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Alphabets and strings

Basics

1 Alphabet - A finite, non-empty collection of symbols, e.g., Σ = {a, b, . . .}.
2 String - A finite sequence of symbols.
3 The empty string - ε.
4 Length of a string - Number of symbols in the string. |ε| = 0.
5 Powers of an alphabet - Σk is the set of all strings of length k , each of whose

symbols is in Σ.
6 Kleene Closure - The set of all strings over Σ is denoted by Σ∗. Clearly,

Σ∗ = ∪∞i=0Σi
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Languages

Definition

Any set L ⊆ Σ∗ is called a language over Σ.

Example

1 The set of binary strings with an equal number of 0s and 1s.
2 Σ∗.
3 The set of binary strings whose value is a prime.
4 ∅.
5 {ε}.
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Problems

Definition

Give a language L and a string w ∈ Σ∗, decide whether w ∈ L.

Example

Primality can be thought of as membership in the language Lp , where Lp is the set of all
binary strings whose value is a prime. Answering the question may not always be easy.

Note

Languages and problems are two sides of the same coin.
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Order of magnitude of functions

Motivation

Order theory enables us to compare functions, just as the theory of arithmetic enables
us to compare numbers.

In case of functions, we are interested in rate of growth, i.e., does function f grow at a
faster rate than function g?

Note

(i) Additive and multiplicative constants do not matter in rate of growth.

(ii) The starting point of measurement does not matter.

(iii) We only care about functions from <≥0 → <≥0.

Example

(i) Which function grows faster: 100x2 or 1
106 x3?

(ii) Which function grows faster: x2 − 10 or x + 10?
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Examples

Examples

(i) Let f (x) = 2x2 − 2 and g(x) = 1
100 x2 − 100. f = Θ(g).

(ii) Let f (x) = 2x2 − 2 and g(x) = 1
100 x − 100. f = Ω(g). Furthermore, g = o(f ).

(iii) Let f (x) = 2x2 − 2 and g(x) = 1
100 x − 100. g = O(f ). Furthermore, g = o(f ).
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Test to determine order

The limit test

Let f and g denote two functions mapping non-negative reals to non-negative reals.

Let l = limx→∞
f (x)
g(x)

. Then,

(i) If l is a positive constant, then f = Θ(g).

(ii) If l = 0, then f = o(g).

(iii) If l =∞, then g = o(f ).

Note

If limx→∞f (x) =∞ and if limx→∞g(x) =∞, then,

lim
x→∞

f (x)

g(x)
= lim

x→∞

f ′(x)

g′(x)

The above rule is called L’Hospital’s rule.
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(iii) If l =∞, then g = o(f ).

Note

If limx→∞f (x) =∞ and if limx→∞g(x) =∞, then,

lim
x→∞

f (x)

g(x)
= lim

x→∞

f ′(x)

g′(x)

The above rule is called L’Hospital’s rule.
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Examples

Examples

(i) Show that x = o(x2).

(ii) Show that x = o(x log x).

(iii) Show that log x = o(x).
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Some inequalities

Useful relationships

1 log n! = Θ(n · log n).
2 n! = o(nn), ω(2n).
3 n! =

√
2 · π · n · ( n

e )n · (1 + Θ( 1
n )).

4 ex =
∑∞

i=0
x i

i! .

5 ln(1 + x) =
∑∞

i=1(−1)i+1 · x i

i , when |x | < 1.

6 limn→∞
nb

an = 0, for all a > 1.

7 a = blogb a.

8 limn→∞
logb n

na = 0, for all a > 0.
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Quick tricks through calculus

Bounding sums through integration

1 Let f be a monotonically increasing function. Then,∫ n

m−1
f (x) · dx ≤

n∑
k=m

f (x) ≤
∫ n+1

m
f (x) · dx .

2 Let f be a monotonically decreasing function. Then,∫ n

m−1
f (x) · dx ≥

n∑
k=m

f (x) ≥
∫ n+1

m
f (x) · dx .

Exercise

Find upper and lowee bounds on
∑n

i=1
1
i .
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Sample Space and Events

Definition

A random experiment is an experiment whose outcome is not known in advance, but
belongs to a non-empty, non-singleton set called the sample space (usually denoted
by S).

Example

(i) Suppose that the experiment consists of tossing a coin. Then, S = {H, T}.
(ii) Suppose that the experiment consists of tossing a die. Then,

S = {1, 2, 3, 4, 5, 6}.
(iii) Suppose that the experiment consists of tossing two coins. Then,

S = {HH, HT , TH, TT}.

Definition

Any subset of the sample space S is called an event.
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Sample Space and Events

Definition

A random experiment is an experiment whose outcome is not known in advance, but
belongs to a non-empty, non-singleton set called the sample space (usually denoted
by S).

Example

(i) Suppose that the experiment consists of tossing a coin. Then, S = {H, T}.
(ii) Suppose that the experiment consists of tossing a die. Then,

S = {1, 2, 3, 4, 5, 6}.
(iii) Suppose that the experiment consists of tossing two coins. Then,

S = {HH, HT , TH, TT}.

Definition

Any subset of the sample space S is called an event.
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Combining Events

Definition

Given two events E and F , the event E ∪ F (union) is defined as the event whose
outcomes are in E or F ; e.g., in the die tossing experiment, the union of the events
E = {2, 4} and F = {1} is {1, 2, 4}.

Definition

Given two events E and F , the event EF (intersection) is defined as the event whose
outcomes are in E and F ; e.g., in the die tossing experiment, the intersection of the
events E = {1, 2, 3} and F = {1} is {1}.
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Combining events (contd.)

Definition

Given an event E , the event Ec (complement) denotes the event whose outcomes are
in S, but not in E ; e.g., in the die tossing experiment, the complement of the event
E = {1, 2, 3} is {4, 5, 6}.

Definition

If events E and F have no outcomes in common, then EF = ∅ and E and F are said to
be mutually exclusive. In this case, P(EF ) = 0; in the single coin tossing experiment
the events {H} and {T} are mutually exclusive.

Note

Never forget that events are sets. This is particularly important when using logic to
reason about them.
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Defining Probabilities on Events

Assigning probabilities

Let S denote a sample space. We assume that the number P(E) is assigned to each
event E in S, such that:

(i) 0 ≤ P(E) ≤ 1.

(ii) P(S) = 1.

(iii) If E1, E2, . . . , En are mutually exclusive events, then,

P(E1 ∪ E2 . . .En) =
n∑

i=1

P(Ei ).

P(E) is called the probability of event E . The 2-tuple (S,P) is called a probability
space. The above three conditions are called the axioms of probability theory.
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Two Identities

Note

(i) Let E be an arbitrary event on the sample space S. Then, P(E) + P(Ec) = 1.

(ii) Let E and F denote two arbitrary events on the sample space S. Then,
P(E ∪ F ) = P(E) + P(F )− P(EF ).
What is P(E ∪ F ), when E and F are mutually exclusive?
Let G be another event on S. What is P(E ∪ F ∪ G)?
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Conditional Probability

Motivation

Consider the experiment of tossing two fair coins. What is the probability that both
coins turn up heads? Now, assume that the first coin turns up heads. What is the
probability that both coins turn up heads?

Definition

Let E and F denote two events on a sample space S. The conditional probability of E ,
given that the event F has occurred is denoted by P(E | F ) and is equal to P(EF )

P(F )
,

assuming P(F ) > 0.

Example

In the previously discussed coin tossing example, let E denote the event that both
coins turn up heads and F denote the event that the first coin turns up heads.
Accordingly, we are interested in P(E | F ). Observe that P(F ) = 1

2 and P(EF ) = 1
4 .

Hence, P(E | F ) =
1
4
1
2

= 1
2 . Notice that P(E) = 1

4 6= P(E | F ).
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,
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Independent Events

Definition

Two events E and F on a sample space S are said to be independent, if the
occurrence of one does not affect the occurrence of the other.
Mathematically,

P(E | F ) = P(E).

Alternatively,

P(EF ) = P(E) · P(F )

Exercise

Consider the experiment of tossing two fair dice. Let F denote the event that the first
die turns up 4. Let E1 denote the event that the sum of the faces of the two dice is 6.
Let E2 denote the event that the sum of the faces of the two dice is 7. Are E1 and F
independent? How about E2 and F?
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Bayes’ Formula

Derivation

Let E and F denote two arbitrary events on a sample space S. Clearly, E = EF ∪ EF c ,
where the events EF and EF c are mutually exclusive. Now, observe that,

P(E) = P(EF ) + P(EF c)

= P(E | F )P(F ) + P(E | F c)P(F c)

= P(E | F )P(F ) + P(E | F c)(1− P(F ))

Thus, the probability of an event E is the weighted average of the conditional
probability of E , given that event F has occurred and the conditional probability of E ,
given that event F has not occurred, each conditional probability being given as much
weight as the probability of the event that it is conditioned on, has of occurring.
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Random Variables

Motivation

In case of certain random experiments, we are not so much interested in the actual
outcome, but in some function of the outcome, e.g., in the experiment of tossing two
dice, we could be interested in knowing whether or not the the sum of the upturned
faces is 7. We may not care whether the actual outcome is (1, 6), (6, 1), or . . . .

Example

Let X denote the random variable that is defined as the sum of two fair dice. What are
the values that X can take?

P{X = 1} = 0

P{X = 2} =
1

36
...

P{X = 12} =
1

36
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The Bernoulli Random Variable

Main idea

Consider an experiment which has exactly two outcomes; one is labeled a “success”
and the other a “failure”.

If we let the random variable X assume the value 1, if the experiment was a success
and 0, if the experiment was a failure, then X is said to be a Bernoulli random variable.

Assume that the probability that the experiment results in a success is p.

The probability mass function of X is given by:

p(1) = P{X = 1} = p

p(0) = P{X = 0} = 1− p.
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The Binomial Random Variable

Motivation

Consider an experiment which consists of n independent Bernoulli trials, with the
probability of success in each trial being p.

If X is the random variable that counts the number of successes in the n trials, then X
is said to be a Binomial Random Variable.

The probability mass function of X is given by:

p(i) = P{X = i} = C(n, i) · pi · (1− p)n−i , i = 0, 1, 2, . . . n
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The Geometric Random Variable

Motivation

Suppose that independent Bernoulli trials, each with probability p of success are
performed until a success occurs.

If X is the random variable that counts the number of trials until the first success, then
X is said to be a geometric random variable.

The probability mass function of X is given by:

p(i) = P{X = i} = (1− p)i−1 · p, i = 1, 2, . . .
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Features of a random variable

Features

Associated with each random variable are the following parameters:
1 Probability mass function (pmt) (Already discussed).
2 Cumulative distribution function or distribution function.
3 Expectation.
4 Variance.
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Distribution Function

Definition (Distribution Function)

For a random variable X , the distribution function F (·) is defined for any real number b,
−∞ < b <∞, by

F (b) = P(X ≤ b).
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Expectation

Definition (Expectation)

Let X denote a discrete random variable with probability mass function p(x). The
expected value of X , denoted by E [X ] is defined by:

E [X ] =
∑

x
x · p(x).

Note

E [X ] is the weighted average of the possible values that X can assume, each value
being weighted by the probability that X assumes that value.
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Variance and Covariance

Definition (Variance)

The variance of a random variable X i(denoted by Var(X) or σ2) is given by

E [(X − E [X ])2].

Definition (Covariance)

Given two (jointly distributed) random variables X and Y , the covariance of X and Y is
defined as:

Cov(X ,Y ) = E [(X − E(X)) · (Y − E(Y ))].
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Parameters of the important Random Variables

Parameter table

Variable type Expectation Variance
Bernoulli p p · (1− p)
Binomial n · p n · p · (1− p)

Geometric 1
p

1−p
p2

Exercise

Find the parameters of the Poisson, Normal, Uniform and exponential random
variables.
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Expectation of the function of a random variable

Theorem

If X is a random variable with pmf p(), and g() is any real-valued function, then,

E [g(X)] =
∑

x : p(x)>0

g(x) · p(x)
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Joint Distributions

Joint distribution functions

For any two random variables X and Y , the joint cumulative distribution function is
defined as:

F (a, b) = P(X ≤ a,Y ≤ b), −∞ < a, b <∞

The distribution of X (or Y ) can be obtained from the joint distribution as follows:

FX (a) = P(X ≤ a)

= P(X ≤ a,Y ≤ ∞)

= F (a,∞).

Note

In case X and Y are discrete random variables, we can define the joint probability
mass function as:

p(x , y) = P(X = x , Y = y).
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Independent Random Variables

Definition

Two random variables X and Y are said to be independent, if

F (a, b) = FX (a) · FY (b), ∀a, b.

When X and Y are discrete, the above condition reduces to:

p(x , y) = px (x) · py (y)
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Linearity of Expectation

Proposition

Let X1, X2, . . . , Xn denote n random variables, defined over some probability space.
Let a1, a2, . . . , an denote n constants. Then,

E [
n∑

i=1

ai · Xi ] =
n∑

i=1

ai · E [Xi ]

Note

Note that linearity of expectation holds even when the random variables are not
independent. For random variables X1 and X2, Var(X1 + X2) = Var(X1) + Var(X2),
only if X1 and X2 are independent. More generally,

Var(X1 + X2) = Var(X1) + Var(X2) + 2 · Cov(X1,X2).
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Concentration Inequalities

Tail bounds

Consider the following problem: A fair coin is tossed n times. What is the probability
that the number of heads is at least 3·n

4 ? In general, the tail of a random X is the part
of its pmf, that is away from its mean.

Inequality Known parameters Tail bound

Markov X ≥ 0,E [X ] P(X ≥ a · E [X ]) ≤ 1
a , a > 0

Chebyshev E [X ],Var(X) P(|X − E [X ]| ≥ a · E [X ]) ≤ Var(X)

(a·E [X ])2 , a > 0.

Chernoff X is binomial, E [X ] P((X − E [X ]) ≥ δ) ≤ e−
−2·δ2

n , δ > 0.

Exercise

Find the tail bounds for the coin tossing problem using all three techniques.
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Groups

Definition

A group consists of a set G and a binary operation “·” defined on G, for which the
following conditions are satisfied:

1 Associativity: (a · b) · c = a · (b · c), for all a, b, c ∈ G.
2 Identity: There exists an element e ∈ G such that a · e = e · a = a for all a ∈ G.
3 Inverse: Given a ∈ G, there exists b ∈ G such that a · b = b · a = e.

Example

Z with + as the operator and 0 as the identity element.
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Rings

Definition

A ring consists of a set R and two binary operations “+” (addition) and “·”
(multiplication), defined on R, for which the following conditions are satisfied:

1 Additive associative: (a + b) + c = a + (b + c), for all a, b, c ∈ R.
2 Additive commutative: a + b = b + a, for all a, b ∈ R.
3 Additive identity: There exists an element e ∈ R such that for all a ∈ R,

e + a = a + e = a.
4 Additive inverse: For every a ∈ R, there exists −a ∈ R such that

a + (−a) = (−a) + a = e.
5 Left and right distributivity: For all a, b, c ∈ R, we have, a · (b + c) = a · b + a · c

and (b + c) · a = b · a + c · a.
6 Multiplicative associativity: For all a, b, c ∈ R, we have, (a · b) · c = a · (b · c).

Example

Z under the usual addition and multiplication.
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Fields

Definition

A field consists of a set F and two binary operations “+” (addition) and “·”
(multiplication), defined on R, for which the following conditions are satisfied:

1 (F ,+, ·) is a ring.
2 Multiplicative commutative: For any a, b ∈ F , a · b = b · a.
3 Multiplicative identity: There exists 1 ∈ F such that a · 1 = 1 · a = a for all a ∈ F .
4 Multiplicative inverse: If a ∈ F and a 6= 0, there exists b ∈ F , such that

a · b = b · a = 1.

Example

The set < with traditional addition and multiplication.
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Bound Computation

Upper and Lower bounds

1 Maximum/Minimum in an array.
2 Maximum and minimum in an array.
3 Array sorting.
4 Matrix multiplication.
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Problem types

Three types of problems

1 The Königsberg bridge problem.
2 The Hamilton Circuit problem.
3 Playing Chess.
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