with each digit of b performing appropriate shifting.
2 Add up the individual products.

Note

The above algorithm requires Θ(n2) multiplications and Θ(n2) additions.

Basics Computational Complexity



Review of concepts
Problems and Solutions

Time, Space and Scaling
Intrinsic Complexity

Polynomial Time

The Grade school approach

Grade school algorithm

1 Multiply a with each digit of b performing appropriate shifting.
2 Add up the individual products.

Note

The above algorithm requires Θ(n2) multiplications and Θ(n2) additions.

Basics Computational Complexity



Review of concepts
Problems and Solutions

Time, Space and Scaling
Intrinsic Complexity

Polynomial Time

The Grade school approach

Grade school algorithm

1 Multiply a with each digit of b performing appropriate shifting.
2 Add up the individual products.

Note

The above algorithm requires

Θ(n2) multiplications and Θ(n2) additions.

Basics Computational Complexity



Review of concepts
Problems and Solutions

Time, Space and Scaling
Intrinsic Complexity

Polynomial Time

The Grade school approach

Grade school algorithm

1 Multiply a with each digit of b performing appropriate shifting.
2 Add up the individual products.

Note

The above algorithm requires Θ(n2) multiplications and

Θ(n2) additions.

Basics Computational Complexity



Review of concepts
Problems and Solutions

Time, Space and Scaling
Intrinsic Complexity

Polynomial Time

The Grade school approach

Grade school algorithm

1 Multiply a with each digit of b performing appropriate shifting.
2 Add up the individual products.

Note

The above algorithm requires Θ(n2) multiplications and Θ(n2) additions.

Basics Computational Complexity



Review of concepts
Problems and Solutions

Time, Space and Scaling
Intrinsic Complexity

Polynomial Time

An improved algorithm

A slightly more sophisticated approach

1 Let a = 〈x , y〉 and b = 〈u, v〉, where x and u are the first n
2 digits of the numbers

a and b respectively.

2 It follows that a = 10
n
2 · x + y and b = 10

n
2 · u + v .

3 Hence, a · b = 10n · x · u + 10
n
2 · (x · v + y · u) + y · v .

4 Recall that in the decimal algebra, multiplying by powers of 10 is tantamount to left
shifting.

5 Thus, if T (n) is the time taken to multiply two integers, then

T (n) = 4 · T (
n
2

) + O(n)

6 Solving the above recurrence gives T (n) = Θ(n2).

Basics Computational Complexity



Review of concepts
Problems and Solutions

Time, Space and Scaling
Intrinsic Complexity

Polynomial Time

An improved algorithm

A slightly more sophisticated approach

1 Let a = 〈x , y〉 and b = 〈u, v〉, where x and u are the first n
2 digits of the numbers

a and b respectively.

2 It follows that a = 10
n
2 · x + y and b = 10

n
2 · u + v .

3 Hence, a · b = 10n · x · u + 10
n
2 · (x · v + y · u) + y · v .

4 Recall that in the decimal algebra, multiplying by powers of 10 is tantamount to left
shifting.

5 Thus, if T (n) is the time taken to multiply two integers, then

T (n) = 4 · T (
n
2

) + O(n)

6 Solving the above recurrence gives T (n) = Θ(n2).

Basics Computational Complexity



Review of concepts
Problems and Solutions

Time, Space and Scaling
Intrinsic Complexity

Polynomial Time

An improved algorithm

A slightly more sophisticated approach

1 Let a = 〈x , y〉 and b = 〈u, v〉,

where x and u are the first n
2 digits of the numbers

a and b respectively.

2 It follows that a = 10
n
2 · x + y and b = 10

n
2 · u + v .

3 Hence, a · b = 10n · x · u + 10
n
2 · (x · v + y · u) + y · v .

4 Recall that in the decimal algebra, multiplying by powers of 10 is tantamount to left
shifting.

5 Thus, if T (n) is the time taken to multiply two integers, then

T (n) = 4 · T (
n
2

) + O(n)

6 Solving the above recurrence gives T (n) = Θ(n2).

Basics Computational Complexity



Review of concepts
Problems and Solutions

Time, Space and Scaling
Intrinsic Complexity

Polynomial Time

An improved algorithm

A slightly more sophisticated approach

1 Let a = 〈x , y〉 and b = 〈u, v〉, where x and u are the first n
2 digits of the numbers

a and b respectively.

2 It follows that a = 10
n
2 · x + y and b = 10

n
2 · u + v .

3 Hence, a · b = 10n · x · u + 10
n
2 · (x · v + y · u) + y · v .

4 Recall that in the decimal algebra, multiplying by powers of 10 is tantamount to left
shifting.

5 Thus, if T (n) is the time taken to multiply two integers, then

T (n) = 4 · T (
n
2

) + O(n)

6 Solving the above recurrence gives T (n) = Θ(n2).

Basics Computational Complexity



Review of concepts
Problems and Solutions

Time, Space and Scaling
Intrinsic Complexity

Polynomial Time

An improved algorithm

A slightly more sophisticated approach

1 Let a = 〈x , y〉 and b = 〈u, v〉, where x and u are the first n
2 digits of the numbers

a and b respectively.

2 It follows that a = 10
n
2 · x + y and b = 10

n
2 · u + v .

3 Hence, a · b = 10n · x · u + 10
n
2 · (x · v + y · u) + y · v .

4 Recall that in the decimal algebra, multiplying by powers of 10 is tantamount to left
shifting.

5 Thus, if T (n) is the time taken to multiply two integers, then

T (n) = 4 · T (
n
2

) + O(n)

6 Solving the above recurrence gives T (n) = Θ(n2).

Basics Computational Complexity



Review of concepts
Problems and Solutions

Time, Space and Scaling
Intrinsic Complexity

Polynomial Time

An improved algorithm

A slightly more sophisticated approach

1 Let a = 〈x , y〉 and b = 〈u, v〉, where x and u are the first n
2 digits of the numbers

a and b respectively.

2 It follows that a = 10
n
2 · x + y and b = 10

n
2 · u + v .

3 Hence, a · b =

10n · x · u + 10
n
2 · (x · v + y · u) + y · v .

4 Recall that in the decimal algebra, multiplying by powers of 10 is tantamount to left
shifting.

5 Thus, if T (n) is the time taken to multiply two integers, then

T (n) = 4 · T (
n
2

) + O(n)

6 Solving the above recurrence gives T (n) = Θ(n2).

Basics Computational Complexity



Review of concepts
Problems and Solutions

Time, Space and Scaling
Intrinsic Complexity

Polynomial Time

An improved algorithm

A slightly more sophisticated approach

1 Let a = 〈x , y〉 and b = 〈u, v〉, where x and u are the first n
2 digits of the numbers

a and b respectively.

2 It follows that a = 10
n
2 · x + y and b = 10

n
2 · u + v .

3 Hence, a · b = 10n · x · u

+ 10
n
2 · (x · v + y · u) + y · v .

4 Recall that in the decimal algebra, multiplying by powers of 10 is tantamount to left
shifting.

5 Thus, if T (n) is the time taken to multiply two integers, then

T (n) = 4 · T (
n
2

) + O(n)

6 Solving the above recurrence gives T (n) = Θ(n2).

Basics Computational Complexity



Review of concepts
Problems and Solutions

Time, Space and Scaling
Intrinsic Complexity

Polynomial Time

An improved algorithm

A slightly more sophisticated approach

1 Let a = 〈x , y〉 and b = 〈u, v〉, where x and u are the first n
2 digits of the numbers

a and b respectively.

2 It follows that a = 10
n
2 · x + y and b = 10

n
2 · u + v .

3 Hence, a · b = 10n · x · u + 10
n
2 · (x · v + y · u)

+ y · v .
4 Recall that in the decimal algebra, multiplying by powers of 10 is tantamount to left

shifting.
5 Thus, if T (n) is the time taken to multiply two integers, then

T (n) = 4 · T (
n
2

) + O(n)

6 Solving the above recurrence gives T (n) = Θ(n2).

Basics Computational Complexity



Review of concepts
Problems and Solutions

Time, Space and Scaling
Intrinsic Complexity

Polynomial Time

An improved algorithm

A slightly more sophisticated approach

1 Let a = 〈x , y〉 and b = 〈u, v〉, where x and u are the first n
2 digits of the numbers

a and b respectively.

2 It follows that a = 10
n
2 · x + y and b = 10

n
2 · u + v .

3 Hence, a · b = 10n · x · u + 10
n
2 · (x · v + y · u) + y · v .

4 Recall that in the decimal algebra, multiplying by powers of 10 is tantamount to left
shifting.

5 Thus, if T (n) is the time taken to multiply two integers, then

T (n) = 4 · T (
n
2

) + O(n)

6 Solving the above recurrence gives T (n) = Θ(n2).

Basics Computational Complexity



Review of concepts
Problems and Solutions

Time, Space and Scaling
Intrinsic Complexity

Polynomial Time

An improved algorithm

A slightly more sophisticated approach

1 Let a = 〈x , y〉 and b = 〈u, v〉, where x and u are the first n
2 digits of the numbers

a and b respectively.

2 It follows that a = 10
n
2 · x + y and b = 10

n
2 · u + v .

3 Hence, a · b = 10n · x · u + 10
n
2 · (x · v + y · u) + y · v .

4 Recall that in the decimal algebra, multiplying by powers of 10 is tantamount to left
shifting.

5 Thus, if T (n) is the time taken to multiply two integers, then

T (n) = 4 · T (
n
2

) + O(n)

6 Solving the above recurrence gives T (n) = Θ(n2).

Basics Computational Complexity



Review of concepts
Problems and Solutions

Time, Space and Scaling
Intrinsic Complexity

Polynomial Time

An improved algorithm

A slightly more sophisticated approach

1 Let a = 〈x , y〉 and b = 〈u, v〉, where x and u are the first n
2 digits of the numbers

a and b respectively.

2 It follows that a = 10
n
2 · x + y and b = 10

n
2 · u + v .

3 Hence, a · b = 10n · x · u + 10
n
2 · (x · v + y · u) + y · v .

4 Recall that in the decimal algebra, multiplying by powers of 10 is tantamount to left
shifting.

5 Thus, if T (n) is the time taken to multiply two integers, then

T (n) = 4 · T (
n
2

) + O(n)

6 Solving the above recurrence gives T (n) = Θ(n2).

Basics Computational Complexity



Review of concepts
Problems and Solutions

Time, Space and Scaling
Intrinsic Complexity

Polynomial Time

An improved algorithm

A slightly more sophisticated approach

1 Let a = 〈x , y〉 and b = 〈u, v〉, where x and u are the first n
2 digits of the numbers

a and b respectively.

2 It follows that a = 10
n
2 · x + y and b = 10

n
2 · u + v .

3 Hence, a · b = 10n · x · u + 10
n
2 · (x · v + y · u) + y · v .

4 Recall that in the decimal algebra, multiplying by powers of 10 is tantamount to left
shifting.

5 Thus, if T (n) is the time taken to multiply two integers, then

T (n) = 4 · T (
n
2

) + O(n)

6 Solving the above recurrence gives T (n) = Θ(n2).

Basics Computational Complexity



Review of concepts
Problems and Solutions

Time, Space and Scaling
Intrinsic Complexity

Polynomial Time

An improved algorithm

A slightly more sophisticated approach

1 Let a = 〈x , y〉 and b = 〈u, v〉, where x and u are the first n
2 digits of the numbers

a and b respectively.

2 It follows that a = 10
n
2 · x + y and b = 10

n
2 · u + v .

3 Hence, a · b = 10n · x · u + 10
n
2 · (x · v + y · u) + y · v .

4 Recall that in the decimal algebra, multiplying by powers of 10 is tantamount to left
shifting.

5 Thus, if T (n) is the time taken to multiply two integers, then

T (n) = 4 · T (
n
2

) + O(n)

6 Solving the above recurrence gives T (n) =

Θ(n2).

Basics Computational Complexity



Review of concepts
Problems and Solutions

Time, Space and Scaling
Intrinsic Complexity

Polynomial Time

An improved algorithm

A slightly more sophisticated approach

1 Let a = 〈x , y〉 and b = 〈u, v〉, where x and u are the first n
2 digits of the numbers

a and b respectively.

2 It follows that a = 10
n
2 · x + y and b = 10

n
2 · u + v .

3 Hence, a · b = 10n · x · u + 10
n
2 · (x · v + y · u) + y · v .

4 Recall that in the decimal algebra, multiplying by powers of 10 is tantamount to left
shifting.

5 Thus, if T (n) is the time taken to multiply two integers, then

T (n) = 4 · T (
n
2

) + O(n)

6 Solving the above recurrence gives T (n) = Θ(n2).

Basics Computational Complexity



Review of concepts
Problems and Solutions

Time, Space and Scaling
Intrinsic Complexity

Polynomial Time

An asymptotically superior algorithm

A neat observation

(x + y) · (u + v)− x · u − y · v = x · v + y · u

New algorithm

1 Compute x · u, y · v and (x + y) · (u + v).
2 Now compute (x · v + y · u), using the above observation.

3 Finally, compute a · b = 10n · x · u + 10
n
2 · (x · v + y · u) + y · v .

Analysis

T (n) = 3 · T (
n
2

) + O(n)

It follows that T (n) = O(nlog2 3).

Basics Computational Complexity



Review of concepts
Problems and Solutions

Time, Space and Scaling
Intrinsic Complexity

Polynomial Time

An asymptotically superior algorithm

A neat observation

(x + y) · (u + v)− x · u − y · v =

x · v + y · u

New algorithm

1 Compute x · u, y · v and (x + y) · (u + v).
2 Now compute (x · v + y · u), using the above observation.

3 Finally, compute a · b = 10n · x · u + 10
n
2 · (x · v + y · u) + y · v .

Analysis

T (n) = 3 · T (
n
2

) + O(n)

It follows that T (n) = O(nlog2 3).

Basics Computational Complexity



Review of concepts
Problems and Solutions

Time, Space and Scaling
Intrinsic Complexity

Polynomial Time

An asymptotically superior algorithm

A neat observation

(x + y) · (u + v)− x · u − y · v = x · v + y · u

New algorithm

1 Compute x · u, y · v and (x + y) · (u + v).
2 Now compute (x · v + y · u), using the above observation.

3 Finally, compute a · b = 10n · x · u + 10
n
2 · (x · v + y · u) + y · v .

Analysis

T (n) = 3 · T (
n
2

) + O(n)

It follows that T (n) = O(nlog2 3).

Basics Computational Complexity



Review of concepts
Problems and Solutions

Time, Space and Scaling
Intrinsic Complexity

Polynomial Time

An asymptotically superior algorithm

A neat observation

(x + y) · (u + v)− x · u − y · v = x · v + y · u

New algorithm

1 Compute x · u, y · v and (x + y) · (u + v).
2 Now compute (x · v + y · u), using the above observation.

3 Finally, compute a · b = 10n · x · u + 10
n
2 · (x · v + y · u) + y · v .

Analysis

T (n) = 3 · T (
n
2

) + O(n)

It follows that T (n) = O(nlog2 3).

Basics Computational Complexity



Review of concepts
Problems and Solutions

Time, Space and Scaling
Intrinsic Complexity

Polynomial Time

An asymptotically superior algorithm

A neat observation

(x + y) · (u + v)− x · u − y · v = x · v + y · u

New algorithm

1 Compute x · u, y · v and (x + y) · (u + v).

2 Now compute (x · v + y · u), using the above observation.

3 Finally, compute a · b = 10n · x · u + 10
n
2 · (x · v + y · u) + y · v .

Analysis

T (n) = 3 · T (
n
2

) + O(n)

It follows that T (n) = O(nlog2 3).

Basics Computational Complexity



Review of concepts
Problems and Solutions

Time, Space and Scaling
Intrinsic Complexity

Polynomial Time

An asymptotically superior algorithm

A neat observation

(x + y) · (u + v)− x · u − y · v = x · v + y · u

New algorithm

1 Compute x · u, y · v and (x + y) · (u + v).
2 Now compute (x · v + y · u),

using the above observation.

3 Finally, compute a · b = 10n · x · u + 10
n
2 · (x · v + y · u) + y · v .

Analysis

T (n) = 3 · T (
n
2

) + O(n)

It follows that T (n) = O(nlog2 3).

Basics Computational Complexity



Review of concepts
Problems and Solutions

Time, Space and Scaling
Intrinsic Complexity

Polynomial Time

An asymptotically superior algorithm

A neat observation

(x + y) · (u + v)− x · u − y · v = x · v + y · u

New algorithm

1 Compute x · u, y · v and (x + y) · (u + v).
2 Now compute (x · v + y · u), using the above observation.

3 Finally, compute a · b = 10n · x · u + 10
n
2 · (x · v + y · u) + y · v .

Analysis

T (n) = 3 · T (
n
2

) + O(n)

It follows that T (n) = O(nlog2 3).

Basics Computational Complexity



Review of concepts
Problems and Solutions

Time, Space and Scaling
Intrinsic Complexity

Polynomial Time

An asymptotically superior algorithm

A neat observation

(x + y) · (u + v)− x · u − y · v = x · v + y · u

New algorithm

1 Compute x · u, y · v and (x + y) · (u + v).
2 Now compute (x · v + y · u), using the above observation.

3 Finally, compute a · b =

10n · x · u + 10
n
2 · (x · v + y · u) + y · v .

Analysis

T (n) = 3 · T (
n
2

) + O(n)

It follows that T (n) = O(nlog2 3).

Basics Computational Complexity



Review of concepts
Problems and Solutions

Time, Space and Scaling
Intrinsic Complexity

Polynomial Time

An asymptotically superior algorithm

A neat observation

(x + y) · (u + v)− x · u − y · v = x · v + y · u

New algorithm

1 Compute x · u, y · v and (x + y) · (u + v).
2 Now compute (x · v + y · u), using the above observation.

3 Finally, compute a · b = 10n · x · u

+ 10
n
2 · (x · v + y · u) + y · v .

Analysis

T (n) = 3 · T (
n
2

) + O(n)

It follows that T (n) = O(nlog2 3).

Basics Computational Complexity



Review of concepts
Problems and Solutions

Time, Space and Scaling
Intrinsic Complexity

Polynomial Time

An asymptotically superior algorithm

A neat observation

(x + y) · (u + v)− x · u − y · v = x · v + y · u

New algorithm

1 Compute x · u, y · v and (x + y) · (u + v).
2 Now compute (x · v + y · u), using the above observation.

3 Finally, compute a · b = 10n · x · u + 10
n
2 · (x · v + y · u)

+ y · v .

Analysis

T (n) = 3 · T (
n
2

) + O(n)

It follows that T (n) = O(nlog2 3).

Basics Computational Complexity



Review of concepts
Problems and Solutions

Time, Space and Scaling
Intrinsic Complexity

Polynomial Time

An asymptotically superior algorithm

A neat observation

(x + y) · (u + v)− x · u − y · v = x · v + y · u

New algorithm

1 Compute x · u, y · v and (x + y) · (u + v).
2 Now compute (x · v + y · u), using the above observation.

3 Finally, compute a · b = 10n · x · u + 10
n
2 · (x · v + y · u) + y · v .

Analysis

T (n) = 3 · T (
n
2

) + O(n)

It follows that T (n) = O(nlog2 3).

Basics Computational Complexity



Review of concepts
Problems and Solutions

Time, Space and Scaling
Intrinsic Complexity

Polynomial Time

An asymptotically superior algorithm

A neat observation

(x + y) · (u + v)− x · u − y · v = x · v + y · u

New algorithm

1 Compute x · u, y · v and (x + y) · (u + v).
2 Now compute (x · v + y · u), using the above observation.

3 Finally, compute a · b = 10n · x · u + 10
n
2 · (x · v + y · u) + y · v .

Analysis

T (n) =

3 · T (
n
2

) + O(n)

It follows that T (n) = O(nlog2 3).

Basics Computational Complexity



Review of concepts
Problems and Solutions

Time, Space and Scaling
Intrinsic Complexity

Polynomial Time

An asymptotically superior algorithm

A neat observation

(x + y) · (u + v)− x · u − y · v = x · v + y · u

New algorithm

1 Compute x · u, y · v and (x + y) · (u + v).
2 Now compute (x · v + y · u), using the above observation.

3 Finally, compute a · b = 10n · x · u + 10
n
2 · (x · v + y · u) + y · v .

Analysis

T (n) = 3 · T (
n
2

) + O(n)

It follows that T (n) =

O(nlog2 3).

Basics Computational Complexity



Review of concepts
Problems and Solutions

Time, Space and Scaling
Intrinsic Complexity

Polynomial Time

An asymptotically superior algorithm

A neat observation

(x + y) · (u + v)− x · u − y · v = x · v + y · u

New algorithm

1 Compute x · u, y · v and (x + y) · (u + v).
2 Now compute (x · v + y · u), using the above observation.

3 Finally, compute a · b = 10n · x · u + 10
n
2 · (x · v + y · u) + y · v .

Analysis

T (n) = 3 · T (
n
2

) + O(n)

It follows that T (n) = O(nlog2 3).

Basics Computational Complexity



Review of concepts
Problems and Solutions

Time, Space and Scaling
Intrinsic Complexity

Polynomial Time

Polynomial versus Exponential

When is computation infeasible?

1 Difference between Θ(n) and Θ(2n) when n doubles.
2 n! when n = 20 is larger than the date of the universe.
3 The Vishnu Sharma story.

Basics Computational Complexity



Review of concepts
Problems and Solutions

Time, Space and Scaling
Intrinsic Complexity

Polynomial Time

Polynomial versus Exponential

When is computation infeasible?

1 Difference between Θ(n) and Θ(2n) when n doubles.
2 n! when n = 20 is larger than the date of the universe.
3 The Vishnu Sharma story.

Basics Computational Complexity



Review of concepts
Problems and Solutions

Time, Space and Scaling
Intrinsic Complexity

Polynomial Time

Polynomial versus Exponential

When is computation infeasible?

1 Difference between Θ(n) and Θ(2n) when n doubles.

2 n! when n = 20 is larger than the date of the universe.
3 The Vishnu Sharma story.

Basics Computational Complexity



Review of concepts
Problems and Solutions

Time, Space and Scaling
Intrinsic Complexity

Polynomial Time

Polynomial versus Exponential

When is computation infeasible?

1 Difference between Θ(n) and Θ(2n) when n doubles.
2 n! when n = 20 is larger than the date of the universe.

3 The Vishnu Sharma story.

Basics Computational Complexity



Review of concepts
Problems and Solutions

Time, Space and Scaling
Intrinsic Complexity

Polynomial Time

Polynomial versus Exponential

When is computation infeasible?

1 Difference between Θ(n) and Θ(2n) when n doubles.
2 n! when n = 20 is larger than the date of the universe.
3 The Vishnu Sharma story.

Basics Computational Complexity



Review of concepts
Problems and Solutions

Time, Space and Scaling
Intrinsic Complexity

Polynomial Time

Analyzing Euler’s Algorithm

Details

1 How fast is Euler’s algorithm? Details!
2 How many times does the main for loop run?
3 Measuring running time. What is an elementary step?
4 How much time to measure the degree of a vertex? Representation details.
5 Tape storage versus RAM storage.
6 Size of instance.

Basics Computational Complexity



Review of concepts
Problems and Solutions

Time, Space and Scaling
Intrinsic Complexity

Polynomial Time

Analyzing Euler’s Algorithm

Details

1 How fast is Euler’s algorithm? Details!
2 How many times does the main for loop run?
3 Measuring running time. What is an elementary step?
4 How much time to measure the degree of a vertex? Representation details.
5 Tape storage versus RAM storage.
6 Size of instance.

Basics Computational Complexity



Review of concepts
Problems and Solutions

Time, Space and Scaling
Intrinsic Complexity

Polynomial Time

Analyzing Euler’s Algorithm

Details

1 How fast is Euler’s algorithm?

Details!
2 How many times does the main for loop run?
3 Measuring running time. What is an elementary step?
4 How much time to measure the degree of a vertex? Representation details.
5 Tape storage versus RAM storage.
6 Size of instance.

Basics Computational Complexity



Review of concepts
Problems and Solutions

Time, Space and Scaling
Intrinsic Complexity

Polynomial Time

Analyzing Euler’s Algorithm

Details

1 How fast is Euler’s algorithm? Details!

2 How many times does the main for loop run?
3 Measuring running time. What is an elementary step?
4 How much time to measure the degree of a vertex? Representation details.
5 Tape storage versus RAM storage.
6 Size of instance.

Basics Computational Complexity



Review of concepts
Problems and Solutions

Time, Space and Scaling
Intrinsic Complexity

Polynomial Time

Analyzing Euler’s Algorithm

Details

1 How fast is Euler’s algorithm? Details!
2 How many times does the main for loop run?

3 Measuring running time. What is an elementary step?
4 How much time to measure the degree of a vertex? Representation details.
5 Tape storage versus RAM storage.
6 Size of instance.

Basics Computational Complexity



Review of concepts
Problems and Solutions

Time, Space and Scaling
Intrinsic Complexity

Polynomial Time

Analyzing Euler’s Algorithm

Details

1 How fast is Euler’s algorithm? Details!
2 How many times does the main for loop run?
3 Measuring running time.

What is an elementary step?
4 How much time to measure the degree of a vertex? Representation details.
5 Tape storage versus RAM storage.
6 Size of instance.

Basics Computational Complexity



Review of concepts
Problems and Solutions

Time, Space and Scaling
Intrinsic Complexity

Polynomial Time

Analyzing Euler’s Algorithm

Details

1 How fast is Euler’s algorithm? Details!
2 How many times does the main for loop run?
3 Measuring running time. What is an elementary step?

4 How much time to measure the degree of a vertex? Representation details.
5 Tape storage versus RAM storage.
6 Size of instance.

Basics Computational Complexity



Review of concepts
Problems and Solutions

Time, Space and Scaling
Intrinsic Complexity

Polynomial Time

Analyzing Euler’s Algorithm

Details

1 How fast is Euler’s algorithm? Details!
2 How many times does the main for loop run?
3 Measuring running time. What is an elementary step?
4 How much time to measure the degree of a vertex?

Representation details.
5 Tape storage versus RAM storage.
6 Size of instance.

Basics Computational Complexity



Review of concepts
Problems and Solutions

Time, Space and Scaling
Intrinsic Complexity

Polynomial Time

Analyzing Euler’s Algorithm

Details

1 How fast is Euler’s algorithm? Details!
2 How many times does the main for loop run?
3 Measuring running time. What is an elementary step?
4 How much time to measure the degree of a vertex? Representation details.

5 Tape storage versus RAM storage.
6 Size of instance.

Basics Computational Complexity



Review of concepts
Problems and Solutions

Time, Space and Scaling
Intrinsic Complexity

Polynomial Time

Analyzing Euler’s Algorithm

Details

1 How fast is Euler’s algorithm? Details!
2 How many times does the main for loop run?
3 Measuring running time. What is an elementary step?
4 How much time to measure the degree of a vertex? Representation details.
5 Tape storage versus RAM storage.

6 Size of instance.

Basics Computational Complexity



Review of concepts
Problems and Solutions

Time, Space and Scaling
Intrinsic Complexity

Polynomial Time

Analyzing Euler’s Algorithm

Details

1 How fast is Euler’s algorithm? Details!
2 How many times does the main for loop run?
3 Measuring running time. What is an elementary step?
4 How much time to measure the degree of a vertex? Representation details.
5 Tape storage versus RAM storage.
6 Size of instance.

Basics Computational Complexity



Review of concepts
Problems and Solutions

Time, Space and Scaling
Intrinsic Complexity

Polynomial Time

The class P

Definition

P is the class of problems for which an algorithm exists that solves problems of size n,
in time O(nc) for some constant c.

Note

1 P is a complexity class.
2 A problem is not in P, if . . ...
3 We include both decision and search problems.
4 In general, TIME(f(n)) is the class of problems for which an algorithm exists that

solves problems of size n, in time TIME(f(n)).
5 P = ∪c>oTIME(nc).
6 Is TIME(nlog n) ⊆ P?
7 Defining TIME(f (n)).

8 The class EXP is defined as TIME(2nc
).

Basics Computational Complexity



Review of concepts
Problems and Solutions

Time, Space and Scaling
Intrinsic Complexity

Polynomial Time

The class P

Definition

P is the class of problems for which an algorithm exists that solves problems of size n,
in time O(nc) for some constant c.

Note

1 P is a complexity class.
2 A problem is not in P, if . . ...
3 We include both decision and search problems.
4 In general, TIME(f(n)) is the class of problems for which an algorithm exists that

solves problems of size n, in time TIME(f(n)).
5 P = ∪c>oTIME(nc).
6 Is TIME(nlog n) ⊆ P?
7 Defining TIME(f (n)).

8 The class EXP is defined as TIME(2nc
).

Basics Computational Complexity



Review of concepts
Problems and Solutions

Time, Space and Scaling
Intrinsic Complexity

Polynomial Time

The class P

Definition

P is the class of problems for which an algorithm exists that solves problems of size n,
in time O(nc) for some constant c.

Note

1 P is a complexity class.
2 A problem is not in P, if . . ...
3 We include both decision and search problems.
4 In general, TIME(f(n)) is the class of problems for which an algorithm exists that

solves problems of size n, in time TIME(f(n)).
5 P = ∪c>oTIME(nc).
6 Is TIME(nlog n) ⊆ P?
7 Defining TIME(f (n)).

8 The class EXP is defined as TIME(2nc
).

Basics Computational Complexity



Review of concepts
Problems and Solutions

Time, Space and Scaling
Intrinsic Complexity

Polynomial Time

The class P

Definition

P is the class of problems for which an algorithm exists that solves problems of size n,
in time O(nc) for some constant c.

Note

1 P is a complexity class.
2 A problem is not in P, if . . ...
3 We include both decision and search problems.
4 In general, TIME(f(n)) is the class of problems for which an algorithm exists that

solves problems of size n, in time TIME(f(n)).
5 P = ∪c>oTIME(nc).
6 Is TIME(nlog n) ⊆ P?
7 Defining TIME(f (n)).

8 The class EXP is defined as TIME(2nc
).

Basics Computational Complexity



Review of concepts
Problems and Solutions

Time, Space and Scaling
Intrinsic Complexity

Polynomial Time

The class P

Definition

P is the class of problems for which an algorithm exists that solves problems of size n,
in time O(nc) for some constant c.

Note

1 P is a complexity class.

2 A problem is not in P, if . . ...
3 We include both decision and search problems.
4 In general, TIME(f(n)) is the class of problems for which an algorithm exists that

solves problems of size n, in time TIME(f(n)).
5 P = ∪c>oTIME(nc).
6 Is TIME(nlog n) ⊆ P?
7 Defining TIME(f (n)).

8 The class EXP is defined as TIME(2nc
).

Basics Computational Complexity



Review of concepts
Problems and Solutions

Time, Space and Scaling
Intrinsic Complexity

Polynomial Time

The class P

Definition

P is the class of problems for which an algorithm exists that solves problems of size n,
in time O(nc) for some constant c.

Note

1 P is a complexity class.
2 A problem is not in P, if . . ...

3 We include both decision and search problems.
4 In general, TIME(f(n)) is the class of problems for which an algorithm exists that

solves problems of size n, in time TIME(f(n)).
5 P = ∪c>oTIME(nc).
6 Is TIME(nlog n) ⊆ P?
7 Defining TIME(f (n)).

8 The class EXP is defined as TIME(2nc
).

Basics Computational Complexity



Review of concepts
Problems and Solutions

Time, Space and Scaling
Intrinsic Complexity

Polynomial Time

The class P

Definition

P is the class of problems for which an algorithm exists that solves problems of size n,
in time O(nc) for some constant c.

Note

1 P is a complexity class.
2 A problem is not in P, if . . ...
3 We include both decision and search problems.

4 In general, TIME(f(n)) is the class of problems for which an algorithm exists that
solves problems of size n, in time TIME(f(n)).

5 P = ∪c>oTIME(nc).
6 Is TIME(nlog n) ⊆ P?
7 Defining TIME(f (n)).

8 The class EXP is defined as TIME(2nc
).

Basics Computational Complexity



Review of concepts
Problems and Solutions

Time, Space and Scaling
Intrinsic Complexity

Polynomial Time

The class P

Definition

P is the class of problems for which an algorithm exists that solves problems of size n,
in time O(nc) for some constant c.

Note

1 P is a complexity class.
2 A problem is not in P, if . . ...
3 We include both decision and search problems.
4 In general, TIME(f(n)) is the class of problems for which an algorithm exists that

solves problems of size n, in time TIME(f(n)).

5 P = ∪c>oTIME(nc).
6 Is TIME(nlog n) ⊆ P?
7 Defining TIME(f (n)).

8 The class EXP is defined as TIME(2nc
).

Basics Computational Complexity



Review of concepts
Problems and Solutions

Time, Space and Scaling
Intrinsic Complexity

Polynomial Time

The class P

Definition

P is the class of problems for which an algorithm exists that solves problems of size n,
in time O(nc) for some constant c.

Note

1 P is a complexity class.
2 A problem is not in P, if . . ...
3 We include both decision and search problems.
4 In general, TIME(f(n)) is the class of problems for which an algorithm exists that

solves problems of size n, in time TIME(f(n)).
5 P = ∪c>oTIME(nc).

6 Is TIME(nlog n) ⊆ P?
7 Defining TIME(f (n)).

8 The class EXP is defined as TIME(2nc
).

Basics Computational Complexity



Review of concepts
Problems and Solutions

Time, Space and Scaling
Intrinsic Complexity

Polynomial Time

The class P

Definition

P is the class of problems for which an algorithm exists that solves problems of size n,
in time O(nc) for some constant c.

Note

1 P is a complexity class.
2 A problem is not in P, if . . ...
3 We include both decision and search problems.
4 In general, TIME(f(n)) is the class of problems for which an algorithm exists that

solves problems of size n, in time TIME(f(n)).
5 P = ∪c>oTIME(nc).
6 Is TIME(nlog n) ⊆ P?

7 Defining TIME(f (n)).

8 The class EXP is defined as TIME(2nc
).

Basics Computational Complexity



Review of concepts
Problems and Solutions

Time, Space and Scaling
Intrinsic Complexity

Polynomial Time

The class P

Definition

P is the class of problems for which an algorithm exists that solves problems of size n,
in time O(nc) for some constant c.

Note

1 P is a complexity class.
2 A problem is not in P, if . . ...
3 We include both decision and search problems.
4 In general, TIME(f(n)) is the class of problems for which an algorithm exists that

solves problems of size n, in time TIME(f(n)).
5 P = ∪c>oTIME(nc).
6 Is TIME(nlog n) ⊆ P?
7 Defining TIME(f (n)).

8 The class EXP is defined as TIME(2nc
).

Basics Computational Complexity



Review of concepts
Problems and Solutions

Time, Space and Scaling
Intrinsic Complexity

Polynomial Time

The class P

Definition

P is the class of problems for which an algorithm exists that solves problems of size n,
in time O(nc) for some constant c.

Note

1 P is a complexity class.
2 A problem is not in P, if . . ...
3 We include both decision and search problems.
4 In general, TIME(f(n)) is the class of problems for which an algorithm exists that

solves problems of size n, in time TIME(f(n)).
5 P = ∪c>oTIME(nc).
6 Is TIME(nlog n) ⊆ P?
7 Defining TIME(f (n)).

8 The class EXP is defined as TIME(2nc
).

Basics Computational Complexity



Review of concepts
Problems and Solutions

Time, Space and Scaling
Intrinsic Complexity

Polynomial Time

Robustness of P

Why P is such a robust class

1 Elementary steps can change within reason.
2 Architecture can change within reason.
3 Input formats can change within reason.Binary/unary encoding. Buffing up the

input.
4 Implementation details can change within reason.

Note

Being in P is a fundamental property of a problem and not dependent upon how
somebody goes about solving it.

Basics Computational Complexity



Review of concepts
Problems and Solutions

Time, Space and Scaling
Intrinsic Complexity

Polynomial Time

Robustness of P

Why P is such a robust class

1 Elementary steps can change within reason.
2 Architecture can change within reason.
3 Input formats can change within reason.Binary/unary encoding. Buffing up the

input.
4 Implementation details can change within reason.

Note

Being in P is a fundamental property of a problem and not dependent upon how
somebody goes about solving it.

Basics Computational Complexity



Review of concepts
Problems and Solutions

Time, Space and Scaling
Intrinsic Complexity

Polynomial Time

Robustness of P

Why P is such a robust class

1 Elementary steps can change within reason.

2 Architecture can change within reason.
3 Input formats can change within reason.Binary/unary encoding. Buffing up the

input.
4 Implementation details can change within reason.

Note

Being in P is a fundamental property of a problem and not dependent upon how
somebody goes about solving it.

Basics Computational Complexity



Review of concepts
Problems and Solutions

Time, Space and Scaling
Intrinsic Complexity

Polynomial Time

Robustness of P

Why P is such a robust class

1 Elementary steps can change within reason.
2 Architecture can change within reason.

3 Input formats can change within reason.Binary/unary encoding. Buffing up the
input.

4 Implementation details can change within reason.

Note

Being in P is a fundamental property of a problem and not dependent upon how
somebody goes about solving it.

Basics Computational Complexity



Review of concepts
Problems and Solutions

Time, Space and Scaling
Intrinsic Complexity

Polynomial Time

Robustness of P

Why P is such a robust class

1 Elementary steps can change within reason.
2 Architecture can change within reason.
3 Input formats can change within reason.Binary/unary encoding. Buffing up the

input.

4 Implementation details can change within reason.

Note

Being in P is a fundamental property of a problem and not dependent upon how
somebody goes about solving it.

Basics Computational Complexity



Review of concepts
Problems and Solutions

Time, Space and Scaling
Intrinsic Complexity

Polynomial Time

Robustness of P

Why P is such a robust class

1 Elementary steps can change within reason.
2 Architecture can change within reason.
3 Input formats can change within reason.Binary/unary encoding. Buffing up the

input.
4 Implementation details can change within reason.

Note

Being in P is a fundamental property of a problem and not dependent upon how
somebody goes about solving it.

Basics Computational Complexity



Review of concepts
Problems and Solutions

Time, Space and Scaling
Intrinsic Complexity

Polynomial Time

Robustness of P

Why P is such a robust class

1 Elementary steps can change within reason.
2 Architecture can change within reason.
3 Input formats can change within reason.Binary/unary encoding. Buffing up the

input.
4 Implementation details can change within reason.

Note

Being in P is a fundamental property of a problem and not dependent upon how
somebody goes about solving it.

Basics Computational Complexity



Review of concepts
Problems and Solutions

Time, Space and Scaling
Intrinsic Complexity

Polynomial Time

Tractability and mathematical insight

What is tractable

1 Definition of tractability.
2 Does tractability coincide with P?
3 How practical is O(n10)?
4 Sublinear algorithms.
5 Going from Pc to P gives fundamental insight into the nature of problems.

Basics Computational Complexity



Review of concepts
Problems and Solutions

Time, Space and Scaling
Intrinsic Complexity

Polynomial Time

Tractability and mathematical insight

What is tractable

1 Definition of tractability.
2 Does tractability coincide with P?
3 How practical is O(n10)?
4 Sublinear algorithms.
5 Going from Pc to P gives fundamental insight into the nature of problems.

Basics Computational Complexity



Review of concepts
Problems and Solutions

Time, Space and Scaling
Intrinsic Complexity

Polynomial Time

Tractability and mathematical insight

What is tractable

1 Definition of tractability.

2 Does tractability coincide with P?
3 How practical is O(n10)?
4 Sublinear algorithms.
5 Going from Pc to P gives fundamental insight into the nature of problems.

Basics Computational Complexity



Review of concepts
Problems and Solutions

Time, Space and Scaling
Intrinsic Complexity

Polynomial Time

Tractability and mathematical insight

What is tractable

1 Definition of tractability.
2 Does tractability coincide with P?

3 How practical is O(n10)?
4 Sublinear algorithms.
5 Going from Pc to P gives fundamental insight into the nature of problems.

Basics Computational Complexity



Review of concepts
Problems and Solutions

Time, Space and Scaling
Intrinsic Complexity

Polynomial Time

Tractability and mathematical insight

What is tractable

1 Definition of tractability.
2 Does tractability coincide with P?
3 How practical is O(n10)?

4 Sublinear algorithms.
5 Going from Pc to P gives fundamental insight into the nature of problems.

Basics Computational Complexity



Review of concepts
Problems and Solutions

Time, Space and Scaling
Intrinsic Complexity

Polynomial Time

Tractability and mathematical insight

What is tractable

1 Definition of tractability.
2 Does tractability coincide with P?
3 How practical is O(n10)?
4 Sublinear algorithms.

5 Going from Pc to P gives fundamental insight into the nature of problems.

Basics Computational Complexity



Review of concepts
Problems and Solutions

Time, Space and Scaling
Intrinsic Complexity

Polynomial Time

Tractability and mathematical insight

What is tractable

1 Definition of tractability.
2 Does tractability coincide with P?
3 How practical is O(n10)?
4 Sublinear algorithms.
5 Going from Pc to P gives fundamental insight into the nature of problems.

Basics Computational Complexity


	Review of concepts
	Problems and Solutions
	Time, Space and Scaling
	Intrinsic Complexity
	Polynomial Time

