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1 Instance of a problem e.g., Eulerian tour.
2 Finiteness of instance.
3 The Eulerian path problem.
4 The Hamilton circuit problem.
5 The Chess problem.
6 Infinite set of instances.
7 Decision and search problems.
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The GCD problem

Definition

Given two positive numbers (integers) a and b, find their greatest common divisor.

Note

1 This problem is referred to as gcd(a, b).
2 It is also well-defined when a and b are not positive, as long as both are not zero.
3 Euclid observed that gcd(a, b) = gcd(b, a mod b).
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The Euclidean Algorithm

Algorithm

1: FUNCTION GCD(a, b)
2: if (b = 0) then
3: return (a)
4: else
5: return (GCD(b, a mod b)).
6: end if
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2 Adversary.
3 Average-case.
4 Other ways.
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Main Parameters
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2 Notion of space.
3 Notion of input size.
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that solves it.
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The Master Method for solving certain recurrences

The Master theorem

Consider the recurrence
T (n) = a · T (

n
b

) + f (n).

If f (n) ∈ O(nc), where c < logb a, then T (n) = Θ(nlogb a).

Basics Computational Complexity



Review of concepts
Problems and Solutions

Time, Space and Scaling
Intrinsic Complexity

Polynomial Time

The Master Method for solving certain recurrences

The Master theorem

Consider the recurrence
T (n) = a · T (

n
b

) + f (n).

If f (n) ∈ O(nc), where c < logb a, then T (n) = Θ(nlogb a).

Basics Computational Complexity



Review of concepts
Problems and Solutions

Time, Space and Scaling
Intrinsic Complexity

Polynomial Time

The Master Method for solving certain recurrences

The Master theorem

Consider the recurrence

T (n) = a · T (
n
b

) + f (n).

If f (n) ∈ O(nc), where c < logb a, then T (n) = Θ(nlogb a).

Basics Computational Complexity



Review of concepts
Problems and Solutions

Time, Space and Scaling
Intrinsic Complexity

Polynomial Time

The Master Method for solving certain recurrences

The Master theorem

Consider the recurrence
T (n) = a · T (

n
b

) + f (n).

If f (n) ∈ O(nc), where c < logb a, then T (n) = Θ(nlogb a).

Basics Computational Complexity



Review of concepts
Problems and Solutions

Time, Space and Scaling
Intrinsic Complexity

Polynomial Time

The Master Method for solving certain recurrences

The Master theorem

Consider the recurrence
T (n) = a · T (

n
b

) + f (n).

If f (n) ∈ O(nc), where c < logb a,

then T (n) = Θ(nlogb a).

Basics Computational Complexity



Review of concepts
Problems and Solutions

Time, Space and Scaling
Intrinsic Complexity

Polynomial Time

The Master Method for solving certain recurrences

The Master theorem

Consider the recurrence
T (n) = a · T (

n
b

) + f (n).

If f (n) ∈ O(nc), where c < logb a, then T (n) = Θ(nlogb a).

Basics Computational Complexity



Review of concepts
Problems and Solutions

Time, Space and Scaling
Intrinsic Complexity

Polynomial Time

The Grade school approach

Grade school algorithm

1 Multiply a with each digit of b performing appropriate shifting.
2 Add up the individual products.

Note

The above algorithm requires Θ(n2) multiplications and Θ(n2) additions.
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An improved algorithm

A slightly more sophisticated approach

1 Let a = 〈x , y〉 and b = 〈u, v〉, where x and u are the first n
2 digits of the numbers

a and b respectively.

2 It follows that a = 10
n
2 · x + y and b = 10

n
2 · u + v .

3 Hence, a · b = 10n · x · u + 10
n
2 · (x · v + y · u) + y · v .

4 Recall that in the decimal algebra, multiplying by powers of 10 is tantamount to left
shifting.

5 Thus, if T (n) is the time taken to multiply two integers, then

T (n) = 4 · T (
n
2

) + O(n)

6 Solving the above recurrence gives T (n) = Θ(n2).
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An asymptotically superior algorithm

A neat observation

(x + y) · (u + v)− x · u − y · v = x · v + y · u

New algorithm

1 Compute x · u, y · v and (x + y) · (u + v).
2 Now compute (x · v + y · u), using the above observation.

3 Finally, compute a · b = 10n · x · u + 10
n
2 · (x · v + y · u) + y · v .

Analysis

T (n) = 3 · T (
n
2

) + O(n)

It follows that T (n) = O(nlog2 3).
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Polynomial versus Exponential

When is computation infeasible?

1 Difference between Θ(n) and Θ(2n) when n doubles.
2 n! when n = 20 is larger than the date of the universe.
3 The Vishnu Sharma story.
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Analyzing Euler’s Algorithm

Details

1 How fast is Euler’s algorithm? Details!
2 How many times does the main for loop run?
3 Measuring running time. What is an elementary step?
4 How much time to measure the degree of a vertex? Representation details.
5 Tape storage versus RAM storage.
6 Size of instance.
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The class P

Definition

P is the class of problems for which an algorithm exists that solves problems of size n,
in time O(nc) for some constant c.

Note

1 P is a complexity class.
2 A problem is not in P, if . . ...
3 We include both decision and search problems.
4 In general, TIME(f(n)) is the class of problems for which an algorithm exists that

solves problems of size n, in time TIME(f(n)).
5 P = ∪c>oTIME(nc).
6 Is TIME(nlog n) ⊆ P?
7 Defining TIME(f (n)).

8 The class EXP is defined as TIME(2nc
).
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4 In general, TIME(f(n)) is the class of problems for which an algorithm exists that

solves problems of size n, in time TIME(f(n)).
5 P = ∪c>oTIME(nc).
6 Is TIME(nlog n) ⊆ P?
7 Defining TIME(f (n)).

8 The class EXP is defined as TIME(2nc
).
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Robustness of P

Why P is such a robust class

1 Elementary steps can change within reason.
2 Architecture can change within reason.
3 Input formats can change within reason.Binary/unary encoding. Buffing up the

input.
4 Implementation details can change within reason.

Note

Being in P is a fundamental property of a problem and not dependent upon how
somebody goes about solving it.

Basics Computational Complexity



Review of concepts
Problems and Solutions

Time, Space and Scaling
Intrinsic Complexity

Polynomial Time

Robustness of P

Why P is such a robust class

1 Elementary steps can change within reason.
2 Architecture can change within reason.
3 Input formats can change within reason.Binary/unary encoding. Buffing up the

input.
4 Implementation details can change within reason.

Note

Being in P is a fundamental property of a problem and not dependent upon how
somebody goes about solving it.

Basics Computational Complexity



Review of concepts
Problems and Solutions

Time, Space and Scaling
Intrinsic Complexity

Polynomial Time

Robustness of P

Why P is such a robust class

1 Elementary steps can change within reason.

2 Architecture can change within reason.
3 Input formats can change within reason.Binary/unary encoding. Buffing up the

input.
4 Implementation details can change within reason.

Note

Being in P is a fundamental property of a problem and not dependent upon how
somebody goes about solving it.

Basics Computational Complexity



Review of concepts
Problems and Solutions

Time, Space and Scaling
Intrinsic Complexity

Polynomial Time

Robustness of P

Why P is such a robust class

1 Elementary steps can change within reason.
2 Architecture can change within reason.

3 Input formats can change within reason.Binary/unary encoding. Buffing up the
input.

4 Implementation details can change within reason.

Note

Being in P is a fundamental property of a problem and not dependent upon how
somebody goes about solving it.

Basics Computational Complexity



Review of concepts
Problems and Solutions

Time, Space and Scaling
Intrinsic Complexity

Polynomial Time

Robustness of P

Why P is such a robust class

1 Elementary steps can change within reason.
2 Architecture can change within reason.
3 Input formats can change within reason.Binary/unary encoding. Buffing up the

input.

4 Implementation details can change within reason.

Note

Being in P is a fundamental property of a problem and not dependent upon how
somebody goes about solving it.

Basics Computational Complexity



Review of concepts
Problems and Solutions

Time, Space and Scaling
Intrinsic Complexity

Polynomial Time

Robustness of P

Why P is such a robust class

1 Elementary steps can change within reason.
2 Architecture can change within reason.
3 Input formats can change within reason.Binary/unary encoding. Buffing up the

input.
4 Implementation details can change within reason.

Note

Being in P is a fundamental property of a problem and not dependent upon how
somebody goes about solving it.

Basics Computational Complexity



Review of concepts
Problems and Solutions

Time, Space and Scaling
Intrinsic Complexity

Polynomial Time

Robustness of P

Why P is such a robust class

1 Elementary steps can change within reason.
2 Architecture can change within reason.
3 Input formats can change within reason.Binary/unary encoding. Buffing up the

input.
4 Implementation details can change within reason.

Note

Being in P is a fundamental property of a problem and not dependent upon how
somebody goes about solving it.

Basics Computational Complexity



Review of concepts
Problems and Solutions

Time, Space and Scaling
Intrinsic Complexity

Polynomial Time

Tractability and mathematical insight

What is tractable

1 Definition of tractability.
2 Does tractability coincide with P?
3 How practical is O(n10)?
4 Sublinear algorithms.
5 Going from Pc to P gives fundamental insight into the nature of problems.
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